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Abstract

An Acute Hypotensive Episode (AHE) is the sudden onset of a sustained period of low blood
pressure and is one among the most critical conditions in Intensive Care Units (ICU). With-
out timely medical care, it can lead to an irreversible organ damage and death. By identifying
patients at risk for AHE early, adequate medical intervention can save lives and improve
patient outcomes. In this paper, we design a novel dual-boundary classification based
approach for identifying patients at risk for AHE. Our algorithm uses only simple summary
statistics of past Blood Pressure measurements and can be used in an online environment
facilitating real-time updates and prediction. We perform extensive experiments with more
than 4,500 patient records and demonstrate that our method outperforms the previous best
approaches of AHE prediction. Our method can identify AHE patients two hours in advance
of the onset, giving sufficient time for appropriate clinical intervention with nearly 80% sensi-
tivity and at 95% specificity, thus having very few false positives.

1 Introduction

An Acute Hypotensive Episode (AHE) is the sudden onset of a period of sustained low blood
pressure [1]. If left untreated, it can rapidly deteriorate a patient’s health and cause a number
of complications including death. Fig 1 shows the episode in a graph of a patient’s Mean Arte-
rial Blood Pressure (MAP) measurements.

Many different conditions may cause AHE; these include sepsis, myocardial infarction, car-
diac arrhythmia, pulmonary embolism, hemorrhage, dehydration, anaphylaxis, effects of med-
ication, or any of a wide variety of other causes of hypovolemia, insufficient cardiac output, or
vasodilatory shock [1]. In many cases, AHE is a precursor to or predictor of other complica-
tions [2-4]. Determining the most appropriate medical intervention for such patients depends
on first ascertaining the cause of the hypotensive episode: often due to lack of sufficient time,
intervention begins by first selecting a suboptimal treatment to prevent immediate damage
and to have sufficient time to assess the patient thoroughly [1]. Early identification of patients
at risk for AHE helps not only in preventing the episodes but also in finding the best possible
treatment for the patient [1].
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Automated systems for predicting AHE and other complications in ICU patients are
becoming increasingly important given the enormous difficulties of manually monitoring the
abundance of data collected for each patient and the shortage of qualified clinical staff in ICUs
[5, 6]. There have been many previous attempts to build automated systems that can identify
patients at risk for AHE in advance (see section 2.2 for a brief survey).

This paper presents a novel supervised classification based system for identifying patients at
risk for AHE. The algorithm uses only simple statistical summaries of past vital measurements
(such as blood pressure and heart rate) of patients and can be employed in an online manner,
facilitating real-time updates in the model and prediction. The novelty of the algorithm comes
from learning to separate patient cases into three groups: (1) easy to recognize as AHE cases
(2) easy to recognize as non-AHE cases and (3) ambiguous cases. During prediction, the algo-
rithm deals with each of the cases in a different manner.

Our contributions in this paper are:

o A new supervised binary classification algorithm for identifying patients at risk for Acute
Hypotensive Episodes. Our algorithm can be used both in offline and online modes. As
more data from new patients arrive, the classifier updates itself in an online manner using
only the newly available data (i.e. without re-training itself with the entire dataset).

Extensive experiments on data from patients in critical care show that our algorithm
achieves significantly higher accuracy, sensitivity and specificity compared to existing algo-
rithms. Performance improvement is observed for predictions made up to 2 hours in
advance, thus giving clinicians sufficient time for adequate medical intervention.

A preliminary version of this paper appeared in [7] where the dual boundary approach was
first presented. A comparative analysis therein shows the superiority of our approach over
state-of-the-art methods on a dataset of 1,700 patient records. In this paper, we provide a com-
plete treatment of the most general online version of our algorithm (that was only briefly intro-
duced earlier). We also analyze the behavior of the algorithm and reasons for its superior
performance over baseline methods in detail. New experiments with additional baselines and
data (vitals in addition to blood pressure) are presented. All experimental results in this paper
are on a larger dataset of 4,593 patient records from the publicly available MIMIC IT ICU data-
base. To our knowledge, the only previously published work on dual boundary classifier is a
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Fig 1. Definition of acute hypotensive episode: A period of 30 minutes where at least 90% of Mean Arterial Pressure measurements are no
greater than 60 mmHg.

https://doi.org/10.1371/journal.pone.0193259.9001
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preliminary version of this manuscript, as described above. Multiple decision boundaries may
be obtained in margin-based classifiers, like SVM, and the difference between that and our
algorithm is explained in section 4.1.

The rest of the paper is organized as follows. We begin with a brief background on AHE
and a survey of related work in AHE prediction. Section 3 gives a formal definition of the
problem. This is followed by a detailed discussion on our new classification algorithm in sec-
tion 4. Details of the data and experimental protocol are presented in section 5 and section 5.5
describes the results obtained. We conclude our discussion in section 6.

2 Background

In this section we first provide a short description of blood pressure, hypotension and acute
hypotensive episodes. This is followed by a brief survey of clinical studies on hypotensive epi-
sodes and related work in data mining on prediction of acute hypotensive episodes.

