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Abstract

An Acute Hypotensive Episode (AHE) is the sudden onset of a sustained period of low blood

pressure and is one among the most critical conditions in Intensive Care Units (ICU). With-

out timely medical care, it can lead to an irreversible organ damage and death. By identifying

patients at risk for AHE early, adequate medical intervention can save lives and improve

patient outcomes. In this paper, we design a novel dual–boundary classification based

approach for identifying patients at risk for AHE. Our algorithm uses only simple summary

statistics of past Blood Pressure measurements and can be used in an online environment

facilitating real–time updates and prediction. We perform extensive experiments with more

than 4,500 patient records and demonstrate that our method outperforms the previous best

approaches of AHE prediction. Our method can identify AHE patients two hours in advance

of the onset, giving sufficient time for appropriate clinical intervention with nearly 80% sensi-

tivity and at 95% specificity, thus having very few false positives.

1 Introduction

An Acute Hypotensive Episode (AHE) is the sudden onset of a period of sustained low blood

pressure [1]. If left untreated, it can rapidly deteriorate a patient’s health and cause a number

of complications including death. Fig 1 shows the episode in a graph of a patient’s Mean Arte-

rial Blood Pressure (MAP) measurements.

Many different conditions may cause AHE; these include sepsis, myocardial infarction, car-

diac arrhythmia, pulmonary embolism, hemorrhage, dehydration, anaphylaxis, effects of med-

ication, or any of a wide variety of other causes of hypovolemia, insufficient cardiac output, or

vasodilatory shock [1]. In many cases, AHE is a precursor to or predictor of other complica-

tions [2–4]. Determining the most appropriate medical intervention for such patients depends

on first ascertaining the cause of the hypotensive episode: often due to lack of sufficient time,

intervention begins by first selecting a suboptimal treatment to prevent immediate damage

and to have sufficient time to assess the patient thoroughly [1]. Early identification of patients

at risk for AHE helps not only in preventing the episodes but also in finding the best possible

treatment for the patient [1].
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Automated systems for predicting AHE and other complications in ICU patients are

becoming increasingly important given the enormous difficulties of manually monitoring the

abundance of data collected for each patient and the shortage of qualified clinical staff in ICUs

[5, 6]. There have been many previous attempts to build automated systems that can identify

patients at risk for AHE in advance (see section 2.2 for a brief survey).

This paper presents a novel supervised classification based system for identifying patients at

risk for AHE. The algorithm uses only simple statistical summaries of past vital measurements

(such as blood pressure and heart rate) of patients and can be employed in an online manner,

facilitating real–time updates in the model and prediction. The novelty of the algorithm comes

from learning to separate patient cases into three groups: (1) easy to recognize as AHE cases

(2) easy to recognize as non–AHE cases and (3) ambiguous cases. During prediction, the algo-

rithm deals with each of the cases in a different manner.

Our contributions in this paper are:

• A new supervised binary classification algorithm for identifying patients at risk for Acute

Hypotensive Episodes. Our algorithm can be used both in offline and online modes. As

more data from new patients arrive, the classifier updates itself in an online manner using

only the newly available data (i.e. without re–training itself with the entire dataset).

• Extensive experiments on data from patients in critical care show that our algorithm

achieves significantly higher accuracy, sensitivity and specificity compared to existing algo-

rithms. Performance improvement is observed for predictions made up to 2 hours in

advance, thus giving clinicians sufficient time for adequate medical intervention.

A preliminary version of this paper appeared in [7] where the dual boundary approach was

first presented. A comparative analysis therein shows the superiority of our approach over

state-of-the-art methods on a dataset of 1,700 patient records. In this paper, we provide a com-

plete treatment of the most general online version of our algorithm (that was only briefly intro-

duced earlier). We also analyze the behavior of the algorithm and reasons for its superior

performance over baseline methods in detail. New experiments with additional baselines and

data (vitals in addition to blood pressure) are presented. All experimental results in this paper

are on a larger dataset of 4,593 patient records from the publicly available MIMIC II ICU data-

base. To our knowledge, the only previously published work on dual boundary classifier is a

Fig 1. Definition of acute hypotensive episode: A period of 30 minutes where at least 90% of Mean Arterial Pressure measurements are no

greater than 60 mmHg.

https://doi.org/10.1371/journal.pone.0193259.g001
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preliminary version of this manuscript, as described above. Multiple decision boundaries may

be obtained in margin-based classifiers, like SVM, and the difference between that and our

algorithm is explained in section 4.1.

The rest of the paper is organized as follows. We begin with a brief background on AHE

and a survey of related work in AHE prediction. Section 3 gives a formal definition of the

problem. This is followed by a detailed discussion on our new classification algorithm in sec-

tion 4. Details of the data and experimental protocol are presented in section 5 and section 5.5

describes the results obtained. We conclude our discussion in section 6.

2 Background

In this section we first provide a short description of blood pressure, hypotension and acute

hypotensive episodes. This is followed by a brief survey of clinical studies on hypotensive epi-

sodes and related work in data mining on prediction of acute hypotensive episodes.

2.1 Acute hypotensive episodes

Arterial Blood Pressure (ABP) is the pressure exerted by blood on the vessels. Along with body

temperature, respiratory rate and pulse rate, blood pressure is a vital sign that is routinely

monitored by healthcare providers by measuring the pressure on the arterial walls.

Blood pressure values are measured often using a sphygmomanometer, in millimeters of

mercury (mmHg). In each heartbeat blood pressure varies between the highest and the lowest

pressure in the vessels, which are called systolic and diastolic pressures, respectively. ABP mea-

surements are written as X/Y mmHg (e.g. 120/80) where X denotes the systolic pressure and Y

denotes the diastolic pressure. The Mean Arterial Pressure (MAP) is the pressure generated as

blood is pumped out of the left ventricle of the heart into the arteries. It can be approximated

using the systolic (X) and diastolic (Y) pressures as follows [8]:

MAP ¼
2

3
X �

1

3
Y:

The normal range for blood pressure is considered to be between 90/60 and 130/80 mmHg

[8]. Thus hypotension is the condition when the blood pressure is lower than 90/60 mmHg.

Following [1], we define an Acute Hypotensive Episode as a period of 30 minutes during

which at least 90% of the MAP measurements are no greater than 60 mmHg. Other guidelines

have also been published [9, 10]. Commercial bedside monitoring systems provide alerts when

the blood pressure falls below a predetermined level. But, to the best of our knowledge, there is

no system that can predict AHE in advance.

2.2 Related work

Many clinical studies have examined the role of hypotension in complications like acute coro-

nary syndromes [11], acute kidney injury [12] and sepsis [13, 14]. Hypotension is also found

to be an important mortality predictor for patients with cardiovascular abnormalities [15, 16].

