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Abstract

The majority of directed social networks, such as Twitter, Flickr and Google+, exhibit reciprocal altruism, a social psychol-
ogy phenomenon, which drives a vertex to create a reciprocal link with another vertex which has created a directed link
toward the former. In existing works, scientists have already predicted the possibility of the creation of reciprocal link—a task
known as “reciprocal link prediction”. However, an equally important problem is determining the interval time between the
creation of the first link (also called parasocial link) and its corresponding reciprocal link. No existing works have considered
solving this problem, which is the focus of this paper. Predicting the reciprocal link interval time is a challenging problem for
two reasons: First, there is a lack of effective features, since well-known link prediction features are designed for undirected
networks and for the binary classification task; hence, they do not work well for the interval time prediction; Second, the
presence of ever-waiting links (i.e., parasocial links for which a reciprocal link is not formed within the observation period)
makes the traditional supervised regression methods unsuitable for such data. In this paper, we propose a solution for the
reciprocal link interval time prediction task. We map this problem to a survival analysis task and show through extensive
experiments on real-world datasets that survival analysis methods perform better than traditional regression, neural network-
based models and support vector regression for solving reciprocal interval time prediction.

Keywords Link prediction - Directed network - Reciprocity - Time prediction - Survival analysis

1 Introduction

Reciprocity is a phenomenon in social psychology which
mandates that people should repay voluntarily what another
person has provided for them. It is different from altru-
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However, reciprocity usually is in conflict with another
social phenomenon called social stratification, which favors
hierarchical arrangement of people in a society based on var-
ious factors such as power, wealth and reputation (Hopcroft
et al. 2011). This phenomenon is prevalent in online social
networks as well, but in a different manner. Apparently, for
such networks, the social hierarchy is reflected in various
prestige metrics which rank vertices based on their topologi-
cal bearings, such as PageRank and in-degree. Given this
hierarchical arrangement in an online social network, people
who are higher up in the hierarchy are sometimes reluctant
to perform a reciprocal act for an individual who is lower in
the hierarchy; they instead defer the reciprocal action to a
later time, or sometimes indefinitely.

For reciprocal link creation, understanding the criteria
which control the interval time and building learning mod-
els which predict the interval time are important. From a
research standpoint, such studies help scientists to under-
stand the interaction between reciprocity and social stratifi-
cation phenomena. From the perspective of real-life appli-
cations in social network analysis, such prediction models
enable better link suggestions, where the inferval time is also
factored in within the suggestion. Reciprocity, along with
the interval time for reciprocal link creation, is particularly
important for recommendation in online dating systems (Xia
et al. 2015).

The majority of existing works on link prediction assume
an undirected network (Hasan and Zaki 2011; Valverde-
Rebaza and de Andrade Lopes 2013), in which the concept
of reciprocal edges does not exist. A few works consider
reciprocal link prediction (Hopcroft et al. 2011; Gong and
Xu 2014) in a directed network where the prediction is
binary, yielding a yes/no answer to the question of whether
a reciprocal link will be created within a fixed observation
window. Several other works utilize reciprocity as a tool for
network compression (Chierichetti et al. 2009) and informa-
tion propagation in social networks (Zhu et al. 2014). Recip-
rocal links also influence the degree correlations in complex
networks; hence, they play an important part in modeling
the growth of directed social networks (Zlati¢ and Stefan&i¢
2009). However, none of the existing works consider pre-
dicting the interval time for the creation of a reciprocal edge.

Extending a model which solves a binary class recipro-
cal link prediction problem to a model which predicts the
interval time of reciprocal links is non-trivial. The major
challenge for interval time prediction is that typical link
prediction features for an undirected network, such as com-
mon neighbors, Jaccard’s similarity and Adamic—Adar, do
not have a well-defined counterpart for directed networks,
which makes interval prediction a difficult task. Addition-
ally, for generating the training data for building a prediction
model, a network is observed for a finite time window, and
the absence of a reciprocal link within that time window
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does not necessarily mean the absence of that reciprocal
edge, because a reciprocal edge might have formed outside
(after) the observation time window. This yields numerous
right-censored data instances, for which the target variable,
i.e., the reciprocal link formation time is not available. Tradi-
tional supervised regression models cannot include censored
data instances in the training data and hence perform poorly
in predicting reciprocal link creation time.

We explain the cases of right-censored data instances in
reciprocal interval time prediction task using a toy example
shown in Fig. 1. In this figure we show a small part of an
email communication network consisting of only three ver-
tices representing three persons, A, B and C. Our observation
period of this network has five timestamps, 7'1 to 75. At T'l,
C sends an email to B, thus creating the first of the directed
links (such links are called parasocial links). At 7T,, the para-
social link from A to B is created. At 73, the reciprocal link
from B to C is created; thus, the interval time of this edge
is T3 — T1. At T3, another parasocial link (B — C) is cre-
ated. More links are created in subsequent time intervals 74
and 75. At TS, we reach the end of our observation period,
but the reciprocal link from C to A is yet to be created. The
potential reciprocal link C — A is an instance of right-cen-
sored data for which we only know that the interval time is
higher than T'5 — T'1; this value, as well, can be infinity in the
case that the link is never created. Either way, the exact value
of the target variable for this reciprocal edge is unknown.
Unfortunately, for any reasonable observation time window,
a significantly large number of potential reciprocal links are
censored data instances, which is the main challenge for the
task of reciprocal link creation time prediction.

In this work, we present a supervised learning model for
predicting the interval time for the creation of a reciprocal
edge between a pair of vertices in an online social network,
given that a parasocial edge already exists between the ver-
tex pair. We study real-life networks and validate a collection
of topological features that may influence the reciprocal edge
creation time. Then, we design the prediction task as a sur-
vival analysis problem and propose five censored regression
models. Our experimental results show that Cox regression
performs better than traditional supervised learning models
for reciprocal link prediction. This is an extended version
of our previous paper (Dave et al. 2017), which is published
in 11th International Conference on Web and Social Media
(ICWSM).

2 Related works

The traditional binary classification task of link prediction
has received enormous attention over the years since the
inception of this problem by Liben-Nowell and Kleinberg
(2003). Over the years researchers have solved the link
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Fig. 1 An illustration of reciprocal link time prediction RLTP problem

prediction problem for a variety of graphs—for example link
prediction in homogeneous networks (Hasan et al. 2006;
Liaghat et al. 2013; Wang et al. 2017b), link prediction in
heterogeneous information networks (Sun et al. 2011; Dong
et al. 2012) and link prediction for knowledge graphs (Dong
et al. 2014; Zhang et al. 2016). Other related problems,
such as link/sign prediction and ranking in signed social
network (Song and Meyer 2015; Symeonidis and Mantas
2013) and a recommendation system using link prediction
techniques (Esslimani et al. 2011), have also been studied.
Reciprocal link prediction is a variant of link prediction
which works on directed networks. Even though the major-
ity of social and communication graphs are directed, only a
few works exist which consider predicting reciprocal links.
In one of the earliest works, Hopcroft et al. (2011) predicted
reciprocal edges in a Twitter network. However, many of
the features that they proposed are too specific to the Twit-
ter dataset and do not apply to a generic directed network.
Gong and Xu (2014) compared reciprocal and parasocial
link creation in Google+ and Flickr datasets and solved
the reciprocal link prediction problem as an outlier detec-
tion task using one-class SVM. Authors of (Cheng et al.
2011) compared structural differences of reciprocal links
and parasocial links, and they also studied a Twitter dataset
and corresponding node features to predict reciprocal links.

Ever-waiting Link

T5 (End of the Study)

In another work (Feng et al. 2014), the authors reported that
the majority of reciprocating links are created within a very
short time after the creation of corresponding parasocial
links. Dumba et al. (2016) studied the structural properties
of a reciprocal network and discussed user behavior patterns.

A closely related problem to reciprocal link prediction
is online dating recommendation. There exist a few works
that solve this problem, mainly by using traditional recom-
mendation methods with novel feature extraction processes.
For example, in (Zhao et al. 2014) the authors modified the
classical collaborative filtering method for the dating recom-
mendation task. Xia et al. (2015, 2016) proposed different
reciprocal score matrices and used them with collabora-
tive filtering for recommendation. The authors in (Tu et al.
2014) proposed an LDA (latent Dirichlet allocation)-based
approach to learn latent preferences of users with two side
matching-based recommendation. Recently, Zang et al.
(2017) proposed a method that extracts profile-based fea-
tures, topological features and preference features from a
dating social network for recommendation. All the exist-
ing works discussed so far target the binary classification
problem, which predicts whether the reciprocal link will
be created or not. On the other hand, our work targets the
prediction of time, which is more difficult than the binary
classification problem.
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To the best of our knowledge, there are only two works
that target the time prediction problem; the first one is by
Sun et al. (2012) and the second by Li et al. (2016). In both
of these works, the authors have extracted unique features
for a DBLP-like (author paper) heterogeneous network. Y.
Sun et al. proposed meta-path-based topological features and
used a generalized linear model (GLM) for the prediction
task. Similarly, M. Li et al. proposed a novel time difference
labeled path (TDLP)-based method for the knowledge graph.
Both methods are designed specifically for DBLP-like net-
works; hence, they are difficult to apply to other networks.
On the other hand, our method is applicable to any general
directed network to predict time of a reciprocal link.