2.1 Acute hypotensive episodes

Arterial Blood Pressure (ABP) is the pressure exerted by blood on the vessels. Along with body
temperature, respiratory rate and pulse rate, blood pressure is a vital sign that is routinely
monitored by healthcare providers by measuring the pressure on the arterial walls.

Blood pressure values are measured often using a sphygmomanometer, in millimeters of
mercury (mmHg). In each heartbeat blood pressure varies between the highest and the lowest
pressure in the vessels, which are called systolic and diastolic pressures, respectively. ABP mea-
surements are written as X/Y mmHg (e.g. 120/80) where X denotes the systolic pressure and Y
denotes the diastolic pressure. The Mean Arterial Pressure (MAP) is the pressure generated as
blood is pumped out of the left ventricle of the heart into the arteries. It can be approximated
using the systolic (X) and diastolic (Y) pressures as follows [8]:

2 1
MAP=_-X—_Y.
3 3

The normal range for blood pressure is considered to be between 90/60 and 130/80 mmHg
[8]. Thus hypotension is the condition when the blood pressure is lower than 90/60 mmHg.
Following [1], we define an Acute Hypotensive Episode as a period of 30 minutes during
which at least 90% of the MAP measurements are no greater than 60 mmHg. Other guidelines
have also been published [9, 10]. Commercial bedside monitoring systems provide alerts when
the blood pressure falls below a predetermined level. But, to the best of our knowledge, there is
no system that can predict AHE in advance.

2.2 Related work

Many clinical studies have examined the role of hypotension in complications like acute coro-
nary syndromes [11], acute kidney injury [12] and sepsis [13, 14]. Hypotension is also found
to be an important mortality predictor for patients with cardiovascular abnormalities [15, 16].
Hypotension is a precursor to septic shock, the second most common cause of death in ICU
patients in the United States [17], and a study shows that mortality in such cases depends criti-
cally on the duration of hypotension before treatment [18].

Existing intervention approaches to AHE are reactive, that is, after the onset of AHE. These
interventions include administration of vasopressors, fluid resuscitation and other treatments
depending on the case [10, 19]. Instead if patients at risk for AHE are identified in advance,
the intervention most appropriate to the patient can be determined and administered.
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AHE prediction. In the MIMIC II critical care database [20], out of 2320 patients, AHE
was found in 41% of the patients for whom arterial blood pressure was recorded. The mortal-
ity rate of these patients was found to be more than twice that of the entire MIMIC II popula-
tion. Recognizing the importance of AHE, automated AHE prediction was put forth as a
challenge in the 2009 Computers in Cardiology competition [1]. Vital signs data for 110
patients from the MIMIC II database [20] were provided, divided into training and test data-
sets containing 60 and 50 patient records respectively. The results of the top three performers
of the challenge are published in [21], [ 22] and [23], respectively. The best result was obtained
by Henriques et al [21] using a neural network based classifier. A similar method, called Che-
byshev’s neural network, applied on the challenge dataset by Zhou et al [24], gave similar
results. Simple mean based predictions such as those of Chen [22] who used the last 5 minutes
of average diastolic blood pressure as a predictor of AHE and of Mneimneh et al [23] who
used the last 20 minutes of MAP measurements had comparable performance. A hidden
markov model based approach is proposed by Singh et al [25] and the use of contrast pattern
mining for AHE prediction is discussed by Ghosh et al [26]. Both these techniques have per-
formance similar to that of mean based predictions. Note that these methods were tested on a
small sample size (110 patients) and for predicting AHE only 30 minutes in advance.

A detailed analysis of the problem as well as these methods is given in Marzyeh Ghassemi’s
thesis [27] wherein the neural network based method is tested on 1,168 patient records using
four vital signs” data—heart rate, respiration rate, oxygenation levels and MAP. Sun et al [28]
design a method based on particle swarm optimization and k-means to extract features from
MAP measurements which are then classified using SVM. Donald et al [29] developed a Bayes-
ian Artificial Neural Network trained on demographic and physiological data of nearly 2,000
patients to predict hypotension in brain injury subjects with observation windows of 15 and 30
minutes before the injury. Lee et al [30], used heart rate, MAP and clinical data of 1,311 patient
records from the MIMIC II database. Their algorithm uses 102 statistical, wavelet-based and
clinical features and predicts the event 1 hour in advance using a neural network based
classifier.

Some other studies have also addressed the problem of predicting AHE but have not been
tested extensively. A Binomial Sign Test based classifier was tested by Crespo et al [31] on the
BP measurements of 7 patients using 5 time series features extracted from MAP waveforms.
Their method predicts the event only 20 seconds in advance. Ghaffari et al [32] develop a
method of detecting AHE using ECG and MAP waveforms and test it on 15 subjects from the
MIMIC II database. Lehman et al [33] use a combination of Gaussian Mixture Model based
clustering and K-Nearest Neighbours Classifier on 227 patient records from the MIMIC II
database using both Heart Rate and MAP measurements. Rocha et al [34] use correlation anal-
ysis and neural networks on MAP measurements to build a predictive model for AHE. The
best predictive accuracy when only vital measurements are used (among existing methods) is
achieved by the mean-based prediction of Chen [22] which was shown to be outperformed by
our classifier in [7].

