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Abstract
Deep neural networks (DNNs) are vulnerable to

adversarial examples—maliciously crafted inputs that

cause DNNs to make incorrect predictions. Recent work

has shown that these attacks generalize to the physical

domain, to create perturbations on physical objects that

fool image classifiers under a variety of real-world con-

ditions. Such attacks pose a risk to deep learning models

used in safety-critical cyber-physical systems.

In this work, we extend physical attacks to more chal-

lenging object detection models, a broader class of deep

learning algorithms widely used to detect and label mul-

tiple objects within a scene. Improving upon a previous

physical attack on image classifiers, we create perturbed

physical objects that are either ignored or mislabeled by

object detection models. We implement a Disappear-

ance Attack, in which we cause a Stop sign to “disap-

pear” according to the detector—either by covering the

sign with an adversarial Stop sign poster, or by adding

adversarial stickers onto the sign. In a video recorded in

a controlled lab environment, the state-of-the-art YOLO

v2 detector failed to recognize these adversarial Stop

signs in over 85% of the video frames. In an outdoor

experiment, YOLO was fooled by the poster and sticker

attacks in 72.5% and 63.5% of the video frames respec-

tively. We also use Faster R-CNN, a different object de-

tection model, to demonstrate the transferability of our

adversarial perturbations. The created poster perturba-

tion is able to fool Faster R-CNN in 85.9% of the video

frames in a controlled lab environment, and 40.2% of

the video frames in an outdoor environment. Finally, we

present preliminary results with a new Creation Attack,

wherein innocuous physical stickers fool a model into

detecting nonexistent objects.

1 Introduction

Deep neural networks (DNNs) are widely applied in

computer vision, natural language, and robotics, espe-

cially in safety-critical tasks such as autonomous driv-

ing [9]. At the same time, DNNs have been shown to be

vulnerable to adversarial examples [3, 6, 7, 14, 17], ma-

liciously perturbed inputs that cause DNNs to produce

incorrect predictions. These attacks pose a risk to the

use of deep learning in safety- and security-critical de-

cisions. For example, an attacker can add perturbations,

which are negligible to humans, to a Stop sign and cause

a DNN embedded in an autonomous vehicle to misclas-

sify or ignore the sign.

Early works studied adversarial examples in the digital

space only. However, it has recently been shown that it

is also possible to create perturbations that survive under

various physical conditions (e.g., object distance, pose,

lighting, etc.) [1, 2, 4, 8, 20]. These works focus on at-

tacking classification networks, i.e., models that produce

a single prediction on a static input image. In this work,

we start exploring physical adversarial examples for ob-

ject detection networks, a richer class of deep learning

algorithms that can detect and label multiple objects in a

scene. Object detection networks are a popular tool for

tasks that require real-time and dynamic recognition of

surrounding objects, autonomous driving being a canon-

ical application. Object detectors are known to be vul-

nerable to digital attacks [22], but their vulnerability to

physical attacks remains an open question.

Compared to classifiers, object detection networks are

more challenging to attack: 1) Detectors process an en-

tire scene instead of a single localized object. This allows

detectors to use contextual information (e.g., the orienta-

tion and relative position of objects in the scene) to gen-

erate predictions. 2) Detectors are not limited to produc-

ing a single prediction. Instead, they label every recog-

nized object in a scene, usually by combining predictions

of the location of objects in a scene, and of the labeling

of these objects. Attacks on object detectors need to take

both types of predictions (presence/absence of an object

and nature of the object) into account, whereas attacks on

classifiers only focus on modifying the label of a single



(presumably present) object.

To create proof-of-concept attacks for object detectors,

we start from the existing Robust Physical Perturbations

(RP2) algorithm [4] of Eykholt et al., which was origi-

nally proposed to produce robust physical attacks on im-

age classifiers. The approach taken by Eykholt et al.

(as well as by others [1, 8]) is to sample from a distri-

bution that mimics physical perturbations of an object

(e.g., view distance and angle), and find a perturbation

that maximizes the probability of mis-classification un-

der this distribution. We find that the physical perturba-

tions considered in their work are insufficient to extend

to object detectors.

