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ABSTRACT

Systematically reasoning about the fine-grained causes of
events in a real-world distributed system is challenging.
Causality, from the distributed systems literature, can be
used to compute the causal history of an arbitrary event in a
distributed system, but the event’s causal history is an over-
approximation of the true causes. Data provenance, from the
database literature, precisely describes why a particular tuple
appears in the output of a relational query, but data prove-
nance is limited to the domain of static relational databases.
In this paper, we present wat-provenance: a novel form
of provenance that provides the benefits of causality and
data provenance. Given an arbitrary state machine, wat-
provenance describes why the state machine produces a
particular output when given a particular input. This enables
system developers to reason about the causes of events in
real-world distributed systems. We observe that automati-
cally extracting the wat-provenance of a state machine is
often infeasible. Fortunately, many distributed systems com-
ponents have simple interfaces from which a developer can
directly specify wat-provenance using a technique we call
wat-provenance specifications. Leveraging the theoretical
foundations of wat-provenance, we implement a prototype
distributed debugging framework called Watermelon.
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1 INTRODUCTION

Debugging distributed systems is hard. Traditional debug-
ging techniques are poorly suited to distributed systems in
which bugs arise across multiple nodes connected by an unre-
liable network that can drop, duplicate, and reorder messages.
Distributed debugging tools exist but are in their infancy.
They help tame some of the complexities of distributed debug-
ging, but have limited applicability to real-world distributed
systems that are made up of a large number of complex
components. Consequently, developers perform ad-hoc root
cause analysis to find the source of a bug, stitching together
the logs of multiple concurrently executing nodes.

Worse, existing formalisms are also inadequate to reason
about systematically debugging real-world distributed sys-
tems. For example, consider causality [20]. Causality is a
general-purpose formalism that specifies the causal history
of a particular event in an arbitrary distributed system. How-
ever, causality is too general-purpose, as it fails to incorpo-
rate any semantics of the underlying distributed system [2].
As a consequence, the causal history of an event is an over-
approximation of the cause of the event. It includes all the
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events that might have caused a particular event instead of
the events that actually do cause it.

Alternatively, consider data provenance in the form of
why-provenance [5, 7]. Given a relational database, a query
issued against the database, and a tuple in the output of the
query, why-provenance explains why the output tuple was
produced. That is, why-provenance produces the input tuples
that, if passed through the relational operators of the query,
would produce the output tuple in question. In contrast to
causality, data provenance heavily incorporates the seman-
tics of relational databases and queries to describe precisely
the cause of a particular output. However, why-provenance
makes the critical assumption that the underlying relational
database is static. It cannot handle the time-varying nature
of stateful distributed systems. Moreover, data provenance
is limited to the domain of relational data and cannot easily
be applied to other system components (e.g., load balancers,
file systems, coordination services, etc.).

In short, causality lacks a notion of data dependence, and
data provenance lacks a notion of time. In this paper, we
present wat-provenance (why-across-time provenance): a
novel form of data provenance that unifies ideas from the
two. Wat-provenance generalizes why-provenance from the
domain of relational queries issued against a static database
to the domain of arbitrary time-varying state machines in a
distributed system. More specifically, given a deterministic
state machine, the state machine’s sequence of inputs, and a
particular input to the state machine, wat-provenance for-
malizes why the state machine produces the output that it
does. This description is the set of subsequences of the input
trace that are necessary and sufficient to generate the out-
put in question. Borrowing from causality, wat-provenance
can be applied to time-varying state machines. Borrowing
from why-provenance, wat-provenance incorporates state
machine semantics to avoid overapproximating provenance.

After we define wat-provenance, we turn to the matter of
computing it. We observe that automatically extracting the
wat-provenance of a state machine is often infeasible. Com-
puting the wat-provenance of a state machine is tantamount
to inferring the state machine’s data dependencies using a
complex code analysis of the state machine’s source code.
This source code can be both large and complex which makes
this code analysis intractable. Though automatically extract-
ing the wat-provenance of an arbitrary state machine is
difficult, many distributed systems components are designed
with simple and minimalistic APIs. We can take advantage
of this observation and sidestep the complexity of extract-
ing the wat-provenance from the implementation of a state
machine and instead specify the wat-provenance from the
interface of a state machine. To this end, we propose wat-
provenance specifications: functions that directly encode
the wat-provenance of a state machine using its interface

M. Whittaker, C. Teodoropol, P. Alvaro, J. Hellerstein

instead of its implementation. We describe the provenance
specifications of a number of widely used distributed sys-
tems components (e.g., Redis, Amazon S3, HDFS, Zookeeper)
and find that in practice, they are often straightforward to
implement.

Next, we present Watermelon: a prototype distributed de-
bugging framework that leverages the formal foundations
of wat-provenance and wat-provenance specifications. Wa-
termelon includes a mechanism for developers to write wat-
provenance specifications that are executed against the in-
put traces of the components in a distributed system. We
use Watermelon to measure the complexity of writing wat-
provenance specifications and also compare Watermelon to
existing distributed debugging techniques.

This paper presents the following contributions:

e We define wat-provenance: a formalism that extends
notions of data provenance to the realm of state ma-
chines in a distributed system.

e We present wat-provenance specifications: a mecha-
nism to compute the wat-provenance of distributed
system components. We also describe a set of wat-
provenance specifications for a number of widely used
distributed systems components, illustrating that wat-
provenance specifications can be straightforward to
write.

e We implement a prototype distributed debugger called
Watermelon that leverages the theoretical foundations
of wat-provenance. We demonstrate that Watermelon
makes it easier to identify the precise causes of events
in a distributed system compared to existing debugging
techniques.

2 BACKGROUND
2.1 Causality

As described by Lamport in [20], time is fundamental to our
understanding of how events are ordered. It is clear that if
an event occurs at 6:42, then it happens before another event
that occurs at 6:45. Unfortunately, accurately measuring time
in a distributed system is infeasible [26, 29, 30]. Clocks on
different servers within a distributed system drift apart, so
servers cannot agree on a single global notion of time, and
thus they cannot agree on a single global total order of events
that respects the real time ordering of events. However, as
Lamport showed in [20], it is possible for servers to agree
on a global partial order of events that respects the global
passage of time. This partial ordering of events also dictates
which events can causally affect each other.

