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Abstract

Deep neural networks (DNNs) are vulnerable to
adversarial examples—maliciously crafted inputs that
cause DNNs to make incorrect predictions. Recent work
has shown that these attacks generalize to the physical
domain, to create perturbations on physical objects that
fool image classifiers under a variety of real-world con-
ditions. Such attacks pose a risk to deep learning models
used in safety-critical cyber-physical systems.

In this work, we extend physical attacks to more chal-
lenging object detection models, a broader class of deep
learning algorithms widely used to detect and label mul-
tiple objects within a scene. Improving upon a previous
physical attack on image classifiers, we create perturbed
physical objects that are either ignored or mislabeled by
object detection models. We implement a Disappear-
ance Attack, in which we cause a Stop sign to “disap-
pear” according to the detector—either by covering the
sign with an adversarial Stop sign poster, or by adding
adversarial stickers onto the sign. In a video recorded in
a controlled lab environment, the state-of-the-art YOLO
v2 detector failed to recognize these adversarial Stop
signs in over 85% of the video frames. In an outdoor
experiment, YOLO was fooled by the poster and sticker
attacks in 72.5% and 63.5% of the video frames respec-
tively. We also use Faster R-CNN, a different object de-
tection model, to demonstrate the transferability of our
adversarial perturbations. The created poster perturba-
tion is able to fool Faster R-CNN in 85.9% of the video
frames in a controlled lab environment, and 40.2% of
the video frames in an outdoor environment. Finally, we
present preliminary results with a new Creation Attack,
wherein innocuous physical stickers fool a model into
detecting nonexistent objects.

1 Introduction

Deep neural networks (DNNs) are widely applied in
computer vision, natural language, and robotics, espe-

cially in safety-critical tasks such as autonomous driv-
ing [9]. At the same time, DNNs have been shown to be
vulnerable to adversarial examples [3,6,7, 14, 17], ma-
liciously perturbed inputs that cause DNNs to produce
incorrect predictions. These attacks pose a risk to the
use of deep learning in safety- and security-critical de-
cisions. For example, an attacker can add perturbations,
which are negligible to humans, to a Stop sign and cause
a DNN embedded in an autonomous vehicle to misclas-
sify or ignore the sign.

Early works studied adversarial examples in the digital
space only. However, it has recently been shown that it
is also possible to create perturbations that survive under
various physical conditions (e.g., object distance, pose,
lighting, etc.) [1, 2,4, 8,20]. These works focus on at-
tacking classification networks, i.e., models that produce
a single prediction on a static input image. In this work,
we start exploring physical adversarial examples for ob-
Jject detection networks, a richer class of deep learning
algorithms that can detect and label multiple objects in a
scene. Object detection networks are a popular tool for
tasks that require real-time and dynamic recognition of
surrounding objects, autonomous driving being a canon-
ical application. Object detectors are known to be vul-
nerable to digital attacks [22], but their vulnerability to
physical attacks remains an open question.

Compared to classifiers, object detection networks are
more challenging to attack: 1) Detectors process an en-
tire scene instead of a single localized object. This allows
detectors to use contextual information (e.g., the orienta-
tion and relative position of objects in the scene) to gen-
erate predictions. 2) Detectors are not limited to produc-
ing a single prediction. Instead, they label every recog-
nized object in a scene, usually by combining predictions
of the location of objects in a scene, and of the labeling
of these objects. Attacks on object detectors need to take
both types of predictions (presence/absence of an object
and nature of the object) into account, whereas attacks on
classifiers only focus on modifying the label of a single



(presumably present) object.

To create proof-of-concept attacks for object detectors,
we start from the existing Robust Physical Perturbations
(RP,) algorithm [4] of Eykholt et al., which was origi-
nally proposed to produce robust physical attacks on im-
age classifiers. The approach taken by Eykholt er al.
(as well as by others [1, 8]) is to sample from a distri-
bution that mimics physical perturbations of an object
(e.g., view distance and angle), and find a perturbation
that maximizes the probability of mis-classification un-
der this distribution. We find that the physical perturba-
tions considered in their work are insufficient to extend
to object detectors.

