
Tyche: A Risk-Based Permission Model

for Smart Homes
Amir Rahmati

Samsung Research America

Stony Brook University

Earlence Fernandes

University of Washington

University of Michigan

Kevin Eykholt

University of Michigan

Atul Prakash

University of Michigan

Abstract—Emerging smart home platforms, which interface
with a variety of physical devices and support third-party
application development, currently use permission models in-
spired by smartphone operating systems—the permission to
access operations are separated by the device which performs
them instead of their functionality. Unfortunately, this leads to
two issues: (1) apps that do not require access to all of the
granted device operations have overprivileged access to them,
(2) apps might pose a higher risk to users than needed because
physical device operations are fundamentally risk-asymmetric—
“door.unlock” provides access to burglars, and “door.lock” can
potentially lead to getting locked out. Overprivileged apps with
access to mixed-risk operations only increase the potential for
damage. We present Tyche, a secure development methodology
that leverages the risk-asymmetry in physical device operations
to limit the risk that apps pose to smart home users, without
increasing the user’s decision overhead. Tyche introduces the
notion of risk-based permissions for IoT systems. When using
risk-based permissions, device operations are grouped into units
of similar risk, and users grant apps access to devices at that
risk-based granularity. Starting from a set of permissions derived
from the popular Samsung SmartThings platform, we conduct
a user study involving domain-experts and Mechanical Turk
users to compute a relative ranking of risks associated with
device operations. We find that user assessment of risk closely
matches that of domain experts. Using this insight, we define
risk-based groupings of device operations, and apply it to existing
SmartThings apps. We show that existing apps can reduce access
to high-risk operations by 60% while remaining operable.

I. INTRODUCTION

Smart home platforms play the role of connecting hetero-

geneous devices and protocols while supporting third-party

application development. Several such platforms are emerging,

including Samsung SmartThings [2], Apple HomeKit [4], and

Google Home [1]. These platforms enable the promised home

IoT benefits of better convenience, improved security, and

more energy efficiency. However, such platforms pose security

threats—Fernandes et al. performed an empirical evaluation

of Samsung SmartThings, and discovered that its permission

model automatically overprivileges apps [9]. For instance,

an app that locks doors after 9PM also gains the ability to

unlock those doors at any time. Although overprivilege has

traditionally plagued several types of computing models, in

the context of IoT, it can cause physical and material harm,

beyond the classically prevalent digital harm.

In this paper, using the popular and widely-used Samsung

SmartThings as an example of a prototypical smart home

platform, we explore the design space of permission models

for smart homes with the goal of reducing the risk posed

to users if their smart home apps are compromised or are

malicious. In SmartThings, overprivilege occurs because its

permission model groups device operations based on func-

tional similarity—“door.lock” and “door.unlock” both control

the state of the lock. Functional grouping of operations helps

reduce the cognitive burden on developers, when requesting

permissions, and on users, when making security decisions

during application installation. A very fine-grained model,

where apps request permission for each device operation, only

increases the burden on developers and users and has been

shown to be impractical even in the smartphone environ-

ment [8]. The increased number of decisions a user has to

make in a smart home environment makes this approach even

less feasible. Therefore, despite the usability advantages of

a functionally grouped permission model, attackers can use

compromised or malicious apps, which are overprivileged, to

cause security and privacy risks.

We consider a middle ground between very fine-grained per-

device-operation permissions and functionally grouped per-

missions. Our insight is based on the fundamental risk asym-

metry of device operations—a property unique to physical

devices. As an example, “oven.on” is a potential fire hazard,

“oven.off” is potentially uncooked food, “mic.on” is a pri-

vacy risk, “mic.off” might only disable certain voice-assistant

functionality like Amazon Alexa, “door.unlock” is a potential

burglary risk, “door.lock” only locks the occupant outside (or

inside) and is a potential annoyance. We present Tyche, a

secure development methodology that leverages this intuitive

risk asymmetry, and groups physical device operations into

equivalence classes of risk. In this risk-based model, apps

specify access to device operations in terms of user-perceived

risk-levels. Our goal is to retain the usability advantages of

operation grouping while limiting the risks of overprivilege.

Tyche breaks down device functionalities into 3 risk cate-

gories (high, medium, and low). For our door lock example,

“door.unlock” will be in a high-risk group, and “door.lock”

will be in a medium-risk group for the door’s operations.

Developers request permissions by specifying the type of

the device, and the risk category. So, an application that

automatically locks the door after a specific hour will request

for the permission “door.medRisk” and this gives it access

to “door.lock.” If the application requests “door.highRisk,”

it will gain access to “door.lock” and “door.unlock.” That

is, there is an ordering relation between the risk categories.

