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ABSTRACT

Weintroduceanewproblem,namely,check-intimepredictionwhere
thegoalistopredictthetimewhenagivenuserwillcheck-intoa
locationofinterest.WedesignanovelRecurrentSpatio-Temporal
PointProcess(RSTPP)modelforcheck-intimeprediction.RSTPP
addressestwokeychallenges:1)Datascarcityduetounevendis-
tributionofcheck-insamongusers/locations.2)Usertrajectories
containvaluableinformationthatisignoredbystandardtemporal
pointprocesswhichonlyconsidershistoricaleventtimes.RSTPP
isdesignedtolearnthelatentdependenciesofeventtimesover
bothhistoricaleventsandspatio-temporalinformationaboutloca-
tionsauservisitedbeforecheck-intothelocationofinterest.We
evaluateRSTPPonseveralreal-worlddatasets,anditsigniicantly
outperformsstate-of-the-arteventtimepredictingtechniques.Our
workderivesasetofpracticalimplicationsthatcanbeneitawide
spectrumofapplications.
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1 INTRODUCTION

UsingGPS-enableddevicessuchassmartphones,peoplecancon-
venientlysharetheirlocationsinreal-time.Thistrendoflocation-
sharinghasledtotheprosperityofLocation-BasedSocialNet-
works(LBSNs).TraditionalsocialnetworksincludingFacebook
andGoogle+areendeavoringtoaddgeo-spatialfeaturestotheir
services,e.g.,allowingusersto“geo-tag"postsandreporttheir
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Figure1:Anillustrationofcheck-intimeprediction.

check-instoPoint-of-Interests(PoIs).Consequently,ahugeamount
ofcheck-indatawhichrecordsthemovingtrajectoriesofmillions
ofindividualsisbeingcollectedonadailybasis.
Weproposetoleveragemassiveamountofcheck-indatafor

theproblemofcheck-intimeprediction.Speciically,givena
userandalocationofinterest(e.g.,aPoIoraregion),thegoal
istopredictthetimewhentheuserwillcheck-intothelocation,
regardlessofwhethertheuserhasvisitedthelocationbeforeor
not.Figure1illustratesthecheck-intimepredictionproblemwith
anexample.Ausertrajectoryconsistsofivesuccessivecheck-ins
C={c1,c2,...,c5}.UsingCasobservation,thetaskistopredict
whentheuserwillvisitagivenshopbasedontheknowledge
learnedfromhistoricalcheck-instotheshop.
Aslarge-scalelocationdataisbecomingavailablefromvarious

applicationsandplatforms,theproblemofpredictingmovementsof
individualshasbeengainingalotofpopularity.Existingworks(e.g.,
[3,9,10,16,20,26])mainlyaimtopredictthenextlocation(s)auser
isgoingtovisitgivenhis/hercurrentlocation.Thesetechniques
cannotbedirectlyappliedtocheck-intimeprediction.
Ourobjectivesofthisworkaretwo-fold—tocomplementexist-

ingresearchworkstowardsthegoalofthoroughlyunderstanding
humanmobilitypatterns,andtoderivepracticalimplicationsfor
real-worldapplications.Check-intimepredictioncanserveasa
buildingblockforawidespectrumofapplications.Forexample,
itcanbeusedtoidentifytheuserswhoaremostlikely(ornot
likely)tovisitashoporanattractionwithinadesignatedtimewin-
dow.Thisinformationcanbedirectlyusedintargetedmarketing,
tourismservice,ride-sharing,etc.Moreover,theabilitytoprecisely
modelauser’scheck-intimetoanyPoIenablesnewtypesofap-
plicationsthatgobeyondthecurrentscopeofcheck-inprediction.
Forinstance,givenacollectionofPoIs,oursolutioncanorderthese
PoIsbythetimethatauserwillvisitthem,i.e.,predictingtheuser’s
itinerary
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recommendaseriesofPoIs/activitiesincertainordersthatmatches
theuser’sitinerary,whichisanewfeaturenotoferedbyexisting
recommendationsystems.
Sinceourgoalistopredicteventtime,TemporalPointProcess

(TPP)canbeusedtotacklethisproblem.StandardTPPmodels
assumethatthetimeofaneventoccurrenceconditionallydepends
onthetimeofitspreviousevents.Therefore,TPPpredictsauser’s
nextcheck-intimetoalocationlbasedonhis/herpreviouscheck-
instothesamelocation.However,therearetwocriticalchallenges
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Figure2:Check-instatisticsof4500usersand965locations
inNewYorkCityrandomlycrawledfromFoursquare.

(i)Check-indatascarcity:Usercheck-insareabundantbuthighly

unevenlydistributedamongusersandlocations(Figure2).Forex-
ample,theFoursquaredataset[23]containsabout300millioncheck-
insbutlessthan10%ofthePoIshavemorethan10check-ins[16].
Asaresultoftheunevendistributionofcheck-ins,locationsthat
haverepeatedvisitors,i.e.,userswhovisitedthelocationmorethan
once,areextremelyrare.Thisisbecausecheck-insareself-reported
andhencearesparseandincomplete.Ifwemodelcheck-instoa
locationaseventsequences,alargeproportionofthesequences
willhaveonlyoneevent,makingitveryhard,ifnotimpossible,to
trainavalidTPPmodel.Moreover,fornewvisitorstoalocation,no
historicaleventisavailabletomakepredictions.

(ii)Drawbackofstandardtemporalpointprocess:Givenalo-

cationofinterestl,standardTPPmodels(e.g.,Hawkesprocess)
makepredictionssolelybasedontheuser’shistoricalcheck-in
timestol.Locationsauservisitedbeforel,whichmaycontainvalu-
ableinformation,aresimplyignored.Forexample,ifauserjusthad
amealatarestaurant,itisnotlikelythathe/shewillimmediately
visitanotherrestaurant.Historicalcheck-insmayrelectauser’s
preferencefordiferentlocations,whichalsogovernhis/herfuture
check-inbehaviors.Suchfactorscanhardlybecapturedbylooking
onlyatcheck-intimestothelocationofinterest.