3 Problem definition

An Acute Hypotensive Episode (AHE) is defined as a period of 30 minutes during which at
least 90% of the MAP measurements are no greater than 60 mmHg [1]. We cast the problem
of predicting AHE in a patient as a supervised binary classification problem. Using data from
previous ICU patients—both with and without AHE events—a binary classifier is trained,
where the classes are denoted by A (those likely to have AHE) and NA (those unlikely to have
AHE). The classifier can then be used to predict AHE in a previously unseen patient by
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determining the class label of the patient. There are three parameters that can be varied during
the prediction, which we will refer to as the [P,O,T] parameters of an algorithm:

Prediction Window (P): Duration of time (in minutes) before which predictions are made,
i.e., we predict whether or not a patient will have AHE w minutes in the future; we call w
the prediction window width.

Observation Window (O): Duration of time (in minutes) before the prediction window during
which MAP measurements are considered for training the classifier.

Test Window (T): Duration of time (in minutes) before the prediction window during which
MAP measurements are considered for predicting AHE in a patient.

Fig 2 shows a schematic of the three windows.

Note that each patient is potentially at risk of a future acute hypotensive episode at each
point in time. What we have, from historical data, is a single indicator of an occurrence of
AHE at a particular timepoint (the risk at previous timepoints can only be estimated, not
known with certainty). Our aim is to predict this as early as possible.

The observation window indicates the amount of data we use for training. The test window
indicates the amount of data we use during prediction. The windows can be measured with
respect to either time duration (that we use) or number of measurements. For conducting our
experiments, we vary the length of these windows (i.e. the time duration of the measurements
considered for training and prediction) independently and study the performance of the classi-
fiers. Also note that by testing the performance on expanding test windows, we effectively test
the performance at regular intervals for the same patient. We also study the classifier perfor-
mance in an online setting, where we update the classifier with new measurements obtained.

In a real-life deployment, the classifier can predict, with each new blood pressure measure-
ment, whether a patient is at risk (A) or not at risk (NA) and when the prediction is A, an alert
is raised for the clinical staff. So the labels can also be viewed as an indicator for alert at the
patient level.

4 DBC: A novel classification method

In this section, we describe our new algorithm for classifying patients into classes 1 (e.g. class
A, those at risk for developing AHE) and 2 (e.g. class NA, those not at risk for developing
AHE) based on their blood pressure signals. Our method uses only the mean (y1, y, for classes

TEST WINDOW (T) PREDICTION WINDOW (P)

> TIME

OBSERVATION WINDOW (O)

!

Fig 2. [O,P,T] parameters for a predictive algorithm. Note that the Test and Observation windows can vary in duration independently of each

other.

https://doi.org/10.1371/journal.pone.0193259.g002
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H, — KO,

Hy + KO,

1 and 2 respectively) and standard deviation (o7, 65, for classes 1 and 2 respectively) of the vital
measurements within a given observation window as features. Our classifier, called Dual
Boundary Classifier (DBC) uses a combination of margin-based and distance-based classifica-
tion techniques. We first describe the intuition behind the algorithm and explain how it differs
from standard classifiers like SVM and KNN.

4.1 Intuition behind the classifier

We observe in the training data that the MAP measurements in class A in the hour before the
Acute Hypotensive event is generally lower than the MAP measurements in class NA. Hence,
a margin-based classifier is expected to work well. As seen in the experiments, SVM has high
specificity but its sensitivity is very low.

To minimize both false positives and false negatives (type-I and type-II errors, respectively),
where true positive denotes correct identification in class A, our new method builds an inter-
val-based margin (in other words, two decision boundaries, using a parameter x). Our interval
is based on the mean and standard deviation values in classes A and NA, observed in the train-
ing data: (4, + k03, p, — K05). Any value (in the test set) falling below the lower bound of the
interval is considered to be in class A and a value above the upper bound in class NA. We
choose the bounds (by choosing the right k) such that the errors are minimized, i.e., the sum
of the number of class A values falling above the lower bound (#; + n,) and the number of
class NA values falling below the upper bound (13 + n,) is minimized. In addition we also min-
imize the number of values in the uncertainty region. Fig 3 shows a schematic.