Indeed, when working with image classifiers, prior
works considered target objects that make up a large por-
tion of the image and whose relative position in the image
varies little. Yet, when performing object detection in a
dynamic environment such as a driving car, the relative
size and position of the multiple objects in a scene can
change drastically. These changes produce additional
constraints that have to be taken into account to produce
successful robust physical attacks. Many object detec-
tors, for instance, split a scene into a grid or use a slid-
ing window to identify regions of interest, and produce
separate object predictions for each region of interest.
As the relative position of an object changes, the grid
cells the object is contained in (and the corresponding
network weights) change as well. Robust perturbations,
thus, have to be applicable to multiple grid cells simulta-
neously. We show that robustness to these physical mod-
ifications can be attained by extending the distribution of
inputs considered by Eykholt et al. to account for ad-
ditional synthetic transformations to objects in a scene
(e.g., changes in perspective, size, and position).

Following Eykholt et al., we consider physical adver-
sarial attacks on the detection and classification of Stop
signs, an illustrative example for the safety implications
of a successful attack. The perturbations, while large
enough to be visible to the human eye, are constrained
to resemble human-made graffiti or subtle lighting arti-
facts that could be considered benign. We consider an
untargeted attack specific to object detectors, which we
refer to as a Disappearance Attack. In a Disappearance
Attack, we create either an adversarial poster or physical
stickers applied to a real Stop sign (see Figure 2), which
causes the sign to be ignored by an object detector in dif-
ferent scenes with varying object distance, location, and
perspective. This attack is analogous to the one consid-
ered by Eykholt et al. for image classifiers, but targets a
richer class of deep neural networks.

We further introduce a new Creation Attack, wherein
physical stickers that humans would ignore as being in-
conspicuous can cause an object detector into recogniz-
ing nonexistent Stop signs. This attack differs from prior

attacks that attempt to fool a network into mis-classifying
one object into another, in that it creates an entirely new
object classification. Specifically, we experiment with
creating adversarial stickers (similar to the ones consid-
ered in [2]). Such stickers could for instance be used to
mount Denial of Service attacks on road-sign detectors.
For our experiments, we target the state-of-the-art
YOLO v2 (You Only Look Once) object detector [16].
YOLO v2 is a deep convolutional neural network that
performs real-time object detection for 80 object classes.
Our indoor (laboratory) and outdoor experiments show
that up to distances of 30 feet from the target object,
detectors can be tricked into not perceiving the attacker’s
target object using poster and sticker perturbations.

Our Contributions:

e We extend the RP, algorithm of Eykholt ez al. to
provide proof-of-concept attacks for object detec-
tion networks, a richer class of DNNs than image
classifiers.

e Using our new and improved algorithm, we propose
a new physical attack on object detection networks:
the Disappearance Attack that cause physical ob-
jects to be ignored by a detector.

e We evaluate our attacks on the YOLO v2 object de-
tector in an indoor laboratory setting and an outdoor
setting. Our results show that our adversarial poster
perturbation fools YOLO v2 in 85.6% of the video
frames recorded in an indoor lab environment and in
72.5% of the video frames recorded in an outdoor
environment. Our adversarial stickers fool YOLO
v2 in 85% of the video frames recorded in a labora-
tory environment and in 63.5% of the video frames
recorded in an outdoor environment.

e We evaluate the transferability of our attacks using
the Faster R-CNN object detector in laboratory and
outdoor environments. Our results show that our
attacks fool Faster R-CNN in 85.9% of the video
frames recorded in a laboratory environment and in
40.2% of the video frames recorded in an outdoor
environment.

e We propose and experiment with a new type of Cre-
ation attack, that aims at fooling a detector into
recognizing adversarial stickers as non-existing ob-
jects. Our results with this attack type are prelimi-
nary yet encouraging.