Ourcontributions:Weaddresstheabovetwochallengesusing
anovelRecurrentSpatio-TemporalPointProcess(RSTPP)model.
WedesignamodiiedLongShortTermMemory(LSTM)networkto
learnthelatentdependenciesofnexteventtimeoverdiverseuser
andlocationinformationfrombothhistoricalcheck-instoland
otherlocationsusersvisitedbeforel.Byexploringthelongshort-
termmemorymechanism,RSTPPisabletoidentifyandremember
mostrelevantcheck-inswhileforgettingtheinluenceofirrelevant
check-ins.Wesummarizethecontributionsofthispaper:

•Introducethecheck-intimepredictionproblemwhichhaspracti-
calvalueforawidevarietyofapplications.Givenauseranda

location,thegoalistopredictthetimewhentheuserwillvisit
thelocation.
•WeproposeanovelRSTPPmodelwhichcombineslongshort-
termmemorynetworkandtemporalpointprocess.Compared
tostandardTPPmodels,RSTPPhastwouniquefeatures:1)It
cantakeadvantageofrelativelyabundantprecedent-location
informationonusers’trajectoriestoimproveaccuracy.2)Even
ifauserhasnotvisitedlbefore,ourmodelisstillabletomake
predictionsusingonlyhishistoricaltrajectoryasobservation.
•Ourmodelisevaluatedonreal-worlddatasets.Ourexperimental
resultsshowthatRSTPPoutperformsstate-of-the-arteventtime
predictiontechniquesforvariouspredictiontasks.

Therestofthepaperisorganizedasfollows:Section2formally
deinestheproblem.Section3presentstheproposedmodel.Ex-
perimentalresultsareshowninSection4.Section5summarizes
relatedwork.AndSection6concludesthepaper.

2 PRELIMINARIES

2.1 ProblemStatement

Wedeinethenotionsofcheck-inandtrajectoryusedinthispaper.

Deinition2.1(Check-in).LetUdenoteasetofuniqueuseriden-
tiiers,Ldenoteasetoflocations,andTdenotethetimedomain.A
check-incisatriplet(u,l,t)∈U×L×T,whichindicatestheuser
uhasvisitedlattimet.

Deinition2.2(Trajectory).LetCbethecollectionofcheck-ins
andu∈Uauser,thenthesetCu:={u

′=u|(u′,l,t)∈C}isthe
trajectoryofu.

Here,alocationcanrefertoaspeciicPoI,e.g.,ahotel,ora
user-deinedspatialregion.InLBSNssuchasFoursquare,locations
areusuallyassociatedwithsomedescriptiveinformation,suchas
itscoordinates,category,userratings,etc.Weformallydeineour
problemasfollows:

Deinition2.3(Check-inTimePrediction).Givenalocationof
interestl∈L,auserofinterestu∈U,andasequenceofhistorical
check-ins{c1,c2,...,ck}⊆Cofu,predictthenexttimetwhenu
willcheck-intol.

2.2 Background

Temporalpointprocessisaclassofstochasticprocessthatmodels
thetimeofasequenceofevents,denotedby{t1,t2,...,tn}where

ti∈R
+isthetimeoftheithevent.Inthispaper,aneventofinterest

isauserucheck-intoagivenlocationl.Notethatthetrajectory
ofumaycontainmanycheck-ins,butonlythosecheck-instolare
consideredtobeevents.Typicaltemporalpointprocessassumes
thatthetimeofaneventconditionallydependsonthetimeof
historicalevents.Thisdependencyisdescribedbytheconditional
intensityfunction,whichhasthefollowingform:

λ(t)dt=P{aneventoccursin[t,t+dt)|H} (1)

Here,λ(t)istheintensityfunctionwhichcanbeconsideredasthe
instantaneousprobabilityaneweventwilloccurattimet.The
probabilityisconditionalonH,whichisasetofhistoricalevents
occurredbeforet.LettndenotethetimeofthelasteventinH
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probabilitythatnoeventhasoccurredin[tn,t)is:

S(t|H)=exp−
∫t
tn
λ(τ)dτ (2)

Hence,theconditionalprobabilitydensitythatthenexteventwill
occurattimetgivenHis:

f(t|H)=λ(t)S(t|H) (3)

Usingthedensityfunction,wecancomputetheexpectedtimeof
thenexteventas:

t̂exp=
∫∞
tn
tf(t|H) (4)

Equation(4)usuallydoesnothaveananalyticsolution[4].Thuswe
obtainapproximatenumericalsolutionstoestimatetheparameters
oftheintensityfunction.Speciically,wecanmaximizethejoint
log-likelihoodofobservingthehistoricaleventsH:

l(H)= n
i=1log(f(ti|H)) (5)

ThereisarichfamilyofTPPmodels,eachwithauniqueformof
intensityfunction.Insteadofempiricallyconstructinganintensity
functionforourproblem,wedesignalongshorttermmemory
networktolearnanintensityfunctionusinginformationfromboth
userproileandhis/hercheck-indata.
LongShortTermMemory[12]isaspecialtypeofrecurrent

neuralnetworkthatiscapableoflearningbothlong-termandshort-
termdependenciesbetweencurrenteventandhistoricalevents.
Thehistoricalcheck-indataofausermaybeaccumulatedfrom
arelativelylongtimeperiod(e.g.,severalweeksorevenayear).
Consequently,anewcheck-ineventmayrelectauser’shabitsand
preferencesthatareonlyobviouswhenlookingatlong-termcheck-
inbehaviors.Ontheotherhand,theremightalsobemanyhistorical
check-insthatareirreleventtoanewcheck-in.Assuch,wewant
themodeltobeabletoidentifyandrememberrelevantcheck-ins
whileforgetingtheinluencefromirrelevantevents.LSTMisfound
tobeparticularlysuitabletomodelsuchcomplexdependenciesin
variousapplications[2,19,22].
Ourgoalistoallowthemodeltolearnfromtheinformation

oflocationsauservisitedbeforeaneventofinterestoccurs.Such
informationmayrelecttheuser’smobilitypatternsandarehence
valuabletoourproblem.Tothisend,wemodifyaLSTMtotake
ausertrajectoryasinput.Atrajectorywhichmaycontainsev-
eralevents,onlyoneevent,ornoeventatall. Weusediverse
spatio-temporalinformationcontainedinthetrajectorytomake
predictionsfornexteventtime.

3 RECURRENTSPATIO-TEMPORALPOINT
PROCESS

Historicaleventsarescarceincheck-indataduetothelackof
repeatedcheck-instothesamelocationbyauser.Thiscauses
diicultiesinbothtrainingandpredictingstageofTPPmodels.
WeenrichtheeventsequenceswithPrecedentCheck-ins,which
arecheck-insauserreportedbeforecheck-intol,thelocationof
interest.Figure3illustratesanormalsequenceofeventsandthe
samesequenceenrichedwithprecedentcheck-ins.