To make this partial ordering and notion of causality pre-
cise, we consider a set of single-threaded servers that com-
municate over the network. Every server a serially executes
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a sequence of events ay,a;,as,. .. where each event a; rep-
resents the action of server a either (1) performing local
computation, (2) sending a message to another server, or (3)
receiving a message from another server.

The happens before relation — on events is the smallest
transitive relation such that (1) if a;, a; are two distinct events
within the same process, then a; happens before a;, and
(2) if a; and b; are the sending and receiving of a message
respectively, then a; happens before b;. The happens before
relation is a partial order that formalizes our intuitive notion
of which events can causally affect each other. An event g;
can only be caused by an event b; that happens before it. The
set {bj | b; — a;} is called the causal history of a;.

2.2 Data Provenance

Given a relational database instance I, a relational algebra
query Q, and a tuple ¢ in the output of the query, it is natural
to ask why t appears in the output. For example, consider the
relational database instance given in Figure 1 that describes
users and friends in a social media application. And, consider
the relational algebra query

def )
Q= ”name(O'Friend1:ecodd (Users P>username=friend2 Frlends))

that returns the name of all of Edgar Codd’s friends. Evalu-
ating Q on I produces the tuple ¢t = (Michael Jordan).

Users .
username | name F;:'eiz(rj131 friend2
ecodd Edgar Codd -
jumpman | Michael Jordan ecggg Jrlll {n f;nan
mlpro Michael Jordan e¢ P

Figure 1: An example database instance

Intuitively, ¢ = (Michael Jordan) is present in the output
Q(I) for two reasons: (1) the existence of the (ecodd, jump-
man) and (jumpman, Michael Jordan) tuples and (2) the ex-
istence of the (ecodd, mlpro) and (mlpro, Michael Jordan)
tuples. Why-provenance [5, 7] formalizes this intuition. The
why-provenance! of a tuple ¢ with respect to query Q and
database instance I, denoted Why(Q,I,t), is a set Ji,...,J,
of subinstances of I where each subinstance J; C I suffices
to produce t (i.e. t € Q(J;)). These subinstances are called
witnesses of t, and a witness J; is called a minimal witness
of t if no proper subinstance of J; is also a witness of ¢. The
minimal why-provenance of t, denoted MWhy(Q,I,t), is
the set of the minimal witnesses in Why(Q, 1, t). It can be
shown that MWhy(Q, I,t) is exactly the set of minimal wit-
nesses of t [7].

! For a formal definition of why-provenance, we refer the reader to [7]. For
our purposes, an informal understanding of why-provenance is sufficent.
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Returning to our example above, the why-provenance of
the (Michael Jordan) tuple is the set {J;, .} where

J1 = {(ecodd, jumpman), (jumpman, Michael Jordan)}
Jo = {(ecodd, mlpro), (mlpro, Michael Jordan)}

J1 and J, are minimal witnesses, so the why-provenance and
minimal why-provenance of ¢t = (Michael Jordan) are the
same.

2.3 State Machines

It is common to model servers—like key-value stores or
relational databases—as deterministic state machines that
repeatedly receive requests, update their state, and send
replies [21, 31]. More precisely, a deterministic state ma-
chine M = (S,s0,2,A,8,€) consists of a (potentially infinite)
set S of states, a start state sy € S, an input alphabet ¥, an
output alphabet A, a transition function § : S X ¥ — S, and
an output function € : $ XX — A. A state machine M begins
in state sy and repeatedly receives inputs a € X. Upon receiv-
ing an input a, M transitions from state s to state (s,a) and
outputs (s, a).

In our work, we need to reason about specific sub-inputs
to a state machine, in the spirit of why-provenance, so we
introduce some notation here. We refer to an ordered se-
quence of inputs received by a state machine as a trace
T =aiay...a, € X*. A subtrace T’ of T is a subsequence
T’ = aj,ai, . . .a;, where iy,iy,...,in are distinct elements
of 1,2,...,n in ascending order. Note that a subsequence
does not have to be contiguous. For example, T’ = a;as is
a subtrace of T = ajazaszays. If T’ is a subtrace of T, then a
supertrace of T’ in T is a subtrace of T that contains every
element of T’. If T} and T, are two traces, we write the con-
catenation of T) and T; as T1 T,. Similarly, if T € ¥* is a trace,
and a € ¥ is an input, we let Ta denote the trace produced by
appending a to the end of T. An illustrative example of the
definition of subtraces and supertraces is given in Figure 2.

trace T

subtrace T’

(71 2

subtraces of T’ supertraces of 7" in T
el

[=]
5]
5]

Figure 2: Subtraces and supertraces

é takes in a state s € ¥ and a single input a € 2. It is
convenient to extend § to a function §* : S X X* — S that
takes in a state s and a trace T € X* and outputs the state
reached after sequentially executing the inputs in T starting
in state s. Similarly, we can extend € to a function € : S X
>* — A which takes in a state s and a non-empty trace
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T = ay...a, € X% and returns €(6*(s,a1as . ..an—1),an):
the final output produced from sequentially executing every
input in T starting in state s.

3 WAT-PROVENANCE
3.1 A Motivating Example

It is difficult to reason precisely about the causes of events
in a heterogeneous distributed system. To best understand
why, let’s look at a simple example. Consider the imple-
mentation of a Facebook-like social media application called
ZardozBook, illustrated in Figure 3. ZardozBook users post
status updates, and these updates are only viewable by their
friends on the site. Users send requests to a load balancer
that forwards the requests to one of three weakly consistent
Redis-backed application servers: s, sz, and s3. These appli-
cation servers store a cache of ZardozBook’s data in Redis
and periodically synchronize their caches with a centralized
Postgres database.

Consider a scenario in which Ava, a ZardozBook user,
has a falling out with Bob, a friend of hers on the site. Ava
unfriends Bob and then posts the status “Bob is a big jerk!”
thinking that Bob will not see the status because he is no
longer her ZardozBook friend. Unfortunately, Bob later logs
in to ZardozBook and sees Ava’s mean comment!

5

Redis-Backed
Ava App Servers

O @ Postgres
\‘ [ / o
T

<> Balancer @

Bob

Figure 3: Social media application

Why did this happen? Here’s an informal account. Ava’s
request to unfriend Bob was forwarded to application server
s1 by the load balancer. Then, Ava’s request to post the mean
comment about Bob was forwarded to s;. s, then pushed the
comment to the Postgres repository. s3 then issued a SQL
query to the Postgres repository, pulling the latest data into
its Redis cache. In doing so, it pulled in Ava’s mean comment.
Finally, when Bob logged in, his request was forwarded to s3
which returned the mean comment.