Test samples falling in the region of class A or class NA are classified in a straightforward
manner. For those test samples that lie in the uncertainty region, we use a distance-based

(O  AHE Patient @ Non-AHE Patient

Non-AHE Region

"/ Uncertaint
‘ o iainty
e I\\ 2 Regien

O 0O O

AHE Region
~ ® O

Fig 3. Schematic of our novel classifier. The feature space is divided into three regions based on the values of y;, 5, 01, 02, K. A test sample in
the AHE region is classified into class A, Non-AHE region is classified into class NA. A distance-based approach is used for test samples in the
Uncertainty region. The arrows for a point in the uncertainty region (shown only for one of the points), show that distances are calculated with
respect points outside the uncertainty region only.

https://doi.org/10.1371/journal.pone.0193259.g003

PLOS ONE | https://doi.org/10.1371/journal.pone.0193259  February 23, 2018 6/17


https://doi.org/10.1371/journal.pone.0193259.g003
https://doi.org/10.1371/journal.pone.0193259

@' PLOS | ONE

Predicting acute hypotensive episodes in critical care

approach to classify the sample by comparing the distance of the test case to (training data)
points outside the uncertainty region.

Comparison with other classifiers. Note that our approach is not an ensemble-based
technique since we do not use a combination of classifiers on any test datapoint. Our classifier
is a discriminative classifier which applies two different classification rules and both rules differ
in methodology from standard classifiers. One is a boundary based rule (similar to, but not the
same as, SVM) for data points outside the uncertainty region, and another is a nearest neigh-
bor rule (similar to, but not the same as, KNN) for datapoints in the uncertainty region. Thus
the selection of the rule is also determined by our classifier in a data-driven manner. These dif-
ferences distinguish DBC from standard classifiers.

Comparison with margin-based classifiers. The two boundaries in DBC are not determined
using support vectors (as in SVM) but using the mean and standard deviation values of
training data from both classes. In the optimization setup for training, DBC minimizes
the misclassification rate and the number of points in the uncertainty region which is not
the same as maximizing the margin. Indeed, our formulation yields a mixed integer linear
program (shown in [7]) whereas the classical SVM formulation results in a quadratic
program.

Comparison with distance-based classifiers. DBC uses a distance-based approach only for the
uncertainty region points in testing and note that we determine the distance only with respect
to the points outside the AHE region—which makes it different from a KNN rule. For exam-
ple, if a test data point lies in the uncertainty region and the closest point is also within the
uncertainty region, KNN will consider it whereas DBC will not.

To further illustrate the difference, note that a combination of SVM and KNN would
apply both classifiers on each test point. But DBC first determines whether the test point lies
in the uncertainty region. If it is in the uncertainty region, it applies a distance-based rule—
checking distance only with respect to training points outside the uncertainty region. If it
is not in the uncertainty region, then the boundary determines the class and the boundaries
are learnt from the training data in a manner that is different from that of margin-based
classifiers.

4.2 Online classification algorithm

We describe the DBC algorithm in the more general online mode. The offline mode is a special
case with a single round that uses all available historical data for training. An implementation,
in R, is available from the authors upon request.

The online algorithm proceeds in rounds. In each round, we use the measurements made
in the new observation window to update the model. We denote the round with superscript
(n). Measurements can be made for each of the vitals (subscript v): MAP, heart rate (HR), res-
piration rate (RR), Oxygen Saturation (OSAT) and temperature (TEMP).

Training the classifier. Training the classifier consists of the following steps:

« Denote byy!” the vector where each coordinate has the mean of the measurements of vital v
in the n™ observation window for patients in class A. Let yﬁ\',’,iv be the corresponding vector

for class NA. Denote by yf{? (yg',iv) all the measurements of vital v for patients in class A (NA)

until round n.
(n) __ (n) (n) __ (n) (n) _ (n) (n)  __ (n)
o Let ji,, = mean(yy, ), fyy, = mean(yyy, ), 04, = stdev(yy, ), oy, = stdev(yy, ),

V) = variance(y), v\, = variance(y'), are the corresponding means, standard devia-

tions and variance.
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« Compute the cumulative means and variance (for all measurements of vital v up to the n™

observation window), 1, v{ as follows [35], where x is each measurement in y':

x— Y

n

n n—1
wa = p 4+

N (n— 1)"371) + (x — llel))(x - ,Ufa"v)))
Av
n

Similarly, we compute cumulative mean and variance ) vi’,ﬁv for class NA.

Letn, = |y\|and ny,, = |y'/|, the cardinalities of the two vectors. This is updated in each
round:

e = lya I lya]

(n—

nNAv = ‘YNAVI) ‘ + |y§\’]2v | .

Let «, be a value such that u} + k6 < ©), — k,6\0,. Let

n,,: Number of yﬁfv) values greater than ,ug’,iv — Kval(\?j .

#,5: Number of y';” values in the range (1) + x,6', ulh, — 1,0\, )-

n,3: Number of yl(\',zv values lesser than ,uX? + Kvaffv).

n,4: Number of y\), values in the range (1 + 1,0t ul, — K,05%)-

Find the value of «, that minimizes n,; + n,, + #1,3 + #,4. Let that value be k. A simple heu-
ristic for selecting ' can be employed in practice:

o Select a range of values for k, and compute n,; + n,, + 1,3 + n,4 for each value in the
range.