Hypotension is a precursor to septic shock, the second most common cause of death in ICU

patients in the United States [17], and a study shows that mortality in such cases depends criti-

cally on the duration of hypotension before treatment [18].

Existing intervention approaches to AHE are reactive, that is, after the onset of AHE. These

interventions include administration of vasopressors, fluid resuscitation and other treatments

depending on the case [10, 19]. Instead if patients at risk for AHE are identified in advance,

the intervention most appropriate to the patient can be determined and administered.

Predicting acute hypotensive episodes in critical care
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AHE prediction. In the MIMIC II critical care database [20], out of 2320 patients, AHE

was found in 41% of the patients for whom arterial blood pressure was recorded. The mortal-

ity rate of these patients was found to be more than twice that of the entire MIMIC II popula-

tion. Recognizing the importance of AHE, automated AHE prediction was put forth as a

challenge in the 2009 Computers in Cardiology competition [1]. Vital signs data for 110

patients from the MIMIC II database [20] were provided, divided into training and test data-

sets containing 60 and 50 patient records respectively. The results of the top three performers

of the challenge are published in [21], [ 22] and [23], respectively. The best result was obtained

by Henriques et al [21] using a neural network based classifier. A similar method, called Che-

byshev’s neural network, applied on the challenge dataset by Zhou et al [24], gave similar

results. Simple mean based predictions such as those of Chen [22] who used the last 5 minutes

of average diastolic blood pressure as a predictor of AHE and of Mneimneh et al [23] who

used the last 20 minutes of MAP measurements had comparable performance. A hidden

markov model based approach is proposed by Singh et al [25] and the use of contrast pattern

mining for AHE prediction is discussed by Ghosh et al [26]. Both these techniques have per-

formance similar to that of mean based predictions. Note that these methods were tested on a

small sample size (110 patients) and for predicting AHE only 30 minutes in advance.

A detailed analysis of the problem as well as these methods is given in Marzyeh Ghassemi’s

thesis [27] wherein the neural network based method is tested on 1,168 patient records using

four vital signs’ data—heart rate, respiration rate, oxygenation levels and MAP. Sun et al [28]

design a method based on particle swarm optimization and k-means to extract features from

MAP measurements which are then classified using SVM. Donald et al [29] developed a Bayes-

ian Artificial Neural Network trained on demographic and physiological data of nearly 2,000

patients to predict hypotension in brain injury subjects with observation windows of 15 and 30

minutes before the injury. Lee et al [30], used heart rate, MAP and clinical data of 1,311 patient

records from the MIMIC II database. Their algorithm uses 102 statistical, wavelet-based and

clinical features and predicts the event 1 hour in advance using a neural network based

classifier.

Some other studies have also addressed the problem of predicting AHE but have not been

tested extensively. A Binomial Sign Test based classifier was tested by Crespo et al [31] on the

BP measurements of 7 patients using 5 time series features extracted from MAP waveforms.

Their method predicts the event only 20 seconds in advance. Ghaffari et al [32] develop a

method of detecting AHE using ECG and MAP waveforms and test it on 15 subjects from the

MIMIC II database. Lehman et al [33] use a combination of Gaussian Mixture Model based

clustering and K-Nearest Neighbours Classifier on 227 patient records from the MIMIC II

database using both Heart Rate and MAP measurements. Rocha et al [34] use correlation anal-

ysis and neural networks on MAP measurements to build a predictive model for AHE. The

best predictive accuracy when only vital measurements are used (among existing methods) is

achieved by the mean-based prediction of Chen [22] which was shown to be outperformed by

our classifier in [7].

3 Problem definition

An Acute Hypotensive Episode (AHE) is defined as a period of 30 minutes during which at

least 90% of the MAP measurements are no greater than 60 mmHg [1]. We cast the problem

of predicting AHE in a patient as a supervised binary classification problem. Using data from

previous ICU patients—both with and without AHE events—a binary classifier is trained,

where the classes are denoted by A (those likely to have AHE) and NA (those unlikely to have

AHE). The classifier can then be used to predict AHE in a previously unseen patient by

Predicting acute hypotensive episodes in critical care
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determining the class label of the patient. There are three parameters that can be varied during

the prediction, which we will refer to as the [P,O,T] parameters of an algorithm:

Prediction Window (P): Duration of time (in minutes) before which predictions are made,

i.e., we predict whether or not a patient will have AHE wminutes in the future; we call w
the prediction window width.

Observation Window (O): Duration of time (in minutes) before the prediction window during

which MAP measurements are considered for training the classifier.

Test Window (T): Duration of time (in minutes) before the prediction window during which

MAP measurements are considered for predicting AHE in a patient.

Fig 2 shows a schematic of the three windows.

Note that each patient is potentially at risk of a future acute hypotensive episode at each

point in time. What we have, from historical data, is a single indicator of an occurrence of

AHE at a particular timepoint (the risk at previous timepoints can only be estimated, not

known with certainty). Our aim is to predict this as early as possible.

The observation window indicates the amount of data we use for training. The test window

indicates the amount of data we use during prediction. The windows can be measured with

respect to either time duration (that we use) or number of measurements. For conducting our

experiments, we vary the length of these windows (i.e. the time duration of the measurements

considered for training and prediction) independently and study the performance of the classi-

fiers. Also note that by testing the performance on expanding test windows, we effectively test

the performance at regular intervals for the same patient. We also study the classifier perfor-

mance in an online setting, where we update the classifier with new measurements obtained.

In a real-life deployment, the classifier can predict, with each new blood pressure measure-

ment, whether a patient is at risk (A) or not at risk (NA) and when the prediction is A, an alert

is raised for the clinical staff. So the labels can also be viewed as an indicator for alert at the

patient level.

4 DBC: A novel classification method

In this section, we describe our new algorithm for classifying patients into classes 1 (e.g. class

A, those at risk for developing AHE) and 2 (e.g. class NA, those not at risk for developing

AHE) based on their blood pressure signals. Our method uses only the mean (μ1, μ2 for classes

Fig 2. [O,P,T] parameters for a predictive algorithm. Note that the Test and Observation windows can vary in duration independently of each

other.

https://doi.org/10.1371/journal.pone.0193259.g002
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1 and 2 respectively) and standard deviation (σ1, σ2, for classes 1 and 2 respectively) of the vital

measurements within a given observation window as features. Our classifier, called Dual

Boundary Classifier (DBC) uses a combination of margin-based and distance-based classifica-

tion techniques. We first describe the intuition behind the algorithm and explain how it differs

from standard classifiers like SVM and KNN.

4.1 Intuition behind the classifier

We observe in the training data that the MAP measurements in class A in the hour before the

Acute Hypotensive event is generally lower than the MAP measurements in class NA. Hence,

a margin-based classifier is expected to work well. As seen in the experiments, SVM has high

specificity but its sensitivity is very low.