We argue that existing formalisms are inadequate for dis-
covering this sequence of events. One possibility is to use
causality, as described in Section 2. We could instrument our
distributed system to record the causal history of every event
that takes place in the system. Then, we could examine the
causal history of Bob’s request in an attempt to diagnose why
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Bob was seeing Ava’s mean comment. Unfortunately, this is
not helpful. The causal history of Bob’s request includes ev-
ery event that causally precedes it, whether or not the event
is relevant. For example, the causal history of Bob’s request
would include every message received by server s3 prior to
Bob sending his request, even those that do not involve Ava
and Bob. The problem is that causality is too coarse-grained.
It fails to incorporate any notion of a system’s semantics as
a means to filter out irrelevant messages. Instead, it returns
an overapproximation of all the events that might cause an
event instead of the events that do cause an event.

This might prompt us to try and apply ideas from data
provenance. Unlike causality, why-provenance does incor-
porate system semantics to return the causes of a particular
output of a query. As discussed above, why-provenance has
two flaws. First is why-provenance’s restriction to relational
queries: while we might be able to use why-provenance to
debug s3’s SQL query that was sent to the Postgres database,
that is only one small piece of the puzzle. Understanding
why Bob saw Ava’s mean comment requires us to reason
about messages that travel through our application servers,
our Redis servers, and our load balancer. But, these are not
relational databases, so we cannot apply why-provenance to
them. Second and more fundamental is why-provenance’s
inability to reflect any notion of state change over time. In
particular, the real “why” question we want to answer here is
“why was the provenance of Bob’s query unaffected by Ava’s
unfriend request?” The why-provenance of Bob’s query has
no answer to this question; it knows nothing about updates
or the order in which they happen.

3.2 Defining Wat-Provenance

In isolation, causality and data provenance are both insuffi-
cient to diagnose why Bob saw Ava’s mean comment. Un-
derstanding the root cause of this anomalous behavior re-
quires us to reason about the ordering of events within the
network (as with causality) and the precise data dependen-
cies between different requests (as with data provenance).
Wat-provenance unifies the benefits of causality and data
provenance. Borrowing from causality, wat-provenance is
a general-purpose mechanism that can be applied to arbi-
trary state machines. Borrowing from why-provenance, wat-
provenance incorporates system semantics to produce the
causes of an event, rather than a conservative overapproxi-
mation.

More formally, we consider a deterministic state machine
M = (S,s0,2,A,6,¢), atrace T € ¥*, and a particular input
i € 3. The state machine begins in state sy and executes T,
transitioning to state st = §*(sp, T). It then executes input i
producing output o = €*(sg,Ti) = e(st,i). Wat-provenance
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aims to formalize an intuitive notion of why the state ma-
chine M produces output o when given input i. We build this
intuitive notion by way of a sequence of examples, ultimately
leading to the definition of wat-provenance.

Example 3.1. Consider a key-value server state machine
M with an input alphabet that consists of sets and gets to
integer-valued variables that are initially 0. Consider the
trace

T = set(x,1);set(y,2)

that consists of two requests: one that sets the value of x
to 1 and one that sets the value of y to 2. Consider request
i = get(x) that requests the value of x. When M processes
trace T and then input i, it expectedly outputs 1 (i.e. 0 =
€"(so,Ti) = 1).

Why did M output 1? In this trivial example, M returned 1
as the value of x because the first request in T set x’s value to
1. More formally, the subtrace T’ = set(x, 1) of T suffices to
generate the output of 1 (i.e. €*(so,T’i) = 0). The lesson here
is that the cause of an output o is a subtrace of the input
that is sufficient to generate 0. We call such a subtrace a
witness of o.

However, the entire trace T is also a witness. That is, T
also suffices to generate an output of 1. But, the set(y,2)
request is not relevant to our get(x) request, so we shouldn’t
include it as a cause of our output. Thus, we revise our earlier
observation; the cause of an output o is a subtrace of the
input that is sufficient to generate o and is also in some
sense minimal. We will define minimality more carefully
below.

Example 3.2. Consider a state machine M that stores a set
of boolean-valued variables that are initially false. Users can
set variables to true or false and can request that M evaluate
a formula over these variables. For example, consider the
trace

T = set(a); set(b); set(c); set(d)
that sets variables a, b, ¢, d to true. Further, consider the input
i = eval((aAd)V(bAc)) that requests M evaluate the formula
(and) Vv (bAc). o= ¢€"(so,Ti)is expectedly true; a,b,c,d are
all true, so the formula evaluates to true.

Why did M output true? Well, there are two reasons. The
first is the subtrace T,; = set(a); set(d), and the second is
the subtrace Ty = set(b); set(c). Both of these subtraces are
witnesses of 0, so we should include both in an explanation
of our output. We again revise the lesson from our previous
example; the cause of an output o is a set of witnesses
of o.

Example 3.3. Consider again the state machine M from
the previous example, and consider the trace

T = set(a); set(b); set(c)
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and request i = eval((a A =b) V ¢). 0 = €"(so,Ti) is true.
a A —b evaluates to false because —b is false, but c is true,
so (a A =b) V c is true. Why did M output true? Well, as we
just explained (a A —=b) V c is true solely because c is true.
Thus, the subtrace T, = set(c) should be the only explanation.
However, the subtrace T, = set(a) is also a witness! If M
executes T, and then i, M will output true.

This is certainly not what we want. set(a) does not con-
tribute to our output, so it should be excluded. The problem
here is that the subtrace T, does not include the set(b) re-
quest that ultimately keeps the set(a) request from satisfying
the formula. From this, we see that in order for a witness T’
to be a good explanation of a particular output o, it must
be that every supertrace of T’ in T is also a witness of
0. Typ = set(a); set(b) is a supertrace of T, in T, but T,;, does
not suffice to generate o. Thus, a is not a valid witness.