3 Our methodology

In this section, we first define the problem of reciprocal link
time prediction (RLTP). Then we present some insight of
three real-world datasets that we have used in this work.
Then we explain how the RLTP can be solved by using a
survival analysis framework. After that we discuss different
survival analysis methods which we have used for solving
the RLTP problem. Finally, we provide algorithmic repre-
sentation of the proposed framework.

3.1 Problem formulation

Definition 1 (Directed time-stamped network) Consider a
network G(V, E), where V is the set of vertices and E is the
set of directed edges. T is a set of time values, and 7 is a
mapping function, which maps an edge to one of the time
valuesintheset7T,ie.,7 : E — T.Foranedgee € E,t, € T
denotes the creation time of the edge e. Collectively, G, T
and 7 are called a directed time-stamped network. |

For verticesu,v € V and link e = (u, v) € E the correspond-
ing time stamp ¢, can be represented as #,,. If an edge e is
created multiple times, we keep only the oldest (earliest)
creation time and assign that to z,. For a vertexu € V, I, (u)
and I,,(u) are the set of in-neighbors and the set of out-
neighbors of u, and d(u, v) is the directed shortest path dis-
tance from u to v.

Definition 2 (Reciprocal/Parasocial link) For a pair of ver-
tices, u and v, the edge (u,v) € E is called a parasocial link
if the edge (v,u) € E. On the other hand, if (v, u) € E and
(u,v) € E,and ¢, < t,, then (u, v) is called a reciprocal link.

g

The objective of the RLTP problem is to predict the time
of a reciprocal link for the given parasocial link with time.
The interval time for a reciprocal link (i, v) is defined as
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Int(u,v) =t,, — t,,. Our model for the RLTP problem actu-
ally predicts In#(u, v), instead of predicting #,, (the reciprocal
link creation time). Nevertheless, the reciprocal link creation
time ¢, can be obtained from the model by using the expres-
sion t,, + Int(u,v). The advantage of predicting Int(u, v)
instead of predicting ¢, is that for predicting Int(u, v) we do
not need to use the parasocial link creation time ¢, as part
of input of the model, which makes the model independent
of temporal bias. Thus, the supervised model of our pro-
posed RLTP task uses only the topological features of an
edge (u, v) as its covariates and the interval time Int(u, v) as
its target variable, making the model simple.

3.2 Dataset study

In this section, we discuss the datasets that we use in our
study. We also provide some statistical analysis of the data-
sets; specifically, for each of these datasets, we provide the
empirical distribution of observed interval time and its good-
ness of fit with known statistical distributions. For the Enron
dataset, the persons (along with their rank in the company)
associated with a vertex is known, so in this dataset we have
also performed a qualitative study by checking for the evi-
dences of social stratification phenomenon, which we pre-
sent at the end of this section.

We used three real-world directed network datasets for
our study. We selected datasets where reciprocal link crea-
tion is an important (meaningful) event; another selection
criterion is that the datasets should have a sufficient number
of reciprocal links to train and test the models (Kuhnt and
Brust 2014). Our first dataset, Epinion is a trust network
where a directed link from one vertex to another represents
the fact that the former trusts the latter. The RLTP task for
this dataset is to find the time at which a trusted person
acknowledges that (s)he also holds a similar sentiment
toward the other person. The dataset was collected from
KONECT web page.! We have also collected two email
datasets: MC-Email® and Enron. Both of these datasets are
email communication networks from two distinct enter-
prises, and for these datasets the RLTP task is to predict
the response time for an email. More information on these
datasets is provided in Table 1, where |VI, |IEl, IT1 and Recipro
are the number of vertices, the number of edges, the number
of timestamps (in days) and the reciprocity of the dataset
within the observation window, respectively.

For these three datasets, we plot the histogram of the
interval time for reciprocal links in log scale (Fig. 2). We
observed that the majority of the responses are received
within a short period of time (within 10 days or less).

! http://konect.uni-koblenz.de/networks/.

2 This is Manufacturing Company email dataset available from R.
Michalski’s website, https://www.ii.pwr.edu.pl/~michalski.
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Table 1 Basic statistics of the datasets used in the paper

Dataset 1% |E] Al Recipro
Epinion 131, 828 841, 373 938 0.3083
MC-Email 167 5,783 237 0.876
Enron 182 3,007 944 0.6053
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However, there also exist a few late responders whose reply
time is much larger than the average reply time.

3.2.1 Modeling interval time using parametric distribution

From the distribution plots in Fig. 2, we observe that the
number of reciprocal link instances reduces exponentially
with the increment of the interval time (note that, y-axis
is in log scale). Hence, we fit different exponential family
distributions to model the time interval of reciprocal link
for all three datasets. Specifically, we fit exponential dis-
tribution, normal distribution, logistic distribution, log-
normal distribution, log-logistic distribution and Weibull
distribution. To evaluate the goodness of fit we use the fol-
lowing four metrics: Kolmogorov—Smirnov (KS) statistic,
Cramer—von Mises (CM) statistic, Akaike’s information cri-
terion (AIC) (Akaike 1998) and Bayesian information cri-
terion (BIC) (Schwarz 1978). In Fig. 3, we show the quality
of fitting results. The results of BIC are very similar to AIC
for all three datasets, so we did not show the results of BIC.
As depicted in Fig. 3, exponential, normal and logistic dis-
tributions (shown in red) have relatively high distance from
empirical distribution compared to log-normal, log-logistic
and Weibull distributions (shown in black). For the Enron
dataset, Weibull distribution performs the best over all met-
rics. Similarly, for the Epinion and the MC-Email datasets
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log-logistic distribution fits the best. Results of log-normal
distribution are very similar to both Weibull and log-logistic
distributions. Hence, we use log-normal, log-logistic and
Weibull distributions for parametric survival models, which
are discussed later in Sect. 3.5.

3.2.2 Social stratification in Enron

One of the influencing factors for late responses to a specific
user is social stratification—particularly in corporations, peo-
ple tend to give quicker replies to their superior as compared
to their colleagues and other juniors. We study the Enron data-
set, for which the employee details are available with email
communications. In the dataset, “Louise Kitchen” is a presi-
dent; we observed that her email replying practice follows
social stratification phenomenon. She generally takes more
than 2-3 days to reply to people with lower ranking posi-
tions such as vice-president (VP), employees, etc. For exam-
ple, she replied to VPs “Kevin Presto”, “James Steffes” and
“Fletcher Sturm” in 3, 6 and 19 days, respectively. She replied
to “Sally Beck” (Chief Operating Officer) in 5 days. On the
other hand, she replied to “David Delainey” (Chief Execu-
tive Officer (CEO)) on the same (0) day. Another example
is “Philip Allen”, who is a manager; he replied within a day
to higher ranking officers such as “David Delainey” (CEO),
“Barry Tycholiz” (VP), “Hunter Shively” (VP) and “Richard
Shapiro” (VP). On the other hand, he took 2 to 3 days to reply
to “Michael Grigsby” (manager), “Jay Reitmeyer” (employee)
and “Matthew Lenhart” (employee).

3.3 Topological feature study

In online social networks, user behavior-based features are
useful for solving different problems, such as link predic-
tion (Valverde-Rebaza and de Andrade Lopes 2013), per-
sonality prediction (Adali and Golbeck 2014), user attribute
prediction (Tuna et al. 2016), link sign prediction (Shahri-
ari et al. 2016), prediction of positive and negative users
in Twitter (Roshanaei and Mishra 2015), etc. Hence, we
believe social (behavioral) phenomena-based topologi-
cal features can contribute substantially to solve the RLTP
problem. Though there are works that study and design user
behavior features such as topic-specific modeling (Bog-
danov et al. 2014), a behavioral model for Facebook wall
posts (Devineni et al. 2017), etc., we assume to have only
topological information. Topological features that we use
come from two different social phenomena: directed altru-
ism and social stratification. Below we discuss them in two
different sections.