« Select the value of x,, with the (local) minimum #,; + 1,5 + 1,3 + 11,4.
Alternatively, a mixed integer linear program can be used as shown in [7] but that can
become computationally expensive especially in an online setting.
Thus a trained classifier at the end of the n round consists of a 7-tuple:

(M4, yars ,uf;"), GE\"V), u,(\;?w, a({;,iw K] for each vital v.

Classifying test data. We compute the mean of vital measurements v over the period of

the Test Window, denoted by z,. For each vital, we obtain a classification label [, as follows:

o Ifz, < ,ug"v) + Kjoi"v), assign the patient to class A.

Ifz, > ui’,ﬁv — K”V‘Jl(\',zv, assign the patient to class NA.

If z, falls in the range [ + K20\, 1\, — K0y, ], compute the mean squared deviation of

z, from all the points in y| and y\7), (from the training data), denoted by d,, and dy,,
respectively. If d4, > dya, assign the patient to class NA, otherwise assign the patient to

class A.

Note that this does not require us to store all the patient data used during the training phrase.
The computation can be simplified as follows. The mean squared deviation of z, from all the
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points in y is 32" (z, — x,,)* where x;, is the i-th coordinate of y';”. The above expression
can be written as

Ay

dy =3 (2 — 1+ 1) = x,)" = [z, — 1) o]

i=1

and similarly for the distance of z, from yg'jv. Thus the computation only requires the values

of the total number of datapoints: #14,, nya, and the mean and variance computed during

training: 1, Vi, i, V-

The final classification label is set by a majority voting rule: ¥, I, where ties are broken by
using the vote for MAP.

4.3 Time complexity

The time complexity of training (for each round, and each vital) is dominated by the step of
finding . Let K be the number of choices for x, considered in our heuristic. The training
time complexity is O(K + n,, + ny,,) and testing each test window z, containing #, vital mea-
surements takes O(n,) time (to compute the mean).

5 Experimental results
5.1 ICU data

MIMIC II [20] is a publicly available database, part of Physionet [36], containing physiological
signals and clinical data of more than 5000 ICU patients. Vital signs of most of these ICU
patients were recorded, sampled either every minute or every second. We consider only the
following vital measurements for our study: Mean Arterial Blood Pressure (MAP), Heart Rate
(HR), Pulse Rate (PUL), Respiratory Rate (RR) and Oxygen Saturation (OSAT).

Each patient record consists of a time series signal x;, t = 1,...,N; where N; is the total num-
ber of vital measurements for the i patient, and x; is the MAP measurement at time ¢, time
being reckoned from the start of the measurements in the ICU at an interval of 1 minute.
Whenever the sampling is per second, we use the mean of all measurements in a minute. An
Acute Hypotensive Event (AHE) is defined as an interval in the record, [x;, X, 30], in which at
least 27 of the MAP measurements are no greater than 60.

Not all the records are usable since many of them have missing or erroneous data. From the
available cleaned data in MIMIC II, we use 4,593 records of ICU patients out of which 1,307
are found to contain AHE events (class A) and 3,286 do not contain AHE events (class NA).
We considered data only until the first AHE event in each patient record for training and pre-
diction. During training we discard records that contain less than 6 hours of MAP measure-
ments and those that contain Acute Hypotensive Events in the first 5 hours of recorded data.

5.2 Experimental setup

We test the performance of the algorithms for the following choices of 6 observation windows
(0), 24 prediction windows (P) and 6 test windows (T):

0O € {20,40, 60, 80, 100, 120},
P e {5,10,15,...,110,115,120},
T € {20, 40, 60, 80, 100, 120}.
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In the online mode, for each of the 864 [O,P,T] settings, first approximately 20% (= 910) of
the patient records are chosen for initial training. The ratio of AHE and Non-AHE patients in
this initial training set is 260:650 which approximately maintains the same ratio found in the
original data (1307:3286). After that we incrementally predict and update the classifier, using a
single observation window for each patient. In this manner, prediction is done for the remain-
ing 3,683 (= 4593-910) patients containing 1,047 AHE and 2,636 non-AHE cases. In the offline
mode, we perform 5-fold cross validation over all the patient records, for each of the 864 [O,P,
T] settings.

5.3 Baseline comparison methods

As mentioned earlier, among the previous methods for AHE prediction that use only vital
measurements, the best predictive accuracy is achieved by the mean-based prediction of Chen
[22] which we also confirm with experiments on our larger dataset of 1,700 patient records in
our previous work [7]. We use this classifier, denoted by MU, as a baseline along with the
other standard classifiers—Support Vector Machines (SVM) with RBF kernel, Random Forest
(RF), K-Nearest Neighbors (KNN) and Adaboost (ADA)—using the same mean-based fea-
tures. Implementations in R are used for these classifiers: packages ‘€1071’, ‘Random Forest’,
‘Class’ and ‘Ada’ respectively. Tunable parameters for the baseline classifiers are obtained in
the following way. A portion of the training data is held out for validation. A grid search on
the parameter space is performed and for each classifier, the parameters that give the best per-
formance on the validation set are chosen. Prediction results are shown only for the best
parameters thus selected.