Intuitively, if the user is willing to give an application high-

risk access to a device, the user is not concerned about low-

risk access. The risk-based model is an improvement over

29

2018 IEEE Secure Development Conference

978-1-5386-7662-2/18/$31.00 ©2018 IEEE
DOI 10.1109/SecDev.2018.00012

functional grouping because it still groups operations, but in

terms of risk. At the same time, Tyche does not prohibitively

increase the number of decisions user has to make, but ties an

intuitive risk factor to them. Therefore, it bounds the damage

that a compromised application can cause, and accurately

communicates that potential to users at installation time.

In designing Tyche, we overcame several challenges: (1)

We need a methodology to estimate the user-perceived risk of

device operations. To that end, we introduce a survey instru-

ment inspired by the methodology of Felt et al. that is designed

to compute a relative ranking of user-perceived risk[8]. The

survey captures concrete risks that can arise from a variety

of smart home devices, and then presents those risks to users.

We use this methodology to obtain a ranking of user-perceived

risk for Samsung SmartThings device operations. We focused

on this platform because of its wide support for smart home

devices (more than a 100). Furthermore, independently of the

specific framework, physical device operations tend to remain

the same. Therefore, our risk results are potentially applicable

to other smart home platforms as well. (2) We need a technique

to form equivalence classes of risk using the survey data. To

that end, we utilize a clustering-based approach, and found it

to work reasonably well in practice.

Contributions.

• We propose Tyche, the first risk-based permission model

for smart home platforms that leverages our insight

that physical device operations are fundamentally risk-

asymmetric.

• We compute the user-perceived risk of device operations

in the Samsung SmartThings platform using a user study

of three domain experts and 400 Mechanical Turk par-

ticipants. This dataset is available at https://github.com/

Ethos-lab/datasets.

• We empirically demonstrate that user-perceived risk of

device operations closely matches that of the experts, mo-

tivating future research on permission prompt UI designs

that focus on incorporating risk indicators.

• Through a case study of three existing smart home apps,

which we port to our risk-based permission model, we

establish that the number of risky operations an attacker

can issue reduces by 60%.

We envision that Tyche, including its user research method-

ology and permission model design, will serve as a set

of guiding principles for developers of future smart home

platforms.

II. BACKGROUND

A. SmartThings Framework

Figure 1 shows an overview of the SmartThings framework.

It consists of: (1) a physical hub that users place in their home,

(2) a proprietary cloud back-end that runs third-party applica-

tions, and (3) a companion application that runs on a user’s

smartphone that is used for local control and configuration.

This smartphone app serves as a display device for the hub,

as the hub itself has no display. Each hub supports a variety of

home automation protocols such as ZWave and ZigBee. The

companion application lets users download and install third-

party SmartThings apps (or SmartApps) into their SmartThings

cloud account. The SmartApps, written in the Groovy pro-

gramming language,1 interact with physical devices by issuing

method calls (e.g., lock a door) and by listening to events

from the devices (e.g., motion was detected). SmartApps

are published to an application store. Physical devices are

represented by device handlers or SmartDevices—pieces of

code that use protocol-level instructions to communicate with

devices. A device handler wraps a physical device, and exposes

it to the rest of SmartThings. Although the platform provides

device handlers for a wide variety of devices like door locks

and speakers, developers can also write their own device

handlers for unsupported devices.

SmartThings Permission Model. SmartApps must request

capabilities (permissions)2 for devices before they can interact

with them. A capability is composed of a set of commands

(method calls) and attributes (properties). Commands repre-

sent ways in which a device can be controlled or actuated.

Attributes represent the state information of a device. For

example, capability.lock contains the attribute “lock,” which

represents the current state of the lock, and the commands:

lock(), and unlock(), that an application can use to control the

door lock. When a user installs a SmartApp, SmartThings trig-

gers the device enumeration process where it lists all physical

devices that support the requested capabilities. For instance,

if a user’s home has two motion sensors, and a SmartApp is

requesting “capability.motionSensor,” then SmartThings will

list both sensors in a permission granting UI. At that point,

the user will decide whether to give the application access to

the motion sensors or not.

SmartThings supports the functional grouping model—

functionally similar device operations are grouped into a

single capability. Third-party apps gain access at the level of

such functionally-grouped capabilities. Depending on the app’s

functionality, this model can potentially lead to automatic

overprivilege [9]. Fernandes et al. empirically evaluate the

consequences of such overprivilege in their recent security

analysis of SmartThings [9].

B. Threat Model

We assume that SmartApps can be malicious or can be

compromised. Fernandes et al., in their recent security analysis

of the SmartThings platform, demonstrated attacks of both

types [9]. The attacks depend on two factors: (a) users accept

permission requests without realizing the risk an app poses;

(b) apps can ask for more permissions than they need, or

they automatically obtain more permissions than they need

due to the design of the platform and the granularity of

permissions. Under this assumption of overprivileged apps,

our goal is to reduce the risk such apps pose to users. We

1Groovy compiles to Java bytecode
2Although SmartThings uses the word “capabilities,” they are in fact

permissions and are not related to capability-based security. We will use
“permission” in the rest of the paper.