Our work demonstrates that physical perturbations are
effective against object detectors, and leaves open some
future questions: 1) Generalization to other physical set-
tings (e.g., moving vehicles, or even real autonomous ve-
hicles). 2) Further exploration of other classes of attacks:



Our work introduces the disappearance and creation at-
tacks which use posters or stickers, yet there are other
plausible attack types (e.g., manufacturing physical ob-
jects that are not recognizable to humans, but are recog-
nized by DNNs). 3) Physical attacks on segmentation
networks. We envision that future work will build on
the findings presented here, and will create attacks that
generalize across physical settings (e.g., real autonomous
vehicles), and across classes of object detection networks
(e.g., semantic segmentation [22]).

2 Related Work

Adversarial examples for deep learning were first in-
troduced by Szegedy et al. [21]. Since their seminal
work, there have been several works proposing more
efficient algorithms for generating adversarial examples
[3,6,12,14]. All of these works assume that the attacker
has “digital-level” access to an input, e.g., that the at-
tacker can make arbitrary pixel-level changes to an input
image of a classifier. For uses of deep learning in cyber-
physical systems (e.g., in an autonomous vehicle), these
attacks thus implicitly assume that the adversary con-
trols a DNN’s input system (e.g., a camera). A stronger
and more realistic threat model would assume that the
attacker only controls the physical layer, e.g., the envi-
ronment or objects that the system interacts with, but not
the internal sensors and data pipelines of the system.

This stronger threat model was first explored by Ku-
rakin et al. They generated physical adversarial ex-
amples by printing digital adversarial examples on pa-
per [8]. In their work, they found that a significant por-
tion of the printed adversarial examples fooled an image
classifier. However, their experiments were done without
any variation in the physical conditions such as different
viewing angles or distances.

Athalye et al. improved upon the work of Kurakin
et al. by creating adversarial objects that are robust to
variations in viewing angle [1]. To account for such vari-
ations, they model small scale transformations synthet-
ically when generating adversarial perturbations. They
demonstrate several examples of adversarial objects that
fool their target classifiers, but it is not clear how many
transformations their attack is robust to. In their paper,
they state their algorithm is robust to rotations, transla-
tions, and noise and suggest their algorithm is robust so
long as the transformation can be modeled synthetically.

Eykholt et al. also proposed an attack algorithm capa-
ble of generating physical adversarial examples [4]. Un-
like Athalye et al., they choose to model image transfor-
mations both synthetically and physically. Certain image
transformations, such as changes in viewing angle and
distance, are captured in their victim dataset. They apply
other image transformations, such as lighting, syntheti-

cally when generating adversarial examples. Their work
suggests that sole reliance on synthetic transformations
can miss subtleties in the physical environment, thus re-
sulting in a less robust attack. Different from all prior
work that focused on classifiers, our work focuses on
the broader class of object detection models. Specifi-
cally, we extend the algorithm of Eykholt et al. using
synthetic transformations (perspective, position, scale) to
attack object detection models.

Lu et al. performed experiments using adversarial
road signs printed on paper with the YOLO object detec-
tor [11]. Their results suggested that it is very challeng-
ing to fool YOLO with physical adversarial examples.
Our work resolves the challenges and shows that existing
algorithms can be adapted to produce physical attacks on
object detectors in highly variable environmental condi-
tions.

3 Background on Object Detectors

Object classification is a standard task in computer vi-
sion. Given an input image and a set of class labels, the
classification algorithm outputs the most probable label
(or a probability distribution over all labels) for the im-
age. Object classifiers are limited to categorizing a single
object per image. If an image contains multiple objects,
the classifier only outputs the class of the most dominant
object in the scene. In contrast, object detectors both lo-
cate and classify multiple objects in a given scene.

The first proposed deep neural network for object de-
tection was Overfeat [18], which combined a sliding
window algorithm and convolution neural networks. A
more recent proposal, Regions with Convolutional Neu-
ral Networks (R-CNN) uses a search algorithm to gener-
ate region proposals, and a CNN to label each region. A
downside of R-CNN is that the region proposal algorithm
is too slow to be run in real-time. Subsequent works—
Fast R-CNN [5] and Faster R-CNN [19]—replace this
inefficient algorithm with a more efficient CNN.