5.4 Evaluation metrics

We measure the performance of all the tested methods by their sensitivity, specificity and clas-
sification accuracy. Sensitivity is defined as the percentage of class A test samples accurately
classified into class A. Specificity is defined as the percentage of class NA test samples accu-
rately classified into class NA. Classification accuracy of a classifier is the percentage of total
test samples correctly classified.

Note that there is no discriminating threshold in our method that creates a trade-off
between sensitivity and specificity (unlike many other classifiers). Hence the sensitivity and
specificity do not change with either any internal parameter or time window. We show the
sensitivity (true positive rate) and specificity (true negative rate) separately, where ‘positive’
denotes correct prediction of AHE.

P-values are computed using a one-sided two-sample t-test. We compare the mean value of
the performance measure (sensitivity, specificity and accuracy) for a baseline (y,) against the
corresponding mean value for DBC (¢;). We compare the null hypothesis Hy : yi; = g against
the alternative hypothesis H, : y; > o at level of significance 5%.

5.5 Performance results

The prediction window is the most important parameter here since it determines how early we
can predict the possibility of AHE in a patient. The values of O and T parameters can be set by
the user based on the sensitivity-specificity requirements or availability of data.

We first present the results of online and offline classification using only MAP measure-
ments first. The results, shown in Table 1 are averages over all the 864 [O,P,T] window set-
tings: averaged for 3683 patients in the online mode and over 5-fold cross validation in the
offline mode as described above. We observe that our algorithm significantly outperforms all
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Table 1. Mean (standard deviation in parentheses) of performance of algorithms—Our (DBC), KNN, RF, SVM, ADA and MU—Averaged over all the 864 [O,P,T]
window settings: Averaged for 3,683 patients in the online mode and over 5-fold cross validation in the offline mode.

Algorithm

Online Sensitivity
Specificity

Accuracy

Offline Sensitivity
Specificity

Accuracy

DBC KNN RF SVM ADA MU
0.77 (0.04) 0.31 (0.05) 0.30 (0.11) 0.17 (0.05) 0.24 (0.05) 0.39 (0.06)
0.92 (0.02) 0.47 (0.03) 0.37 (0.03) 0.82 (0.04) 0.60 (0.21) 0.81 (0.05)
0.85 (0.01) 0.40 (0.03) 0.34 (0.06) 0.78 (0.07) 0.41 (0.07) 0.72 (0.07)
0.83 (0.01) 0.34 (0.02) 0.43 (0.03) 0.19 (0.03) 0.39 (0.11) 0.59 (0.03)
0.90 (0.01) 0.56 (0.04) 0.34 (0.03) 0.78 (0.03) 0.57 (0.09) 0.79 (0.02)
0.87 (0.01) 0.46 (0.03) 0.37 (0.03) 0.74 (0.04) 0.44 (0.08) 0.69 (0.02)

https://doi.org/10.1371/journal.pone.0193259.t001

other algorithms (p-value <0.05) in terms of sensitivity, specificity and overall accuracy, in
both online and offline modes.

We show the boxplots for the sensitivity, specificity and accuracy obtained at a prediction
window of 120 minutes (2 hours) in both offline and online modes, averaged over 144 [O,T]
settings in Fig 4. Note that in these 144 experiments, even the lowest accuracy achieved by our
algorithm is higher than the highest accuracy of any other algorithm. Results for other values
of prediction window are similar.

Algorithm analysis. Algorithm DBC is a hybrid approach that combines margin-based
and distance-based classification methods. As described in section 4, by learning two bound-
aries DBC finds an uncertainty region between the boundaries and uses two different classifi-
cation rules depending on whether a test case falls within or outside the uncertainty region.
We now evaluate the benefit of this approach by comparing the performance of DBC with a
margin-based classifier without the uncertainty region and a purely distance-based approach
that does not use the dual boundaries of DBC—that is same as KNN. Table 2 shows the results
over all the 864 [O,P,T] window settings: averaged for 3683 patients in the online mode and
over 5-fold cross validation in the offline mode as described above.

The goal of the hybrid approach of DBC is to learn the two boundaries such that we have
very good classification performance outside the uncertainty region. This hypothesis is con-
firmed in our experiments. Table 3 shows the classification performance of DBC (for the off-
line case, as shown in Tables 2 and 3 above) in each of the three regions of the feature space
(see Fig 3): AHE, Non-AHE and Uncertainty Region. We observe that the performance of
DBC is indeed much higher outside the uncertainty region.

5.6 Addition of vitals

We study the performance of all the classifiers when additional vitals—HR, PUL, RR, and
OSAT—are used. Table 4 shows the performance averaged over 5-fold cross validation, over
all 864 choices of [O,P,T] window settings. The uppermost rows show the results of using (1)
only MAP measurements. The other rows (downwards) show the results of using (2) MAP
and HR, (3) MAP, HR and PUL, (4) MAP, HR, PUL and RR and (5) MAP, HR, PUL, RR and
OSAT respectively.