30

SmartThings Cloud Platform (backend)

Groovy Sandbox

SmartApp

Permission
System

(Capabilities)

Groovy Sandbox

SmartDevice

SmartThings
Companion

App

Smart Phone

SmartThings
Hub

IoT
Device

IoT
Device

IoT
Protocols

Control

Fig. 1. Samsung SmartThings Architecture.

consider other types of attacks to be outside the scope of this

work. For example, a compromise of the platform itself will

render permissions themselves useless. Orthogonal techniques

are applicable to secure other parts of the smart home platform.

III. TYCHE: THE RISK-BASED PERMISSION MODEL

Our key insight is that the risk asymmetry between

functionally-related operations in smart homes creates an

imbalance between the level of access to a device that an app

needs, and the level of access provided to it by a traditional

functionally-grouped access control system. Permission group-

ing is vital from a usability standpoint. In theory, we could

require that the application request access for each operation of

a device. However, this extremely fine-grained system creates a

poor user experience, and it ultimately results in users making

poor security decisions due to fatigue [8]. We need to group

operations together, but in the context of the smart home, this

grouping can increase the risks users face.

Tyche avoids this risk by assigning risk levels to each of a

device’s operations, and then groups operations of the device

that have the same risk level into a group. An app can request

access to a device’s operations by specifying a risk level. The

result is that we now have a way of communicating the risk

of an app to the user, and we have a way of limiting the risk

a compromised or malicious app poses to a user.

There are three design challenges that we need to overcome

to design a risk-based permission model: First, how many risk

levels should exist? In the simplest case, we could assign a

risk level to each device operation. However, this can lead to

the same decision fatigue that plagues extremely fine-grained

access control systems. We believe that the answer to this

question depends on the specific smart home platform, and

the specific types of devices it supports. In the context of

SmartThings, we experimented with three levels of risk (low,

medium, high), and found it to be effective. §IV contains an

evaluation showing that with three levels of risk, existing apps

can still function, but now with 60% less access to high risk

operations. Furthermore, as SmartThings supports more than a

100 types of devices covering a wide range, we envision that

the results here are applicable to other platforms that work

with similar devices.

Second, how do we create equivalence classes of device op-

erations, grouped by risk level? We envision such breakdown

of risk to be done by smart home platform developers. To

implement risk-based access control in current SmartThings

platform, however, we asked three researchers with expertise

in security of Internet of Things platforms to systematically

evaluate every function currently available and put them in

three risk categories. We averaged experts evaluations and use

them as gold standard to group operations based on their risk.

Third, how can we implement the risk levels on the Smart-

Things platform to concretely demonstrate their value? It

is a closed-source system, and developers of SmartDevices

(i.e., device handlers) cannot define new capabilities. The

straightforward way of implementing a risk-based system is

to define new capabilities based on risk levels. However, this

is not possible with SmartThings. To overcome this challenge,

we adopt the approach used in ContexIoT [11]. We propose

automatically injecting security code into the apps at the

source code level so that they communicate their risk level

to users when they are installed. The remainder of the section

details this process. It discusses our techniques by assuming a

certain splitting of device operations. §IV contains details on

the exact splitting of SmartThings permissions into risk-based

permissions. Our goal here is to discuss the methodology

of enforcing risk-based permissions on SmartThings apps

independently of a specific splitting of device operations. We

stress that a risk-based permission model can be enforced

in multiple ways. If a smart home platform were to allow

customization (e.g., analogous to Android OS modifications

in smartphone research), then the platform itself could be

modified to support risk-based permissions.

A. Developing a Risk-Based Permission Model

As discussed in §II, each SmartDevice in SmartThings can

expose multiple capabilities (or permissions) depending on the

kinds of operations the device supports. For example, a door

lock will support operations related to battery management,

lock control, and lock code programming. For each of these

functional categories, there are associated permissions. Tyche

retains this model, but introduces a modifier that app devel-

opers need to use while requesting access to a device.

Example. Consider a battery management app that requests

access to battery-backed devices around the home. Currently,

such an app would make a permission request using the

following line of Groovy code:

input ′′battery device′′, ′′capability.battery′′

If the user accepts the permission request, the app will

gain access to all operations that are functionally grouped

together inside capability.battery. As per our discussions,

these operations may differ from a risk perspective. Under

Tyche, this app would instead specify a risk level as follows:

31

lowRiskRequest

input ′′battery device′′, ′′capability.battery′′

The first line is a method call that signifies that the next line

of code is a permission request for low risk access to devices

that support capability.battery. If a user accepts the eventual

permission prompt, the app will gain access to all low risk

operations defined by capability.battery. Thus, Tyche keeps

code changes to a minimum to help app developers move to

a risk-based permission system. We envision that smart home

platform developers could adopt a similar technique of using

a single modifier for requesting risk-based access.