The above algorithms treat object detection as a two-
stage problem consisting of region proposals followed by
classifications for each of these regions. In contrast, so-
called “single shot detectors” such as YOLO [15] (and
the subsequent YOLO v2 [16]) or SSD [10] run a single
CNN over the input image to jointly produce confidence
scores for object localization and classification. As a re-
sult, these networks can achieve the same accuracy while
processing images much faster. In this work, we focus
on YOLO v2, a state-of-the-art object detector with real-
time detection capabilities and high accuracy.

The classification approach of YOLO v2 is illustrated
in Figure 1. A single CNN is run on the full input image
and predicts object location (bounding boxes) and label
confidences for 361 separate grid cells (organized into a
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Figure 1: For an input scene, the YOLO v2 CNN outputs
a 19 x 19 x 425 tensor. To generate this tensor, YOLO
divides the input image into a square grid of S cells
(§ = 19). For each grid cell, there are B bounding boxes
(B =5). Each bounding box predicts 5 values: probabil-
ity of an object in the cell, co-ordinates of the bounding
box (center X, center y, width, height). Additionally, for
each bounding box the model predicts a probability dis-
tribution over all 80 output classes.

19 x 19 square over the original image). For each cell,
YOLO v2 makes a prediction for 5 different boxes. For
each box, the prediction contains the box confidence (the
probability that this box contains an object), its location
and the probability of each class label for that box. A
box is discarded if the product of the box confidence and
the probability of the most likely class is below some
threshold (this threshold is set to 0.1 in our experiments).
Finally, the non-max suppression algorithm is applied in
a post-processing phase to discard redundant boxes with
high overlap [16].

Such an object detection pipeline introduces several
new challenges regarding physical adversarial examples:
First, unlike classification where an object is always as-
sumed present and the attack only needs to modify the
class probabilities, attacks on a detector network need
to control a combination of box confidences and class
probabilities for all boxes in all grid cells of the input
scene. Second, classifiers assume the object of interest is
centered in the input image, whereas detectors can find
objects at arbitrary positions in a scene. Finally, the ob-
ject’s size in the detector’s input is not fixed. In classifi-

cation, the image is usually cropped and resized to focus
on the object being classified. Object detectors are meant
to reliably detect objects at multiple scales, distances and
angles in a scene.

These challenges mainly stem from object detectors
being much more flexible and broadly applicable than
standard image classifiers. Thus, albeit harder to attack,
object detectors also represent a far more interesting at-
tack target than image classifiers, as their extra flexibil-
ity makes them a far better candidate for use in reliable
cyber-physical systems.

4 Physical Adversarial Examples for Ob-
ject Detectors

We will first summarize the original RP; algorithm, be-
fore discussing the modifications necessary to adapt the
algorithm to attack object detectors.

4.1 The RP; Algorithm

The RP; algorithm proposed by Eykholt et al. optimizes
the following objective function:

argmin A||M, - 6||, + NPS(M, - 5)
5 (1
+]Exi~XVJ(f6 (Xi +Ti(MX : 5))7)’*)

The first term of the objective function is the £, norm
(with scaling factor A) of the perturbation 6 masked by
M,. The mask is responsible for spatially constraining
the perturbation § to the surface of the target object. For
example, in Figure 2, the mask shape is two horizontal
bars on the sign.

The second term of the objective function measures
the printability of an adversarial perturbation. Eykholt et
al. borrow this term from prior work [20]. The printabil-
ity of a perturbation is affected by two factors. First, the
colors the computed perturbation must reproduce. Mod-
ern printers have a limited color gamut, thus certain col-
ors that appear digitally may not be printable. Second, a
printer may not faithfully reproduce a color as it is shown
digitally (see Figure 3).