Combining our lessons from Example 3.1, Example 3.2, and
Example 3.3, we arrive at our definition of wat-provenance.
Given a state machine M, an input trace T, an input i, and the
corresponding output o = €*(so, Ti), we say that a subtrace T’
of T is a witness of o if €*(sp,T’i) = 0. We say that a witness
T’ of 0 is closed under supertrace in T if every supertrace
of T" in T is also a witness of 0. Let Wit(M,T,i) be the set of
witnesses of o that are closed under supertrace in T. The wat-
provenance of input i with respect to M and T, abbreviated
Wat(M,T,i), is the set of minimal elements of Wit(M,T,i).
That is, Wat(M,T,i) consists of every witness T’ of o such
that (1) T’ is closed under supertrace in T, and (2) no proper
subtrace of T’ is also a witness of o that satisfies (1)2. Note
that we formally define wat-provenance with respect to an
input i, but colloquially discuss wat-provenance with respect
to the corresponding output o.

3.3 CanIGet a Witness?

We now provide a few more simple examples involving wat-
provenance to illustrate the definition. In Section 4, we de-
scribe the wat-provenance of realistic services such as Redis,
Zookeeper, and S3.

Example 3.4. Consider again the key-value server state
machine from Example 3.1, the trace

T = ayazas = set(x,1); set(x,2); set(x,1)

and the input i = get(x). 0 = €*(s0,Ti) = 1. To compute
Wat(M,T,i) (the wat-provenance of o), we first compute

2Note the subtlety that to find Wat(M, T, i), we first list all the wit-
nesses of o that are closed under supertrace and then remove the
non-minimal elements. We do not list all the minimal witnesses and
then remove the ones that are not closed under supertrace in T. Infor-
mally, wat-provenance is minimal(closed_under_supertrace(witnesses)),
not closed_under_supertrace(minimal(witnesses)). These two are not the
same. See Example 3.5, for example.
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Wit(M,T,i): the witnesses of o that are closed under super-
trace in T.

Ts = a3 = set(x,1) suffices to generate o and is closed
under supertrace in T because the proper supertraces a;as,
azas, and ajazas all generate o. So, Ts € Wit(M,T,i). By a
similar line of reasoning, we also find that a;as, azas, and
aiazas are in Wit(M, T, ).

The subtrace T} = a; = set(x, 1) is also a witness of o, but
it is not closed under supertrace in T because the supertrace
ajay = set(x,1); set(x,2) does not generate o. Thus, T; is not
in Wit(M, T,i) and therefore not in Wat(M, T, i). Intuitively
this is correct because it is the second set(x,1) command,
not the first, that causes the value of x to ultimately be 1.

All other subtraces of T are not witnesses of o. Thus,
Wit(M,T,i) = {as,aas,azas,ayazas} which has unique min-
imal element a3. Thus, Wat(M,T,i) = {as}.

Example 3.5. Consider again the key-value server state
machine from Example 3.1 and Example 3.4 with the input
alphabet expanded to include additions and subtractions to
a particular variable. Consider the trace

T = ayazasaq = set(x,42);add(x,1); add(x,2); sub(x,3)

and the request i = get(x). 0 = €"(so, Ti) = 42.

Again, we compute Wit(M,T,i). T suffices to generate o,
and T does not have any proper supertraces in T, so it is
trivially closed under supertrace in T. Thus, T € Wit(M,T,i).
T, = a; = set(x,42) is the only other witness of o, but Tj is
not closed under supertrace in T. Ty = set(x,42);add(x,1) is
asupertrace of T; but does not generate o. Thus, Wit(M,T,i) =
Wat(M,T,i) = {T}.

Note that we first compute the witnesses that are closed
under supertrace in T and then remove the non-minimal
elements. Imagine instead if we had first computed the min-
imal witnesses and then removed the elements that were
not closed under supertrace in T. We would have found
that the sole minimal witness of o0 was T;. Then, we would
have filtered out T} because, as we just saw, it is not closed
under supertrace in T. This would leave us with an empty
wat-provenance!

Example 3.6. Consider a relational database state machine
M. The input alphabet of M includes commands to insert a
tuple into M and to execute a relational algebra query against
M. Initially, all relations are empty. Consider the trace

T = ajayas = insert(R, t); insert(R,u); insert(S, u)

that inserts tuple ¢ into relation R, inserts tuple u into relation
R, and inserts tuple u into relation S. Consider the request
i = query(R — S) that queries the set difference R — S of R
and S. o = €*(sp, Ti) = {t} is the set of only the tuple ¢.
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We first compute Wit(M,T,i). There are only three wit-
nesses of o: ay, ajas, and a;asas. a; is not closed under su-
pertrace in T because the supertrace a;a; does not gen-
erate o. The other two traces, a;as and a;asas, are closed
under supertrace. Thus, Wit(M,T,i) = {ajas,ajazas}, and
Wat(M,T,i) = {aias}.

3.4 Wat-Provenance Properties

Example 3.1 through Example 3.6 demonstrate that our def-
inition of wat-provenance accurately models our intuition
about data provenance for state machines. We now discuss
how wat-provenance relates to why-provenance and causal-

ity.
Cramm 1. Wat-provenance subsumes why-provenance.

Intuitively, wat-provenance generalizes why-provenance
from relational databases to arbitrary state machines. We
can formalize this intuition in the following way.

Let M be a general relational database state machine (first
introduced in Example 3.6) that allows for the insertions
of tuples and the execution of monotone relational queries
(i.e. queries composed of the monotone relational algebra
operators select, project, join and union). Let I be an arbitrary
database instance, and let T be a trace which inserts every
tuple in I. Let input i = in(¢,Q) be an input which returns
a boolean that indicates whether tuple ¢ is in the result of
evaluating query Q on instance I. Then, viewing a subtrace
T’ as a subinstance I’ C I, Wat(M,T,i) = MWhy(Q,I,t).

Proving this fact is straightforward. If ¢t ¢ Q(I), then
0o = €"(s,Ti) returns false and Wat(Q,I,t) consists only
of the empty trace, indicating that MWhy(Q, I, ¢) is empty.
Otherwise t € Q(I) and o returns true. Consider a witness
T’ € Wat(M,T,i). T’ suffices to generate o, so the corre-
sponding instance I’ suffices to generate t. Moreover, because
Q is monotone and T does not contain any deletions, every
witness T’ is closed under supertrace in T. Thus, T’ (and
hence I’) is a minimal witness. The proof of the converse—
showing that every I’ € MWhy(Q,I,t) has a corresponding
subtrace T’ € Wat(M,1,t)—is symmetric.