B. Enforcing a Risk-Based Permissions Model

As the SmartThings platform is closed-source, Tyche uti-

lizes an app rewriting approach for enforcing our risk-based

permission model. This is a common approach to enforcing

security primitives in SmartThings. Notably, the platform itself

performs rewriting to create a sandbox around apps (by allow-

ing and denying certain operations) [9]. Furthermore, recent

work on enforcing contextual security policies on SmartThings

uses the same approach [11]. Rewriting occurs at the source-

code level by operating on the Abstract Syntax Tree (AST)

of the program. Groovy supports compiler extensions that

perform rewriting of the AST. Our high-level approach is to:

(1) Introduce a development-time annotation that the developer

uses to specify the risk level of the access being requested;

(2) a runtime reference monitor that the compiler injects into

the app. This reference monitor hooks all device operation

invocations, and verifies that the operation being invoked

belongs to the risk level that was requested earlier. Figure 2

shows an architectural overview.

As input, the compiler extension takes app source code

where the developer has annotated all permission requests

with the risk rating. We envision this to be achievable with

minimum developer effort as each permission is only requested

once in each application. If there is a permission request

without an annotation, the extension will throw a compila-

tion error, guiding the developer to correctly annotate the

permission request. The extension also takes in a risk table,

that is simply a mapping of SmartThings capability names,

operations (commands or attributes), and the risk rating. As

we discuss in the next section, we use a user study to compute

the risk rating. The extension then performs two steps: (1) it

instruments all method invocations on objects that represent

physical devices to first consult a reference monitor; (2) it

injects a reference monitor into the app that is executed on

every method invocation. Its job is to consult the risk table

and determine if a particular invocation matches the previously

requested risk rating. In our example, if the app attempted a

high risk operation, the reference monitor would deny that

because the developer had only requested low risk access.

To communicate the risk level of an app, our extension also

injects startup code into the app. This results in a notification

to the user of the risk levels that the app requested. The

TABLE I
RISK-BASED PERMISSION EXAMPLES. COMMANDS ARE SHOWN AS

cmd() WHILE ATTRIBUTES ARE PRESENTED AS attr.

Permissions Low-
Risk

Medium-Risk High-Risk

lock – lock() unlock(), lock

alarm – strobe(), siren(),
alarm

–

switch switch – on(), off()

notification is shown on the corresponding smartphone app

of SmartThings.

IV. USABILITY ANALYSIS

We evaluate Tyche from two aspects: First, to understand

the usability of Tyche, we evaluate user perception of risk

in comparison with risk assigned by the domain experts by

conducting a 2 stage user study using 210 participants. Second,

we evaluate three applications under the Tyche model. Our

results show that Tyche limits access to 60% most high-

risk operations, while neither decreasing the functionality, nor

increasing user decision overhead.

A. User Study Setup

To understand user perception of risk associated with phys-

ical device operations, we surveyed 400 Mechanical Turkers.3

The survey started out by collecting basic demographic infor-

mation. Per our IRB, we were not allowed to collect any user-

identifiable data. The demographic information we collected

are as follows: (1) Participant’s age, (2) Number of people in

their household, (3) The home platform they use, and (4) In

cases where the participant’s use SmartThings platform, the

number of applications they have installed.

Next, the survey presented a description of the main task:

Imagine you have several apps installed in your

home automation system. These programs require

certain permissions and can perform actions on your

behalf. Based on each action, indicate your level of

concern based on the following Likert scale:

1) Not Concerned - Select this for actions which

pose little to no risk to you or the people living

with you.

2) Mildly Concerned - Select this for actions which

pose a low risk to you or the people living with

you, but are useful when used as intended.

3) Concerned - Select this for actions which pose a

medium risk to you or the people living with you,

but are useful when used as intended.

4) Very Concerned - Select this for actions which

pose a high risk to you or the people living with

you, but are useful when used as intended.

3We received exemption from our institution’s IRB under title 45 CFR
46.101.(b). Survey data was collected anonymously and did not include any
user-identifiable or sensitive information about the participants.

32

App developer permission
request annotations

App Source Code

Risk Table

battery battLevel lowRisk

devA opA midRisk

… ……

AST
Transform

App

Risk-Table

Ref-Mon

LowRiskRequest

Input “battery_device”,
“capability.battery”
…
Print battery_device.battLevel

1. Is operation within lowRisk?
2. If yes, allow, else, deny

1 2

Fig. 2. Tyche rewriting architecture to enforce risk-based permissions.