Airport

Event of interest: The user check-in to the Starbuckscoffee shop

StarbucksHotel Museum Restaurant

Type Precedent 
Check-in

Precedent 
Check-in

Precedent 
Check-in

Precedent 
Check-in

Event Event

Park

Precedent 
Check-in

Sequence 
of events

Enriched
sequence of 
events

Check-in location Starbucks

Time

Ourintuitionisthatconsecutivecheck-insarecorrelated.Ifa
userchecks-intoarestaurant,thisbehaviourshalldecreasethe
user’sintensitytovisitanotherrestaurantatthemoment.But
check-intoashopmaynotafecttheintensitytovisitanearby

Figure3:Exampleofanenrichedeventsequence.

shopofthesametype.Similarly,movingtowardsorawayfroma
locationshallcausetheintensitytovisitthelocationtoluctuate
accordingly.Theseexamplesarestraightforwardbuttheactual
dependencycouldbemuchmorecomplex.OurRSTPPmodelis
designedtodiscoversuchdependencies.

3.1 FeatureRepresentation

Eachcheck-ininthesequenceisrepresentedbyafeaturevector
whichcontainstheinformationaboutthecheck-ininamorestruc-
turedmanner.Thefeaturevectorforacheck-inciisdenotedbyyi,
whichconsistsofthefollowingelements:

(1)Localizedeventtimeti∈R.Timeoftheearliestcheck-intothe
locationissetto0andtheremainingtimesaresetaccordingly
intheunitofhoursordays.

(2)Additionaltime-dateinformationwhichindicatesifthecheck-
inoccurredonaweekdayoraweekend,andthetimeperiodof
theday(e.g.,morning,afternoon,ormidnight).Thisisbecause
humansdemonstratediferentcheck-inpatternsatdiferent
timeperiods.

(3)Euclideandistancebetweenthecheck-inlocationtothelocation
ofinterestl.Thedistanceiscomputedusingcoordinatesofthe
locationsandnormalizedtotherangeof[0,1],where1indicates
thedistanceisnegligible,and0meansthatthedistanceislarger
thanathresholddenotedbyθD.

(4)Categoryofthecheck-inlocation,suchasRestaurantorHotel.
Weuseax-bitvectortorepresentthecategorywherexisthe

totalnumberofcategories.Theithbitissetto1ifthelocation

belongstotheithcategory,otherwise0.
(5)Numberofusersoverlappingwiththelocationofinterestl.Letp
denotethecheck-inlocationofci.Wecomputetheproportion
ofusersthathavevisitedbothpandlwithinagiventime
window.Itrelectstheinherentrelevanceofthetwolocations.
Theoverlappingratioiscomputedasfollows:

OR=Cv
l,p

Cv
l
Cvp, (6)

whereCv
l,p
isthenumberofuserswhovisitedbothlandp

withinatimewindowv.Cv
l
andCvparethenumberofvisitors

tolandpwithinthetimewindow,respectively.
(6)Previouscheck-insbyfriends,whichrelectsthesocialaspect
ofcheck-inbehaviors.Thefriendinformationcanbecollected
fromauser’ssocialnetwork.Wecalculatetheminimaltime
intervalfromtitoacheck-intothelocationofinterestbya
friendoftheuser.Thevalueisnormalizedto[0,1]suchthat1
indicatesafriendjustcheck-intothelocationand0meansthe
minimaltimeintervalislargerthanathresholddenotedbyθT
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EachvectorisalsoassociatedwithaBooleanvalueindicating
whetheritisaneventoraprecedentcheck-in.Notalltheabove
informationarealwaysavailableonLBSNs.e.g.,someLBSNsdonot
providelocationcategories.Insuchcases,theunavailablefeatures
areignoredingeneratingthevector.Theuserfeaturevectorpu
containstwovalues.
Theirstvalueistheuser’spreferencetothelocationofinterest

l.Weincorporatebothexplicitandimplicitpreferences.Explicit
preferenceistheuser’sratingforl,whichisusuallynotdirectly
availableforeverylocation,butcanbeestimatedusingtechniques
suchasmatrixfactorization[14].Asforimplicitpreference,we
calculatetheuser’scheck-infrequencytol,i.e.,thetotalnumberof
check-instolontheuser’strajectory,dividedbythelength(time
betweentheirstandthelastcheck-in)ofthetrajectory.
Thesecondvalueisthenormalizeddistancebetweenthelocation

ofinterestandtheuser’shome.Theexplicithomeaddressofauser
isusuallyunknown.Hereweusethemethodintroducedin[25]to
estimateauser’shomeusinghishistoricalcheck-ins.

3.2 ModelArchitecture

Figure4illustratesthearchitectureoftheproposedRSTPPmodel.
ThecoreofRSTPPisasetofhiddennetworklayersandtrans-
formationfunctions(insidethedash-linebox).Themodeltakes
anenrichedeventsequencethroughtheinputlayer.Then,the
hiddennetworklayersupdatetheinternalstatusofthemodelby
consideringbothcurrentinputanditspreviousstatus.Assuch,the
modellearnsacompressedrepresentationofallrelevanthistorical
check-inswhichisstoredinitsinternalstatus.Finally,theoutput
layerusestheinternalstatustoconstructaconditionalintensity
function,whichisusedtomakepredictionofthenexteventtime.

ModelInput:Theinputtothemodelisasequenceofeventsen-

richedwithprecedentcheck-ins,denotedby{c1,c2,...,cn}where
ci(1≤i≤n−1)canbeeitheraneventoraprecedentcheck-in.
Usingthesecheck-ins,thegoalofthemodelistopredictthenext
eventtimeaftercn.Whenfedintothemodel,acheck-inciisrepre-
sentedbyafeaturevectoryi.Themodeltheniteratesthroughthe
inputsequenceinnsteps,andupdatesitsinternalstatusateach
step.ComparingwithstandardLSTM,theinputtoourRSTPPat
eachstepcanbeasinglecheck-in,oraseriesofcheck-inswithin
atimewindoww.Inthelattercase,theaccumulatedinformation
fromthesecheck-inswillbeusedasinputbythemodel.

InternalStatusUpdate:Theinternalstatusofthemodelatthe

ithstepcanberepresentedasavectorhi.Ineachstep,thevector
isupdatedaccordingtothepreviousnetworkstatusandcurrent
inputs.Theinformationofcheck-insisincorporatedintothestatus
vectorduringthisupdatingprocess.Speciically,thestatusupdating
ofourLSTMnetworkisdeterminedbythetypeofcurrentinput
(i.e.,ifisaprecedentcheck-inoranevent).
Theirststepofstatusupdatingistoforgetinformationofirrel-

evanthistoricalcheck-ins.Thisisimplementedbytheforgetgate
layerFi,whichiscomputedasfollowsinourmodel:

Fi=
д(MF[hi−1,yi]+bF),ifciisanevent

1

iyiyiy -1-2

Precedent check-ins

Event (Check-in to 
location of interest)

tanh

σ

σ σ

tanh

h

S

i

i

h

S

i-1

i-1

Pointwise operator

Input layer

f

Ci-x Ci-1 Ci CjCj-1

Time window w

Time utill next event

Feature Representation

up
hi

User info

Transformations

Output layer
Estimated Intensity         )(t

Neural networks

Time

User’s trajectory

Location of interest

Predicted time 
utill next eventjiI,

ˆ

Spatial distance

Temporal distance

Fi

Ii
~
iS

Input/Output layer

(i.e.,donotforget) otherwise
(7)

Figure4:TheproposedRSTPPmodelarchitecture.