Unfortunately, wat-provenance’s generality does not come
for free. Given a query Q, tuple ¢, and instance I, it is possi-
ble to automatically compute MWhy(Q, I,t) because queries
are constructed from a fixed set of simple relational opera-
tors. As we discuss in Section 4, it is normally intractable to
automatically compute the wat-provenance of a particular
state machine because, unlike relational queries, these state
machines can have arbitrarily complex semantics.

CLaM 2. Wat-provenance refines causality.

While wat-provenance generalizes why-provenance, it re-
fines causality in the following sense. Consider a state ma-
chine M that executes a trace T and then an input request i.
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The causal history of i includes every single request in T (and
the causal history of every request in T) whether or not the
request in T actually did influence the output of executing
request i. Wat-provenance instead returns the subtraces of
T that are actual causes.

Note that wat-provenance returns a set of witnesses that
are local to a particular node. Wat-provenance does not re-
turn the causal history of these witnesses, which includes
messages sent by other nodes in the distributed system. In
Section 5, we see how to enrich wat-provenance with this
information.

3.5 Limitations

To clarify the strengths of wat-provenance, we pause to
discuss its limitations.

Wat-provenance is not GDB. Wat-provenance is a high-
level debugging technique. It can be used to identify the
necessary and sufficient inputs that cause a state machine to
produce a particular output (the why), but unlike low-level
debugging tools like GDB, it cannot describe the details of
the code that actually produces a particular output (the how).

To make things concrete, consider again our motivating ex-
ample from Section 3.1 in which two of Ava’s requests were
reordered, allowing Bob to erroneously see Ava’s mean com-
ment. We can use wat-provenance to debug scenarios like
this one. These types of scenarios require us to reason about
which messages affect other messages, to reason about how
events are ordered with respect to one another, and to rea-
son about how data is transferred across multiple machines
across a span of time. On the other hand, wat-provenance
cannot help us understand why, for example, a particular
node is segfaulting; we need a lower-level tool like GDB for
this.

Thus, we view wat-provenance and GDB-like debuggers
as complementary. When debugging, a developer can use
wat-provenance to trace the root cause of a bug across a
system, narrowing their attention down to only the relevant
inputs. Then, if needed, they can use a low-level debugger
like GDB to discover the details of what’s going wrong.

Wat-provenance requires determinism. Wat-provenance is
defined with respect to deterministic state machines, yet
many pieces of code are nondeterministic. For example, the
behavior of many weakly consistent distributed systems
depend on the non-deterministic ordering of messages in the
network. Similarly, some load balancers intentionally use
randomness when deciding which machine should receive a
particular request. Wat-provenance specifications cannot be
applied to nondeterministic systems like these. We leave a
generalization of wat-provenance to nondeterministic state
machines as an interesting avenue for future work.
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4 WAT-PROVENANCE SPECIFICATIONS

Now that we have defined wat-provenance, we turn to the
matter of computing it.

4.1 Provenance Specifications

Automatically computing the wat-provenance for an arbi-
trary distributed system component, which we dub a black
box, is often intractable and sometimes impossible. Com-
puting the wat-provenance of a black box requires that we
analyze the black box’s implementation to extract the rela-
tionships between the inputs and outputs of the black box. Be-
cause black box implementations can be large and complex,
this program analysis is almost always intractable. Worse,
we may not have access to the source code of the black box
at all. For example, cloud services like Amazon S3 or Google
Cloud Spanner have proprietary implementations. In this
case, automatically computing wat-provenance is impossible.

Though automatically computing the wat-provenance for
an arbitrary black box is intractable, we can take advantage
of the fact that many real-world black boxes are far from
arbitrary. Many black boxes have complex implementations
but are designed with very simple interfaces. This allows us
to sidestep the issue of inferring wat-provenance from an
implementation and instead specify wat-provenance directly
from an interface. That is, we can write a wat-provenance
specification: a function that—given a trace T and request
i—directly returns the wat-provenance Wat(M,T,i) for a
black box modeled as state machine M.

For example, if we restrict our attention to the get and
set API of Redis, then the wat-provenance specification of
a get request is trivial: the wat-provenance of a get request
for key k includes only the most recent set to k. Redis is
implemented in over 50,000 lines of C. Analyzing this body
of code and inferring the wat-provenance of a get request is
infeasible using modern program analysis techniques. Wat-
provenance specification avoids this issue entirely and in-
stead specifies the wat-provenance in a single line of text.

Moreover, codifying this one-line wat-provenance specifi-
cation is expectedly straightforward. Wat-provenance speci-
fications are implemented as functions that take in a trace T
and an input i and return the wat-provenance of i. Thus, wat-
provenance specifications can be written in any program-
ming language and can use any language features available.
Wat-provenance specifications do not have to be written
using any special domain specific language or using any
restricted subset of a language.

As a simple example, we provide a Python implementa-
tion of the wat-provenance specification in Figure 4. The
specification, get_prov, takes in a trace T and a get request
i for key k. Redis requests are represented as objects of
type Request with subclasses GetRequest and SetRequest.
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get_prov iterates through the trace in reverse order, looking
for a set request to key k. If such a set request is found,
get_prov returns it. Otherwise, get_prov returns an empty
witness.

def get_prov(T: List[Request], i: GetRequest):
for a in reversed(T):
if (isinstance(a, SetRequest)
and a.key == i.key):
return {[al}
return {[1}

Figure 4: A Python implementation of a Redis get re-
quest wat-provenance specification

In Section 5, we present a prototype implementation of
a system for writing wat-provenance specifications and de-
scribe the details of how the system collects traces. In this
section, we omit these details and focus on the concepts
behind wat-provenance specifications.

4.2 Examples

The wat-provenance specification of a Redis get request
is particularly simple, but in our experience this simplic-
ity is not completely uncommon. We now survey a variety
of commonly used black boxes that have relatively simple
wat-provenance specifications. Later, we discuss some black
boxes for which writing wat-provenance specifications is
more difficult.

Key-Value Stores. We have already seen a wat-provenance
specification for the get and set API of Redis. We can easily
extend our wat-provenance specification to handle more of
Redis’ APL For example, consider the operations append,
decr, decrby, incr, and incrby that all modify the value as-
sociated with a particular key. With these operations present
in a trace, the wat-provenance specification for a get re-
quest to key k now includes the most recent set to k and all
subsequent modifying operations to key k.