1

1.5

2

2.5

3

3.5

4

4.5

5

20 40 60 80 100 120 140

Low Risk

Medium Risk

High Risk

R
is

k

of Functions

Fig. 3. Cumulative distribution of risk for the 146 SmartThings functions
assigned by domain experts. The distribution is divided to three ranges using
K-mean clustering and is used as a basis for our risk-based permission model.

5) Would Not Allow - Select this for actions which

pose a high risk to you or the people living with

you and are better left disabled.

We provided participants with a subset of device operations

and asked them to rate their concern based on the above 5-

point scale. We varied the information associated with the list

of device operations based on the type of study condition. We

had the following conditions:

• Uninformed User Ranking: We recruited 200 users

through Amazon Mechanical Turk to assess the risk

of operations based on an operational description only

(Table II). To reduce decision fatigue, each user was

provided with half of the device operations. In total, we

obtained 100 ratings per function from these users.

• Informed User Ranking: Similar to uninformed user

study, we recruited 200 users through Mechanical Turk.

In addition to an operational description, we provided

each user with a misuse scenario (Table II) to illustrate

the potential risk associated with the device operation.

Similar to the previous condition, we divided operations

into two groups to reduce decision fatigue and collected

100 ratings per device operation.

As a baseline for our study, We used the domain expert

evaluation of all operations from Section III. We consider this

data as the gold standard for our system and compare other

conditions to it.

Dealing with Random Clickers: Although prior studies have

shown that results collected through crowdsourcing ap-

proaches are comparable to lab studies [12], our study is

still susceptible to random clickers who answer the questions

randomly to get the monetary benefit with minimum effort.

To minimize this risk, we used our demographic questions as

indicator questions to remove random responders (e.g., family

size = -2) and the Pearson’s χ2 test to weed out random

clickers as suggested by prior work [12]. These filters left

us with total of 116 and 94 data points for our uninformed

and informed condition, respectively.

B. User Study Results

The age distribution of our participants is presented in

table III. The population of our study consists of mostly

young adults. We discuss how the age might affect user

perception of risk in Section V-B. Table IV also presents the

number of apps SmartThings users install in their platform.

Our results show that most smart home users stick to very

few specific applications. To assess the risk of each operation,

each participant provides a Likert scale response (ranging from

1-5) as the risk of each operation. We average the score given

by each group of our participants (uninformed, informed, and

expert) and use K-means clustering (K=3) to divide these

operations into three groups based on their risk. Table V

provides an overview of the K-means clustering result and the

number of operations falling into the low-, medium-, and high-

risk groups. When users consider the risk of an operation, they

assign conservative risk values compared to domain experts.

Informing the user about the actual misuse scenario lowers the

perceived risk of some of the operations, but does not make

the user complacent when compared to the expert.

To examine the correlation between the risk assessment of

experts (our gold standard) and users, we calculate the Pearson

product-moment correlation coefficient (Pearson’s r) between

the experts and both uninformed and informed users results.

Our results show moderate correlation (0.6) between experts

and uninformed users and strong correlation (0.75) between

the experts and informed users. These results motivate that a

risk-based permission system can push users to make better

risk assessments of access control requests from apps.

C. Case-Studies: Converting Apps to the Risk-Based Model

We first compute the set of device operations accessible to

three existing SmartApps based on the current SmartThings

33

TABLE II
EXAMPLES OF THE OPERATIONS ASSOCIATED WITH A PERMISSION, THEIR DESCRIPTION, AND THEIR POTENTIAL MISUSE SCENARIO.

Permission Operation Operational Description Misuse Scenario

Switch switch Track the status of the switch Publicly share when switch is turned on/off

Switch on() Turn on connected devices
Turn on a device, such a space heater, for a long
time, possibly causing a fire

Lock lock Track the status of the lock Publicly share when your door is unlocked

Lock unlock() Unlock door lock
Automatically unlock doors without your knowl-
edge

Lock lock() Lock door lock
Automatically lock doors without your knowl-
edge

TABLE III
AGE DISTRIBUTION OF USER STUDY PARTICIPANTS.

Age 18− 25 25− 35 35+

% of Participants 24% 40% 26%

TABLE IV
NUMBER OF APPS USED BY SMARTTHINGS USERS.

of Apps < 5 5− 10 > 10

% of SmartThings Users 48% 43% 9%

TABLE V
OF OPERATIONS THAT FALL INTO EACH RISK CATEGORY & THE RISK

RANGE BASED ON THE K-MEAN CLUSTERING. MAKING USERS CONSIDER

THE RISK OF AN OPERATION MAKES THEM MORE CONSERVATIVE THAN

DOMAIN EXPERTS REGARDING SAFETY OF AN OPERATION.