Here,MFistheweightmatrixoftheforgetgatelayer,bFisacon-
stant,andд(·)isanactivationfunction,forwhichwechoosethe
sigmoidfunctionд(x)=exp(1/1+e−x).[·,·]denotestheconcate-
nationoftwovectors.Notethattheforgetstepwillbetriggered
onlyforevents.Asforprecedentcheck-ins,allinformationshould
bekeptbecauseitwillstillbeunclearwhichcheck-in(s)might
inluencethenextevent.
Then,themodeldecideswhichnewinformationshallberemem-

bered.Thisisimplementedwithtwodiferenthiddenlayers,the

inputgatelayerIiandthecandidatecellstatuslayerS̃i.Depending
onthetypeofinput,theyareupdatedasfollows:

Ii=
д(MI[hi−1,Yi]+bI),ifciisanevent

д(M′
I
[hi−1,yi]+b

′
I),otherwise

(8)

S̃i=
tanh(MS[hi−1,Yi]+bS),ifciisanevent

tanh(M′
S
[hi−1,yi]+b

′
S),otherwise

(9)

Intheaboveequations,MI,M
′
I
,MS,M

′
S
areweightmatricesand

bI,b
′
I,bS,b

′
Sareconstantparameters.Weusetanhasactivation

functionsinceherewewanttheoutputvaluetobeintherangeof
[−1,1].Finally,Yirepresentstheaccumulatedcheck-ininformation
fromaseriesofsuccessivecheck-insoccurredinacertaintime
windowwfromcheck-intimeofyi,whichisdeinedasfollows:

Yi=W
′
Iyi+ (0<(ti−tj)<w)f(ti−tj)WI∗yj
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wherethecondition(ti−tj)<wdeinesatimewindowthat
includesalltheprecedentcheck-insandeventswithinwfromthe
timeofci.WIandW

′
Iaretheinputtransformationvectors,and

f(∆t)isthetime-sensitiveimpact-tuningfunction.Speciically,it
isamonotonicallynon-increasingfunctionwithanoutputrange
of[0,1]andf(0)=1.f(∆t)ismeanttoexplicitlydecreasethe
impactof“old"check-inswhilehavinglittleinluenceonmost
recentcheck-ins.Thisisbecausetemporallyclosecheck-insare
morelikelytoberelevanttoeachother.
Thenextstepistoupdatethecellstatus,denotedbySi.Itis

updatedby“forget"theinformationmarkedbytheforgetgatelayer
while“remember"newinformationprovidedbytheinputgateand
candidatestatuslayer:

Si=FiSi−1+IĩSi (11)

Afterstatusupdating,thecellstatusnowrecordstheinformation
thatshouldbepassedtothenextstep.Andinally,wecanupdate
thevectorrepresentationoftheinternalnetworkstatus:

hi=
д(MH[hi−1,Yi]+bH)tanh(Si),ifciisanevent

д(M′
H
[hi−1,yi]+b

′
H)tanh(Si),otherwise

(12)

NotethatbothSiandhiarepassedtothenextstepofthemodel
throughtherecurrentedges.

ModelOutput:Intuitively,thestatusvectorhicanbeseenasa

latentrepresentationofknowledgelearnedfromallpreviouscheck-
insbythemodel.Wecannowcomputetheconditionaldensity
functionofnexteventtimeusinghiasfollows:

λ(t)=expWThi+βt(t−ti)+βdD+B
Tpu+b (13)

Thecomputationinvolvesseveralfactors:WThicomputesthein-
luenceofpreviouscheck-ins,βt(t−ti)andβdDrepresentcurrent
temporalandspatialimpact,respectively,whereDistheEuclidean
distancebetweencurrentlocationandthelocationofinterest.pu
istheaforementioneduservector.Finally,bisaconstantbase
intensityforthelocation.Notethattheexponentialfunctionguar-
anteestheintensityispositive.Theintensityfunctionisthenused
topredictthetimeintervalbetweencurrentcheck-inciandthe

nexteventcj,deinedas:̂Ii,j=t̂j−ti.Herêtjisestimatedusing
Equation(4).
NotethattheRSTPPmodelmaygeneratemultiplepredictionsfor

thetimeofthesameevent.Thisisbecauseifaneventhasprecedent
check-ins,eachofthecheck-inswillgenerateanoutputbutthey
havethesamenextevent.Inthiscase,wewillusetheoutputofthe
mostrecentprecedentcheck-inastheinalpredictionfortheevent
time.Therearetworeasonsbehindthis:1)temporallyclosecheck-
insareusuallymorerelevanttoeachother.2)Theoutputofthemost
recentprecedentcheck-inissupposedtoincorporateinformationof
alltheprecedentcheck-insandhistoricalevents,thusshallcontain
morecompleteinformation.Ifaneventhasnodirectprecedent
check-ins,i.e.,itfollowsanothereventwithnoothercheck-inin
between,thentheeventwillhaveasinglepredictedtime.This
designguaranteesthatavalidpredictioncanbemadeevenfor
userswhohavenevervisitedthelocationofinterest.Inthatcase,
allhis/hercheck-inswillbetreatedasprecedentcheck-ins,since
noeventappearsinthesequence.

ModelTraining:Foragivenlocationofinterest,thetraining

datasetisacollectionofhistoricalusertrajectories.Eachtrajectory
containsatleastonecheck-intothelocationasthegroundtruth.
WeusetheBack-PropagationThroughTimealgorithm[18]totrain
theproposedRSTPPmodel.Thelossfunctionweusedistheneg-
ativelog-likelihoodofobservingthetraininginstances(givenin
Equation(5)).Duringeachiterationofthetrainingprocess,output
ofthemodelisfedintothelossfunctionanditsparametersare
updatedaccordinglyinthebackpropagationstageusingstochas-
ticgradientdescentuntilitachievesconvergence.Duetospace
constraints,wewillnotelaborateontheseclassicalalgorithms.

4 EXPERIMENTS

Inthissection,weperformarigoroussetofexperimentsusing
diferentdatasetsandcomparetheperformanceoftheproposed
RSTPPmodelwithseveralstate-of-the-artmethods.

4.1 DatasetDescription

Weuseseveralcheck-indatasetscollectedbyvariouslocation-based
socialnetworksandwebservices.