@ Springer

3.3.1 Directed altruism-based features

Directed altruism in social networks is described in Leider
et al. (2007), where the authors have argued that people are
more generous to friends and friends of friends than to a com-
plete stranger. This phenomenon also reflects in people’s recip-
rocal link creation behavior. Below, we define some topologi-
cal features which quantify the directed altruism phenomena
for reciprocal link prediction.

Shortest directed distance: In our problem, one directional
link (v, u) already exists, and we are predicting the creation
time for the reverse link (u, v). Generally people are more
generous to indirect friends than complete strangers. Hence,
u is more likely to respond quickly to v for small value of the
directed distance from u to v, i.e.,

DirectedDist(u,v) = d(u,v)

Common in/out neighbors count. The number of common
neighbors is a frequently used topological feature for the link
prediction task in undirected networks; however, for directed
graphs, we have two separate features: common in-neigh-
bors and common out-neighbors. Both of these topological
features capture the idea that if a user has more common
neighbors with another user, then she is more likely to reply
fast. Also, more common friends increase the network flow,
which is an important factor for building trust (Leider et al.
2007) and with higher trust people tend to reply faster.

Common,,(u,v) =|I,,(w) N I;,W)|
Commonﬂut(u’ V) =|E)M[(u) n E}th(v)|

Jaccard coefficient (In/Out): The Jaccard coefficient is
another widely used topological feature for undirected net-
works. It is the normalized version of common neighbors
counts. Similar to the common neighbor count feature, this
feature also split into two features due to the directed-ness
of the edges. Jaccard coefficients help to predict the trust
level between two nodes. Since, higher trust leads to faster
response, this is a good feature for the RLTP task.

|5, ) n T,
|, U L)
o) 0 Ly 0]
- |Fou1(u) U Fout(v)l

Jaccard,,

Jaccard,,,

Local reciprocity: In (Gong and Xu 2014), the authors
studied two local reciprocity features and they showed rela-
tive influence of both features on linking back probability.
The first is acceptance local reciprocity (ALR), which is
defined as:

|, ()N T, ()

ALRW ==
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We compute ALR for the head node (v) of the reciprocal
link (u, v). This feature captures the tendency of node v to
accept a link. The second feature is request local reciprocity
(RLR), defined as:

. wnl, (u
RLR(M) — | ll’l( ) ()ll[( )I

|1, ()

We compute RLR for the tail node () of the reciprocating
link (u, v). RLR represents the response behavior of the node
u and captures its tendency to initiate a reciprocal link.

3.3.2 Social stratification-based features

It is observed that in online social networks people behave
according to their status in the network (Hopcroft et al. 2011).
A similar behavior is observed in many real-world applications,
such as the one described in Sect. 3.2 or in online dating (Xia
et al. 2013). We have also shown evidence of social stratifica-
tion in Enron dataset, specifically in connection to the RLTP
task. The following topological features quantify the extent of
social stratification that is practiced by the node u or v.

Preferential attachment: This feature computes a value
which reflects the social stratification induced rank order of
a given node. The basic idea of preferential attachment is to
give more weight to the higher degree nodes. Traditionally,
preferential attachment has been computed for undirected
networks, so we change the formula to adapt it for directed
networks. For undirected graph, it is simply the product of
the degrees of the node u and v. For directed graph, we take
the product of the out-degree of the tail node () and the in-
degree of the head node (v) of a prospective reciprocal link
(u, v). The formula is given below:

PrefAtt(u,v) = | I, ()| X | T,,(v)|

Preferential Jaccard (Preflacc) is inspired by both pref-
erential attachment and Jaccard coefficient. It is a trade-off
between two concepts—first, high degree nodes are prone to
create more edges, and second, nodes prefer to connect with
similar nodes (social stratification). Both these phenomena
can influence reciprocal edge creation. We calculated Pref-
Jacc by using the following equation:

IF()ut(u) n En(v)l

PrefJacc(u, V) = m

In/out ratio: A node in the upper hierarchy has a tendency
to a create reciprocal edges with other nodes at the same
hierarchy level than to nodes which are at a lower hierarchy
level (Hopcroft et al. 2011). To reflect this knowledge in our
model, we need to find an efficient way for comparing the
hierarchy of a pair of nodes, which we compute by the ratio
of their in-degrees and the ratio of their out-degrees. Higher
InRatio is indicative of higher tendency of the numerator
node to attract links compared to the denominator node;

Table 2 Correlation of features with interval time

Features/datasets Epinion MC-Emails Enron

DirectedDist —0.04127 —0.03792 —0.13336
Commony, 0.38109 0.33447 0.44398
Commonyy,, 0.27254 0.31194 0.27534
Jaccard,, 0.17161 0.22101 0.24831
Jaccard,,, 0.11015 0.18925 0.20195
RLR(u) —0.00290 0.05820 0.16053
ALR(v) —0.06093 0.15383 0.19256
PrefAtt 0.19289 0.23930 0.25443
Preflacc 0.09136 0.20054 0.25502
InRatio —0.03165 —0.07053 —0.14302
OutRatio —0.01132 0.04269 0.13108
PageRank(u) 0.24783 —0.07523 —0.07609
PageRank(v) 0.14300 0.00211 0.02049

similarly, higher OutRatio represents a higher tendency of
the numerator node to create links compared to the denomi-
nator node. In this way, these two features capture the rela-
tive patterns of link creation and link acceptance by the pair
of the vertices. For reciprocating link (u, v), we calculate
InRatio and OutRatio by using the following equations:

. )
InRatio =
[ [, ()]
I (u
OutRatio =w
[T, ("]

PageRank represents the prestige of the node in the net-
work. We use both, PageRank of # and PageRank of v as
features. If PageRank(u) is lower than PageRank(v), then
the node u is highly likely to respond faster to the node v.

3.3.3 Feature analysis

To validate the strength of these features (13 in total) for
predicting the interval time of reciprocal edges, we compute
the Pearson’s correlation of the above topological features
with the interval time value for three real-life graph datasets
(Table 1) and show the correlation values in Table 2. As
we can see, for the MC-Emails dataset most of the features
(mainly Common,,, Common,,,, Jaccard,,, Jaccard,,,,, Pre-
JAtt and Preflacc) have good correlation value (between 0.2
and 0.5). Similarly, for the Enron dataset the same set of
features is highly related to interval time. But, for Epinion
dataset the correlation values for most of the features are
poor except for Common,,, Common,,,,, and PageRank(u);
the worst features are InRatio, OutRatio and RLR(u). To
check the influence of these features on reciprocal link crea-
tion, we also check the average linking back probability over
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Fig.4 Relation of In/OutRatio and linking back probability in Epinion dataset

different range of values for different features. We discuss
our observation in the following paragraphs.

In Fig. 4, we plot our observation for two of the features:
InRatio and OutRatio. Here, for each bin of InRatio, the link-
ing back probability is calculated as a fraction of reciprocal
links over all the links in that bin. Figure 4 clearly shows
high linking back probability for higher InRatio and lower
OutRatio, which is expected behavior for these features.
In (Gong and Xu 2014), the authors provided a thorough
study of some features, such as RLR(u) and ALR(v), and
proved their significant influence on reciprocal link creation.

In Fig. 5, we show three plots (one for each dataset) of
DirectedDist vs. interval time. Within each plot we have
several graphs, each representing the directed distance
value between the vertices. Along the x-axis is the interval
time and along the y-axis is the number of reciprocal link
instances that have the corresponding interval time. For all
dataset, we observe that links with small directed distance
value (such as 2 or 3) can have high interval time, i.e., the
reciprocal link may appear after many days; but as distance
increases there are few or almost no instances of reciprocal
links with high interval time. This observation may appear
counterintuitive as we expect short distance to influence
a short interval time. However, this observation can be
explained as follows: people tend to trust other people who
are within their circles, and they will ultimately create a
reciprocal links with them, even if they do not do it imme-
diately. On the other hand, for people who are outside
someone’s circle (having a high directed distance value,
such as 4 or 5), reciprocal links will be created either in a
short interval time or will not be created at all. The short
interval time can be the cases when two strangers meet
in-person in a social event and then mutually agree to be
connected online (or trust each other). On the other hand,
the negative case happens, when a stranger trusts (or sends
an invite to) someone, and the second person just ignore
that forever. Due to this complex relation, the correlation
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between directed distance and inferval time is poor, yet we
consider DirectedDist to be a useful feature.