Risk Low Medium High

Uninformed User
19 45 82

(1-1.91) (1.92-2.42) (2.43-5)

Informed User
20 57 69

(1-1.94) (1.95-2.59) (2.6-5)

Domain Expert
62 58 26

(1-1.83) (1.84-2.83) (2.84-5)

functional-grouping permission model, and then compare that

set of accessible operations to a set we obtain after converting

the apps to use our risk-based model. In general, we observe

that Tyche decreases applications access to risky operations

by 60% across all applications. Table VI shows the result of

the conversion for our three case-studies.

LockDown locks doors after a specified time of day. To

perform its functionality, this application only needs access

to “lock()” function. The current permission model, however,

gives it access to the “unlock()” function as well. If this

application is compromised, an attacker can arbitrarily unlock

the doors to the home. Under our risk-based model, the

application only asks for low-risk access to the lock, that only

grants the “lock()” operation to the app.

SmokeProtector application sounds a siren if the smoke

sensor is triggered. Under the current permission model, this

application can access the “off()” operation. If compromised,

an attacker can turn off the siren. Under our risk-based

model, the application only asks for medium-risk access to

the speaker. This results in only the “siren()” operation being

accessible to the app.

EnergySaver automatically turns off devices around the home

if energy consumption is above a predefined value. Under the

current model, this application can access the “on()” function

of the switches. If compromised, it can turn on switches

arbitrarily, thus powering any connected devices. This can

negate the purpose of the application or, more dangerously,

lead to a fire hazard by powering a device for an extended

time, such as a space heater. Under our risk-based model,

the “off()” and “on()” operations belong to the same high-

risk group. Our users consider “off()” to be high-risk because

it can disable safety-critical functions such as life support

and refrigeration. Although our model does not separate the

“off()” and “on()” operations, at least users are informed of

the risks associated with using the appplication. We count

the number of high-risk operations that apps can access in

the current SmartThings permission model vs. the risk-based

model. We find that on average, apps can remain functional

and have access to 60% less high-risk operations. Therefore, if

an application is compromised, our risk-based model reduces

user risk compared to the current permission model.

V. DISCUSSION AND LIMITATIONS

A. Tyche vs. “Permission on first use”

Smartphone platforms generally use either an application

install-time permission request modality, or a first-use permis-

sion request modality. We surveyed four smart home platforms

(SmartThings, AllJoyn, IoTvity, HomeKit), and observed that

they currently use install-time permission requests. A potential

reason for not including the first-use modality is that it assumes

the presence of an interface to the user at all times. Smart

home platforms in general might not have traditional user

interfaces. For example, Samsung SmartThings only has a hub

with no display. In this case, the platform uses an external

graphical device, such as a smartphone, to surface the install-

time permission request. However, such a device may not

always be present at the time of a request. This works well

for an install-time modality because the user installs apps with

the help of a companion smartphone app. In the case of first-

use permission requests, the smartphone may not be present

when an application actually accesses a sensitive operation.

Tyche permissions can be used with either request modality,

however, our prototype currently uses an install-time request.

34

TABLE VI
WE CONVERTED THREE EXISTING SMARTAPPS TO OUR RISK-BASED PERMISSION MODEL. WE FIND THAT ONLY THE ENERGYSAVER APPLICATION

NEEDS HIGH-RISK ACCESS TO A SWITCH. THE OTHER APPS WORK WITHOUT ANY HIGH-RISK ACCESS.

Functional-Grouping Model Risk-Based Model

App Permissions Accessible

Operations

Permissions Accessible

Operations

Lockdown
lock,

contactSensor

attrs: lock,

contact.

cmds: lock(),

unlock()

lock.medRisk,

contactSensor.lowRisk

attrs: contact.

cmds: lock()

SmokeProtector
alarm,

smokeDetector

attrs: alarm,

smoke.

cmds: off(),

strobe(),

both(),

siren()

alarm.medRisk,

smokeDetector.medRisk

attrs: alarm,

smoke.

cmds: strobe(),

siren(),

both()

EnergySaver
powerMeter,

switch

attrs: power,

switch.

cmds: on(),

off()

powerMeter.medRisk,

switch.highRisk

attrs: power,

switch.

cmds: on(),

off()

B. Perception of Risk

A concern with using a risk-based access control system

is that different people may have different perceptions of

acceptable levels of risk. Although getting locked out may

not be a major issue for an adult, it may be problematic

for an elderly (or very young) person. Our user study for

the prototype was conducted using adults only. Therefore, a

limitation is that the resulting risk levels can potentially be

biased towards adult perceptions of risk. An interesting future

work direction is to examine risk perceptions of different age

groups. However, Tyche still provides benefits as it does not

make applications more risky than they already are, and it still

provides some notion of risk, even if the user’s perceptions

may not exactly match the system’s risk levels.