Foursquare1:ThisdatasetwascollectedfromFoursquare[23].
Weusethe227,428check-insinNYCand573,703inTokyo.Each
check-incontainsuserID,locationID,coordinates,andtime.Using
theuserIDorlocationID,weretrievetheuser’sfriendlistand
locationcategoryonFoursquare.

Gowalla2:Thismostwidelyuseddatasetwascollectedbytheau-
thorsof[3]fromtheLBSNGowalla.Thisdatasetcontains6,442,890
check-insreportedby196,591usersglobally.Locationcategory
isnotavailableinthisdataset.AndsinceGowallaisclosednow,
wecannotcollectsuchinformationonline.Thuswewillignore
locationcategoryforourexperimentsonthedataset.

Brightkite3:Thedatasetiscollectedfromanother(nowclosed)
LBSNbutsmallerinscalecomparedtotheabovetwodatasources.
Thedatasetisalsocollectedbytheauthorsof[3].Itcontains
4,491,143check-insfrom58,228users.SimilartotheGowalladataset,
locationcategoryismissinginthisdataset.

Yelp4:Besidescheck-ins,thisdatasetprovidesinformationsuchas
user-locationratings,userinformation,andlocationinformation.
However,similartoFoursquare,thesocialnetworkofusersisnot
includedinthedatasetanditisnotavailableonYelp.com.Wedo
notusesocialinformationforourexperimentsonthisdataset.

4.2 ComparisonMethods

Baselinemodels:Wecomparetheproposedmodeltoasetof
generictime-to-eventmodelingtechniques,includingthestate-of-
the-arttemporalpointprocess-basedtechniques.

•Mostpopulartime(Popular).Thismethodreturnsthemost
popularcheck-intimeinadayforagivenlocationasthepre-
dictedcheck-intime.Toindthemostpopularcheck-intime,
weitamixtureoftwonormaldistributionsover24hoursofa
dayforthelocationusingallitscheck-intimes.Thisisbecause

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
2https://snap.stanford.edu/data/loc-gowalla.html
3https://snap.stanford.edu/data/loc-brightkite.html
4
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Table1:Performanceofpredictingcheck-intimetoaPoI,showingRMSEand(standarddeviation),unit:day.

Model
Repeatedvisitorsonly Newvisitorsonly Allcheck-insamodelcanuse

Foursquare Gowalla Brightkite Yelp Foursquare Gowalla Brightkite Yelp Foursquare Gowalla Brightkite Yelp

Popular
6.3751

(1.9014)

6.5258

(1.8835)

8.7713

(2.2176)

7.3505

(2.0114)

7.5762

(1.6359)

6.9939

(1.8510)

9.0177

(2.0228)

8.3011

(1.8144)

6.6520

(1.7135)

6.7785

(1.6202)

8.7888

(1.9947)

7.5633

(1.9761)

Linear
2.1018

(0.5931)

1.6662

(0.4858)

3.3810

(0.5219)

2.5159

(0.6220)

2.2218

(0.5217)

2.0100

(0.4344)

2.9923

(0.5561)

2.6006

(0.5482)

1.9970

(0.5120)

1.8541

(0.4036)

2.4510

(0.5333)

2.5013

(0.5585)

Average
4.1157
(1.3816)

3.0893
(1.3034)

5.2489
(1.5948)

4.9782
(1.4229)

CannotSupport

4.4336
(1.4481)

3.7117
(1.3920)

5.2210
(1.5537)

4.6527
(1.5871)

Hawkes
1.8703

(0.4712)

1.4839

(0.4359)

1.5051

(0.4007)

1.6592

(0.4251)

2.2139

(0.4849)

2.1788

(0.4937)

2.2938

(0.4150)

2.1929

(0.4672)

SC
1.5834

(0.3226)

1.4779

(0.3666)

1.4025

(0.3583)

1.6350

(0.3711)

2.0345

(0.4014)

2.0978

(0.3715)

2.1960

(0.3903)

2.2935

(0.3677)

ACD
1.7793
(0.3920)

1.4745
(0.3812)

1.3345
(0.3710)

1.7001
(0.3449)

2.2400
(0.4019)

2.3333
(0.3610)

2.3519
(0.3229)

2.2744
(0.3905)

RMTPP
1.4947

(0.3621)

1.4309

(0.3400)

1.4032

(0.3511)

1.6312

(0.3379)

2.1353

(0.3977)

2.0994

(0.3430)

2.0375

(0.3317)

2.2017

(0.3708)

RSTPP
1.1202

(0.3151)

1.1008

(0.3411)

1.1328

(0.3559)

1.3010

(0.3317)

1.1403

(0.3560)

1.2011

(0.3305)

1.3329

(0.3295)

1.2915

(0.3403)

1.1019

(0.3527)

1.1575

(0.3419)

1.2452

(0.3231)

1.2793

(0.3445)

themostpopularvisittimeofPoIs,suchasrestaurants,usually
demonstrateacleartwo-peakpattern.
•Linearregression(Linear).Weusestandardlinearregression
toitamodelwheretheinputisthefeaturevectorgeneratedfor
thecurrentcheck-in(thesameastheoneusedinRSTPP),and
thepredictedvariableisthetimetillthenextevent.
•Averageinter-eventtime(Average).Thismethodreturnsthe
sumofpreviouseventtimeandtheaverageinter-eventtimes
(timebetweentwosuccessivecheck-instothelocationofinterest)
ofallvisitorstothelocationasprediction.
•Hawkesprocess(Hawkes)[11].Ithasthefollowingintensity
function:λ(t|H)=γ0+α tj<tγ(t,tj),whereγ0isthebase

intensityandγ(t,tj)akernelfunctionselectedbytheuser.In
ourexperiments,weusetheexponentialkernel.
•Self-Correctingprocess(SC)[13].Theintensityfunctionis:
λ(t|H)=expµt− ti<tαwithtwoparametersµandαtobe
learned.
•Second-orderAutoregressiveConditionalDuration(ACD)[6].
Ithasthefollowingintensityfunction:λ(t|H)=γ0+

m
j=0αjdi−j,

wheredi−jisthedurationbetweenthei
thandjthevents.

•RecurrentMarkedTemporalPointProcess(RMTPP)[4]:
Thestate-of-the-artTPPmodel.Notethattheeventmarkeris
notanecessarycomponentinourproblem.Thuswewillfeed
adummymarkertoRMTPPinthetrainingprocessandonly
usethepredictednexteventtime.Thesizeofhiddenlayersof
RMTPPissettobethesamevalueastheonesusedinourmodel.

