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ABSTRACT

Many of the everyday decisions a user makes rely on the sugges-
tions of online recommendation systems. These systems amass im-
plicit (e.g., location, purchase history, browsing history) and ex-
plicit (e.g., reviews, ratings) feedback from multiple users, produce
a general consensus, and provide suggestions based on that con-
sensus. However, due to privacy concerns, users are uncomfortable
with implicit data collection, thus requiring recommendation sys-
tems to be overly dependent on explicit feedback. Unfortunately,
users do not frequently provide explicit feedback. This hampers the
ability of recommendation systems to provide high-quality sugges-
tions.

We introduce Heimdall, the first privacy-respecting implicit pref-
erence collection framework that enables recommendation systems
to extract user preferences from their activities in a privacy respect-
ing manner. The key insight is to enable recommendation systems
to run a collector on a user’s device and precisely control the infor-
mation a collector transmits to the recommendation system back-
end. Heimdall introduces immutable blobs as a mechanism to guar-
antee this property. We implemented Heimdall on the Android plat-
form and wrote three example collectors to enhance recommenda-
tion systems with implicit feedback. Our performance results sug-
gest that the overhead of immutable blobs is minimal, and a user
study of 166 participants indicates that privacy concerns are sig-
nificantly less when collectors record only specific information—a
property that Heimdall enables.
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1. INTRODUCTION
Recommendations play an integral role in everyday decisions

such as food and book choices. Online recommendation systems
specialize in providing suggestions to help make these decisions,
and often suggest new choices based on prior choices of an individ-
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ual user or a large group. These systems have grown to greatly in-
fluence user decisions. A one-star increase in rating for the restau-
rant recommendation service Yelp, which draws more than 80 mil-
lion unique visitors from the United States every month, has been
shown to result in a 5− 9% increase in revenue [6, 27].

However, despite the influence of these systems, users are in-
creasingly concerned about sharing sensitive data, especially on
mobile devices [14]. This concern stems from the numerous in-
tentional or unintentional privacy breaches that has happened in
recent years [15]. Breaches can result from an over-claim of per-
missions [16], an overuse of permissions [37], or an outright mis-
use of permissions [16] by applications. To address user privacy
concerns, recommendation systems utilize explicit feedback mech-
anisms, which provide users control over what data is shared.

Unfortunately, the amount of explicit feedback received is usu-
ally very small compared to the amount of feedback required for
quality recommendations [8, 46]. This is especially true for rec-
ommendation systems that are not owned by the platform vendor
(e.g., Yelp app running on Android). Explicit feedback also re-
quires extra effort from the user ranging from short interactions
(e.g., clicking on “check-in,” “like,” “up and down vote”) to long
interactions (e.g., writing an in-depth review). Furthermore, users
are more likely to provide this kind of explicit feedback after an ex-
treme experience [7]. These combined factors result in sparse feed-
back data and hence lower-quality recommendations. This makes
it difficult for current recommendation systems to accurately an-
swer simple questions such as “What is the most popular theater in
the area?” or “What time is the gym least crowded?” Previous re-
search has hinted at implicit inference using user data as a possible
solution to this problem [46].

To address user privacy concerns and data sparsity, we introduce
Heimdall, the first preference collection framework that allows rec-
ommendation systems to extract implicit user preferences, while
giving users control over how and where their data and identity
is shared. Our design enforces that the user must explicitly con-
sent to sharing any implicitly collected feedback before it is shared
with the recommendation system back-end. We note that Heimdall
does not provide any privacy guarantees once data is shared with
the back-end—§5 contains a discussion of future work that might
enable such a guarantee.

Heimdall allows third-parties to develop preference collectors

for smartphone and smart home environments. A collector is a
piece of code that accesses sensitive implicit data sources, performs
pre-processing, and submits that data to its recommendation system
back-end. Within Heimdall, collectors can access user data and are
able to query trusted knowledge-base services (e.g., Google Map)
through Heimdall’s secure API. Heimdall depends on the APIs hav-
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ing known structures (e.g., JSON, XML, YAML)—an API, by def-
inition, must publicly declare the data format it uses. To share user
preferences, collectors must declare in their manifest the type (e.g.,

location) and granularity (e.g., restaurant name) of the shared data,
and the sources used to compute these preferences. Users have con-
trol over what data is shared and whether the submission should be
anonymous or not.