C. Overprivilege in Tyche

Tyche does not completely eliminate overprivilege but

grants applications a risk-based access privilege to each re-

source. This approach is intuitive—if a user trusts an ap-

plication with high-risk functionality, they are fine allowing

less sensitive functions as well. We observe that assigning

risk levels to sensitive operations may or may not change the

granularity of the associated permission’s operations. This is

in part due to our automated clustering process, and in part

due to the need to avoid creating many risk levels (e.g., A

system with ten or fifteen different risk levels will most likely

overwhelm the user and negate any benefits). For some apps

(e.g., EnergySaver in §IV-C), this might not result in the app

gaining even more limited access to sensitive operations—by a

strict definition of overprivilege, even with a risk-based system

like Tyche, the app will still be overprivileged. Even in such

cases, there are benefits to using Tyche—it serves as a means

to notify the user of the riskiness of a particular app.

D. Surfacing Risk Levels to Users

Our user study demonstrates the intuitiveness of a risk-based

permission model. Yet, how best to present these risks to the

user during installation time remains a challenge. Previous

work has looked extensively at this problem in the context of

smartphones [7], [8]. Our initial design in Tyche used color

coding and a second confirmation for high-risk permissions.

We also limited the number of risk levels to three. We leave

a user study on the effectiveness of various user interfaces

and optimal number of levels as future work. An interesting

challenge in surfacing permission requests to users in the

context of smart homes concerns the interface mechanism.

Hub-based platforms like SmartThings use a secondary device

such as a smartphone for surfacing permission requests. Other

platforms, such as voice-based assistants like Amazon Alexa

or Google Home open up the possibility of a voice-based

permission prompt and response mechanism. With a risk-based

system, a challenge is to determine how best to leverage these

newer modalities to communicate the risk level of an app to

the user.

VI. RELATED WORK

Internet of Things platform security is an emerging re-

search area. Fernandes et al. [9] performed a security anal-

ysis of SmartThings. They showed that more than 55% of

SmartThings apps are overprivileged and built four attacks

that exploited the overprivilege. Various systems have since

studied security issues in IoT platforms. FlowFence [10], [14]

proposes data flow protection in IoT frameworks through the

use of sandboxes and taint-tracking to impose flow control be-

tween data sources and sinks, and is concerned with ensuring

that data is not misused. In contrast, risk-based permissions

aim to limit the damage a malicious app can cause. ContexIoT

is a system that collects contextual information that it uses to

help users make more informed decisions when granting per-

missions to apps [11]. The contextual information is extracted

using program analyses techniques. Such contextual prompting

can further help in communicating Tyche risk ratings to users.

Similarly, Roesner et al. introduce Access Control Gadgets

(ACGs) and its implementation on Android, LayerCake [16],

to improve contextual integrity. Our risk ratings can be made

more contexual by adopting ideas from ACGs or from Con-

texIoT depending on the interface modality that is available to

the smart home platform (e.g., classic display, or voice-based

35

interfaces). However, our goal in this work is to introduce

a system design that is aware of risk asymmetries. Similar to

ContexIoT, our work adopts a rewriting mechanism to enforce

security decisions.

Current smart home platform permissions are modeled after

smartphone permissions. There is a large body of work on

analyzing and improving smartphone permissions [3]. For

instance, Rahmati et al. proposed using application context

to guide access control decisions [15]. While many of these

approaches can be adapted for smart homes, they still over-

privilege apps with high-risk operations because they do not

take into account risk-asymmetry.

Our user study methodology was inspired by Felt et al. [7].

While Felt’s study focused on improving the warning mes-

sages in smartphone application installation UI, our study

focuses on determining the risk level of operations, in order

to define various access control levels in each device. Felt et

al. [8] also performed two user studies on the Android permis-

sion model. They found that that only 17% of participants paid

attention to permissions during installation and only 3% could

answer three permission comprehension questions correctly.

These results motivate development of risk-based permission

models, where users’ understanding of risk factors closely

matches domain experts.

More generally, our work draws on results from risk-aware

access control systems [5], [13], [6]. Adopting terminology

from Petracca et al., we are concerned with three type of risks:

(1) risk due to authorizing unsafe operations; (2) risk due to

abuse of authorized permissions; (3) risk due to granularity

of authorization hooks. Our insight is that current permission

models in smart homes do not adequately communicate risk,

resulting in users possibly authorizing unsafe operations sim-

ply because they do not know the risks involved. The second

type of risk occurs due to the modern app model—apps can

be malicious, or they can be compromised. The third type of

risk occurs due to functional grouping of permissions. Tyche

tackles the first and third types of risk creating risk-similar

groups of operations, and the communicating those risks to

the user. We also introduce a human subjects methodology to

estimate risk. However, Tyche limits the effects of the second

type of risk, instead of removing it altogether.

Tyche currently uses static estimates of risk. However, risk

can change depending on the user. We envision that results

from fuzzy MLS systems could be applicable in encoding

dynamic risk perceptions into a risk-based access control

system [6] for smart homes. We leave this to future work.