3.3.4 Correlation with low and high interval time

There are a variety of different social behaviors that influ-
ence the interval time; hence, some social-based features
impact the interval time differently over a period. To under-
stand the impact of different features over a period, we split
the target variable (interval time) into lower and higher range
and calculate feature correlations with lower and higher
interval times separately. For this study, we calculate average
interval time for each dataset and if the interval time is less
or equal to average interval time we call it low interval time,
otherwise, we call it high interval time. For each dataset and
each feature, we calculate the correlation value between the
feature and low and high interval times; these correlation
values are shown in Table 3.

In Table 3, we observe that features like Common,,,
Common,,,,, Jaccard,,, Jaccard,,,, PrefAtt and Preflacc
have high correlation with higher interval time. For the
Enron dataset, some of these features (Common,,, Jaccard,,
and PrefJacc) are highly correlated with lower interval time
as well. For the MC-Email dataset, DirectedDist, ALR(v),
OutRatio and PageRank(v) have noticeable correlation with
lower interval time and other two features (RLR(u) and In
Ratio) are inversely correlated with lower interval time.
One surprising observation for the MC-Email dataset is that
PageRank(v) is the poorest feature (Table 2), but highly cor-
related with both lower and higher interval times, mainly
because the feature is positively correlated for lower inter-
val time and inversely correlated with higher interval time.
From Table 3 we understand that for different datasets user
behavior varies and hence a distinct set of features becomes
influential to the interval time (especially lower interval
time) of that dataset.
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3.4 Proposed methodology using survival analysis

Survival analysis is widely used in the medical domain to
predict survival time or time to a specific event (such as
death) for patient datasets (Vinzamuri and Reddy 2013;
Wang et al. 2017a). In the survival analysis setup, for a set
of instances under observation, events happen over a time
period, from which a survival model learns the temporal
patterns of these events and predicts the survival time. Here,
we propose a novel method to map the RLTP problem to a
survival analysis task and explain survival analysis concepts

from a reciprocal link creation perspective. For these con-
cepts, we also provide suitable terminology for the RLTP
problem to describe our approach clearly.

Beginning of graph expansion and study period: At the
first time stamp, a given directed time-stamped network is
static (initialized); the beginning of graph expansion is the
second time stamp from when new links are added to the
static network. Survival analysis assumes a starting time of the
study, from when a model starts to observe for the events. In
the RLTP problem, the beginning of graph expansion serves
as the starting time of the study. For the RLTP problem, we
divide the time stamps of the network into train and test time
periods, and we observe the network for the reciprocal link
creation till the end of the train period, so the last time stamp
in the train period is considered to be the end of the study.
Thus, the time window from the beginning of graph expansion
to the last time stamp of train period is considered to be the
study period which is the same as the train period.

Reciprocal event: For a parasocial link (v, u), if a recipro-
cal link (u, v) is created during the training period, we call
it a reciprocal event, which is the event of interest in the
RLTP problem. In the RLTP problem each parasocial link is
a data instance, and time stamp of a parasocial link genera-
tion is the time when the data instance is considered into the
network for study. Hence, the time stamp of a parasocial link
generation is called the starting time of observation for that
data instance (an ordered pair of vertices).

Ever-waiting links: We study the network for a limited
time window (train period), and hence, for a set of para-
social links, the corresponding reciprocal event may not
be observed before the end of the study (last time stamp
of training period). We call these links ever-waiting links.
Ever-waiting links carry the information that the reciprocal
link creation event did not happen till the end of the train
period. In the survival analysis terminology the ever-waiting
links are also called censored instances; we use both of these
terms interchangeably in this paper.

In a traditional regression task, ever-waiting links may
either be ignored, because the target value (the interval time)
for these instances are unknown, or they may be retained
with an arbitrarily chosen large interval time, which is higher
than the time difference between the end of the study time
and the starting time of observation for that parasocial link.
The first of the above approaches ignores important informa-
tion; specifically, the ignored fact is that the interval time for
ever-waiting links is higher than the time difference between
the end of the study and the starting time of observation for
that parasocial link. The second approach is simply a crude
approximation of the target value. As mentioned before, the
main reason to map the RLTP problem into survival regres-
sion analysis framework is to exploit the important informa-
tion provided by the ever-waiting links.
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Table 3 Correlation of features

. R Datasets features Epinion MC-Emails Enron

with Low and High interval

times Low High Low High Low High
DirectedDist —0.00387 —0.04587 0.14453 —0.06022 —0.04023 —0.15364
Commony, 0.06671 0.33821 0.00018 0.41728 0.22168 0.35640
Common,, 0.07231 0.24064 0.06639 0.27446 0.04738 0.20793
Jaccard,, 0.07765 0.15312 —0.04154 0.29774 0.17726 0.10033
Jaccard,,, 0.06829 0.13183 —0.07426 0.22517 0.07820 0.06360
RLR(u) —0.03937 0.06628 —0.17897 0.02467 0.07949 0.06348
ALR(v) —0.01783 —0.07657 0.15905 0.09455 0.08760 0.06401
PrefAtt 0.03049 0.14439 —0.00163 0.31220 0.06305 0.32053
Preflacc 0.04258 0.13021 —0.06545 0.23248 0.16523 0.09010
InRatio —0.01251 —0.01751 —0.15333 —0.04297 —0.10385 —0.09571
OutRatio —0.00700 —0.02610 0.29600 —0.06979 0.00578 0.12331
PageRank(u) 0.06118 0.20674 —0.07606 —0.09756 —0.00557 —0.12452
PageRank(v) 0.02399 0.14362 0.31830 —0.13432 0.01606 0.03715

Target value of survival regression model The time dif-
ference between the starting time of observation (parasocial
link generation time) and the time stamp of the reciprocal
edge creation is the interval time which we want to predict
in the RLTP task. For a reciprocal edge (u, v), the interval
time is defined as Int(u, v), as is discussed in Sect. 3.1. In
a traditional survival model, the interval time is called the
life span of an instance as for these models “death” is the
event of interest. Hence, survival models that predict survival
time can be adopted to predict the interval time for the RLTP
problem. For training the prediction model, we need a feature
vector for each data instance, along with the survival time
and a binary event indication value (event occurred or not).
For the RLTP problem, the feature vector of a parasocial edge
is x; € R, a vector of topological features (Sect. 3.3) for the
i’th parasocial link in training data, where feature dimension
d is 13 (number of topological features). For each paraso-
cial links of the training period, if the reciprocal event has
occurred during training period then life span of parasocial
link is the interval time with the event indication value set
to 1; otherwise, for ever-waiting links, the time difference
between the last time stamp of training and time stamp of
the parasocial link generation is the survival time with event
indication value set to 0. Given this training dataset, the tar-
get value (the interval time) of test instances are predicted
by using a trained survival model. We use various survival
models, which we discuss in the next subsection.
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3.5 Survival models for the RLTP problem

As explained in the previous section, any survival model can
be adopted to solve the RLTP problem. There are two types
of widely used survival models: (1) semi-parametric mod-
els and (2) parametric models. Parametric models assume
that interval time follows a known statistical distribution;
hence, if the interval time for a dataset follows a distribution
then parametric models perform very good for the dataset
compared to a semi-parametric models. However, for many
real-world datasets, it is difficult to find a suitable statistical
distribution that fits well to the interval time, for these data-
sets semi-parametric models perform better than parametric
models, because semi-parametric models do not assume any
underlying distribution, rather they try to learn the actual
distribution from the data. As we discussed in Sect. 3.2,
some of our datasets are good fit for a statistical distribu-
tion but others are not. Hence, we conduct experiments
with both semi-parametric and parametric models to offer a
comprehensive study of the RLTP problem. In this section,
we describe these selected semi-parametric and parametric
models and their adaptation for solving the RLTP problem.
Broadly, all types of models try to predict the survival time
of an instance in the data by modeling three functions: (1)
survival function, (2) hazard function and (3) event density
function. Definitions and relationship between these three
functions are described below:
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Survival function S(¢): Survival models provide a prin-
cipled approach for interval time prediction by modeling a
survival function, which is defined as the probability value
that the reciprocal edge creation does not happen for a given
parasocial link before a specified time 7.

SO =Pr(T > 1)
Here, T is a random variable representing the time of the
reciprocal edge creation event.

Hazard function A(t) is the reciprocal event rate at time
t conditional on the fact that the reciprocal event has not
occurred until that time ¢,

f®

M) === 1
where f(t) is the reciprocal event density function, which is
given as follows:

4 _spy=-4
fi = 21 =S0) = ——50

For a given parasocial link if corresponding reciprocal link
is not likely to be created at time ¢, then Survival function
value for ¢ is high. On the other hand, if the corresponding
reciprocal link is highly likely to be created at time ¢ then
the reciprocal event density function value should be high
and that leads to a higher value of the Hazard function. We
can observe that both survival function and hazard function
are interrelated and we can model either function for the
interval time prediction. Next, we describe how semi-para-
metric Cox regression models the hazard function to solve
the RLTP problem. Later we discuss parametric methods (BJ
model and AFT models) and their approach for modeling
the survival function with the help of different statistical
distributions.