Object Stores. We can also write wat-provenance speci-
fications for storage systems that are more complex than
key-value stores. For example, consider an object store like
Amazon S3 where users can create, move, copy, list, and get
buckets and objects. The wat-provenance specification for
the get of an object o in bucket b includes the most recent
creation of the bucket b and the most recent creation of o. If a
bucket or object was created by a move, then the provenance
also includes the provenance of the moved bucket or object.
The wat-provenance of a request to list the contents of a
bucket includes the most recent creation of the bucket, the
most recent creation of every object in the bucket, and the
deletion of any object that was previously in the bucket.
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Distributed File Systems. We can specify the wat-provenance
of a distributed file system like HDFS. A wat-provenance
specification of a request to read a byte range from a file
includes the most recent creation of the file, the most recent
creation of the parent directories of the file, and the most
recent writes that overlap with the requested byte range. If
the file was created by moving another file, then the wat-
provenance specification also includes the provenance of the
file that was moved.

Coordination Services. Systems use coordination services
like Apache Zookeeper [16] and Chubby [6] for leader elec-
tion, mutual exclusion, etc. Take Zookeeper as an example.
Zookeeper’s API resembles that of a file system; users can
create, delete, write, and read file-like objects called znodes.
Though the implementation of Zookeeper and HDFS are rad-
ically different, their APIs (and thus their wat-provenance
specifications) are similar. For example, the wat-provenance
specification of a request to read a znode includes the most
recent creation of the znode and the most recent creations
of all ancestor znodes.

Load Balancers. Consider a load balancer, like HAProxy,
that is balancing load across a set s1,. . .,s, of n servers. Peri-
odically, a server s; sends a heartbeat to the load balancer that
includes s;’s average load for the last five minutes. When-
ever the load balancer receives a message from a client, it
forwards the message to the server s; that is least loaded.
Modelling the forwarding decision s; as the output of the
load balancer, the wat-provenance specification for the for-
warding decision includes the most recent heartbeat message
from the least-loaded server.

Stateless Services. A stateless service is a service that can
be modelled as a state machine with a single state. Given a
request, a stateless service always produces the same reply,
no matter what other requests it has already serviced. For
example, a web server serving a static website is stateless; it
replies to all requests with the same website. Wat-provenance
specifications of a stateless service are trivial. Requests are
completely independent, so the wat-provenance of any re-
quest consists only of the empty witness.

4.3 Limitations

Though wat-provenance specifications are often simple to
write, they are not a panacea. Here, we discuss some limita-
tions of wat-provenance specifications.

Complex wat-provenance specifications. There are some
black boxes for which writing a wat-provenance specifica-
tion is inherently very difficult. For example, consider a state
machine that implements an online support vector machine
(SVM) [4, 15, 22]. Clients can either (a) submit training data to
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the state machine to update the model or (b) submit test data
to the state machine for classification. The wat-provenance
of a classification request includes only the support vectors
of the model at the time of classification. Writing a wat-
provenance specification to identify these support vectors
is possible but very difficult. Such a wat-provenance specifi-
cation would likely be as complicated as the state machine
itself.

Buggy black boxes. We have thus far tacitly assumed that
black boxes like Redis faithfully implement their advertised
interfaces. However, if a black box is buggy and deviates from
its expected behavior, then a wat-provenance specification
will produce erroneous provenance. In other words, wat-
provenance specifications are written with respect to the
semantics of an abstract state machine. If a particular black
box does not concretely implement these semantics, then
the wat-provenance specification is incorrect.

5 WATERMELON

In this section, we present Watermelon: a prototype dis-
tributed debugging framework that leverages the theoretical
foundations of wat-provenance and wat-provenance specifi-
cations.

Watermelon uses wat-provenance specifications to gener-
ate the provenance of data as it transits through the black
box components of a distributed system. To write a wat-
provenance specification for a black box, a developer must
first wrap the black box in a Watermelon shim. A shim acts
as proxy, intercepting all inbound requests sent to a black
box and all outbound replies produced by a black box. Wa-
termelon shims provide two key pieces of functionality.

First, Watermelon shims are responsible for recording the
trace T of requests that are sent to a black box, as well as
the corresponding replies produced by the black box. These
traces are later used as the inputs to wat-provenance spec-
ifications. Currently, Watermelon shims persist traces in a
relational database.

Second, Watermelon shims implement a simple distributed
tracing service. Whenever a Watermelon shim receives a re-
quest, it records the address of the message’s sender along
with the request. Similarly, whenever a Watermelon shim
sends a request, it records the address of the message’s
destination. This enables a developer to integrate the wat-
provenance of multiple black boxes within a distributed sys-
tem. To find the cause of a particular black box output, we
invoke the black box’s wat-provenance specification. The
specification returns the set of witnesses that cause the out-
put. Then, we can trace a request in a witness back to the
black box that sent it and repeat the process, invoking the
sender’s wat-provenance specification to get a new set of
witnesses.
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After a user has written a black box’s shim, they can write
the black box’s wat-provenance specification. Watermelon
wat-provenance specifications are simple scripts written in
a developer’s choice of either SQL or Python. Given a par-
ticular black box request, a wat-provenance script computes
the corresponding wat-provenance with respect to the black
box’s trace (which is persisted in a relational database by the
black box’s shim).

6 EVALUATION

In this section, we answer two questions: (1) How difficult is
it to write wat-provenance specifications? and (2) How do
wat-provenance and wat-provenance specifications compare
to other debugging techniques? We answer question 1 in
Section 6.1 and question 2 in Section 6.2.

6.1 Wat-Provenance Specifications

In Section 4, we argued that many commonly used distributed
system components have relatively simple wat-provenance
specifications. In this subsection, we substantiate our argu-
ment with concrete wat-provenance specifications for Re-
dis, a subset of the POSIX file system API, Amazon S3, and
Zookeeper. We implemented these wat-provenance speci-
fications using Watermelon. Table 1 lists the language in
which we wrote each provenance specification, the lines of
code required to write each specification, the number of APIs
supported by each specification, and the API supported by
each specification.

We found it simple to write wat-provenance specifications
for 17 of the 20 APIs. We found specifying three of the APIs
slightly more challenging, but still relatively straightforward.
First, specifying the read of a byte range in a file system re-
quired us to find the most recent write to each segment of the
byte range. This required us to scan backwards through the
trace, maintaining a disjoint set of byte ranges. Second, spec-
ifying the catting and listing of objects in Amazon S3 was
complicated by the fact that objects could be moved across
buckets. Thus, computing the wat-provenance required com-
puting the transitive wat-provenance of objects that have
been moved and copied.