To minimize both false positives and false negatives (type-I and type-II errors, respectively),

where true positive denotes correct identification in class A, our new method builds an inter-

val-based margin (in other words, two decision boundaries, using a parameter κ). Our interval

is based on the mean and standard deviation values in classes A and NA, observed in the train-

ing data: (μ1 + κσ1, μ2 − κσ2). Any value (in the test set) falling below the lower bound of the

interval is considered to be in class A and a value above the upper bound in class NA. We

choose the bounds (by choosing the right κ) such that the errors are minimized, i.e., the sum

of the number of class A values falling above the lower bound (n1 + n2) and the number of

class NA values falling below the upper bound (n3 + n4) is minimized. In addition we also min-

imize the number of values in the uncertainty region. Fig 3 shows a schematic.

Test samples falling in the region of class A or class NA are classified in a straightforward

manner. For those test samples that lie in the uncertainty region, we use a distance-based

Fig 3. Schematic of our novel classifier. The feature space is divided into three regions based on the values of μ1, μ2, σ1, σ2, κ0. A test sample in

the AHE region is classified into class A, Non-AHE region is classified into class NA. A distance-based approach is used for test samples in the

Uncertainty region. The arrows for a point in the uncertainty region (shown only for one of the points), show that distances are calculated with

respect points outside the uncertainty region only.

https://doi.org/10.1371/journal.pone.0193259.g003
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approach to classify the sample by comparing the distance of the test case to (training data)

points outside the uncertainty region.

Comparison with other classifiers. Note that our approach is not an ensemble-based

technique since we do not use a combination of classifiers on any test datapoint. Our classifier

is a discriminative classifier which applies two different classification rules and both rules differ

in methodology from standard classifiers. One is a boundary based rule (similar to, but not the

same as, SVM) for data points outside the uncertainty region, and another is a nearest neigh-

bor rule (similar to, but not the same as, KNN) for datapoints in the uncertainty region. Thus

the selection of the rule is also determined by our classifier in a data-driven manner. These dif-

ferences distinguish DBC from standard classifiers.

Comparison with margin-based classifiers. The two boundaries in DBC are not determined

using support vectors (as in SVM) but using the mean and standard deviation values of

training data from both classes. In the optimization setup for training, DBC minimizes

the misclassification rate and the number of points in the uncertainty region which is not

the same as maximizing the margin. Indeed, our formulation yields a mixed integer linear

program (shown in [7]) whereas the classical SVM formulation results in a quadratic

program.

Comparison with distance-based classifiers. DBC uses a distance-based approach only for the

uncertainty region points in testing and note that we determine the distance only with respect

to the points outside the AHE region—which makes it different from a KNN rule. For exam-

ple, if a test data point lies in the uncertainty region and the closest point is also within the

uncertainty region, KNN will consider it whereas DBC will not.

To further illustrate the difference, note that a combination of SVM and KNN would

apply both classifiers on each test point. But DBC first determines whether the test point lies

in the uncertainty region. If it is in the uncertainty region, it applies a distance-based rule—

checking distance only with respect to training points outside the uncertainty region. If it

is not in the uncertainty region, then the boundary determines the class and the boundaries

are learnt from the training data in a manner that is different from that of margin-based

classifiers.

4.2 Online classification algorithm

We describe the DBC algorithm in the more general online mode. The offline mode is a special

case with a single round that uses all available historical data for training. An implementation,

in R, is available from the authors upon request.

The online algorithm proceeds in rounds. In each round, we use the measurements made

in the new observation window to update the model. We denote the round with superscript

(n). Measurements can be made for each of the vitals (subscript v): MAP, heart rate (HR), res-

piration rate (RR), Oxygen Saturation (OSAT) and temperature (TEMP).

Training the classifier. Training the classifier consists of the following steps:

• Denote by yðnÞ

Av the vector where each coordinate has the mean of the measurements of vital v
in the nth observation window for patients in class A. Let yðnÞ

NAv be the corresponding vector

for class NA. Denote by yðnÞ

Av (yðnÞ

NAv ) all the measurements of vital v for patients in class A (NA)

until round n.

• Let m
ðnÞ

Av ¼ meanðyðnÞ

Av Þ, m
ðnÞ

NAv ¼ meanðyðnÞ

NAvÞ, s
ðnÞ

Av ¼ stdevðyðnÞ

Av Þ, s
ðnÞ

NAv ¼ stdevðyðnÞ

Av Þ,

n
ðnÞ

Av ¼ varianceðyðnÞ

Av Þ, n
ðnÞ

NAv ¼ varianceðyðnÞ

Av Þ, are the corresponding means, standard devia-

tions and variance.
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• Compute the cumulative means and variance (for all measurements of vital v up to the nth

observation window), m
ðnÞ

Av ; n
ðnÞ

Av as follows [35], where x is each measurement in yðnÞ

Av :

m
ðnÞ

Av ¼ m
ðn� 1Þ

Av þ
x � m

ðn� 1Þ

Av

n

n
ðnÞ

Av ¼
ðn � 1Þn

ðn� 1Þ

Av þ ðx � m
ðn� 1Þ

Av Þðx � m
ðnÞ

Av ÞÞ

n

Similarly, we compute cumulative mean and variance m
ðnÞ

NAv ; n
ðnÞ

NAv for class NA.

• Let nAv ¼ jyðnÞ

Av j and nNAv ¼ jyðnÞ

Av j, the cardinalities of the two vectors. This is updated in each

round:

nAv ¼ jyðn� 1Þ

Av j þ jyðnÞ

Av j

nNAv ¼ jyðn� 1Þ

NAv j þ jyðnÞ

NAv j:

• Let κv be a value such that m
ðnÞ

Av þ kvs
ðnÞ

Av < m
ðnÞ

NAv � kvs
ðnÞ

NAv . Let

nv1: Number of yðnÞ

Av values greater than m
ðnÞ

NAv � kvs
ðnÞ

NAv .

nv2: Number of yðnÞ

Av values in the range ðm
ðnÞ

Av þ kvs
ðnÞ

Av ; m
ðnÞ

NAv � kvs
ðnÞ

NAvÞ.

nv3: Number of yðnÞ

NAv values lesser than m
ðnÞ

Av þ kvs
ðnÞ

Av .

nv4: Number of yðnÞ

NAv values in the range ðm
ðnÞ

Av þ kvs
ðnÞ

Av ; m
ðnÞ

NAv � kvs
ðnÞ

NAvÞ.

• Find the value of κv that minimizes nv1 + nv2 + nv3 + nv4. Let that value be k�
v . A simple heu-

ristic for selecting k�
v can be employed in practice:

• Select a range of values for κv and compute nv1 + nv2 + nv3 + nv4 for each value in the

range.