The last term of the objective function is the value of
the loss function, J(-, -) averaged across all of the images
sampled from XV In practice, this is a set of victim im-
ages. The victim dataset is composed of multiple images
of the object taken under a variety of physical conditions
such as changes in viewing angle, viewing distance and
lighting. 7; is an “alignment function” that applies a digi-
tal transformation that mimics the physical conditions of
victim object x;. For example, if the victim object x; is a
rotated version of the “canonical” target object, then the
perturbation M, - 8 should also be rotated appropriately.



Figure 2: An example of an adversarial perturbation
overlaid on a synthetic background. The Stop sign in
the image is printed such that it is the same size as a U.S.
Stop sign. Then, we cut out the two rectangle bars, and
use the original print as a stencil to position the cutouts

on a real Stop sign.
: |
i |
M | |
(a) Digital Image

QUL

(b) Printer Result of Digital Image

Figure 3: The image in (a) shows the image as it is stored
digitally. The result of printing and taking a picture of the
image in (a) is shown in (b).

Thus, to simulate physical consistency of the perturbed
object, we apply the alignment function 7; to the masked
perturbation. fy(-) is the output of the classifier network,
and y* is the adversarial target class.

4.2 Extensions to RP; for Object Detectors

Our modified version of RP, contains three key differ-
ences from the original algorithm proposed by Eykholt
et al. First, due to differences in the output behavior of
classifiers and object detectors, we make modifications
to the adversarial loss function. Second, we observed ad-
ditional constraints that an adversarial perturbation must
be robust to and model these constraints synthetically.
Finally, we introduce a smoothness constraint into the
objective, rather than using the £, norm. In the follow-
ing, we discuss each of these changes in detail.

4.2.1 Modified Adversarial Loss Function

An object detector outputs a set of bounding boxes and
the likelihood of the most probable object contained
within that box given a certain confidence threshold. See
Figure 1 for a visualization of this output. By contrast,
a classifier outputs a single vector where each entry rep-
resents the probability that the object in the image is of
that type. Attacks on image classifiers typically make use
of the cross-entropy loss between this output vector, and
a one-hot representation of the adversarial target. How-
ever, this loss function is not applicable to object detec-
tors due to their richer output structure. Thus, we intro-
duce a new adversarial loss function suitable for use with
detectors. This loss function is tailored to the specific at-
tacks we introduce in this work.

Disappearance Attack Loss. The goal of the attacker
is to prevent the object detector from detecting the tar-
get object. To achieve this, the adversarial perturbation
must ensure that the likelihood of the target object in any
bounding box is less than the detection threshold (the de-
fault is 25% for YOLO v2). In our implementation of the
attack, we used the following loss function:

Jd(xyy) :maxsesz,beBP(sab’y7f9(x)) (2)

Where fg(x) represents the output of the object detec-
tor (for YOLO v2, this is a 19 x 19 x 425 tensor). P(-) is
a function that extracts the probability of an object class
from this tensor, with label y (in our case, this is a Stop
sign) in grid cell s and bounding box b. We denote x as
the input scene containing our perturbed target object.

Therefore, the loss function outputs the maximum
probability of a Stop sign if it occurs within the scene.
Using this loss function, the goal of the adversary is to
directly minimize that probability until it falls below the
detection threshold of the network.

Creation Attack Loss. We propose a new type of Cre-
ation Attack, wherein the goal is to fool the model into
recognizing nonexistent objects. Similar to the “ad-
versarial patch” approach of [2], our goal is to cre-
ate a physical sticker that can be added to any existing
scene. Contrary to prior work, rather than causing a mis-
classification our aim is to create a new classification
(i.e., a new object detection) where non existed before.
For this, we use a composite loss function, that first
aims at creating a new object localization, followed by
a targeted “mis-classification.” The mask M, is sam-
pled randomly so that the adversarial patch is applied to
an arbitrary location in the scene. As above, let fg(x)
represent the full output tensor of YOLO v2 on input
scene x, and let P(s,b,y, fo(x)) represent the probabil-
ity assigned to class y in box b of grid cell s. Further



let Poox (s,b, fo(x)) represent the probability of the box
only, i.e., the model’s confidence that the box contains
any object. Our loss is then

object = Poox(5,b, fo(x)) > 7
Je(x,y) = object+ (1 — object) - P(s,b,y, fo(x)) (3)

Here, 7 is a threshold on the box confidence (set to 0.2
in our experiments), after which we stop optimizing the
box confidence and focus on increasing the probability of
the targeted class. As our YOLO v2 implementation uses
a threshold of 0.1 on the product of the box confidence
and class probability, any box with a confidence above
0.2 and a target class probability above 50% is retained.