As we discussed in Section 4.3, this does not mean that all
black boxes have simple wat-provenance specifications, but
it corroborates the claim that many commonly used black
boxes do.

6.2 Debugging with Wat-Provenance

How do wat-provenance and wat-provenance specifications
compare to other debugging techniques? We answer this
question by comparing Watermelon, our prototype wat-
provenance debugger, against two other debugging tech-
niques: SPADE [12] and printf debugging. We qualitatively
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Table 1: Watermelon wat-provenance specifications

System Language LOC Number of APIs Supported API

Redis SQL 30 9 get, set, del, append, incr, decr, incrby, decrby, strlen

POSIX Python 88 2 reading and writing byte ranges

Amazon S3 Python 200 5 creating, copying, catting, removing, and listing objects and buckets
Zookeeper  SQL 70 4 creating, reading, writing, and listing znodes

evaluate the three debugging techniques using four metrics—
ease of adoption, runtime overhead, high-level debugging
support, and low-level debugging support—which we will
explain momentarily. This qualitative analysis is summarized
in Table 2.

6.2.1 SPADE. SPADE [12] is a framework that collects
provenance information from arbitrary black boxes in a dis-
tributed system. SPADE collects provenance information
from a variety of sources including operating system audit
logs, network artifacts, LLVM instrumented applications,
and applications dynamically instrumented for taint anal-
ysis. These techniques are the current state of the art in
extracting the provenance of unmodified black boxes. For
the sake of brevity, we will focus only on the provenance
that SPADE collects from operating system audit logs and
LLVM instrumented applications.

Ease of Adoption. Our first metric, ease of adoption, is a
measure of how difficult it is for a developer to set up the in-
frastructure required to use a particular debugging technique.
Ease-of-adoption does not include the difficulty of actually
debugging using a debugging technique; it only includes the
difficulty of making a system amenable to the debugging
technique. The ease of adoption of SPADE, for example, is
very low. For SPADE to collect operating system audit logs,
binaries can be run unmodified. To collect LLVM call graphs,
binaries have to be compiled with LLVM instrumentation,
but the code itself remains unchanged.

Runtime Overhead. Our second metric, runtime overhead,
is a measure of the performance overheads that a debugging
technique imposes on a system. When SPADE collects op-
erating system audit logs, it imposes a negligible amount of
runtime overhead, as operating system audit logs are created
whether or not SPADE is being used. LLVM instrumented bi-
naries, on the other hand, run significantly slower than their
uninstrumented counterparts. As a simple example, on an
Amazon EC2 m5.xlarge instance, we measured that a single
Redis client required 2.45 seconds to send 100,000 synchro-
nous PING operations to a default configured Redis server
running on the same machine. When we compiled the Redis
server with LLVM instrumentation, the client required 29.76
seconds, an order of magnitude decrease in throughput.

High- and Low-Level Debugging Support. Our third and
fourth metrics, high-level debugging support and low-
level debugging support, are measures of whether a de-
bugging technique facilitates high-level and low-level debug-
ging. As we described in Section 3.5, high-level debugging
involves understanding which events in a distributed system
cause each other, how events are ordered with respect to
one another, etc. Conversely, low-level debugging involves
reasoning about the details of how a particular program
executes.

We ran SPADE—with audit logging and LLVM instrumen-
tation enabled—against a trivial workload consisting of a
single set and get to Redis. SPADE produced 1,087 audit
log provenance entries and 1,118,764 LLVM instrumenta-
tion provenance entries. High-level debugging with either
of these sources of provenance is difficult due to the prove-
nance’s size and detailed nature. Understanding the reported
provenance requires either an understanding of how par-
ticular syscalls relate to Redis” source code (for audit logs)
or a detailed understanding of Redis” implementation (for
LLVM instrumentation). Low-level debugging with audit
logs is challenging, because the audit logs lack information
about the execution of the code being debugged (besides the
syscalls that it makes). Low-level debugging with LLVM in-
strumentation is easier but still challenging due to the sheer
volume of provenance information produced.

6.2.2 printf Debugging. “printf debugging” is the ad-
hoc debugging technique in which a developer adds printf
statements (or log statements) to the various components of a
distributed system and then debugs the system by analyzing
the resulting logs.

Ease of Adoption. The ease of implementing printf debug-
ging depends on (a) how many log statements a developer
wants to add and (b) the piece of code to which a developer
wants to add log statements. It is relatively easy for a de-
veloper to add logging to a piece of code that they wrote
because they know where and what to log. If the code is a
complex piece of open source software (e.g. Apache Cassan-
dra, Apache Zookeeper), then adding log statements requires
understanding at least part of the software’s implementation.
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Table 2: A qualitative comparison of debugging techniques

Debugging Technique Ease Of Adoption Runtime Overheads Supports High-Level Supports Low-Level

Debugging Debugging
SPADE (Audit Logs)  easy low no some
SPADE (LLVM) easy high no yes
printf Debugging easy—impossible  low some yes
Watermelon easy—hard medium yes no

If the code is closed-source (e.g. Cloud Spanner, Amazon
Redshift), then adding log statements is impossible.

Runtime Overheads. The overheads of logging are typically
negligible compared to heavier weight techniques like LLVM
instrumentation or Watermelon shims.

High- and Low-Level Debugging Support. The ability to
perform high- and low-level debugging with log statements
is challenging to characterize. It varies from easy to diffi-
cult based on the complexity of the bug being debugged, the
quantity and quality of logs, etc. Still, for high-level debug-
ging, there is an unavoidable burden imposed by printf
debugging. Developers have to make sure enough informa-
tion is logged, collect logs from a number of machines (some
of which might have crashed), filter out irrelevant entries
from the potentially voluminous logs, and trace data across
multiple logs.

6.2.3 Watermelon.

Ease of Adoption. To adopt Watermelon, a developer must
first write wat-provenance specifications for each compo-
nent in the system. As we discussed, many distributed system
components have relatively simple wat-provenance speci-
fications for which adopting Watermelon is relatively easy,
while some components have very complex wat-provenance
specifications that make Watermelon more challenging to
adopt.