• Select the value of κv with the (local) minimum nv1 + nv2 + nv3 + nv4.
Alternatively, a mixed integer linear program can be used as shown in [7] but that can

become computationally expensive especially in an online setting.

Thus a trained classifier at the end of the nth round consists of a 7-tuple:

½nAv; nNAv; m
ðnÞ

Av ; s
ðnÞ

Av ; m
ðnÞ

NAv; s
ðnÞ

NAv; k�
v� for each vital v.

Classifying test data. We compute the mean of vital measurements v over the period of

the Test Window, denoted by zv. For each vital, we obtain a classification label lv as follows:

• If zv < m
ðnÞ

Av þ k�
vs

ðnÞ

Av , assign the patient to class A.

• If zv > m
ðnÞ

NAv � k�
vs

ðnÞ

NAv , assign the patient to class NA.

• If zv falls in the range ½m
ðnÞ

Av þ k�
vs

ðnÞ

Av ; m
ðnÞ

NAv � k�
vs

ðnÞ

NAv �, compute the mean squared deviation of

zv from all the points in yðnÞ

Av and yðnÞ

NAv (from the training data), denoted by dAv and dNAv,
respectively. If dAv > dNAv assign the patient to class NA, otherwise assign the patient to

class A.

Note that this does not require us to store all the patient data used during the training phrase.

The computation can be simplified as follows. The mean squared deviation of zv from all the

Predicting acute hypotensive episodes in critical care
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points in yðnÞ

Av is
PnAv

i¼1
ðzv � xivÞ

2
where xiv is the i-th coordinate of yðnÞ

Av . The above expression

can be written as

dAv ¼
XnAv

i¼1

ðzv � m
ðnÞ

Av þ m
ðnÞ

Av � xivÞ
2

¼ nAv ½ðzv � m
ðnÞ

Av Þ
2

þ n
ðnÞ

NAv �

and similarly for the distance of zv from yðnÞ

NAv . Thus the computation only requires the values

of the total number of datapoints: nAv, nNAv and the mean and variance computed during

training: m
ðnÞ

Av ; n
ðnÞ

Av ; m
ðnÞ

NAv ; n
ðnÞ

NAv .

The final classification label is set by a majority voting rule: ∑v lv where ties are broken by

using the vote for MAP.

4.3 Time complexity

The time complexity of training (for each round, and each vital) is dominated by the step of

finding κv. Let K be the number of choices for κv considered in our heuristic. The training

time complexity is OðK þ nAv þ nNAvÞ and testing each test window zv containing nz vital mea-

surements takes OðnzÞ time (to compute the mean).

5 Experimental results

5.1 ICU data

MIMIC II [20] is a publicly available database, part of Physionet [36], containing physiological

signals and clinical data of more than 5000 ICU patients. Vital signs of most of these ICU

patients were recorded, sampled either every minute or every second. We consider only the

following vital measurements for our study: Mean Arterial Blood Pressure (MAP), Heart Rate

(HR), Pulse Rate (PUL), Respiratory Rate (RR) and Oxygen Saturation (OSAT).

Each patient record consists of a time series signal xt, t = 1,. . .,Ni where Ni is the total num-

ber of vital measurements for the ith patient, and xt is the MAP measurement at time t, time

being reckoned from the start of the measurements in the ICU at an interval of 1 minute.

Whenever the sampling is per second, we use the mean of all measurements in a minute. An

Acute Hypotensive Event (AHE) is defined as an interval in the record, [xt, xt+30], in which at

least 27 of the MAP measurements are no greater than 60.

Not all the records are usable since many of them have missing or erroneous data. From the

available cleaned data in MIMIC II, we use 4,593 records of ICU patients out of which 1,307

are found to contain AHE events (class A) and 3,286 do not contain AHE events (class NA).

We considered data only until the first AHE event in each patient record for training and pre-

diction. During training we discard records that contain less than 6 hours of MAP measure-

ments and those that contain Acute Hypotensive Events in the first 5 hours of recorded data.

5.2 Experimental setup

We test the performance of the algorithms for the following choices of 6 observation windows

(O), 24 prediction windows (P) and 6 test windows (T):

O 2 f20; 40; 60; 80; 100; 120g;

P 2 f5; 10; 15; . . . ; 110; 115; 120g;

T 2 f20; 40; 60; 80; 100; 120g:

Predicting acute hypotensive episodes in critical care

PLOS ONE | https://doi.org/10.1371/journal.pone.0193259 February 23, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0193259


In the online mode, for each of the 864 [O,P,T] settings, first approximately 20% (= 910) of

the patient records are chosen for initial training. The ratio of AHE and Non-AHE patients in

this initial training set is 260:650 which approximately maintains the same ratio found in the

original data (1307:3286). After that we incrementally predict and update the classifier, using a

single observation window for each patient. In this manner, prediction is done for the remain-

ing 3,683 (= 4593-910) patients containing 1,047 AHE and 2,636 non-AHE cases. In the offline

mode, we perform 5-fold cross validation over all the patient records, for each of the 864 [O,P,

T] settings.

5.3 Baseline comparison methods

As mentioned earlier, among the previous methods for AHE prediction that use only vital

measurements, the best predictive accuracy is achieved by the mean-based prediction of Chen

[22] which we also confirm with experiments on our larger dataset of 1,700 patient records in

our previous work [7]. We use this classifier, denoted by MU, as a baseline along with the

other standard classifiers—Support Vector Machines (SVM) with RBF kernel, Random Forest

(RF), K–Nearest Neighbors (KNN) and Adaboost (ADA)—using the same mean–based fea-

tures. Implementations in R are used for these classifiers: packages ‘e1071’, ‘Random Forest’,

‘Class’ and ‘Ada’ respectively. Tunable parameters for the baseline classifiers are obtained in

the following way. A portion of the training data is held out for validation. A grid search on

the parameter space is performed and for each classifier, the parameters that give the best per-

formance on the validation set are chosen. Prediction results are shown only for the best

parameters thus selected.

5.4 Evaluation metrics

We measure the performance of all the tested methods by their sensitivity, specificity and clas-

sification accuracy. Sensitivity is defined as the percentage of class A test samples accurately

classified into class A. Specificity is defined as the percentage of class NA test samples accu-

rately classified into class NA. Classification accuracy of a classifier is the percentage of total

test samples correctly classified.

Note that there is no discriminating threshold in our method that creates a trade-off

between sensitivity and specificity (unlike many other classifiers). Hence the sensitivity and

specificity do not change with either any internal parameter or time window. We show the

sensitivity (true positive rate) and specificity (true negative rate) separately, where ‘positive’

denotes correct prediction of AHE.