Indeed, when working with image classifiers, prior

works considered target objects that make up a large por-

tion of the image and whose relative position in the image

varies little. Yet, when performing object detection in a

dynamic environment such as a driving car, the relative

size and position of the multiple objects in a scene can

change drastically. These changes produce additional

constraints that have to be taken into account to produce

successful robust physical attacks. Many object detec-

tors, for instance, split a scene into a grid or use a slid-

ing window to identify regions of interest, and produce

separate object predictions for each region of interest.

As the relative position of an object changes, the grid

cells the object is contained in (and the corresponding

network weights) change as well. Robust perturbations,

thus, have to be applicable to multiple grid cells simulta-

neously. We show that robustness to these physical mod-

ifications can be attained by extending the distribution of

inputs considered by Eykholt et al. to account for ad-

ditional synthetic transformations to objects in a scene

(e.g., changes in perspective, size, and position).

Following Eykholt et al., we consider physical adver-

sarial attacks on the detection and classification of Stop

signs, an illustrative example for the safety implications

of a successful attack. The perturbations, while large

enough to be visible to the human eye, are constrained

to resemble human-made graffiti or subtle lighting arti-

facts that could be considered benign. We consider an

untargeted attack specific to object detectors, which we

refer to as a Disappearance Attack. In a Disappearance

Attack, we create either an adversarial poster or physical

stickers applied to a real Stop sign (see Figure 2), which

causes the sign to be ignored by an object detector in dif-

ferent scenes with varying object distance, location, and

perspective. This attack is analogous to the one consid-

ered by Eykholt et al. for image classifiers, but targets a

richer class of deep neural networks.

We further introduce a new Creation Attack, wherein

physical stickers that humans would ignore as being in-

conspicuous can cause an object detector into recogniz-

ing nonexistent Stop signs. This attack differs from prior

attacks that attempt to fool a network into mis-classifying

one object into another, in that it creates an entirely new

object classification. Specifically, we experiment with

creating adversarial stickers (similar to the ones consid-

ered in [2]). Such stickers could for instance be used to

mount Denial of Service attacks on road-sign detectors.

For our experiments, we target the state-of-the-art

YOLO v2 (You Only Look Once) object detector [16].

YOLO v2 is a deep convolutional neural network that

performs real-time object detection for 80 object classes.

Our indoor (laboratory) and outdoor experiments show

that up to distances of 30 feet from the target object,

detectors can be tricked into not perceiving the attacker’s

target object using poster and sticker perturbations.

Our Contributions:

• We extend the RP2 algorithm of Eykholt et al. to

provide proof-of-concept attacks for object detec-

tion networks, a richer class of DNNs than image

classifiers.

• Using our new and improved algorithm, we propose

a new physical attack on object detection networks:

the Disappearance Attack that cause physical ob-

jects to be ignored by a detector.

• We evaluate our attacks on the YOLO v2 object de-

tector in an indoor laboratory setting and an outdoor

setting. Our results show that our adversarial poster

perturbation fools YOLO v2 in 85.6% of the video

frames recorded in an indoor lab environment and in

72.5% of the video frames recorded in an outdoor

environment. Our adversarial stickers fool YOLO

v2 in 85% of the video frames recorded in a labora-

tory environment and in 63.5% of the video frames

recorded in an outdoor environment.

• We evaluate the transferability of our attacks using

the Faster R-CNN object detector in laboratory and

outdoor environments. Our results show that our

attacks fool Faster R-CNN in 85.9% of the video

frames recorded in a laboratory environment and in

40.2% of the video frames recorded in an outdoor

environment.

• We propose and experiment with a new type of Cre-

ation attack, that aims at fooling a detector into

recognizing adversarial stickers as non-existing ob-

jects. Our results with this attack type are prelimi-

nary yet encouraging.

Our work demonstrates that physical perturbations are

effective against object detectors, and leaves open some

future questions: 1) Generalization to other physical set-

tings (e.g., moving vehicles, or even real autonomous ve-

hicles). 2) Further exploration of other classes of attacks:



Our work introduces the disappearance and creation at-

tacks which use posters or stickers, yet there are other

plausible attack types (e.g., manufacturing physical ob-

jects that are not recognizable to humans, but are recog-

nized by DNNs). 3) Physical attacks on segmentation

networks. We envision that future work will build on

the findings presented here, and will create attacks that

generalize across physical settings (e.g., real autonomous

vehicles), and across classes of object detection networks

(e.g., semantic segmentation [22]).