Consider a restaurant recommendation collector. It continuously
monitors a user’s location, performs a reverse geocode on the GPS
co-ordinates using an online service such as Google Places API,
gets back a JSON object representing the address corresponding
to the location. This JSON object has a known structure—it con-
tains a field that represents the kind of location whose values might
be “Restaurant,” or “Drug Store.” Heimdall requires collectors
to declare the data they will disclose to the recommendation sys-
tem cloud back-end. This declaration is expressed in terms of the
structure and contents of the JSON data—the collector will declare
that it will expose the JSON object only if the kind of location is
“Restaurant.” To ensure that the collector does not manipulate the
other fields of the JSON object, Heimdall introduces immutable

blobs as a security primitive. Any return value from a sensitive
data source is immutable. Therefore, even if the collector accesses
other sensitive data sources when determining what the most pop-
ular restaurant for a particular user is, the output value is guaran-
teed to not contain information from any of these sources due to
immutability. Furthermore, Heimdall provides a secure API to ex-
pose immutable blobs, and it ensures that the collector adheres to
its manifest by inspecting the structure and contents of the blobs.

Therefore, Heimdall enforces strict privacy guarantees on im-
plicit data collection, thus easing user privacy concerns. Fur-
thermore, recommendation systems do not always require user-
identifiable data to provide a general consensus. For example, ques-
tions such as “what is the most popular sushi bar in this area?” can
be answered without knowing the identity of the visitors to each lo-
cation. Heimdall allows for such data collection by enabling anony-
mous submission of preferences.

By granting controlled access to user data and device sensors,
Heimdall enables recommendation systems to access implicit pref-
erences, removing their sole reliance on explicit user interactions
to measure user preferences. Implicit feedback can be used to mea-
sure user interest regarding a particular item, thus addressing the
data sparsity problem.

Our Contributions:

• We conduct a study of five online systems with recommen-
dation capability (Goodreads, Yelp, Google Play, IMDB, and
Youtube) and analyze the level of user engagement in them.
Based on our findings, we distill a set of desired features for
collectors and users. (Section 2)

• We develop a prototype of Heimdall on the Android plat-
form (Section 3) and implement a sample set of data col-
lectors spanning the smartphone and smart home environ-
ments. These collectors represent the versatility of the Heim-
dall framework. We perform a thorough evaluation of Heim-
dall from three perspectives:

– We perform a series of microbenchmarks that evaluate
immutable blob generation time, call latency, and stor-
age overhead of Heimdall. Our results show that API
calls in Heimdall impose a 2.3ms overhead. An im-
mutable blob of size 1KB takes less than 0.3ms to
generate and only imposes 32B of storage overhead.
(Section 4.1)

– We implement three collectors using our framework
and discuss developer effort, data collected by the col-
lectors using Heimdall, and the privacy guarantees pro-
vided by our system. (Section 4.2)

– We perform a user study of 166 Amazon Mechani-
cal Turkers to examine the privacy benefits of Heim-
dall. Our results suggest that the purpose-specific data
collection of Heimdall (e.g., recording the name of a
restaurant vs. recording fine-grained location informa-
tion) significantly reduces user concerns.(Section 4.3)

Therefore, in designing Heimdall, we achieve a balance between
a user’s need for privacy and the need for richer and better recom-
mendations.

2. RECOMMENDATION SYSTEMS:

CHALLENGES & OPPORTUNITIES
Online recommendations play a large role in consumer decisions

and selections. The number of consumers who search for products
online has risen from 41% in 2010 to 50% in 2012 and this number
is only expected to increase [30]. With the increased dependence of
users on online reviews, services such as Yelp, IMDB, TripAdvisor,
and Goodreads aggregate user reviews of various items to produce
a general consensus. The reviews that products or locations receive
greatly influence their sales and number of user visits—a one-star
increase in Yelp reviews of a restaurant increases revenues for that
restaurant by 5− 9% [27].

Although online recommendations and reviews have a large in-
fluence over consumers decisions, recommendation systems still
suffer posses numerous shortcomings:

• Data Collection, Data Breach, and User Privacy: Large
amounts of data, or big data, provides significant competi-
tive advantages to companies [22] and are correlated with a
company’s growth and productivity [41]. This is especially
true for recommendation systems whose business relies on
analyzing user feedback to provide better recommendations
and personalization. One major obstacle in collecting and an-
alyzing mass user data is the privacy concerns of users who
are worried about abuse of their data and potential tracking
of their activities.

There are multiple dimensions to these users concerns. Data
collection in applications happens opaquely with minimal
communication to the user about the kind and extent of
data [10]. Applications often excessively collect data that
is unnecessary for their function [2, 19]. Furthermore, such
data collection creates a gold mine of user-identifiable data
that is an attractive target for hackers and state-level attack-
ers who regularly steal such confidential information [20].
The Identity Theft Resource Center reported 783 breaches in
2014, which exposed 85, 611, 528 user records [12].