As additional vitals are used, the accuracy of our classifier reduces and the best results
are obtained when only MAP measurements are used. With more vitals, SVM achieves com-
parable or higher than that of DBC. However, in the case of even SVM, the highest accuracy
is obtained with the use of MAP measurements only. Overall, among all the different combi-
nations of vitals tested, the best results are obtained by our algorithm when only MAP
measurements are used. These results suggest that MAP measurements provide the most dis-
criminatory feature to identify patients who are at risk of AHE.
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Fig 4. Accuracy, sensitivity and specificity of our algorithm (DBC), K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector
Machine (SVM), AdaBoost (ADA) and Mean based method (MU) at prediction window of 120 minutes, averaged over 144 choices of [O,
T] settings and over (LEFT:) 3683 patients (online)/ (RIGHT:) 5-fold cross validation (offline).

https://doi.org/10.1371/journal.pone.0193259.g004

5.7 Discussion

Why does our classification algorithm work well?. The answer lies in the data. We first
observe that mean MAP measurements over an observation window is a good predictor of

Table 2. Mean (standard deviation in parentheses) of performance of algorithms—Our (DBC), KNN, Linear SVM
—Averaged over all the 864 [O,P,T] window settings: Averaged for 3,683 patients in the online mode and over

5-fold cross validation in the offline mode.

Algorithm DBC KNN Linear SVM
Online Sensitivity 0.77 (0.04) 0.31 (0.05) 0.11 (0.05)
Specificity 0.92 (0.02) 0.47 (0.03) 0.83 (0.05)
Accuracy 0.85 (0.01) 0.40 (0.03) 0.73 (0.05)
Offline Sensitivity 0.83 (0.01) 0.34 (0.02) 0.17 (0.03)
Specificity 0.90 (0.01) 0.56 (0.04) 0.85 (0.02)
Accuracy 0.87 (0.01) 0.46 (0.03) 0.78 (0.04)

https://doi.org/10.1371/journal.pone.0193259.t002
12/17
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Table 3. Mean performance of algorithm DBC in the three regions learned—Averaged over all the 864 [O,P,T]
window settings: Over 5-fold cross validation in the offline mode.

AHE Non-AHE Uncertainty
Sensitivity 0.93 0.96 0.73
Specificity 0.97 0.99 0.82
Accuracy 0.96 0.98 0.79

https://doi.org/10.1371/journal.pone.0193259.t003

AHE. This has been validated by previous work as well [22]. Our experiments also show that
addition of mean values of other vitals in our framework does not improve the predictive
accuracy.

However, not all AHE patients show very low mean in their observation windows. Fig 5
shows the mean MAP measurements of the patients in our dataset with different markers indi-
cating division into train and test sets, as well as AHE and non-AHE data. The boundary
obtained by a linear SVM classifier and the dual boundaries obtained by our classifier on the
training data are also shown.

While it is true that most of the AHE datapoints (triangle markers) lie below the SVM
boundary, with low mean MAP, there are several above the boundary as well. Our algorithm
gives special consideration to some of the datapoints that are between our two boundaries—
the region we call the uncertainty region. These datapoints are difficult to classify into AHE or
non-AHE by using a single boundary. Hence we use a distance based strategy to classify these
datapoints.

The data in the uncertainty region mostly belong to patients whose MAP measurements
were observed to fluctuate considerably in the observation window. For example, in some
cases, the BP remains in the normal range initially and becomes low and again comes back to
the normal range after some time. In such cases, the mean is often close to the decision bound-
ary and a single boundary classifier tends to misclassify them. These were the cases that were
better classified by finding the distance from the mean of the training data in each class.

Table 4. Mean (standard deviation in parentheses) of performance of algorithms—Our (DBC), KNN, RF, SVM, ADA and MU—Averaged over all the 864 [O,P,T]
window settings using 5-fold cross validation. The topmost rows show the results of using (1) only MAP measurements. The remaining rows show the results of using
(2) MAP and HR, (3) MAP, HR and PUL, (4) MAP, HR, PUL and RR and (5) MAP, HR, PUL, RR and OSAT respectively. Best results in each row are indicated in bold.