P-values are computed using a one-sided two-sample t-test. We compare the mean value of

the performance measure (sensitivity, specificity and accuracy) for a baseline (μ0) against the

corresponding mean value for DBC (μ1). We compare the null hypothesis H0 : μ1 = μ0 against

the alternative hypothesisHa : μ1 > μ0 at level of significance 5%.

5.5 Performance results

The prediction window is the most important parameter here since it determines how early we

can predict the possibility of AHE in a patient. The values of O and T parameters can be set by

the user based on the sensitivity-specificity requirements or availability of data.

We first present the results of online and offline classification using only MAP measure-

ments first. The results, shown in Table 1 are averages over all the 864 [O,P,T] window set-

tings: averaged for 3683 patients in the online mode and over 5-fold cross validation in the

offline mode as described above. We observe that our algorithm significantly outperforms all

Predicting acute hypotensive episodes in critical care
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other algorithms (p-value <0.05) in terms of sensitivity, specificity and overall accuracy, in

both online and offline modes.

We show the boxplots for the sensitivity, specificity and accuracy obtained at a prediction

window of 120 minutes (2 hours) in both offline and online modes, averaged over 144 [O,T]

settings in Fig 4. Note that in these 144 experiments, even the lowest accuracy achieved by our

algorithm is higher than the highest accuracy of any other algorithm. Results for other values

of prediction window are similar.

Algorithm analysis. Algorithm DBC is a hybrid approach that combines margin-based

and distance-based classification methods. As described in section 4, by learning two bound-

aries DBC finds an uncertainty region between the boundaries and uses two different classifi-

cation rules depending on whether a test case falls within or outside the uncertainty region.

We now evaluate the benefit of this approach by comparing the performance of DBC with a

margin-based classifier without the uncertainty region and a purely distance-based approach

that does not use the dual boundaries of DBC—that is same as KNN. Table 2 shows the results

over all the 864 [O,P,T] window settings: averaged for 3683 patients in the online mode and

over 5-fold cross validation in the offline mode as described above.

The goal of the hybrid approach of DBC is to learn the two boundaries such that we have

very good classification performance outside the uncertainty region. This hypothesis is con-

firmed in our experiments. Table 3 shows the classification performance of DBC (for the off-

line case, as shown in Tables 2 and 3 above) in each of the three regions of the feature space

(see Fig 3): AHE, Non-AHE and Uncertainty Region. We observe that the performance of

DBC is indeed much higher outside the uncertainty region.

5.6 Addition of vitals

We study the performance of all the classifiers when additional vitals—HR, PUL, RR, and

OSAT—are used. Table 4 shows the performance averaged over 5-fold cross validation, over

all 864 choices of [O,P,T] window settings. The uppermost rows show the results of using (1)

only MAP measurements. The other rows (downwards) show the results of using (2) MAP

and HR, (3) MAP, HR and PUL, (4) MAP, HR, PUL and RR and (5) MAP, HR, PUL, RR and

OSAT respectively.

As additional vitals are used, the accuracy of our classifier reduces and the best results

are obtained when only MAP measurements are used. With more vitals, SVM achieves com-

parable or higher than that of DBC. However, in the case of even SVM, the highest accuracy

is obtained with the use of MAP measurements only. Overall, among all the different combi-

nations of vitals tested, the best results are obtained by our algorithm when only MAP

measurements are used. These results suggest that MAP measurements provide the most dis-

criminatory feature to identify patients who are at risk of AHE.

Table 1. Mean (standard deviation in parentheses) of performance of algorithms—Our (DBC), KNN, RF, SVM, ADA and MU—Averaged over all the 864 [O,P,T]

window settings: Averaged for 3,683 patients in the online mode and over 5-fold cross validation in the offline mode.

Algorithm DBC KNN RF SVM ADA MU

Online Sensitivity 0.77 (0.04) 0.31 (0.05) 0.30 (0.11) 0.17 (0.05) 0.24 (0.05) 0.39 (0.06)

Specificity 0.92 (0.02) 0.47 (0.03) 0.37 (0.03) 0.82 (0.04) 0.60 (0.21) 0.81 (0.05)

Accuracy 0.85 (0.01) 0.40 (0.03) 0.34 (0.06) 0.78 (0.07) 0.41 (0.07) 0.72 (0.07)

Offline Sensitivity 0.83 (0.01) 0.34 (0.02) 0.43 (0.03) 0.19 (0.03) 0.39 (0.11) 0.59 (0.03)

Specificity 0.90 (0.01) 0.56 (0.04) 0.34 (0.03) 0.78 (0.03) 0.57 (0.09) 0.79 (0.02)

Accuracy 0.87 (0.01) 0.46 (0.03) 0.37 (0.03) 0.74 (0.04) 0.44 (0.08) 0.69 (0.02)

https://doi.org/10.1371/journal.pone.0193259.t001
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5.7 Discussion

Why does our classification algorithm work well?. The answer lies in the data. We first

observe that mean MAP measurements over an observation window is a good predictor of

Table 2. Mean (standard deviation in parentheses) of performance of algorithms—Our (DBC), KNN, Linear SVM

—Averaged over all the 864 [O,P,T] window settings: Averaged for 3,683 patients in the online mode and over

5-fold cross validation in the offline mode.

Algorithm DBC KNN Linear SVM

Online Sensitivity 0.77 (0.04) 0.31 (0.05) 0.11 (0.05)

Specificity 0.92 (0.02) 0.47 (0.03) 0.83 (0.05)

Accuracy 0.85 (0.01) 0.40 (0.03) 0.73 (0.05)

Offline Sensitivity 0.83 (0.01) 0.34 (0.02) 0.17 (0.03)

Specificity 0.90 (0.01) 0.56 (0.04) 0.85 (0.02)

Accuracy 0.87 (0.01) 0.46 (0.03) 0.78 (0.04)

https://doi.org/10.1371/journal.pone.0193259.t002

Fig 4. Accuracy, sensitivity and specificity of our algorithm (DBC), K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector

Machine (SVM), AdaBoost (ADA) and Mean based method (MU) at prediction window of 120 minutes, averaged over 144 choices of [O,

T] settings and over (LEFT:) 3683 patients (online)/ (RIGHT:) 5–fold cross validation (offline).

https://doi.org/10.1371/journal.pone.0193259.g004
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AHE. This has been validated by previous work as well [22]. Our experiments also show that

addition of mean values of other vitals in our framework does not improve the predictive

accuracy.

However, not all AHE patients show very low mean in their observation windows. Fig 5

shows the mean MAP measurements of the patients in our dataset with different markers indi-

cating division into train and test sets, as well as AHE and non-AHE data. The boundary

obtained by a linear SVM classifier and the dual boundaries obtained by our classifier on the

training data are also shown.