4.2.2 Synthetic Representation of New Physical
Constraints

Generating physical adversarial examples for detectors
requires simulating a larger set of varying physical con-
ditions than what is needed to trick classifiers. In our
initial experiments, we observed that the generated per-
turbations would fail if the object was moved from its
original position in the image. This is likely because a
detector has access to more contextual information when
generating predictions. As an object’s position and size
can vary greatly depending on the viewer’s location, per-
turbations must account for these additional constraints.

To generate physical adversarial perturbations that are
positionally invariant, we chose to synthetically model
two environmental conditions: object rotation (in the Z
plane) and position (in the X-Y plane). In each epoch
of the optimization, we randomly place and rotate the
object. Our approach differs from the original approach
used by Eykholt et al., in that they modeled an object’s
rotation physically using a diverse dataset. We avoided
this approach because of the added complexity necessary
for the alignment function, 7;, to properly position the ad-
versarial perturbation on the sign. Since these transfor-
mations are done synthetically, the alignment function,
T;, simply needs to use the same process to transform the
adversarial perturbation.

4.2.3 Noise Smoothing using Total Variation

The unmodified RP, algorithm uses the ¢, norm to
smooth the perturbation. However, in our initial exper-
iments, we observed that the £, norm results in very
pixelated perturbations. The pixelation hurts the suc-
cess rate of the attack, especially as the distance be-
tween the viewer and the object increases. We found that
using the total variation norm in place of the £, norm
gave smoother perturbations, thus increasing the effec-
tive range of the attack. Given a mask, M, and noise 6,

Figure 4: Output of the extended RP; algorithm to attack
YOLO v2 using poster and sticker attacks.

the total variation norm of the adversarial perturbation,
M, -8, is:

TV(M,-§) =
Z|(Mx'5)i+l,j* (My-6); ;] 4)
ij

+|(Mx - 8)ij+1 — (Mx-8)i ]

where i, j are the row and column indices for the ad-
versarial perturbation. Thus our final modified objective
function is:

argmin ATV (M, - §) + NPS
é

()
+E, xvJa(xi+T:(My - 6),y7)

where J;(-,y*) is the loss function (discussed earlier)
that measures the maximum probability of an object with
the label y* contained in the image. In our attack, y* is a
Stop sign.

5 Evaluation

We first discuss our experimental method, where we
evaluate attacks in a whitebox manner using YOLO v2,
and in a blackbox manner using Faster-RCNN. Then,
we discuss our results, showing that state-of-the-art ob-
ject detectors can be attacked using physical posters and
stickers. Figure 4 shows the digital versions of posters
and stickers used for disappearance attacks, while Fig-
ure 5 shows a digital version of the sticker used in a cre-
ation attack.

5.1 Experimental Setup

We evaluated our disappearance attack in a mix of
lab and outdoor settings. For both the poster and
sticker attacks, we generated adversarial perturbations
and recorded several seconds of video. In each experi-
ment, recording began 30 feet from the sign and ended
when no part of the sign was in the camera’s field of
view. Then, we fed the video into the object detection



Figure 5: Patch created by the Creation Attack, aimed at
fooling YOLO v2 into detecting nonexistent Stop signs.

YOLO v2 Poster Sticker
Indoors 202/236 (85.6%) 210/247 (85.0%)
Outdoors  156/215 (72.5%) 146/230 (63.5%)

Table 1: Attack success rate for the disappearance attack
on YOLO v2. We tested a poster perturbation, where
a true-sized print is overlaid on a real Stop sign, and a
sticker attack, where the perturbation is two rectangles
stuck to the surface of the sign. The table cells show
the ratio: number of frames in which a Stop sign was
not detected / total number of frames, and a success rate,
which is the result of this ratio.

network for analysis. We used the YOLO v2 object de-
tector as a white-box attack. We also ran the same videos
through the Faster-RCNN network to measure black-box
transferability of our attack.