• Sparsity of Explicit Feedback: User feedback is often too
few to accurately produce a consensus that reflects the gen-
eral user opinion. This is especially true for items that are
not in the digital or electronics categories [30]. We stud-
ied 5 different online recommendation services (Table 1) and
compared the number of products (e.g., books, restaurants,
movies) to the number of user ratings (i.e., rating bar value)
received (Figure 1). We observe that a majority of products
do not have even a single user rating, and the products that
have ratings contain too few to produce a representative char-
acterization of user opinion. For instance, 70% of products
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Source Type # of Samples Definition of Interaction

Goodreads Books 500 Rating (1-5 stars)
Yelp Restaurants 10,000 Rating (1-5 stars)

Google Play Applications 10,000 Rating (1-5 stars)
IMDB Movies 500 Rating (0.5-5 stars)

Youtube Videos 500 Up/down vote

Table 1: Data used for evaluating user interaction with different
services. Samples were collected at random from each service.
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Figure 1: Explicit user feedback (rating bar values) is sparse in
general for products from 5 different recommendation systems.

on Google Play have fewer than 10 ratings. Recommenda-
tion systems recognize this problem, and encourage users
to provide more explicit feedback using incentives such as
providing discount codes and points-based rewards to those
who elect to provide feedback. These techniques have been
shown to have limited positive effect [21].

• Discrepancy between utilization and feedback: One of the
reasons for sparse explicit user feedback in the data shown
in Figure 1 might be because consumers are not using the
majority of products we studied. To confirm that this is not
the case, we also measured consumer utilization using ap-
proximate metrics appropriate to the type of product. For
example, an approximate utilization metric for software on
Google Play is the number of downloads,1 and an approxi-
mate metric for video consumption on Youtube is the num-
ber of views. Figure 2 shows a CDF for these two utilization
metrics for 10, 000 randomly selected apps on Google Play
and 500 randomly selected videos on Youtube. We observe
that utilization is high but feedback is still low, validating our
earlier observation that explicit user feedback fundamentally
leads to sparse data. Most of the applications have orders of
magnitude fewer reviews than downloads. For applications
downloaded at least 1000 times, more than 55% of them have
fewer than 100 reviews. Figure 2 also shows the potential
to counter data sparsity using implicit feedback. Heimdall
unlocks this potential using privacy-respecting implicit feed-
back collection.

1Google Play only provides a range for number of downloads and
does not provide exact numbers. In our analysis we conservatively
consider the minimum number of downloads.
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Figure 2: In both Youtube and Google Play store, more than 70%

of items have less than 10 reviews. This data suggests that while
utilization of products is high, the feedback is still sparse. The
Y-axis is interpreted based on the line under consideration. For
example, if we consider Google Play ratings, then the Y-axis is the
number of ratings, and if we consider Google Play downloads, the
the Y-axis is number of downloads. We note that the Google Play
ratings and YouTube T-Up/Down lines are slightly different, even
though they look visually the same.

3. HEIMDALL DESIGN
Heimdall is a framework that enables recommendation systems

to build collectors that execute on a user’s smartphone or smart
home hub. A collector records implicit feedback by observing user
activity. Heimdall provides strong privacy guarantees on the type
and granularity of data that a collector exposes to the recommen-
dation service cloud back-end, and provides users control over this
process. Heimdall directly addresses the fundamental challenge
discussed in §2—feedback sparsity, by augmenting explicit feed-
back with implicit feedback. We design Heimdall to provide these
guarantees under the following threat model:
Threat Model. We assume that the Heimdall framework and its
underlying operating system are not exploited. This is not a strong
assumption as an adversary who has compromised the operating
system can freely access data and sensor readings and transfer them
regardless of Heimdall. We assume that collectors are untrusted
and do not place any restrictions on the kinds of algorithms they
run to extract user preferences—they are free to access data exist-
ing on the device, from sensors in the built environment, or from
knowledge-bases such as Google Maps. Our goal is to prevent col-
lectors from leaking any data that has not been previously approved
by the user. We consider addressing side- and covert-channels to be
out of scope of the current paper, but we discuss approaches to mit-
igate them in §5.

The information a collector submits to its recommendation sys-
tem could implicitly encode additional characteristics. For exam-
ple, sending a restaurant name implicitly means that the exact GPS
co-ordinates of the user are sent out. However, we observe that a
GPS co-ordinate does not add information about the activities of the
user that cannot be gleaned from the restaurant name itself. That is,
it does not add new information. In some cases, new information
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can be added. For example, if a collector transmits power con-
sumption of devices, then an attacker could use a model of typical
consumption of various devices to learn about the kind of device
that generated the power data. In a home setting, this means that
an attacker can learn whether a user has a specific type of washing
machine (or more generally, a specific kind of appliance). How-
ever, such home device information is arguably less privacy sen-
sitive than the actual power consumption data. Nevertheless, we
envision that k-anonymity [39] techniques could be adapted to fur-
ther reduce the privacy loss with such kind of implicit information
leakage.

Heimdall does not provide any guarantees on whether the recom-
mendation system (back-end of the collectors) leaks information to
third-parties. We leave this end-to-end privacy problem to future
work.