Weusetheimplementationsprovidedbytheauthorsof[4]for
theTPP-basedmodels.Theothersimplebaselinesareimplemented
usingstandardRlibrary.Sincethegoalistopredictthenextcheck-
intimetoaspeciiclocation,theTPP-basedmodelscanonlybe
trainedonsequencesthatcontainrepeatedcheck-instothesame
location.Otherwise,theycannotlearnthedependencybetween
eventtimessincetheremayonlybeoneeventpervisitor.

RSTPPModelsettings:5Weselectthehyper-parametersasfol-
lows.Thecheck-intimewindowwissetto12hours,because

5Uponacceptanceofthispaper,theimplementationoftheproposedmodelwillbe
hostedonGithubrepositoryforpublicuse.

check-insthataremorethan12hoursapartareusuallylessrele-
vanttoeachother.Asforthetime-sensitiveimpact-tuningfunction,
weusef(∆t)=b/log(e+∆t)wherebisaparametertobelearned.
Eachcheck-inhasalabelthatindicatesitstimeperiodoftheday:
Morning(5:00am-10:00am),Noon(10:00am-2:00pm),Afternoon
(2:00pm-6:00pm),Night(6:00pm-11:00pm),LateNight(11:00pm
-5:00amnextday).Weusethesetimeperiodsbecausetheyusu-
allyrelectdiferentcheck-inpatterns.Thetimewindowvusedto
computevisitoroverlappingratiooftwolocationsissettov={∞,
24hr,8hr,4hr,1hr},assuch,iveoverlappingratioswillbegener-
atedandaddedtoeachfeaturevectorusingdiferenttimewindows.
ThedistancethresholdθDusedtogeneratefeaturevectorsissetto
10kmandthetimethresholdθTis12hr.Thesizeofhiddenlayeris
512.Thelearningrateissetto0.01withamomentumof0.9.

4.3 ResultsandAnalysis

Foracomprehensiveperformanceevaluation,wedesignfourpredic-
tiontasks.Eachtasktargetscertaintypesofreal-worldapplication
scenarios.

TaskI:Predictcheck-intimetoaPoI:
First,weselectasubsetoflocationshavingatleastonerepeated

visitor,sothatthebaselinemodelscanbetrained.Thefourdatasets
contain8519,21273,4495,and3970check-insequencesafterthe
selection,respectively.Onaverage,eachcheck-insequencecontains
2.37eventsandhasadurationof14days.TheproposedRSTPP
modelistrainedandtestedonthesamesequencesbutenriched
withprecedentcheck-ins.Forallthemodels,80%ofrandomly
selectedusertrajectoriesareusedfortrainingwhiletherestare
usedfortesting.Ifauserhasvisitedalocationforktimes,the

irstk−1check-insareusedasobservationstopredicthiskth

check-intime.Wereportbothmeanandthestandarddeviationof
theRoot-Mean-Square-Error(RMSE)betweenthepredictedand
actualcheck-intimes(indays).
Second,wetrainRSTPPmodelusingonlylocationswithout

repeatedvisitors.Thebaselinemodels,exceptforthepopularand
linearmodel,cannotsupportsuchscenariosandhencecannotbe
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Table2:Performanceofpredictingcheck-intimetoanarea,showingRMSEand(standarddeviation),unit:day.

Model
Repeatedvisitorsonly Newvisitorsonly Allcheck-insamodelcanuse

Foursquare Gowalla Brightkite Yelp Foursquare Gowalla Brightkite Yelp Foursquare Gowalla Brightkite Yelp

Popular
6.2890

(1.8109)

5.9712

(1.7993)

8.2970

(2.1114)

6.9935

(2.0531)

6.8512

(1.5739)

6.2001

(1.6655)

8.5109

(1.9351)

7.2324

(1.8080)

6.4883

(1.6811)

6.0974

(1.5405)

8.2996

(2.0150)

7.1953

(1.9935)

Linear
2.0410

(0.6227)

1.6075

(0.4153)

2.9750

(0.5771)

2.1417

(0.6015)

2.1958

(0.4610)

1.7795

(0.4088)

2.8895

(0.5183)

2.4535

(0.5479)

2.2518

(0.5051)

1.8694

(0.4100)

2.4510

(0.5212)

2.3944

(0.5510)

Average
3.7520
(1.3143)

2.8950
(1.1175)

4.9777
(1.6156)

4.5212
(1.3319)

CannotSupport

4.0033
(1.2508)

3.3105
(1.2995)

4.8528
(1.5460)

4.6048
(1.4561)

Hawkes
1.5328

(0.4320)

1.5002

(0.4400)

1.4339

(0.3620)

1.5209

(0.4188)

1.5729

(0.4179)

1.5493

(0.4228)

1.4665

(0.3750)

1.5139

(0.4093)

SC
1.3550

(0.3375)

1.2298

(0.3145)

1.3570

(0.3277)

1.5120

(0.3169)

1.4866

(0.3351)

1.2585

(0.2982)

1.4480

(0.3328)

1.4765

(0.3210)

ACD
1.4079
(0.3885)

1.5358
(0.3531)

1.4295
(0.3203)

1.5333
(0.3071)

1.5625
(0.3623)

1.5917
(0.3255)

1.5680
(0.3017)

1.6232
(0.3456)

RMTPP
1.3015

(0.3431)

1.2078

(0.3057)

1.4700

(0.3219)

1.4955

(0.3273)

1.4812

(0.3339)

1.3995

(0.3333)

1.5030

(0.3204)

1.5184

(0.3177)

RSTPP
1.0943

(0.3100)

0.9766

(0.3107)

1.1010

(0.3157)

1.1507

(0.3115)

1.1430

(0.3298)

1.1933

(0.3207)

1.2052

(0.3109)

1.1533

(0.3150)

1.0924

(0.3077)

1.0529

(0.3300)

1.2101

(0.3123)

1.1336

(0.3005)

fornewvisitors,andhenceonlyprecedentcheck-inscanbeusedas
observations.Similarly,80%ofthetrajectoriesareusedfortraining
andtheremainingareusedfortesting.
Finally,weleteachmodeluseasmuchdataasitpossiblycan.

RSTPP,popular,andlinearmodelaretrainedusingallcheck-ins.
Theothermodelsaretrainedusinglocationswithrepeatedvisitors.
Wemakepredictionsforbothrepeatedandnewvisitors.Forthe
TPP-basedbaselinemodels,apredictionismadeusingonlythe
baseintensityvaluefornewvisitors.

Table3:Predictionerrorw.r.t.numberofPoIsperarea.