While it is true that most of the AHE datapoints (triangle markers) lie below the SVM

boundary, with low mean MAP, there are several above the boundary as well. Our algorithm

gives special consideration to some of the datapoints that are between our two boundaries—

the region we call the uncertainty region. These datapoints are difficult to classify into AHE or

non–AHE by using a single boundary. Hence we use a distance based strategy to classify these

datapoints.

The data in the uncertainty region mostly belong to patients whose MAP measurements

were observed to fluctuate considerably in the observation window. For example, in some

cases, the BP remains in the normal range initially and becomes low and again comes back to

the normal range after some time. In such cases, the mean is often close to the decision bound-

ary and a single boundary classifier tends to misclassify them. These were the cases that were

better classified by finding the distance from the mean of the training data in each class.

Table 3. Mean performance of algorithm DBC in the three regions learned—Averaged over all the 864 [O,P,T]

window settings: Over 5-fold cross validation in the offline mode.

AHE Non-AHE Uncertainty

Sensitivity 0.93 0.96 0.73

Specificity 0.97 0.99 0.82

Accuracy 0.96 0.98 0.79

https://doi.org/10.1371/journal.pone.0193259.t003

Table 4. Mean (standard deviation in parentheses) of performance of algorithms—Our (DBC), KNN, RF, SVM, ADA and MU—Averaged over all the 864 [O,P,T]

window settings using 5-fold cross validation. The topmost rows show the results of using (1) only MAP measurements. The remaining rows show the results of using

(2) MAP and HR, (3) MAP, HR and PUL, (4) MAP, HR, PUL and RR and (5) MAP, HR, PUL, RR and OSAT respectively. Best results in each row are indicated in bold.

Vitals Algorithm DBC KNN RF SVM ADA MU

MAP Sensitivity 0.83 (0.01) 0.34 (0.02) 0.43 (0.03) 0.19 (0.03) 0.39 (0.11) 0.59 (0.03)

Specificity 0.90 (0.01) 0.56 (0.04) 0.34 (0.03) 0.78 (0.03) 0.57 (0.09) 0.79 (0.02)

Accuracy 0.87 (0.01) 0.46 (0.03) 0.37 (0.03) 0.74 (0.04) 0.44 (0.08) 0.69 (0.02)

+ HR Sensitivity 0.78 (0.01) 0.36 (0.05) 0.22 (0.04) 0.19 (0.03) 0.38 (0.10) 0.56 (0.1)

Specificity 0.69 (0.01) 0.62 (0.05) 0.22 (0.04) 0.82 (0.04) 0.62 (0.11) 0.54 (0.1)

Accuracy 0.72 (0.01) 0.51 (0.05) 0.22 (0.04) 0.61 (0.04) 0.44 (0.09) 0.55 (0.1)

+ PULSE Sensitivity 0.55 (0.005) 0.45 (0.1) 0.22 (0.04) 0.25 (0.06) 0.45 (0.12) 0.29 (0.06)

Specificity 0.54 (0.005) 0.44 (0.1) 0.21 (0.05) 0.82 (0.06) 0.61 (0.13) 0.45 (0.04)

Accuracy 0.54 (0.003) 0.44 (0.1) 0.22 (0.04) 0.66 (0.05) 0.49 (0.10) 0.37 (0.04)

+ RR Sensitivity 0.61 (0.01) 0.5 (0.05) 0.39 (0.05) 0.15 (0.05) 0.20 (0.05) 0.29 (0.06)

Specificity 0.54 (0.01) 0.44 (0.05) 0.55 (0.02) 0.84 (0.06) 0.63 (0.12) 0.65 (0.05)

Accuracy 0.57 (0.005) 0.47 (0.05) 0.47 (0.02) 0.51 (0.1) 0.33 (0.08) 0.52 (0.1)

+ OSAT Sensitivity 0.46 (0.02) 0.53 (0.03) 0.37 (0.05) 0.14 (0.04) 0.21 (0.04) 0.26 (0.04)

Specificity 0.72 (0.02) 0.44 (0.02) 0.53 (0.04) 0.88 (0.04) 0.67 (0.17) 0.68 (0.04)

Accuracy 0.61 (0.01) 0.49 (0.02) 0.45 (0.03) 0.7 (0.19) 0.42 (0.11) 0.45 (0.06)

https://doi.org/10.1371/journal.pone.0193259.t004
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Design choices. Our hybrid approach utilizes a combination of margin-based and dis-

tance-based classification methods. A detailed analysis of the differences between our

approach and these approaches is presented in section 4. Previous work in AHE prediction

(described in section 2.2) have used these and other standard classifiers. Our work has

focussed more on algorithmic development and lesser on feature design. Our choice of mean–

based feature was primarily motivated by its performance demonstrated in previous studies

[22]. An advantage of using only mean and standard deviation of all measurements, is that

there is no restriction on the number of measurements or duration in which these measure-

ments are taken for the observation or test windows in our classifier. This is useful since the

number of measurements and length of stay varies considerably across patients. This also

avoids the problems of missing values and irregular sampling of vitals within and across

patient records that often needs to be addressed if other features are used. There is a growing

body of literature on feature design from clinical time series (e.g. [37]) and further studies on

the effectiveness of other features would be useful.

Limitations and future work. Features from other clinical data have been used for AHE

prediction (e.g. [30]) but a large-scale evaluation has not been done. In our study, we evaluate

the performance of classification on addition of mean values of other vitals as features. We

find no improvement over the performance achieved when only mean MAP values are used.

This conclusion, although not surprising since we are predicting a condition of sustained low

blood pressure, is limited to the feature design and classification framework used in our exper-

iments. For example, we train our classifier for each vital separately and use a majority voting

scheme to determine the final label, but many other approaches are possible using the DBC

classifier itself to combine data from different vitals. Performance of DBC on features that

combine measurements from vitals have also not been tested.

The DBC classifier was designed specifically for AHE prediction. However it could be appli-

cable in other contexts with similar data characteristics with respect to the vital measurements.

This remains to be explored.

Acute Hypotensive Episodes can be caused by a variety of clinical conditions. This study,

similar to many previous works on predictive models for AHE prediction, remains oblivious

to the underlying causes and patient diversity. It would be useful to study predictive models

for AHE for clinically meaningful groups based on patient characteristics, potentially leading

Fig 5. Mean MAP measurements (along Y-axis) of AHE and non-AHE patients in train and test data. Each point belongs to a single patient

stretched out along the X-axis. Circles: Non-AHE, Triangles: AHE, Blue: Train data, Red: Test data, Red solid line: Classification boundary

learned by SVM, Greed dashed lines: Dual classification boundaries learned by our classifier.

https://doi.org/10.1371/journal.pone.0193259.g005
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to hierarchical models. MIMIC II data is limited to a single tertiary hospital and multi-center

studies are needed to further validate the findings of this study.