2 Related Work

Adversarial examples for deep learning were first in-

troduced by Szegedy et al. [21]. Since their seminal

work, there have been several works proposing more

efficient algorithms for generating adversarial examples

[3, 6, 12, 14]. All of these works assume that the attacker

has “digital-level” access to an input, e.g., that the at-

tacker can make arbitrary pixel-level changes to an input

image of a classifier. For uses of deep learning in cyber-

physical systems (e.g., in an autonomous vehicle), these

attacks thus implicitly assume that the adversary con-

trols a DNN’s input system (e.g., a camera). A stronger

and more realistic threat model would assume that the

attacker only controls the physical layer, e.g., the envi-

ronment or objects that the system interacts with, but not

the internal sensors and data pipelines of the system.

This stronger threat model was first explored by Ku-

rakin et al. They generated physical adversarial ex-

amples by printing digital adversarial examples on pa-

per [8]. In their work, they found that a significant por-

tion of the printed adversarial examples fooled an image

classifier. However, their experiments were done without

any variation in the physical conditions such as different

viewing angles or distances.

Athalye et al. improved upon the work of Kurakin

et al. by creating adversarial objects that are robust to

variations in viewing angle [1]. To account for such vari-

ations, they model small scale transformations synthet-

ically when generating adversarial perturbations. They

demonstrate several examples of adversarial objects that

fool their target classifiers, but it is not clear how many

transformations their attack is robust to. In their paper,

they state their algorithm is robust to rotations, transla-

tions, and noise and suggest their algorithm is robust so

long as the transformation can be modeled synthetically.

Eykholt et al. also proposed an attack algorithm capa-

ble of generating physical adversarial examples [4]. Un-

like Athalye et al., they choose to model image transfor-

mations both synthetically and physically. Certain image

transformations, such as changes in viewing angle and

distance, are captured in their victim dataset. They apply

other image transformations, such as lighting, syntheti-

cally when generating adversarial examples. Their work

suggests that sole reliance on synthetic transformations

can miss subtleties in the physical environment, thus re-

sulting in a less robust attack. Different from all prior

work that focused on classifiers, our work focuses on

the broader class of object detection models. Specifi-

cally, we extend the algorithm of Eykholt et al. using

synthetic transformations (perspective, position, scale) to

attack object detection models.

Lu et al. performed experiments using adversarial

road signs printed on paper with the YOLO object detec-

tor [11]. Their results suggested that it is very challeng-

ing to fool YOLO with physical adversarial examples.

Our work resolves the challenges and shows that existing

algorithms can be adapted to produce physical attacks on

object detectors in highly variable environmental condi-

tions.

3 Background on Object Detectors

Object classification is a standard task in computer vi-

sion. Given an input image and a set of class labels, the

classification algorithm outputs the most probable label

(or a probability distribution over all labels) for the im-

age. Object classifiers are limited to categorizing a single

object per image. If an image contains multiple objects,

the classifier only outputs the class of the most dominant

object in the scene. In contrast, object detectors both lo-

cate and classify multiple objects in a given scene.

The first proposed deep neural network for object de-

tection was Overfeat [18], which combined a sliding

window algorithm and convolution neural networks. A

more recent proposal, Regions with Convolutional Neu-

ral Networks (R-CNN) uses a search algorithm to gener-

ate region proposals, and a CNN to label each region. A

downside of R-CNN is that the region proposal algorithm

is too slow to be run in real-time. Subsequent works—

Fast R-CNN [5] and Faster R-CNN [19]—replace this

inefficient algorithm with a more efficient CNN.

The above algorithms treat object detection as a two-

stage problem consisting of region proposals followed by

classifications for each of these regions. In contrast, so-

called “single shot detectors” such as YOLO [15] (and

the subsequent YOLO v2 [16]) or SSD [10] run a single

CNN over the input image to jointly produce confidence

scores for object localization and classification. As a re-

sult, these networks can achieve the same accuracy while

processing images much faster. In this work, we focus

on YOLO v2, a state-of-the-art object detector with real-

time detection capabilities and high accuracy.