For the creation attack, we experimented with placing
stickers on large flat objects (e.g., a wall or cupboard),
and recording videos within 10 feet of the sticker.

5.2 Experimental Results

We evaluated the perturbations for a disappearance attack
using two different masks and attacked a Stop sign. First,
we tested a poster perturbation, which used an octagonal
mask to allow adversarial noise to to be added anywhere
on the surface of the Stop sign. Next, we tested a sticker
perturbation. We used the mask to create two rectangular
stickers positioned at the top and bottom of the sign. The
results of our attack are shown in Table 1.

In indoor lab settings, where the environment is rel-
atively stable, both the poster and sticker perturbation
demonstrate a high success rate in which at least 85% of
the total video frames do not contain a Stop sign bound-
ing box. When we evaluated our perturbations in an out-
door environment, we notice a drop in success rate for
both attacks. The sticker perturbation also appears to be
slightly weaker. We noticed that the sticker perturbation
did especially poorly when only a portion of the sign was

FR-CNN Poster Sticker
Indoors  189/220 (85.9%) 146/248 (58.9%)
Outdoors  84/209 (40.2%) 47/249 (18.9%)

Table 2: Attack success rate for the disappearance attack
on Faster R-CNN. We tested a poster perturbation, where
the entire Stop sign is replaced with a true-sized print,
and a sticker attack, where the perturbation is two rect-
angles stuck to the surface of the sign. The table cells
show the ratio: number of frames in which a Stop sign
was not detected / total number of frames, and a success
rate, which is the result of this ratio.

in the camera’s field of view. Namely, when the sticker
perturbation began to leave the camera’s field of view,
the Stop sign bounding boxes appear very frequently. In
contrast, this behavior was not observed in the poster per-
turbation experiments, likely because some part of the
adversarial noise is always present in the video due to
the mask’s shape. Figure 7 shows some frame captures
of our adversarial Stop sign videos.

To measure the transferability of our attack, we also
evaluated the recorded videos using the Faster R-CNN
object detection network.!. The results for these experi-
ments are shown in Table 2.

We see from these results that both perturbations trans-
fer with a relatively high success rate in indoor lab set-
tings where the environment conditions are stable. How-
ever, once outdoors, the success rate for both pertur-
bations decreases significantly, but both perturbations
retain moderate success rates. We observe that our
improved attack algorithm can generate an adversarial
poster perturbation, which transfers to other object de-
tection frameworks, especially in stable environments.

Finally, we report on some preliminary results for cre-
ation attacks (the results are considered preliminary in
that we have spent considerably less time optimizing
these attacks compared to the disappearance attacks—it
is thus likely that they can be further improved). When
applying multiple copies of the sticker in Figure 5 to a
cupboard and office wall, YOLO v2 detects stop signs
in 25%-79% of the frames over multiple independent
videos. A sample video frame is shown in Figure 6.
Compared to the disappearance attack, the creation at-
tack is more sensitive to the sticker’s size, surroundings,
and camera movement in the video. This results in highly
variable success rates and is presumably because (due to
resource constraints) we applied fewer physical and dig-
ital transformations when generating the attack. Enhanc-

'We used the Tensorflow-Python implementation of Faster R-CNN
found at https://github.com/endernewton/tf-faster-rcnn
It has a default detection threshold of 80%



Figure 6: Sample frame from our creation attack video
after being processed by YOLO v2. The scene includes
4 adversarial stickers reliably recognized as Stop signs.

ing the reliability and robustness of our creation attack
is an interesting avenue for future work, as it presents a
novel attack vector (e.g., DOS style attacks) for adver-
sarial examples.

6 Discussion

In the process of generating physical adversarial exam-
ples for object detectors, we note several open research
questions that we leave to future work.