6 Conclusion

We present a new method to identify patients at risk of Acute Hypotensive Episodes (AHE) in

critical care. Our method uses a first-of-its-kind approach of using a dual–boundary classifier

whose design is motivated by characteristics of the Mean Arterial Pressure (MAP) measure-

ments observed in critical care patients. We perform extensive experiments using data of more

than 4,500 patients from the MIMIC II database in more than 850 different experimental set-

tings. Our algorithm, that can be used in both online and offline manner, is compared with the

best known classifiers for AHE prediction and is shown to significantly outperform them in

predictive accuracy. In particular, we achieve nearly 80% sensitivity and 95% specificity while

predicting 2 hours in advance of the onset of AHE.

Author Contributions

Conceptualization: Sakyajit Bhattacharya, Vaibhav Rajan, Chandan K. Reddy.

Data curation: Vijay Huddar.

Funding acquisition: Vaibhav Rajan.

Investigation: Vijay Huddar.

Methodology: Sakyajit Bhattacharya.

Project administration: Vaibhav Rajan.

Software: Sakyajit Bhattacharya.

Supervision: Vaibhav Rajan, Chandan K. Reddy.

Writing – original draft: Vaibhav Rajan.

Writing – review & editing: Vaibhav Rajan, Chandan K. Reddy.

References
1. Moody GB, Lehman L. Predicting acute hypotensive episodes: The 10th annual physioNet/computers

in cardiology challenge. In: Computers in Cardiology, 2009. IEEE; 2009. p. 541–544.

2. Heidenreich PA, Foster E, Cohen NH. Prediction of outcome for critically ill patients with unexplained

hypotension. Critical care medicine. 1996; 24(11):1835–1840. https://doi.org/10.1097/00003246-

199611000-00013 PMID: 8917034

3. Schaefer JH, Jochimsen F, Keller F, Wegscheider K, Distler A. Outcome prediction of acute renal failure

in medical intensive care. Intensive care medicine. 1991; 17(1):19–24. https://doi.org/10.1007/

BF01708404 PMID: 1903797

4. Fedullo AJ, Swinburne AJ, Wahl GW, Bixby K. Acute cardiogenic pulmonary edema treated with

mechanical ventilation: factors determining in-hospital mortality. Chest. 1991; 99(5):1220–1226. https://

doi.org/10.1378/chest.99.5.1220 PMID: 2019182

5. Huddar V, Desiraju BK, Rajan V, Bhattacharya S, Roy S, Reddy CK. Predicting Complications in Critical

Care Using Heterogeneous Clinical Data. IEEE Access. 2016; 4:7988–8001. https://doi.org/10.1109/

ACCESS.2016.2618775

6. Reddy CK, Aggarwal CC. Healthcare data analytics. Chapman and Hall/CRC; 2015.

7. Bhattacharya S, Rajan V, Huddar V. A novel classification method for predicting acute hypotensive epi-

sodes in critical care. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational

Biology, and Health Informatics. ACM; 2014. p. 43–52.

8. Klabunde RE. Cardiovascular Physiology Concepts;. http://www.cvphysiology.com/Blood%

20Pressure/BP006.htm.

Predicting acute hypotensive episodes in critical care

PLOS ONE | https://doi.org/10.1371/journal.pone.0193259 February 23, 2018 15 / 17

https://doi.org/10.1097/00003246-199611000-00013
https://doi.org/10.1097/00003246-199611000-00013
http://www.ncbi.nlm.nih.gov/pubmed/8917034
https://doi.org/10.1007/BF01708404
https://doi.org/10.1007/BF01708404
http://www.ncbi.nlm.nih.gov/pubmed/1903797
https://doi.org/10.1378/chest.99.5.1220
https://doi.org/10.1378/chest.99.5.1220
http://www.ncbi.nlm.nih.gov/pubmed/2019182
https://doi.org/10.1109/ACCESS.2016.2618775
https://doi.org/10.1109/ACCESS.2016.2618775
http://www.cvphysiology.com/Blood%20Pressure/BP006.htm
http://www.cvphysiology.com/Blood%20Pressure/BP006.htm
https://doi.org/10.1371/journal.pone.0193259


9. Stell A, Sinnott R, Jiang J, Donald R, Chambers I, Citerio G, et al. Federating distributed clinical data for

the prediction of adverse hypotensive events. Philosophical Transactions of the Royal Society of Lon-

don A: Mathematical, Physical and Engineering Sciences. 2009; 367(1898):2679–2690. https://doi.org/

10.1098/rsta.2009.0042

10. Shibao C, Lipsitz LA, Biaggioni I. ASH position paper: evaluation and treatment of orthostatic hypoten-

sion. The Journal of Clinical Hypertension. 2013; 15(3):147–153. https://doi.org/10.1111/jch.12062

PMID: 23458585

11. Awad HH, Anderson FA, Gore JM, Goodman SG, Goldberg RJ. Cardiogenic shock complicating acute

coronary syndromes: insights from the Global Registry of Acute Coronary Events. American heart jour-

nal. 2012; 163(6):963–971. https://doi.org/10.1016/j.ahj.2012.03.003 PMID: 22709748

12. Anderson RJ. Plumbing the depths of blood pressure: Hypotensive hemorrhage and acute kidney

injury. Critical care medicine. 2011; 39(9):2196–2197. https://doi.org/10.1097/CCM.

0b013e3182217465 PMID: 21849837

13. Angus DC, Van Der Poll T. Severe sepsis and septic shock. New England Journal of Medicine. 2013;

369(9):840–851. https://doi.org/10.1056/NEJMra1208623 PMID: 23984731

14. Mayaud L, Lai PS, Clifford GD, Tarassenko L, Celi LAG, Annane D. Dynamic data during hypotensive

episode improves mortality predictions among patients with sepsis and hypotension. Critical care medi-

cine. 2013; 41(4):954–962. https://doi.org/10.1097/CCM.0b013e3182772adb PMID: 23385106

15. Kilgannon JH, Roberts BW, Reihl LR, Chansky ME, Jones AE, Dellinger RP, et al. Early arterial hypo-

tension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mor-

tality. Resuscitation. 2008; 79(3):410–416. https://doi.org/10.1016/j.resuscitation.2008.07.019 PMID:

18990478

16. Lee KL, Woodlief LH, Topol EJ, Weaver WD, Betriu A, Col J, et al. Predictors of 30-Day Mortality in the

Era of Reperfusion for Acute Myocardial Infarction Results from an International Trial of 41021 patients.