3.5.1 Cox regression

Cox regression model (Cox 1972) is the most widely used
semi-parametric model for predicting the (interval) time taken
for a reciprocal event to occur. The basic Cox model follows
the proportional hazard assumption, for which the hazard func-
tion A(¢ | x;) takes the following form:

= Jo(t) X exp(x B) @
where X; is the (topological) feature vector of a parasocial
link represented as i’th data instance in the training data and
d is the dimensionality of the features. Here, 4,(¢) is called

baseline hazard function, and f is the model parameter
which Cox regression model learns. The Cox regression is
called semi-parametric because the baseline hazard function
Ap(#) can be any non-negative function of time. The probabil-
ity of occurrence of reciprocal event for the ith parasocial
link (data instance) at time ¢ can be represented as ratio

M, where R, is the set of all instances for which the
ek, Atx))

reciprocal event did not happen until 7. The product of these
probabilities gives the partial likelihood function:
N T G
exp(x; B)
=[] |lae—F= 3)
=t | Ljer, XPX; )

i=1

Here N is the total number of parasocial links appeared dur-
ing the training period and C; is an event indicator value,
i.e., if reciprocal link for the ith parasocial link appear dur-
ing training period then C; = 1otherwise C; = 0. The model
parameter f is learnt by minimizing the negative log likeli-
hood function. If 3 is the optimal model parameter, we have:

N

B = argmin JLV 2 l—Ci(xiT,B) + C;log (2 exp(xfﬁ))}

B i=1 jER,
4

Regularized Cox model: For complex model with high
dimensional real-world datasets, over-fitting is a frequent
problem. To avoid this, we need a regularization term in the
objective function (Eq. 4). We observe in Sect. 3.3.3 that
only a few features have a strong correlation with the target
variable, so we want to use a sparse regularization model.
In this work we use elastic net regularization. In literature,
a Cox model with elastic net regularization is also known
as Cox model with elastic net (EN) penalty (Zou and Hastie
2005). The penalty term Ppy is:

d
Pex(®) =Y, [alfil + 50 - )
k=1

where, 0 < a < 1and with EN penalty the objective function
in Eq. 4, becomes

~

B = argmin
B
L&
N Z l_ci(xiTﬂ) + C;log </2 eXP("fﬂ))] +7 - Pey(B)
i=1 jER,

(6)

Here, y > 0 is a regularization constant. For solving
this optimization task, we can use the maximum partial
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Table 4 Density, survival and hazard functions for the distributions used with AFT model

Distributions Density function Survival function Hazard function
Weibull Akte=1 - exp(=At9) exp(—At9) Aktk=1
Log-normal 1 _ (og()—p)* _ (los—n ! _ og)—p?.
y 2rot exp( 202 ) - - ) 2ot P )
1—a( Tog()—p )
Log-logistic Mt L Mt
(L4 A1) 1+t 1+Ark

Here, 4 is scale parameter and k is shape parameter for both Weibull and log-logistic distribution. For log-normal distribution y is the mean
(location parameter), 62 is the variance and @ is cumulative distribution function of normal distribution

likelihood estimator proposed by Cox (1972); it uses the
Newton-Raphson method to iteratively find the estimated f
which minimizes Eq. (6).

3.5.2 Parametric models

The main idea behind a parametric model is that it assumes
that the interval time follows a specific statistical distribution.
There are two ways to relate inferval time and a statistical
distribution: first, assume that the actual interval time for all
parasocial links follows a distribution; and second, assume
that the logarithm of the interval time follows a distribution.
The models under the first assumption are referred to as linear
regression models, and the models under later assumption are
called accelerated failure time (AFT) models.

Generally, parametric models use maximum likelihood
estimation (MLE) approach to learn model parameters.
Let’s assume all the parameters of a model are represented
by B = (B, B,,...)". For a given parasocial link (say ith
link in the training data), if it is an ever-waiting link the
corresponding survival function S(#, #) at time ¢ (in fact,
any ¢ value during a training period) should be near to 1,
and if it is not an ever-waiting link then the reciprocal
event density function f(¢;, B) at time ¢, (time of reciprocal
event for the ith parasocial link) should be high (near to 1)
for that link. Hence, the likelihood of all parasocial links
of a training period is the product of their reciprocal event
density functions or survival functions based on their state
(whether the link is ever-waiting or not), i.e.,

L =[] r@p-I]s¢.p o
Ci=1 C;=0

@ Springer

Linear regression model: The statistical linear regres-
sion with the least squares estimation is widely used for
a variety of regression tasks. However, the issue with the
model is that it cannot use information from ever-waiting
links. For interval time prediction this issue can be han-
dled by using a specific survival model such as the Buck-
ley—James model (BJ model). The BJ model first estimates
the interval time of training ever-waiting links using the
Kaplan—-Meier (KM) (Kaplan and Meier 1958) estimation
method and then by using all parasocial links from training
period to train a linear model. This linear model can be
trained through MLE as described above. For more practi-
cal use, Wang and Wang (2010) proposed twin boosting
method with BJ estimator, we use this method to solve the
RLTP problem.

Accelerated failure time (AFT) model: An AFT model
assumes that the logarithm of the interval time log(T) fol-
lows a statistical distribution, and it is linearly related to
the (topological) feature vectors. The general form for AFT
regression model is

logT)=X-PB+o0-€ 8)
where X is the covariate matrix of size N X d where ith row
of X is x;, B is a d dimensional coefficient vector (model
parameters), o (o > 0) is an unknown scale parameter, and
€ is an error variable which follows a similar distribution to
log(T). For our problem, we use the three most suitable dis-
tributions (see Fig. 3) for interval time, the details of which
are given in Table 4.
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3.6 Algorithmic framework

Algorithm 1 Our Framework

1: For time-stamps (tg to tps) of the input graph, divide the starting p% time-stamps as
training period (to - tp) and remaining as testing period (tp41 - tar).
: train-set < all parasocial links generated before/at time-stamp ¢p.
: test-set < all parasocial links generated after time-stamp ¢, and immortal links.

. Sort edge in train-set and test-set based on its edge creation time.

: for each (edge) e € train-set do

{optional}

{sorting helps in this step}

e < generate topological features (Section 3.3) for edge e from the snapshot Gi,.

add ze to X.
: end for

2
3
4
5
6: Gt < create a snapshot of the network at to — 1.
7
8
9

10: Similarly, generate topological features for edges in the test-set and generate Xtest.

11: for each e € train-set do

12: if e has a reciprocal link e, in dataset then

13: if te, <tp then

14: ye — Int(e) « ter —te {target value for the parasocial edge (data instance)}
15: Ce —1 {event indicator value for the parasocial edge (data instance)}
16: else

17: Ye — tp — te {target value for the ever-waiting link (data instance)}
18: Ce —0

19: end if

20: else

21: Ye — tp — te {target value for the ever-waiting link (data instance)}
22: Ce—0

23: end if

24: add ye to T'.

25: add Ce to C.

26: end for

27: for each e € test-set do

28: if e has a reciprocal link e, in dataset then

29: Ye «— Int(e) «— te, — te {target value for the parasocial edge (data instance)}
30: Ce — 1

31: else

32: Ye — tyr — te {target value for the ever-waiting link (data instance)}
33: Ce —0

34: end if

35: add ye to Ttest-
36: add Ce to Ctest-
37: end for

38: {Use one of the methods among Cox, BJ, and AFT; below we call all three methods}

39: cox «— cocktail(X, T, C)
40: {For given distribution dist}

{method of fastcox (R package)}

41: AFTq;s¢ < survreg(X, T, C,distribution=dist) {method of survival (R package)}

42: BJmodel «— bujar(X, T, C)

{method of bujar (R package)}

43: The cox, AFTg;s¢+ and BJmodel contain the model parameters 3.
44: test-res « predict interval time y. for each edge e € test-set using Xtest and B.

45: evaluate test-res using Ttrest and Ciest.