VII. CONCLUSION

Smart home platforms currently use permission models

inspired by smartphone OSes. These permission models group

device operations based on functionality, and do not take

risk-asymmetry into account. Although grouping operations

together makes it easier for developers and users to work

with permissions, it also overprilvileges apps. Due to the risk-

asymmetry, overprivilege can drastically increase the potential

for damage if apps are malicious or exploitable. Therefore,

we introduced risk-based permissions as an alternative way

to group device permissions. We designed Tyche using app

rewriting techniques to enforce risk-based permissions, and we

conducted a study involving domain experts and Mechanical

Turkers to compute user-perceived risk. Our study finds that

experts and users share a similar perception of risk. Based on

these findings, we re-grouped a physical device’s operations

into three groups—low-, medium-, and high-risk. We con-

structed such groupings for 146 operations across 61 types of

devices. We evaluated our risk-based model on three existing

SmartApps. We found that these apps can be written in a way

that reduces access to high-risk operations by 60%.

Acknowledgements. We thank the reviewers for their insight-

ful feedback. This work was supported in part by NSF Grant

No. 1646392 and 1740897, the MacArthur Foundation and the

University of Washington Tech Policy Lab.

REFERENCES

[1] Google Home. Last Accessed:May 2017.
[2] Samsung SmartThings Home Automation. Last Accessed: Oct 2017.
[3] ACAR, Y., BACKES, M., BUGIEL, S., FAHL, S., MCDANIEL, P., AND

SMITH, M. SoK: Lessons Learned from Android Security Research
for Appified Software Platforms. In IEEE Symposium on Security &

Privacy (2016).
[4] APPLE. HomeKit. Last Accessed: Oct 2017.
[5] CHEN, L., AND CRAMPTON, J. Risk-Aware Role-Based Access Control.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 140–156.
[6] CHENG, P.-C., ROHATGI, P., KESER, C., KARGER, P. A., WAGNER,

G. M., AND RENINGER, A. S. Fuzzy multi-level security: An experi-
ment on quantified risk-adaptive access control. In Proceedings of the

2007 IEEE Symposium on Security and Privacy (Washington, DC, USA,
2007), SP ’07, IEEE Computer Society, pp. 222–230.

[7] FELT, A. P., EGELMAN, S., AND WAGNER, D. I’ve got 99 problems,
but vibration ain’t one: a survey of smartphone users’ concerns. In
Proceedings of the second ACM workshop on Security and privacy in

smartphones and mobile devices (2012), ACM, pp. 33–44.
[8] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E., AND

WAGNER, D. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Eighth Symposium on Usable Privacy

and Security (2012), ACM, p. 3.
[9] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security Analysis of

Emerging Smart Home Applications. In Proceedings of the 37th IEEE

Symposium on Security and Privacy (May 2016).
[10] FERNANDES, E., PAUPORE, J., RAHMATI, A., SIMIONATO, D., CONTI,

M., AND PRAKASH, A. Flowfence: Practical data protection for
emerging iot application frameworks. In USENIX Security (2016).

[11] JIA, Y. J., CHEN, Q. A., WANG, S., RAHMATI, A., FERNANDES,
E., MAO, Z. M., AND PRAKASH, A. ContexIoT: Towards providing
contextual integrity to appified iot platforms. In Network and Distributed

System Security Symposium (NDSS’17) (2017).
[12] KIM, S.-H., YUN, H., AND YI, J. S. How to filter out random

clickers in a crowdsourcing-based study? In Proceedings of the 2012

BELIV Workshop: Beyond Time and Errors-Novel Evaluation Methods

for Visualization (2012), ACM, p. 15.
[13] PETRACCA, G., CAPOBIANCO, F., SKALKA, C., AND JAEGER, T. On

risk in access control enforcement. In Proceedings of the 22Nd ACM

on Symposium on Access Control Models and Technologies (New York,
NY, USA, 2017), SACMAT ’17 Abstracts, ACM, pp. 31–42.

[14] RAHMATI, A., FERNANDES, E., AND PRAKASH, A. Applying the
opacified computation model to enforce information flow policies in iot
applications. In IEEE Cyber-Security Development Conference (2016).

[15] RAHMATI, A., AND MADHYASTHA, H. V. Context-specific access
control: Conforming permissions with user expectations. In Proceedings

of the 5th Annual ACM CCS Workshop on Security and Privacy in

Smartphones and Mobile Devices (2015), ACM, pp. 75–80.
[16] ROESNER, F., AND KOHNO, T. Securing embedded user interfaces:

Android and beyond. In Proceedings of the 22Nd USENIX Conference

on Security (Berkeley, CA, USA, 2013), SEC’13, USENIX Association.

36