Lack of detail due to environmental conditions. We
noticed physical conditions (e.g., poor lighting, far dis-
tance, sharp angles), which only allowed macro features
of the sign (i.e., shape, general color, lettering) to be ob-
served clearly. Due to such conditions, the details of
the perturbations were lost, causing it to fail. This is
expected as our attack relies on the camera being able
to perceive the adversarial perturbations somewhat accu-
rately. When extreme environmental conditions prevent
the camera from observing finer details of the perturba-
tion on the sign, the adversarial noise is lost. We theorize
that in order to successfully fool object detectors under
these extreme conditions, the macro features of the sign
need to be attacked. For example, we could create attach-
ments on the outside edges of the sign in order to change
its perceived shape.

Alternative attacks on object detectors. In this work,
we explored attacking the object detector such that it fails
to locate an object, or that it detects non-existent objects.
There are several alternative forms of attack we could
consider. One alternative is to attempt to generate phys-
ical perturbations that preserve the bounding box of an
object, but alter its label (this is similar to targeted at-
tacks for classifiers). Another option is to generate fur-
ther 2D or even 3D objects that appear nonsensical to a
human, but are detected and labeled by the object detec-
tor. The success of either of these attacks, which have

been shown to work digitally [13,22], would have major
safety implications.

Extensions to semantic segmentation. A broader task
than object detection is semantic segmentation—where
the network labels every pixel in a scene as belonging to
an object. Recent work has shown digital attacks against
semantic segmentation [22]. An important future work
question is how to extend current attack techniques for
classifiers, and detectors (as this work shows) to create
physical attacks on segmentation networks.

Impact on Real Systems. Existing cyber-physical
systems such as cars and drones integrate object de-
tectors into a control pipeline that consists of pre- and
post-processing steps. The attacks we show only target
the object detection component in isolation (specifically
YOLO v2). Understanding whether these attacks are
capable of compromising a full control pipeline in
an end-to-end manner is an important open question.
Although YOLO v2 does recognize a Stop sign in
some frames from our attack videos, a real system
would generally base its control decisions on a majority
of predictions, rather than a few frames. Our attack
manages to trick the detector into not seeing a Stop sign
in a majority of the tested video frames.

Despite these observations, we stress that a key step
towards understanding the vulnerability of the broad
class of object detection models to physical adversarial
examples is to create algorithms that can attack state-of-
the-art object detectors. In this work, we have shown
how to can extend the existing RP, algorithm with posi-
tional and rotational invariance to attack object detectors
in relatively controlled settings.

7 Conclusion

Starting from an algorithm to generate robust physical
perturbations for classifiers, we extend it with positional
and rotational invariance to generate physical pertur-
bations for state-of-the-art object detectors—a broader
class of deep neural networks that are used in dynamic
settings to detect and label objects within scenes. Ob-
ject detectors are popular in cyber-physical systems such
as autonomous vehicles. We experiment with the YOLO
v2 object detector, showing that it is possible to physi-
cally perturb a Stop sign such that the detector ignores
it.  When presented with a video of the adversarial
poster perturbation, YOLO failed to recognize the sign
in 85.6% of the video frames in a controlled lab environ-
ment, and in 72.5% of the video frames in an outdoor



environment. When presented with a video of the adver-
sarial sticker perturbation, YOLO failed to recognize the
sign in 85% of the video frames in a controlled lab en-
vironment, and in 63.5% of the video frames in an out-
door environment. We also observed limited blackbox
transferability to the Faster-RCNN detector. The poster
perturbation fooled Faster R-CNN in 85.9% of the video
frames in a controlled lab environment, and in 40.2% of
the video frames in an outdoor environment. Our work,
thus, takes steps towards developing a more informed
understanding of the vulnerability of object detectors to
physical adversarial examples.
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(a) The poster attack inside

(c) The sticker attack inside

(d) The sticker attack outside

Figure 7: Sample frames from our attack videos after being processed by YOLO v2. In the majority of frames, the
detector fails to recognize the Stop sign.