In Algorithm 1, we describe a general framework of our
proposed method. First, we divide the time stamps of the
input graph into train and test periods as mentioned in
line 1 of Algorithm 1. After that we create training data
instances (frain-set) and test data instance (test-set) from
the corresponding train and test periods (Lines 2—4). Then
we calculate topological features for each parasocial link
(data instance) in the train-set and test-set as described in
Lines 5-10 of Algorithm 1. After that we generate target
variable for each data instance (Lines 11-26), for which we
observe the corresponding reciprocal link in the graph. For a

parasocial link e € train-set, if the corresponding reciprocal
link is generated during train period then interval time Int(e)
(Sect. 3.1 ) is the target value with event indicator value
C, = 1; otherwise, time difference between the link creation
and end of training period acts as the target value with event
indicator value C, = 0. Similarly, we generate target values
for data instance of fest-set as explained in Lines 27-35 of
Algorithm 1. Then, we use R libraries to train the survival
models with training data and predict target values for the
test data to generate the test results (fest-res) and lastly we
evaluate that test-res.
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4 Experiments and results

We conducted a set of rigorous experiments to demonstrate
the benefit of using censored information and the superiority
of proposed survival models to solve the RLTP problem. We
used five proposed survival models: Cox regression model,
AFT model with Weibull, log-normal and log-logistic dis-
tributions and Buckley—James (BJ) regression model. To
prove the fact that the proposed survival models are better
suited for solving the RLTP problem, we compared them
with traditional regression models such as ridge regression
(RidgeReg), lasso regression (LassoReg), feed-forward neu-
ral networks (FFNN) and support vector regression (SVR).
Note that these traditional regression models cannot use cen-
sored information (ever-waiting links). We also compare pro-
posed Cox regression model with generalized linear model
(GML), which is an adopted model from (Sun et al. 2012).

In addition to the suitability of the proposed survival
models for the RLTP problem, we also demonstrate the
usability of the ever-waiting links. For that, we conducted
experiments where we train the survival models without
censored information and compare the performance of the
models on the test dataset. We report the improvement in
the performance when the ever-waiting links are used for
training the survival models.

Lastly, we conduct an experiment to show that reciprocal
links with short interval time contain enough information
required for training the survival models.

4.1 Datasets

For the experiments, we use three real-world datasets Epin-
ion, MC-Email and Enron. We discuss these datasets in
Sect. 3.2, and basic statistics of the datasets are shown in
Table 1.

Generating a synthetic dataset for the RLTP problem
is a challenging task, because in the literature most of
the synthetic graph generation models try to mimic basic
real-world properties such as power-law degree distribu-
tion (Faloutsos et al. 1999), community structures (Lesko-
vec et al. 2007), etc. All these methods generate directed
networks with extremely low reciprocity—generally, less
than 1%. Durak et al. have proposed a synthetic network
generation algorithm which also considers reciproc-
ity (Nurcan Durak 2013). We use this algorithm for gener-
ating three synthetic graphs where the vertex count varies
between 10,000 (10K) to 30,000 (30K) with increments
of 10K. Edges of these synthetic networks have no time
stamps; hence, we assign random time stamps between 0
to 100 to parasocial links. The time stamps of reciprocal

@ Springer

Table 5 Epinion dataset: TD-AUC results [mean (+ standard devia-
tion)] with different splits used for training period

Method/split 60% 70% 80%

RidgeReg  0.6185 (+.0018) 0.6086 (+.0013) 0.6060 (+ .0018)
LassoReg  0.6169 (+.0013) 0.6020 (+.0014) 0.6039 (+ .0017)
FFNN 0.5510 (£ .1296) 0.5048 (+.0822) 0.4456 (+ .0725)

SVR 0.4791 (+ .0005) 0.4871 (+.0039) 0.4914 (+ .0030)

BIModel ~ 0.7312 (+.0010) 0.7339 (+.0020) 0.7416 (+ .0021)
Weibull 0.3807 (£ .0763) 0.5210 (+ .1446) 0.5232 (+ .1282)
Log-normal  0.3660 (+ .0388) 0.4461 (+.0283) 0.4283 (+ .0305)

Log-logistic 0.4901 (+.0098) 0.5110 (+.0196) 0.5132 (+ .0188)
Cox 0.7364 (+ .0025) 0.7436 (+ .0016) 0.7485 (+ .0028)

Bold values are specifying the best performance among all models

Table 6 MC-Email dataset: TD-AUC results [mean (+ standard devi-
ation)] with different splits used for training period

Method/split  60% 70% 80%

RidgeReg  0.6213 (+.0087) 0.6083 (+.0146) 0.6014 (+ .0125)
LassoReg 0.5884 (+.0100) 0.5709 (+.0201) 0.5686 (+.0074)
FFNN 0.4199 (£ .0800) 0.4609 (+ .0964) 0.5069 (+ .0915)

SVR 0.5462 (x .0154) 0.5737 (x.0187) 0.5530 (x .0150)

BI Model  0.5898 (+.0087) 0.5910 (+.0146) 0.6103 (« .0059)
Weibull 0.6139 (+ .0075) 0.6171 (+.0069) 0.6315 (+ .0166)
Log-normal 0.6391 (+ .0053) 0.6463 (+.0015) 0.6695 (+ .0116)
Log-logistic 0.6380 (+.0121) 0.6494 (+.0062) 0.6747 (+ .0201)
Cox 0.6527 (+ .0097) 0.6558 (+.0125) 0.6797 (+ .0062)

Bold values are specifying the best performance among all models

Table 7 Enron dataset: TD-AUC results [mean (+ standard devia-
tion)] with different splits used for training period

Method/split  60% 70% 80%

RidgeReg 0.5732 (£ .0073) 0.5847 (+.0159) 0.5318 (= .0164)
LassoReg 0.5740 (£ .0076) 0.5850 (= .0152) 0.5309 (+ .0178)
FFNN 0.4900 (+.0258) 0.5407 (+.0434) 0.5363 (+ .0561)

SVR 0.5490 (z .0080) 0.5680 (+.0176) 0.5608 (+ .0136)

BI Model  0.5292 (+.0120) 0.6096 (+.0076) 0.5599 (+.0121)
Weibull 0.5710 (£ .0168) 0.6319 (+.0050) 0.5980 ( .0096)
Log-normal 0.5713 (+.0146) 0.6146 (+.0097) 0.5862 (+ .0129)

Log-logistic 0.5787 (+.0171) 0.6224 (+.0069) 0.5917 (+ .0101)
Cox 0.5854 (+ .0166) 0.6311 (+.0110) 0.5919 (+ .0084)

Bold values are specifying the best performance among all models

links of these synthetic networks are selected by match-
ing the reciprocal link interval time of the Epinion dataset
through the best fit Weibull distribution.
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4.2 Experimental setting

For our experiments, we divide the time stamps of a dataset
into two non-overlapping continuous partitions, where the
earlier partition is the train period and the latter is the test
period. In three different experiments, we use, respectively,
60, 70 and 80% of the earlier time stamps as the train periods
and the remaining time stamps as the test period. For syn-
thetic datasets, a 70:30 split of the time stamps is used as the
train and test period of our experiments. For calculating the
topological features explained in Sect. 3.3 for a parasocial
link (data instance), we take a snapshot of the network until
the time stamp of the corresponding reciprocal link or end
of the train period (whichever is earlier).

Like any other link prediction task, RLTP also suffers
from the class imbalance issue, where the number of posi-
tive instances (C; = 1) is much smaller than that of the
negative instances. To alleviate this problem, we use the
well-known majority undersampling (Bunkhumpornpat
et al. 2011) strategy as discussed below: all the reciprocal
links generated during a train period are considered in the
training data pool as positive instances and only 50% of
the parasocial links generated during the same period are
censored negative instances (C; = 0) in the pool. The test
data pool (and their labels) is also generated similarly from
the test period. As train and test data instances need to be
from their corresponding time periods, we use a modified
K-fold cross-validation, where each fold contains a random
subset of train and test data instances from their respec-
tive pools. For all our experiments, we used 5-fold cross
validation in this manner.

For minimizing the objective function [Eq. (4)] of cen-
sored problem formulation of RLTP, for the Cox regression
model, we used cocktail algorithm (Yang and Zou 2013)
[the library is provided by the authors of Yang and Zou
(2013)]. For AFT models and BJ regression, we used Sur-
vival package® and Bujar package®, respectively, available
in R. For RidgeReg, LassoReg and SVR, we used scikit-
learn python library and for FFNN, we used MATLAB
NN toolbox. We used TopCom indexing method (Dave
and Hasan 2015, 2016) to find shortest directed distance
feature. To choose the best parameters of SVR, we used
grid search, where the cost parameter C takes values from
{0.0001,0.001,0.01,0.1, 1.0} and Epsilon (¢) takes values
from {0.0001,0.001, 0.01, 1.0}.