The classification approach of YOLO v2 is illustrated

in Figure 1. A single CNN is run on the full input image

and predicts object location (bounding boxes) and label

confidences for 361 separate grid cells (organized into a





Figure 2: An example of an adversarial perturbation

overlaid on a synthetic background. The Stop sign in

the image is printed such that it is the same size as a U.S.

Stop sign. Then, we cut out the two rectangle bars, and

use the original print as a stencil to position the cutouts

on a real Stop sign.

(a) Digital Image

(b) Printer Result of Digital Image

Figure 3: The image in (a) shows the image as it is stored

digitally. The result of printing and taking a picture of the

image in (a) is shown in (b).

Thus, to simulate physical consistency of the perturbed

object, we apply the alignment function Ti to the masked

perturbation. fθ (·) is the output of the classifier network,

and y∗ is the adversarial target class.

4.2 Extensions to RP2 for Object Detectors

Our modified version of RP2 contains three key differ-

ences from the original algorithm proposed by Eykholt

et al. First, due to differences in the output behavior of

classifiers and object detectors, we make modifications

to the adversarial loss function. Second, we observed ad-

ditional constraints that an adversarial perturbation must

be robust to and model these constraints synthetically.

Finally, we introduce a smoothness constraint into the

objective, rather than using the ℓp norm. In the follow-

ing, we discuss each of these changes in detail.

4.2.1 Modified Adversarial Loss Function

An object detector outputs a set of bounding boxes and

the likelihood of the most probable object contained

within that box given a certain confidence threshold. See

Figure 1 for a visualization of this output. By contrast,

a classifier outputs a single vector where each entry rep-

resents the probability that the object in the image is of

that type. Attacks on image classifiers typically make use

of the cross-entropy loss between this output vector, and

a one-hot representation of the adversarial target. How-

ever, this loss function is not applicable to object detec-

tors due to their richer output structure. Thus, we intro-

duce a new adversarial loss function suitable for use with

detectors. This loss function is tailored to the specific at-

tacks we introduce in this work.

Disappearance Attack Loss. The goal of the attacker

is to prevent the object detector from detecting the tar-

get object. To achieve this, the adversarial perturbation

must ensure that the likelihood of the target object in any

bounding box is less than the detection threshold (the de-

fault is 25% for YOLO v2). In our implementation of the

attack, we used the following loss function:

Jd(x,y) = maxs∈S2,b∈B P(s,b,y, fθ (x)) (2)

Where fθ (x) represents the output of the object detec-

tor (for YOLO v2, this is a 19×19×425 tensor). P(·) is

a function that extracts the probability of an object class

from this tensor, with label y (in our case, this is a Stop

sign) in grid cell s and bounding box b. We denote x as

the input scene containing our perturbed target object.

Therefore, the loss function outputs the maximum

probability of a Stop sign if it occurs within the scene.

Using this loss function, the goal of the adversary is to

directly minimize that probability until it falls below the

detection threshold of the network.

Creation Attack Loss. We propose a new type of Cre-

ation Attack, wherein the goal is to fool the model into

recognizing nonexistent objects. Similar to the “ad-

versarial patch” approach of [2], our goal is to cre-

ate a physical sticker that can be added to any existing

scene. Contrary to prior work, rather than causing a mis-

classification our aim is to create a new classification

(i.e., a new object detection) where non existed before.

For this, we use a composite loss function, that first

aims at creating a new object localization, followed by

a targeted “mis-classification.” The mask Mx is sam-

pled randomly so that the adversarial patch is applied to

an arbitrary location in the scene. As above, let fθ (x)
represent the full output tensor of YOLO v2 on input

scene x, and let P(s,b,y, fθ (x)) represent the probabil-

ity assigned to class y in box b of grid cell s. Further



let Pbox(s,b, fθ (x)) represent the probability of the box

only, i.e., the model’s confidence that the box contains

any object. Our loss is then

object = Pbox(s,b, fθ (x))> τ

Jc(x,y) = object+(1−object) ·P(s,b,y, fθ (x)) (3)

Here, τ is a threshold on the box confidence (set to 0.2

in our experiments), after which we stop optimizing the

box confidence and focus on increasing the probability of

the targeted class. As our YOLO v2 implementation uses

a threshold of 0.1 on the product of the box confidence

and class probability, any box with a confidence above

0.2 and a target class probability above 50% is retained.