Vitals Algorithm DBC KNN RF SVM ADA MU
MAP Sensitivity 0.83 (0.01) 0.34 (0.02) 0.43 (0.03) 0.19 (0.03) 0.39 (0.11) 0.59 (0.03)
Specificity 0.90 (0.01) 0.56 (0.04) 0.34 (0.03) 0.78 (0.03) 0.57 (0.09) 0.79 (0.02)
Accuracy 0.87 (0.01) 0.46 (0.03) 0.37 (0.03) 0.74 (0.04) 0.44 (0.08) 0.69 (0.02)
+HR Sensitivity 0.78 (0.01) 0.36 (0.05) 0.22 (0.04) 0.19 (0.03) 0.38 (0.10) 0.56 (0.1)
Specificity 0.69 (0.01) 0.62 (0.05) 0.22 (0.04) 0.82 (0.04) 0.62 (0.11) 0.54 (0.1)
Accuracy 0.72 (0.01) 0.51 (0.05) 0.22 (0.04) 0.61 (0.04) 0.44 (0.09) 0.55 (0.1)
+ PULSE Sensitivity 0.55 (0.005) 0.45 (0.1) 0.22 (0.04) 0.25 (0.06) 0.45 (0.12) 0.29 (0.06)
Specificity 0.54 (0.005) 0.44 (0.1) 0.21 (0.05) 0.82 (0.06) 0.61 (0.13) 0.45 (0.04)
Accuracy 0.54 (0.003) 0.44 (0.1) 0.22 (0.04) 0.66 (0.05) 0.49 (0.10) 0.37 (0.04)
+RR Sensitivity 0.61 (0.01) 0.5 (0.05) 0.39 (0.05) 0.15 (0.05) 0.20 (0.05) 0.29 (0.06)
Specificity 0.54 (0.01) 0.44 (0.05) 0.55 (0.02) 0.84 (0.06) 0.63 (0.12) 0.65 (0.05)
Accuracy 0.57 (0.005) 0.47 (0.05) 0.47 (0.02) 0.51 (0.1) 0.33 (0.08) 0.52 (0.1)
+ OSAT Sensitivity 0.46 (0.02) 0.53 (0.03) 0.37 (0.05) 0.14 (0.04) 0.21 (0.04) 0.26 (0.04)
Specificity 0.72 (0.02) 0.44 (0.02) 0.53 (0.04) 0.88 (0.04) 0.67 (0.17) 0.68 (0.04)
Accuracy 0.61 (0.01) 0.49 (0.02) 0.45 (0.03) 0.7 (0.19) 0.42 (0.11) 0.45 (0.06)
https://doi.org/10.1371/journal.pone.0193259.1004
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Fig 5. Mean MAP measurements (along Y-axis) of AHE and non-AHE patients in train and test data. Each point belongs to a single patient
stretched out along the X-axis. Circles: Non-AHE, Triangles: AHE, Blue: Train data, Red: Test data, Red solid line: Classification boundary
learned by SVM, Greed dashed lines: Dual classification boundaries learned by our classifier.
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Design choices. Our hybrid approach utilizes a combination of margin-based and dis-
tance-based classification methods. A detailed analysis of the differences between our
approach and these approaches is presented in section 4. Previous work in AHE prediction
(described in section 2.2) have used these and other standard classifiers. Our work has
focussed more on algorithmic development and lesser on feature design. Our choice of mean-
based feature was primarily motivated by its performance demonstrated in previous studies
[22]. An advantage of using only mean and standard deviation of all measurements, is that
there is no restriction on the number of measurements or duration in which these measure-
ments are taken for the observation or test windows in our classifier. This is useful since the
number of measurements and length of stay varies considerably across patients. This also
avoids the problems of missing values and irregular sampling of vitals within and across
patient records that often needs to be addressed if other features are used. There is a growing
body of literature on feature design from clinical time series (e.g. [37]) and further studies on
the effectiveness of other features would be useful.

Limitations and future work. Features from other clinical data have been used for AHE
prediction (e.g. [30]) but a large-scale evaluation has not been done. In our study, we evaluate
the performance of classification on addition of mean values of other vitals as features. We
find no improvement over the performance achieved when only mean MAP values are used.
This conclusion, although not surprising since we are predicting a condition of sustained low
blood pressure, is limited to the feature design and classification framework used in our exper-
iments. For example, we train our classifier for each vital separately and use a majority voting
scheme to determine the final label, but many other approaches are possible using the DBC
classifier itself to combine data from different vitals. Performance of DBC on features that
combine measurements from vitals have also not been tested.

The DBC classifier was designed specifically for AHE prediction. However it could be appli-
cable in other contexts with similar data characteristics with respect to the vital measurements.
This remains to be explored.

Acute Hypotensive Episodes can be caused by a variety of clinical conditions. This study,
similar to many previous works on predictive models for AHE prediction, remains oblivious
to the underlying causes and patient diversity. It would be useful to study predictive models
for AHE for clinically meaningful groups based on patient characteristics, potentially leading
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to hierarchical models. MIMIC II data is limited to a single tertiary hospital and multi-center
studies are needed to further validate the findings of this study.

6 Conclusion

We present a new method to identify patients at risk of Acute Hypotensive Episodes (AHE) in
critical care. Our method uses a first-of-its-kind approach of using a dual-boundary classifier
whose design is motivated by characteristics of the Mean Arterial Pressure (MAP) measure-
ments observed in critical care patients. We perform extensive experiments using data of more
than 4,500 patients from the MIMIC II database in more than 850 different experimental set-
tings. Our algorithm, that can be used in both online and offline manner, is compared with the
best known classifiers for AHE prediction and is shown to significantly outperform them in
predictive accuracy. In particular, we achieve nearly 80% sensitivity and 95% specificity while
predicting 2 hours in advance of the onset of AHE.
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