Runtime Overheads. Watermelon shims introduce a non-
negligible amount of runtime overhead by intercepting net-
work messages and periodically persisting traces. We mea-
sured the performance overheads of Watermelon shims on
trivial workload in which a Redis client performs a series
of SET operations against a Redis server. Watermelon shims
decreased the system’s throughput by 41.4%. While some of
this performance degradation is an artifact of our prototype,
some is inherent to shims.

High- and Low-Level Debugging Support. Watermelon’s
greatest strength is that it makes high-level debugging easy.
Wat-provenance formalizes the intuitive notion of which

inputs in a distributed system cause a particular output. Wat-
provenance specifications allow a developer to codify these
intuitions and automatically use them to filter irrelevant
information when debugging. By refining causality, wat-
provenance also allows developers to reason about the or-
dering of events in a distributed system without having to
manually trace events through a set of logs. Conversely, Wa-
termelon must be paired with another system to support
low-level debugging.

As a simple experiment, we again ran our trivial workload
consisting of a single set and get to Redis. Whereas SPADE
produced 1,089 audit log provenance entries and 1,118,764
LLVM instrumentation provenance entries, Watermelon pro-
duced 8 provenance entries: the get and set request and
response recorded on the client and the server.

7 RELATED WORK

Data Provenance. When discussing data provenance, we
have focused primarily on why-provenance, as wat-provenance
is a generalization of why-provenance. However, there are
other forms of data provenance. How-provenance [13] for-
malizes not only why a particular output is produced by a
relational query, but also how. Where-provenance [5] formal-
izes the set of input attributes that contribute to an output
attribute. In [8], Cui et al. provide algorithms for computing
the provenance of more generic data transformation oper-
ators that satisfy certain properties (e.g., homomorphisms,
aggregators). In [36], Woodruff et al. use weak inverse func-
tions to compute the provenance of generic operators. Why-,
how-, and where-provenance are all limited to the domain
of relational queries, and all five forms of provenance are
limited to the domain of data transformations applied to
static data. Wat-provenance is applicable to state machines
with state that varies over time.

Black Box Provenance. RDataTracker [23], noWorkflow
[27], and SPADE [12] are frameworks that attempt to record
the provenance of data through an arbitrary black box using
general purpose low-level provenance tracing techniques.
RDataTracker and noWorkflow use reflection and runtime in-
formation to track the provenance of data through minimally
annotated R and Python scripts. SPADE collects provenance
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information from operating system audit logs, network ar-
tifacts, LLVM instrumented applications, and applications
dynamically instrumented for taint analysis. The benefit of
these frameworks is their generality. However, their general-
ity comes at the cost of verbosity. These provenance frame-
works produce a large amount of low-level implementation-
specific provenance information that can be challenging to
interpret.

Data-Dependent Process Provenance. A data-dependent pro-
cess (DDP) is a finite state machine that evaluates queries
against a relational database to determine some transitions
and uses external requests to trigger other transitions [9,
10]. In [9] and [10], Deutch et al. extend provenance semir-
ings [13] to linear temporal logic formulas issued against
a DDP. Both DDP provenance and wat-provenance aim to
extend traditional data provenance to state machines, but
they do so in very different ways. DDP provenance is used
to explain how particular execution traces may arise. Wat-
provenance, on the other hand, aims to explain why a state
machine generates a particular output with respect to a fixed
trace of inputs.

Network Provenance. Network provenance was originally
introduced in [41] as a generalization of data provenance to
programs written in the extended relational language ND-
Log [25]. ExSPAN [41] and DistTape [40] are two accompa-
nying implementations that record the network provenance
of a distributed system implemented in NDLog. The network
provenance of a piece of data is tied to the particular NDLog
program that created it, whereas wat-provenance is defined
with respect to abstract state machines instead of concrete
implementations. As a result, network provenance provides
finer grained debugging information than wat-provenance,
but is applicable only to systems written in NDLog. Wat-
provenance provides coarser grained debugging information,
but is applicable to arbitrary state machines.

Scientific Workflow Systems. Scientific workflow systems
like Taverna [35], Kepler [1], Pegasus [19], and Swift [37]
can be used to structure complex computational tasks as a
graph, composing tasks by connecting the outputs of one
task to the inputs of another. These systems are limited to the
workflow languages that they support, and these languages
are not typically used to build distributed systems. They
also assume that the inputs to a workflow are static. Wat-
provenance formalizes provenance for arbitrary distributed
systems composed of time-varying state machines.

DISC Provenance. Data intensive scalable computing (DISC)
frameworks like Apache Hadoop [32] and Apache Spark [38]
can execute data-parallel programs on massive amounts
of data both efficiently and with fault tolerance. Work on
GMRW provenance [17] and systems like BigDebug [14],

M. Whittaker, C. Teodoropol, P. Alvaro, J. Hellerstein

Titian [18], RAMP [28], and Newt [24] augment DISC frame-
works with data provenance. Unlike wat-provenance, DISC
provenance is restricted to the domain of data intensive com-
putations over static data and cannot be applied to other
distributed systems components like storage systems, co-
ordination services, load balancers, etc. DISC provenance
frameworks take advantage of operator interfaces (e.g., map,
filter, aggregate) to construct lineage of arbitrary operator im-
plementations similar to how wat-provenance specifications
are written against high-level interfaces instead of imple-
mentations.

Distributed Tracing Tools. Distributed tracing tools like
Dapper [33], X-trace [11], Magpie [3], Stardust [34], and
Iprof [39] allow programmers to trace messages through
large and complex distributed systems that span multiple
nodes and administrative domains. The fundamental dis-
tinction between distributed traces and wat-provenance is
that distributed traces do not carry historical information
that link prior inputs to present outputs. For example, traces
may show you which clients contacted a key-value store
and when, but they will not show you which requests wrote
the values that later requests read back. Also note that Iprof,
unlike other tracing tools, constructs traces by analyzing sys-
tems’ existing logs. In the future, we plan to explore whether
we can use a similar technique to construct traces.

8 CONCLUSION

This paper identified inadequacies in existing formalisms
used to reason about the causes of events in distributed sys-
tems. Causality overapproximates the true cause of an event,
and data provenance is restricted to the domain of static (typ-
ically relational) data. We then presented wat-provenance: a
novel form of provenance that generalizes why-provenance
and refines causality. We then discussed how to sidestep the
complexity of automatic wat-provenance extraction with
wat-provenance specifications written against the high-level
API of a black box.
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