4.2.2 Synthetic Representation of New Physical

Constraints

Generating physical adversarial examples for detectors

requires simulating a larger set of varying physical con-

ditions than what is needed to trick classifiers. In our

initial experiments, we observed that the generated per-

turbations would fail if the object was moved from its

original position in the image. This is likely because a

detector has access to more contextual information when

generating predictions. As an object’s position and size

can vary greatly depending on the viewer’s location, per-

turbations must account for these additional constraints.

To generate physical adversarial perturbations that are

positionally invariant, we chose to synthetically model

two environmental conditions: object rotation (in the Z

plane) and position (in the X-Y plane). In each epoch

of the optimization, we randomly place and rotate the

object. Our approach differs from the original approach

used by Eykholt et al., in that they modeled an object’s

rotation physically using a diverse dataset. We avoided

this approach because of the added complexity necessary

for the alignment function, Ti, to properly position the ad-

versarial perturbation on the sign. Since these transfor-

mations are done synthetically, the alignment function,

Ti, simply needs to use the same process to transform the

adversarial perturbation.

4.2.3 Noise Smoothing using Total Variation

The unmodified RP2 algorithm uses the ℓp norm to

smooth the perturbation. However, in our initial exper-

iments, we observed that the ℓp norm results in very

pixelated perturbations. The pixelation hurts the suc-

cess rate of the attack, especially as the distance be-

tween the viewer and the object increases. We found that

using the total variation norm in place of the ℓp norm

gave smoother perturbations, thus increasing the effec-

tive range of the attack. Given a mask, Mx, and noise δ ,

Figure 4: Output of the extended RP2 algorithm to attack

YOLO v2 using poster and sticker attacks.

the total variation norm of the adversarial perturbation,

Mx ·δ , is:

TV (Mx ·δ ) =

∑
i, j

|(Mx ·δ )i+1, j − (Mx ·δ )i, j|

+ |(Mx ·δ )i, j+1 − (Mx ·δ )i, j|

(4)

where i, j are the row and column indices for the ad-

versarial perturbation. Thus our final modified objective

function is:

argmin
δ

λTV (Mx ·δ )+NPS

+Exi∼XV Jd(xi +Ti(Mx ·δ ),y
∗)

(5)

where Jd(·,y
∗) is the loss function (discussed earlier)

that measures the maximum probability of an object with

the label y∗ contained in the image. In our attack, y∗ is a

Stop sign.

5 Evaluation

We first discuss our experimental method, where we

evaluate attacks in a whitebox manner using YOLO v2,

and in a blackbox manner using Faster-RCNN. Then,

we discuss our results, showing that state-of-the-art ob-

ject detectors can be attacked using physical posters and

stickers. Figure 4 shows the digital versions of posters

and stickers used for disappearance attacks, while Fig-

ure 5 shows a digital version of the sticker used in a cre-

ation attack.

5.1 Experimental Setup

We evaluated our disappearance attack in a mix of

lab and outdoor settings. For both the poster and

sticker attacks, we generated adversarial perturbations

and recorded several seconds of video. In each experi-

ment, recording began 30 feet from the sign and ended

when no part of the sign was in the camera’s field of

view. Then, we fed the video into the object detection



Figure 5: Patch created by the Creation Attack, aimed at

fooling YOLO v2 into detecting nonexistent Stop signs.

YOLO v2 Poster Sticker

Indoors 202/236 (85.6%) 210/247 (85.0%)

Outdoors 156/215 (72.5%) 146/230 (63.5%)

Table 1: Attack success rate for the disappearance attack

on YOLO v2. We tested a poster perturbation, where

a true-sized print is overlaid on a real Stop sign, and a

sticker attack, where the perturbation is two rectangles

stuck to the surface of the sign. The table cells show

the ratio: number of frames in which a Stop sign was

not detected / total number of frames, and a success rate,

which is the result of this ratio.

network for analysis. We used the YOLO v2 object de-

tector as a white-box attack. We also ran the same videos

through the Faster-RCNN network to measure black-box

transferability of our attack.