4.3 Evaluation metrics

Datasets generated from directed time-stamped networks are
longitudinal data, and for the RLTP problem the datasets

3 https://cran.r-project.org/web/packages/survival/index.html.

4 https://cran.r-project.org/web/packages/bujar/index.html.

Table 8 TD-AUC results [mean (+ standard deviation)] for various
methods on synthetic datasets

Method 10K 20K 30K
RidgeReg  0.5210 (+.0029) 0.4949 (+.0018) 0.5203 (+ .0023)
LassoReg  0.5150 (+.0034) 0.4876 (+.0059) 0.5091 (+ .0048)
FFNN 0.4999 (+ .0517) 0.4967 (+ .0151) 0.5068 (+ .0631)

SVR 0.5379 (£ .0021) 0.4963 (+ .0026) 0.5473 (% .0015)

BJModel  0.5589 (+.0011) 0.5232 (+.0013) 0.5557 ( .0008)
Weibull 0.5641 (£ .0036) 0.4954 (+.0027) 0.5559 (« .0015)
Log-normal 0.5670 (+ .0027) 0.4991 (+ .0030) 0.5618 (+.0011)

Log-logistic 0.5597 (+ .0029) 0.4985 (+ .0042) 0.5576 (+ .0019)
Cox 0.5604 (+ .0025) 0.5282 (+ .0026) 0.5558 (+ .0016)

Bold values are specifying the best performance among all models

also contain censored information. Evaluating models on
these datasets using traditional evaluation metrics is not suit-
able, instead we use time-dependent AUC (also known as
c-Index), which is widely used in longitudinal data analysis
(Pencina and D’Agostino 2004).

For a pair of data instances, assume (y;,y;) and @i,fzj)
are the target and the predicted values, respectively. The
time-dependent AUC is defined as the probability of J; > 3
given y; > y;. If target y; has only 2 possible values, then
time-dependent AUC is the same as the popular AUC (Area
Under ROC Curve) metric for classification. Similar to the
AUC metric, time-dependent AUC takes values between 0
and 1, where 1 is the best possible value for this metric.
Time-dependent AUC (TD-AUC) is calculated as follows:

TD- AUC = !

ot i C=1y;>y;

where, N, is total count of (y;y;) pairs such that C; = 1 (the
event has occurred) and y; > y; holds.

For the Cox regression model, the predicted value is the
hazard value and for a higher hazard value the event occurs
earlier; hence, the time-dependent AUC for Cox can be cal-
culated as:

Nl Y mahbbl<IB>xIB) (1

ot i C=1y;>y;

TD- AUC =

4.4 Comparison results of survival models
and regression models

We compared proposed survival models with four other
traditional regression models, and our results are shown in
Tables 5, 6 and 7, where columns represent different train-
ing splits and each row represents a prediction model. A
horizontal bar separates the traditional regression models
in the upper part and the survival-based models in the lower
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Table 9 Time-dependent AUC results [mean (+ standard deviation)]
for survival analysis methods with and without ever-waiting links on
real datasets

Model w/o ever-waiting with ever-waiting Joincr
Epinion

BJ model 0.4580 (+.0042) 0.7416 (= .0021) 61.94
Weibull 0.4096 (= .0090) 0.5232 (= .1282) 27.73
Log-normal 0.4218 (+.0035) 0.4283 (+ .0305) 1.53
Log-logistic 0.3767 (+ .0024) 0.5132 (+ .0188) 36.23
Cox 0.4975 (+ .0024) 0.7485 (+ .0028) 50.45
MC-Email

BJ model 0.4787 (+ .0131) 0.6103 (+ .0059) 27.51
Weibull 0.5517 (¢ .0101) 0.6315 (+ .0166) 14.46
Log-normal 0.6342 (+ .0146) 0.6695 (+ .0116) 5.56
Log-logistic 0.6331 (+ .0152) 0.6747 (+ .0201) 6.57
Cox 0.6102 (+ .0137) 0.6797 (+ .0062) 11.38
Enron

BJ model 0.5499 (+ .0134) 0.5599 (+ .0121) 1.82
Weibull 0.5330 (+ .0237) 0.5980 (+ .0096) 12.20
Log-normal 0.5344 (+ .0070) 0.5862 (+.0129) 9.71

Log-logistic 0.5379 (+ .0053)
Cox 0.5481 ( .0234)

0.5917 (x .0101) 10.01
0.5919 (£ .0084) 7.99

part. Here, each table cell shows mean and standard devia-
tion for TD-AUC values. For most of the cases, the Cox
regression model performs the best.

For the Epinion dataset, as depicted in Table 5, the Cox
regression model performs the best with mean TD-AUC
0.7364, 0.7463 and 0.7485 for training period with 60, 70
and 80% splits of time stamps, respectively. Here, with
increase in the training data we can clearly see improve-
ment in the performance, which is an expected behavior
because with more training examples the model learns bet-
ter. BJ model is the next best with performance very close
to the Cox model. For this model also, the mean TD-AUC

@ Springer

Table 10 Time-dependent AUC results [mean (+ standard deviation)]
for survival analysis methods with and without ever-waiting links on
synthetic datasets

Model w/o ever-waiting with ever-waiting %incr
10K

BJ model 0.5730 (x .0045) 0.5589 (+.0011) —2.46
Weibull 0.4847 (% .0096) 0.5641 (+ .0036) 16.37
Log-normal 0.5564 (+.0102) 0.5670 (+.0027) 1.89
Log-logistic 0.5546 (+ .0128) 0.5597 (= .0029) 0.92
Cox 0.4910 (+ .0037) 0.5604 (+ .0025) 14.14
20K

BJ model 0.4956 (+ .0062) 0.5232 (x .0013) 5.57
Weibull 0.4951 (+ .0025) 0.4954 (x .0027) 0.06
log-normal 0.4984 (+ .0018) 0.4991 (+ .0030) 0.15
Log-logistic 0.4965 (+ .0055) 0.4985 (+.0042) 0.41
Cox 0.4938 (+.0098) 0.5282 (+ .0026) 6.97
30K

BJ model 0.5548 (+.0049) 0.5557 (+ .0008) 0.17
Weibull 0.4544 (+ .0020) 0.5559 (= .0015) 22.35
Log-normal 0.5270 (+.0044) 0.5618 (+ .0011) 6.61

Log-logistic 0.5243 (+.0042)
Cox 0.4637 (£ .0051)

0.5576 (+ .0019) 6.35
0.5558 (+.0016) 19.86

improves from 0.7312 to 0.7416 as we increase the training
data. Similar behavior is observed for other survival models,
but the performance of the AFT models is, unfortunately,
not good for the dataset. This can be attributed to the fact
that AFT models make strict distribution assumptions on
the data and such assumption may not be suitable for the
Epinion dataset (Fig. 3).

For the Epinion dataset, among the traditional regression-
based methods, ridge regression performs better than any
other competing methods with mean TD-AUC in the range
between 0.60 and 0.61. But, when we compare its perfor-
mance over different training splits, we see that its perfor-
mance does not improve as we increase the training data.
The same behavior holds for other traditional regression
methods, such as Lasso regression and FFNN. One possi-
ble explanation for this behavior is model under-fitting; that
is, the majority of the errors in the traditional regression
models are coming from the bias error, so the error does
not improve much with a larger dataset which reduces vari-
ance error only. On the other hand, survival analysis-based
models are more sophisticated, which enables them to design
complex functions for predicting the time, thus overcoming
the under-fitting issue.

For the MC-Email dataset, the overall behavior of the
models is very similar to the Epinion dataset. Here again
the Cox regression model performs the best with mean TD-
AUC between 0.65 and 0.68 and its results are improved for
larger training data. Performance of different AFT models
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varies, but they all perform better than all of the traditional
regression methods. In particular, AFT with log-logistic and
log-normal distributions perform great and their mean TD-
AUC is very close to the results of the Cox regression as
shown in Table 6. The performance of all survival models
improves as we provide more training data. On the other
hand, best among the competing methods is ridge regres-
sion with a mean TD-AUC between 0.60 and 0.62. As we
have discussed earlier, this model suffers from under-fitting
problem.

For the Enron dataset, results are shown in Table 7. Here,
for the training period with 60% split, Cox regression per-
forms the best with mean TD-AUC 0.58. For the other two
splits, AFT model with Weibull distribution performs the
best with mean TD-AUC 0.63 and 0.59. The BJ model per-
forms poorly compared to the other survival models with
mean TD-AUC ranging from 0.52 to 0.6, but the perfor-
mance of BJ model is still better than all competing regres-
sion methods for training period with 70% and 80% splits
of time stamps. For this dataset, for 80% training split, none
of the models have better performance than the other splits.
This is due to the fact that this dataset is extremely sparse
and it has only 3007 links created during 944 time stamps
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Fig. 9 Enron dataset: comparison of training with top 20% reciprocal
links and all reciprocal links

(Table 1). Hence, even the 80% split does not provide more
informative training samples to perform good prediction on
remaining data.