Circulation. 1995; 91(6):1659–1668. https://doi.org/10.1161/01.CIR.91.6.1659 PMID: 7882472

17. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979

through 2000. New England Journal of Medicine. 2003; 348(16):1546–1554. https://doi.org/10.1056/

NEJMoa022139 PMID: 12700374

18. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before ini-

tiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit-

ical Care Medicine. 2006; 34(6):1589–1596. https://doi.org/10.1097/01.CCM.0000217961.75225.E9

PMID: 16625125

19. Takala J. Should we target blood pressure in sepsis? Critical care medicine. 2010; 38(10):S613–S619.

https://doi.org/10.1097/CCM.0b013e3181f2430c PMID: 21164405

20. Saeed M, Lieu C, Raber G, Mark R. MIMIC II: a massive temporal ICU patient database to support

research in intelligent patient monitoring. In: Computers in Cardiology. IEEE; 2002. p. 641–644.

21. Henriques J, Rocha T. Prediction of acute hypotensive episodes using neural network multi-models. In:

Computers in Cardiology. IEEE; 2009. p. 549–552.

22. Chen X, Xu D, Zhang G, Mukkamala R. Forecasting acute hypotensive episodes in intensive care

patients based on a peripheral arterial blood pressure waveform. In: Computers in Cardiology, 2009.

IEEE; 2009. p. 545–548.

23. Mneimneh M, Povinelli R. A rule-based approach for the prediction of acute hypotensive episodes. In:

Computers in Cardiology, 2009. IEEE; 2009. p. 557–560.

24. Zhou Y, Zhu Q, Huang H. Prediction of Acute Hypotensive Episode in ICU Using Chebyshev Neural

Network. Journal of Software. 2013; 8(8):1923–1931.

25. Singh A, Tamminedi T, Yosiphon G, Ganguli A, Yadegar J. Hidden Markov Models for modeling blood

pressure data to predict acute hypotension. In: Acoustics Speech and Signal Processing (ICASSP),

2010 IEEE International Conference on. IEEE; 2010. p. 550–553.

26. Ghosh S, Feng M, Nguyen H, Li J. Hypotension Risk Prediction via Sequential Contrast Patterns of ICU

Blood Pressure. IEEE Journal of Biomedical and Health Informatics. 2015. https://doi.org/10.1109/

JBHI.2015.2453478 PMID: 26168449

27. Ghassemi M. Methods and models for acute hypotensive episode prediction. In: MSc Thesis. University

of Oxford; 2011. p. 541–544.

28. Sun H, Sun S, Wu Y, Yan M, Zhang C. A Method for Prediction of Acute Hypotensive Episodes in ICU

via PSO and K-Means. In: Sixth International Symposium of Computational Intelligence and Design

(ISCID). IEEE; 2013. p. 99–102.

29. Donald R, Howells T, Piper I, Chambers I, Citerio G, Enblad P, et al. Early warning of EUSIG-defined

hypotensive events using a Bayesian Artificial Neural Network. Springer; 2012.

Predicting acute hypotensive episodes in critical care

PLOS ONE | https://doi.org/10.1371/journal.pone.0193259 February 23, 2018 16 / 17

https://doi.org/10.1098/rsta.2009.0042
https://doi.org/10.1098/rsta.2009.0042
https://doi.org/10.1111/jch.12062
http://www.ncbi.nlm.nih.gov/pubmed/23458585
https://doi.org/10.1016/j.ahj.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22709748
https://doi.org/10.1097/CCM.0b013e3182217465
https://doi.org/10.1097/CCM.0b013e3182217465
http://www.ncbi.nlm.nih.gov/pubmed/21849837
https://doi.org/10.1056/NEJMra1208623
http://www.ncbi.nlm.nih.gov/pubmed/23984731
https://doi.org/10.1097/CCM.0b013e3182772adb
http://www.ncbi.nlm.nih.gov/pubmed/23385106
https://doi.org/10.1016/j.resuscitation.2008.07.019
http://www.ncbi.nlm.nih.gov/pubmed/18990478
https://doi.org/10.1161/01.CIR.91.6.1659
http://www.ncbi.nlm.nih.gov/pubmed/7882472
https://doi.org/10.1056/NEJMoa022139
https://doi.org/10.1056/NEJMoa022139
http://www.ncbi.nlm.nih.gov/pubmed/12700374
https://doi.org/10.1097/01.CCM.0000217961.75225.E9
http://www.ncbi.nlm.nih.gov/pubmed/16625125
https://doi.org/10.1097/CCM.0b013e3181f2430c
http://www.ncbi.nlm.nih.gov/pubmed/21164405
https://doi.org/10.1109/JBHI.2015.2453478
https://doi.org/10.1109/JBHI.2015.2453478
http://www.ncbi.nlm.nih.gov/pubmed/26168449
https://doi.org/10.1371/journal.pone.0193259


30. Lee J, Mark RG. An investigation of patterns in hemodynamic data indicative of impending hypotension

in intensive care. Biomedical Engineering Online. 2010; 9(1):62. https://doi.org/10.1186/1475-925X-9-

62 PMID: 20973998

31. Crespo C, et al. Precursors in the arterial blood pressure signal to episodes of acute hypotension in sep-

sis. In: Proceedings of the 16th International EURASIP Conference BIOSIGNAL. vol. 16; 2002. p. 206–

8.

32. Ghaffari A, Homaeinezhad MR, Atarod M, Akraminia M. A Methodology for Prediction of Acute Hypo-

tensive Episodes in ICU via a Risk Scoring Model including Analysis of ST-Segment Variations. Cardio-

vascular Engineering. 2010; 10(1):121–29.

33. Lehman L, Saeed M, Moody G, Mark R. Similarity-based searching in multi-parameter time series data-

bases. In: Computers in Cardiology, 2008. IEEE; 2008. p. 653–656.

34. Rocha T, Paredes S, Carvalho PD, Henriques J. Prediction of acute hypotensive episodes by means of

neural network multi-models. Computers in Biology and Medicine. 2011; 41(10):881–890. https://doi.

org/10.1016/j.compbiomed.2011.07.006 PMID: 21899833

35. Knuth DE. The Art of Programming, vol. 2, Semi-Numerical Algorithms; 1981.

36. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, Physio-

Toolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals.

Circulation. 2000 (June 13); 101(23):e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215 PMID:

10851218

37. Mao Y, Chen W, Chen Y, Lu C, Kollef M, Bailey T. An integrated data mining approach to real-time clini-

cal monitoring and deterioration warning. In: Proceedings of the 18th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM; 2012. p. 1140–1148.

Predicting acute hypotensive episodes in critical care

PLOS ONE | https://doi.org/10.1371/journal.pone.0193259 February 23, 2018 17 / 17

https://doi.org/10.1186/1475-925X-9-62
https://doi.org/10.1186/1475-925X-9-62
http://www.ncbi.nlm.nih.gov/pubmed/20973998
https://doi.org/10.1016/j.compbiomed.2011.07.006
https://doi.org/10.1016/j.compbiomed.2011.07.006
http://www.ncbi.nlm.nih.gov/pubmed/21899833
https://doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.1371/journal.pone.0193259