For the creation attack, we experimented with placing

stickers on large flat objects (e.g., a wall or cupboard),

and recording videos within 10 feet of the sticker.

5.2 Experimental Results

We evaluated the perturbations for a disappearance attack

using two different masks and attacked a Stop sign. First,

we tested a poster perturbation, which used an octagonal

mask to allow adversarial noise to to be added anywhere

on the surface of the Stop sign. Next, we tested a sticker

perturbation. We used the mask to create two rectangular

stickers positioned at the top and bottom of the sign. The

results of our attack are shown in Table 1.

In indoor lab settings, where the environment is rel-

atively stable, both the poster and sticker perturbation

demonstrate a high success rate in which at least 85% of

the total video frames do not contain a Stop sign bound-

ing box. When we evaluated our perturbations in an out-

door environment, we notice a drop in success rate for

both attacks. The sticker perturbation also appears to be

slightly weaker. We noticed that the sticker perturbation

did especially poorly when only a portion of the sign was

FR-CNN Poster Sticker

Indoors 189/220 (85.9%) 146/248 (58.9%)

Outdoors 84/209 (40.2%) 47/249 (18.9%)

Table 2: Attack success rate for the disappearance attack

on Faster R-CNN. We tested a poster perturbation, where

the entire Stop sign is replaced with a true-sized print,

and a sticker attack, where the perturbation is two rect-

angles stuck to the surface of the sign. The table cells

show the ratio: number of frames in which a Stop sign

was not detected / total number of frames, and a success

rate, which is the result of this ratio.

in the camera’s field of view. Namely, when the sticker

perturbation began to leave the camera’s field of view,

the Stop sign bounding boxes appear very frequently. In

contrast, this behavior was not observed in the poster per-

turbation experiments, likely because some part of the

adversarial noise is always present in the video due to

the mask’s shape. Figure 7 shows some frame captures

of our adversarial Stop sign videos.

To measure the transferability of our attack, we also

evaluated the recorded videos using the Faster R-CNN

object detection network.1. The results for these experi-

ments are shown in Table 2.

We see from these results that both perturbations trans-

fer with a relatively high success rate in indoor lab set-

tings where the environment conditions are stable. How-

ever, once outdoors, the success rate for both pertur-

bations decreases significantly, but both perturbations

retain moderate success rates. We observe that our

improved attack algorithm can generate an adversarial

poster perturbation, which transfers to other object de-

tection frameworks, especially in stable environments.

Finally, we report on some preliminary results for cre-

ation attacks (the results are considered preliminary in

that we have spent considerably less time optimizing

these attacks compared to the disappearance attacks—it

is thus likely that they can be further improved). When

applying multiple copies of the sticker in Figure 5 to a

cupboard and office wall, YOLO v2 detects stop signs

in 25%–79% of the frames over multiple independent

videos. A sample video frame is shown in Figure 6.

Compared to the disappearance attack, the creation at-

tack is more sensitive to the sticker’s size, surroundings,

and camera movement in the video. This results in highly

variable success rates and is presumably because (due to

resource constraints) we applied fewer physical and dig-

ital transformations when generating the attack. Enhanc-

1We used the Tensorflow-Python implementation of Faster R-CNN

found at https://github.com/endernewton/tf-faster-rcnn

It has a default detection threshold of 80%





environment. When presented with a video of the adver-

sarial sticker perturbation, YOLO failed to recognize the

sign in 85% of the video frames in a controlled lab en-

vironment, and in 63.5% of the video frames in an out-

door environment. We also observed limited blackbox

transferability to the Faster-RCNN detector. The poster

perturbation fooled Faster R-CNN in 85.9% of the video

frames in a controlled lab environment, and in 40.2% of

the video frames in an outdoor environment. Our work,

thus, takes steps towards developing a more informed

understanding of the vulnerability of object detectors to

physical adversarial examples.
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(a) The poster attack inside

(b) The poster attack outside

(c) The sticker attack inside

(d) The sticker attack outside

Figure 7: Sample frames from our attack videos after being processed by YOLO v2. In the majority of frames, the

detector fails to recognize the Stop sign.