The results for synthetic networks are shown in Table 8
by using the mean TD-AUC and standard deviation metrics.
As we observe the results in this table, we can easily con-
clude that survival models always perform better than tra-
ditional regression methods. For two datasets with 10K and
30K node instances, the AFT model with log-normal dis-
tribution performs the best among all, while for the dataset
with 20K nodes the Cox regression performs the best. The
performance of survival models is consistently very similar
except for dataset with 20K node where Cox and BJ models
clearly perform better than AFT models. Among competing
methods, SVR always performs better than others.

4.4.1 Comparison with GLM

Sun et al. (2012) proposed a method to predict link genera-
tion time in a heterogeneous network, where they design a
unique feature for the task and use the feature with general-
ized linear model (GLM) for the prediction task. This pro-
posed feature is designed based on meta-path (a simple path
with link label information) in a heterogeneous network.
We adopted this feature for a homogeneous network, and
the adopted feature can be described as a number of simple
paths of size k between two nodes. Counting the number
of simple paths is an extremely costly operation, especially
for a large dataset such as the Epinion network; hence, for
this experiment, we use k upto 5, i.e., k € {2,3,4,5} for all
three networks, Epinion, MC-Email and Enron. We provide
these homogeneous feature values to GLM (with gamma
distribution) to solve the RLTP problem. For this experi-
ment we use a 70% split of time stamps as train period and
remaining 30% as test period. The results of this experiment
are depicted in Fig. 6, where GLM is compared with the
Cox regression model for all three datasets. From Fig. 6,
we observe that the Cox regression outperforms the GLM
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Table 11 Time-dependent AUC results [mean (+ standard deviation)]
for survival analysis methods with top5-features and all features

Model Top5-features All features Joincr
Epinion

BJ model 0.6541 (+ .0027) 0.7339 (+ .0020) 12.20
Weibull 0.4878 (+ .0872) 0.5210 (+ .1446) 6.80
Log-normal 0.3157 (+ .0062) 0.4461 (x .0283) 41.32
Log-logistic 0.3360 (+ .0032) 0.5110 (£ .0196) 52.10
Cox 0.6292 (+ .0056) 0.7436 (+ .0016) 18.19
MC-Email

BJ model 0.4728 (+ .0059) 0.5910 (+ .0146) 25.00
Weibull 0.5503 (= .0102) 0.6171 (+ .0069) 12.13
Log-normal 0.5802 (= .0074) 0.6463 (+ .0015) 11.40

Log-logistic 0.5917 (£ .0125) 0.6494 (x .0062) 9.76

Cox 0.5738 (+ .0187) 0.6558 (+ .0125) 14.29
Enron

BJ model 0.5995 (+.0061) 0.6096 (+ .0076) 1.69
Weibull 0.5985 (+.0140) 0.6319 (+ .0050) 5.58
Log-normal 0.5972 (+ .0130) 0.6146 (+ .0097) 2.92

Log-logistic 0.6043 (+ .0070)
Cox 0.5964 (+ .0069)

0.6224 (= .0069) 2.99
0.6311 (£ .0110) 5.82

model for all three datasets by noticeable margins. We
believe one of the main reasons for the poor performance of
the GLM-based method is that the feature proposed by Sun
et al. (2012) is carefully designed for an author paper-based
heterogeneous network and its adoption in a homogeneous
network is not very useful.

4.5 Importance of ever-waiting links

We conducted experiments to show the importance of ever-
waiting links, and the results are depicted in Tables 9 and 10.
Table 9 shows the increment in TD-AUC up to 62% in the
real-world datasets, when the survival models are provided
with censored information (ever-waiting links) during
the training, as compared to when the models are trained
without censored information. For the Epinion dataset, the
increment in the results is significant (more than 27% for all
models) except AFT with log-normal distribution. Similarly,
for the MC-Email and the Enron datasets the increment is
up to 27%, which is substantial. As shown in Table 10, for
the synthetic datasets we also have very similar increment
in the results except for the BJ model with datasets of 10K
nodes. For the most part the increment in performance is
high for the Cox regression and the AFT with Weibull dis-
tribution. However, for other models the increment is lim-
ited to around 10%. The modest contribution of ever-waiting
links for the case of synthetic networks can be attributed
to the network generation model. We used Durak et al’s
model (Nurcan Durak 2013), which selects pairs of vertices
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for reciprocal link creation based on only degree distribu-
tion without considering any of the social phenomena, so
the features that we are using may be not very effective for
the synthetic datasets.

4.6 Importance of reciprocal links with small
interval time

For the RLTP problem, reciprocal links carry very useful
information and this information is not distributed uniformly
over all reciprocal links. We described in Sect. 3.2 that for
most of the reciprocal links the corresponding time inter-
val is relatively small, and very few have high time inter-
val as depicted in Fig. 2. The reciprocal links for which the
corresponding time interval is equal to or less than 20% of
the maximum time interval among all the time intervals of
reciprocal links in the dataset are called “top 20%” recipro-
cal links. We trained survival models with top 20% recipro-
cal links (with ever-waiting links) and compared the results
of these models with results of models trained with all recip-
rocal links (with ever-waiting links).

Results for these experiments are shown in Figs. 7, 8, 9,
where all red bars represent different models trained with
top 20% reciprocal links and all black bars represent the
same models trained using all reciprocal links. We can see
that, for all three datasets, survival models trained with top
20% reciprocal links perform very similar or better to the
models trained with all reciprocal links. This observation
supports our argument that all reciprocal links do not carry
same amount of information, but notable amounts of infor-
mation lie in the reciprocal links with short interval time.

4.7 Contribution of top5-features

In Sect. 3.3.3, we study correlation of different features
with interval time. Through this experiment, we study the
contribution of top five highly correlated features (top5-
features) to solve the RLTP problem. From Table 2, we can
find these topS-features for each real-world dataset. We can
see, for Epinion dataset Common,,, Common,,,, Jaccard,,,
PrefAtt and PageRank(u) are highly correlated features. Sim-
ilarly, for both MC-Email and Enron datasets Common,,,
Common,,,, Jaccard,,, PrefAtt and Preflacc are the top5-
features (Table 2). For this comparison study, we prepared
train and test instances similarly as described in Sect. 4.2
with 70% training split, but the difference is, here each data
instance is represented by only corresponding topS-features.
We use proposed survival models (Sect. 3.5) with top5-fea-
tures data to solve the RLTP problem.

Table 11 shows results for the comparison experiment
with mean TD-AUC value and standard deviation for 5

independent runs. The last column in Table 11 shows the



Social Network Analysis and Mining (2018) 8:16

Page 190f20 16

increment in the mean TD-AUC value from top5-features
data to all features data. This table clarifies the importance
of the other features with lower correlation values (Table 2),
because for both the Epinion and the MC-Email datasets
the increment in the results is noticeable. But for the Enron
dataset the increment is not very impressive; we believe low
number of data instances and very high correlation of top5-
features are the main reasons for this shortcoming.

5 Conclusion and future works

In this paper, we proposed a novel problem, namely recipro-
cal link time prediction (RLTP), which has wide applicabil-
ity in email, social and other directed networks. We designed
various socially meaningful topological features specifically
for directed networks, which are useful to solve the RLTP
problem. We mapped the RLTP problem into a survival anal-
ysis task and through experiments on three real-life network
datasets, we showed that such a framework is better suited
than traditional regression-based approaches for solving the
RLTP problem. We demonstrated that using ever-waiting
links for training adds valuable information to the prediction
models. We also investigated the information contributed
by the reciprocal links and showed that the majority of the
required information lies in the top few percent (20%) of the
reciprocal links. To the best of our knowledge, this is the
first study on time interval prediction for reciprocal links,
which is useful to answer response time for emails or friend
requests. It can also be used for recommendation in trust
networks for suggesting a new connection (parasocial link)
for which, the predicted response time is very small.

The RLTP is a novel problem, and this is one of the earli-
est and comprehensive study of the problem. There do exist
some opportunities to extend our work. For example, we
have used basic survival analysis-based regression models,
but one can study the timing patterns and design complex
regression model by considering the timing patterns. Also,
one can design sophisticated time-dependent topological
features that carry more information to solve the RLTP prob-
lem and study different sparse prediction models to find suit-
able features for the prediction.
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