Model
#PoIperarea

5 10 15 20

Popular 6.233 6.180 6.025 5.418
Linear 2.425 2.204 2.053 1.970
Average 5.121 5.060 4.579 4.334
Hawkes 1.562 1.469 1.463 1.447
SC 1.534 1.438 1.427 1.425
ACD 1.507 1.554 1.537 1.492
RMTPP 1.473 1.455 1.448 1.432
RSTPP 1.093 1.067 0.949 0.934

TheresultsforthistaskareshowninTable1.Theproposed
RSTPPoutperformsallthebaselinemodelsintermsofRMSE,which
showsthatincorporatinglocationinformationofprecedentcheck-
inscansigniicantlyimprovethepredictionperformance.RSTPP
showsbetterperformanceontheFoursquaredatasetcomparedto
otherdatasets.ItcanbeexplainedbythefactthattheFoursquare
datasetprovidesmostcompleteinformationaboutlocationsand
users(i.e.,locationcategoriesandusersocialconnections),which
isnotavailableinotherLBSNs.Wehypothesizethattheproposed
modelcanbefurtherimprovedifmorecompleteusertrajectories
wereavailabletothemodel.
RSTPPsigniicantlyoutperformsthebaselinesinpredicting

check-intimeforalltypesofvisitors.Thisisduetothedomi-
natingmajority(>90%)ofcheck-insinthedatasetsweremadeby
newvisitors.Whenmakingpredictionsforsuchnewvisitors,the

TPP-basedmodelscanonlyusetheconstantbaseintensity,result-
inginanobviousdropontheaverageperformance.Incontrast,
RSTPPcanuseprecedentcheck-insofnewvisitorsasobservations.

TaskII:Predictcheck-intimetoanarea:
Alocationcanalsobeapre-deinedspatialarea.Inthistask,we

generateanareaasfollows:First,werandomlyselectaPoIand
inditsk-nearestneighbors.Thekvalueisrandomlyselectedin
[5,20].Then,thesePoIsaretreatedasanarea,andcheck-instoany
ofthesePoIsarecountedascheck-instothearea.Wethengenerate
1,000suchareasinthismannerforeachdataset.TheTPPmodels
beneitfromthegeneratedcheck-inssincetheyboostthenumber
ofrepeatedvisitorstoalocationby5.5timesonaverage.

Table4:Predictionerrorw.r.t.numberoflocationstoorder.

Model
#Locationstoorder

2 3 4 5

Popular 0.508 0.511 0.511 0.513
Linear 0.376 0.391 0.403 0.403
Average 0.510 0.541 0.512 0.509
Hawkes 0.257 0.262 0.300 0.309
SC 0.254 0.271 0.295 0.310
ACD 0.268 0.274 0.304 0.310
RMTPP 0.255 0.268 0.292 0.309
RSTPP 0.182 0.190 0.232 0.239

Similarly,wetrainthreesetsofmodelsusingrepeatedvisitors
only,usingnewvisitorsonly,andusingallcheck-insamodelcan
use.ThecomparisonresultsareshowninTable2.Notethateven
withtheeventsequencesofamuchlargernumberofrepeatedvisi-
torsastraininginstances,thebaselinemethodsareoutperformed
bytheproposedRSTPPmodelforallthetestcases.
Wealsoanalyzetheperformanceinareaswithdiferentsize(the

numberofPoIsinthearea)(Table3).Ingeneral,allmodelshave
betterperformanceinlargerareacomparedtosmallerones.The
reasonisthatlargerareasarelikelytohavemorerepeatedvisitors
andmoreeventspervisitor,whichbeneitsthetrainingprocessof
allthemodels.Theproposedmodelsteadilyoutperformsallthe
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TaskIII:Predictthecheck-inordertomultiplelocations:
Finally,weevaluatetheabilityofourmodeltopredictauser’s

check-inordertoseveralgivenlocations.Thatis,givenkdiferent
locations,sortthembythepredictedcheck-intimeoftheuser.For
thistask,weusetheKendall’sTauasperformancemetric,whichis
commonlyusedtoevaluaterankingresults.
Kendall’sTau(τ)isthenumberofinversionsinthepredicted

orderingoflocationscomparedtotheactualorderofcheck-ins.A
pairoflocationsiscalledan“inversion"iftheiractualorderofa
check-inpairisinvertedinthepredictionresult.Assuch,τ=0
meanstheorderingiscompletelycorrect.NotethattheKendall’s

Taufororderingklocationscanbein[0,2k].Therefore,weusethe
normalizedKendall’sTau(inrange[0,1],thelowerthebetter)to
makeitsuitableforfaircomparisons.
Themodelsaretrainedwithallthecheck-instheycanuseas

describedinTaskII.Fortestinstances,weselectonlyuserswho
reportedatleast10check-ins.Ifauserhasncheck-ins,weusethe
irstn−kcheck-insasobservation,topredictthecheck-intimesfor
thelastklocationsandsortthemaccordingly.Theresults(averaged
overallthetestsequencesforeachmodel)areshowninTable4
withrespecttok={2,3,4,5}.Predictingthecheck-inorderofa
largenumberoflocationsappearstobemorechallengingdueto
themuchlargerpredictionspace.ButourRSTPPmodelshowsthe
bestoverallperformancewithvariousvaluesofk
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Figure5:Predictionerrorw.r.t.thenumberofprecedent
check-insused.

TaskIV:Usingdiferentnumberofprecedentcheck-ins:
Thistaskaimstodirectlyevaluatetheadvantageofusingprece-

dentcheck-insinourmodel.Speciically,weselectasetoftrajec-
toriesfromthefourdatasets,suchthateachtrajectorycontains
repeatedvisitstosomerandomlyselectedlocationsofinterest.
Then,weadjustthenumberofprecedentcheck-insthatcanbe
usedoneachtrajectoryfrom0to15,where0meansthetrajec-
torycontainsonlyevents(i.e.,allprecedentcheck-insareremoved)
while15correspondstoatmost15precedentcheck-inscanbe
usedbyamodel.Ateachtestpoint,wetrainaproposedmodel
andcompareitsperformancewithRMTPP,whichisthebestper-
formeramongthebaselines.Thetwomodelsareusedtopredict
thecheck-intimetoaPoIandthecheck-inorderto3locations.
TheresultsareshowninFigure5(a)andFigure5(b).Notethat
theperformanceofRMTPPisshownasastraightlinesinceitdoes
notuseprecedentcheck-ins.Incontrast,RSTPPshowssigniicant
improvementsonpredictionerrorasthenumberofusedprecedent
check-insincreases.

4.4 PracticalImplications

•Datascarcityisaprevalentproblemincheck-indatamining[10,
16,26]. Weshowthatthisproblemistractablebyexploring
possiblewaysto“enrich"thedata.Forcheck-intimeprediction
speciically,itiscrucialtoconsidertheentiretrajectoryofauser.
Alargenumberofusers’check-insdemonstratepatternsinboth
spatialandtemporaldimension.Hence,consecutivecheck-ins
withinashorttimeperiodareusuallycorrelated.
•Theaforementionednewapplicationsaremadefeasiblewiththe
proposedmodel.PoIownerscanuseourmodeltoindfuture
visitors,aswellastheircheck-intime,totheirPoIswithinthe
next1to2days.Ourmodelalsoachievesgoodaccuracyinthe
itineraryprediction,whichcanbeusedtorecommendlocations
inanorderthatbestmatchesauser’sitinerary.
•Denseandcompletecheck-indataisthekeytocheck-intime
modeling.Suchdataaregeneratedbyhighlyactiveusers.Mod-
elstrainedonsuchdataconstantlyoutperformtheonestrained
usingsparsetrajectories,evenwhenthetotalnumberoftrajecto-
ries/usersusedarethesame.Itisworthstudyinghowtobetter
motivateLBSNuserstoreporttheircompletetrajectories.
•Incheck-intimemodeling,informationderivedfromauser’s
proile(e.g.,socialconnections)areoflessimportancecompared
totheirlocations.Itappearsthatauser’shistoricalcheck-ins
cantellmuchmoreabouttheuser’spreferenceandbehaviour
patternsthanwhathe/sheiswillingtoshareintheirproile.

5 RELATEDWORK

5.1 HumanMovementPrediction

Theirstlarge-scalestudyofhumanmobilitypatternsusingspatio-
temporaldatacollectedbyLBSNsontheInternetwasdonebyCho
etal.[3].Byanalyzingthedata,theauthorsidentiiedasetoffactors
thatafectauser’smovingpatterns.Basedonthesefactors,they
designedasetofpredictivemodelswhichcanreproduceauser’s
movement.Severaltechniqueshavesincebeenproposedtopredict
thenextlocationauserismostlikelygoingto,givenhiscurrent
trajectory.Noulasetal.[16]proposedtoextractspatio-temporal
featuresfromuserscheck-indataandthentrainamodelonthese
featuresforthenextlocationprediction.Unlikeplaincoordinates,
check-indatacontainstheexactplace(e.g.,astore,acofeeshop)
auservisited,whichallowsamodeltolearnfromfeaturessuch
aslocationtype.Afewworksalsoexplorethe“temporal"aspect
ofnextlocationprediction.TheNextPlaceframeworkproposed
in[20]canpredictthenextcheck-inlocation,thearrivaltime,and
durationofthestay.Theworkin[17]proposedanovelmodelto
predictauser’spreferenceofasequenceoflocationsforthepurpose
oftourrecommendation.Inaveryrecentwork[9],theauthors
proposedagenericpredictivemodeltermed‘TribeFlow’which
notonlyminesandpredictsusertrajectoriesbutcanalsobeused
fornextproductrecommendation.Recently,aSpatialTemporal
RecurrentNeuralNetwork(ST-RNN)wasintroducedin[15]for
nextlocationprediction.Inthispreviouswork[24],weintroduceda
SurvivalAnalysis-basedcheck-intimepredictionframeworkwhich
employsrecurrentneuralnetworktolearntheintensityfunctionof
theoccurrenceofcheck-inevents.Incontrast,theproposedRSTPP
inthisworkexplorestemporalpointprocessforthisapplication
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5.2 TemporalPointProcess

TemporalPointProcess(TPP)modelsasequenceofevents.Typi-
cally,TPPmodelsassumethetimeofaneventconditionallydepends
onthetimeofpreviousevents.Basedonthespeciicformofdepen-
dency,TPPhasseveralvariants.Forinstance,Hawkesprocess[11]
assumeseachoccurrenceofahistoricaleventwillincreasetheprob-
abilityoftheoccurrenceofanewevent.Incontrast,Self-correcting
process[13]assumesthattheprobabilityofaneweventgrowsover
time,buteverytimeaneweventoccurs,itwilldropbyacertain
amount.AutoregressiveConditionalDurationprocess[6]models
thedependencybetweeninter-eventdurations.
TPPisadoptedinapplicationssuchasdisastrouseventanal-

ysis[11],criminalnetworksmodeling[21],andinancialpredic-
tion[1].TPPalsodemonstratedremarkableperformanceinpre-
dictingrecurrentuseractivities[7,8].In[5],Duetal.introduced
LowRankHawkesprocesstopredictthenextreturningtimeofa
usertoaservice.Thismodelcanbegeneralizedbyexplicitlyincor-
poratingspatialinformationintoitsintensityfunction.However,
noneoftheseworksdiscussedanymechanismsforincorporating
spatio-temporalfeatures,nottomentionhandlingcheck-indata
scarcity.
AcloselyrelatedtechniqueisRecurrentMarkedTemporalPoint

Process(RMTPP)[4].RMTPPappliesrecurrentneuralnetworkto
MarkedTPPtopredictthetimeofnexteventoccurrenceandits
marker.RMTPPcanbeappliedtopredictcheck-intimebytreat-
ingitasastandardTPPproblem,henceitalsosufersfromthe
aforementioneddrawbacks.ThisisbecauseRMTPPcannottakead-
vantageofsuccessivecheck-insonusertrajectoriesbeforecheck-in
toalocationofinterest,whichisauniquefeatureoferedbyour
RSTPPmodel.Assuch,ourmodelisabletomakepredictionsfor
userswhohavenotevenvisitedthegivenlocationbefore.Incon-
trast,RMTPPandexistingTPPmodelscanonlyusebaseintensity
tomakepredictionforalltheuserswhohavenohistoricalevents.

6 CONCLUSION

Humanmovementpredictionisalongstandingresearchtopicwith
enormousapplicationpotential.Check-intimepredictionisarela-
tivelynewprobleminthisieldwhichwasnotfullyinvestigated.
Inthispaper,weproposedRecurrentSpatio-TemporalPointPro-
cess(RSTPP),alexibleandadaptivemodeldesignedforcheck-in
timeprediction.RSTPPisanovelcombinationofLongShort-Term
Memory(LSTM)networkandtemporalpointprocess.TheLSTM
componentisusedtolearnalatentrepresentationofasequenceof
check-ins.Thisrepresentationisthenusedtoconstructtheinten-
sityfunctionofatemporalpointprocess.Finally,themodeluses
thisintensityfunctiontopredicttheuser’snextcheck-intimetoa
locationofinterest.TheuniquestructureofRSTPPallowsittotake
advantageofprecedentcheck-insonauser’strajectory,whichalle-
viatesthecriticaldatascarcityproblem.Asaresult,RSTPPisable
tooutperformstate-of-the-artevent-timepredictiontechniques
thatusestandardpointprocessmodels.
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