3.1 Heimdall Programming Model
Consider the example data collector described in §1 that uses

GPS co-ordinates and the Google Places API to infer the restau-
rants a user visits, and then sends that information to its cloud
back-end. The collector requires Internet access to function. Un-
der current smartphone or smart home permission models, use of
the collector is tied to an inherent risk of the collector leaking fine-
grained location data for tracking a user’s movements. Heimdall,
however, allows a user to use the collect without such risk.

Listing 1 presents pseudo-code for a minimalistic restaurant col-
lector and Listing 2 presents the associated manifest. Line 2 calls a
secure location API that returns the location data as an immutable

blob (IB). An immutable blob can only be created as the return
value from a secure API that Heimdall provides. Once created, it
cannot be modified. At Line 3, the collector passes the location
immutable blob to the Google Places API that only accepts im-
mutable blob types as arguments. This call returns another IB that
represents a reverse geocode of the raw location data. The collector
checks if the blob is of the restaurant type, and submits the name
value of the blob to the collector’s cloud back-end.

Whenever a collector attempts to submit a value, Heimdall will
first verify that the value being submitted is a valid immutable blob,
and then it will ensure that the submission adheres to the collector’s
manifest (Listing 2). The manifest provides the user fine-grained
control over what data is read and submitted by the collector. In our
example, the manifest is expressed in terms of the structure of the
return value of the Google Places API. That is, Heimdall leverages
the known structure of data objects to support fine-grained policies.
Our design formats immutable blobs as JSON strings because they
are widely used in RESTful webservices, and are easy to parse.
Listing 3 shows example immutable blobs used in our restaurant
collector.

We note that the goal of our work is to contribute a mechanism
that requires the recommendation collectors to declare the kind of
data they release to the recommendation system. In our implemen-
tation, this choice is presented to the user during the collector’s in-
stallation. An interesting question is determining how these choices
should be presented to the user and the granularity of the mani-
fest prompt—should we present an all-or-nothing choice to the user
while installing a collector, or should we provide more fine-grained
control over the kind of data that is released? We envision a user
study to determine the appropriate granularity of control, and we
leave this to future work.

Collectors run in sandboxes that Heimdall provides. The sand-
boxes precisely control the data that flows into and out of the col-
lectors within. Whenever a collector tries to submit data to its cloud
back-end, it must use a secure API that Heimdall provides that au-

Listing 1 Pseudocode for a simple restaurant visit collector. The
application collects user’s location; uses Google Places API to get
data on the location and submits it if it is of type restaurant. A more
advanced collector can use a more complex combination of signals
to reduce false reports.
1 def visitCollector:

2 IB loc = location_service.getloc()

3 IB p = googleapis.place.search(loc[lat],loc[lng])

4 for result in p[results]:

5 if result[types]=="restaurant":

6 submit result[name]

Listing 2 Example data collector manifest. The collector uses GPS
location and Google geocoding API to collect name of locations of
type location.
#Sources:

FINE_LOCATION

googleapis:place

#Collects:

@anonymized

if(googleapis:place:results:types=="restaurant"):

submit(googleapis:place:results:name,"Link")

tomatically checks the manifest of the collector. Our example col-
lector is obviously very basic, but our goal is to simply provide a
high-level picture of the abilities of Heimdall. A real collector may
use various other data (e.g., time of the day, past visits, credit card
charges) to create an arbitrarily complex model to understand user
activity.

A collector may set the @anonymized decorator in its manifest.
This activates anonymous submissions so that the recommendation
system cloud back-end cannot associate the submitted data with
any single user’s identity. Unless marked for anonymous submis-
sion in the manifest, submitted data is transmitted to the collectors’
cloud back-end along with the device advertising ID [1]. However,
there are many cases where the user is uncomfortable with tying
their identity to the submitted data. In some cases, data might be
of a sensitive nature (e.g., health related) or users themselves may
have higher privacy expectations. In these cases, anonymous sub-
mission of data can still provide useful aggregate information on a
population’s preferences. For example, a collector can reliably ex-
tract which physician in your area is more popular with anonymous
visit data.

The key primitive providing the desired privacy guarantees in
Heimdall is the immutable blob. Listing 4 presents four examples
of how Heimdall prevents a collector from accessing or submitting
data outside its pre-defined limits:

• The collector is denied access to a resource that has not been
requested in its manifest (Line 3-4).

• The collector cannot submit a value that has not been ap-
proved in its manifest (Line 8-9).

• The collector cannot pass a parameter that is not of type IB
(Line 11-12). All parameters are either an IB or come from
a list of static values pre-defined in the API.

• The collector cannot submit a value that does not meet the
conditions defined in its manifest (Line 18-19).

These qualities ensure that data entering and leaving a collec-
tor always meet the strong type-checking defined in the collector’s
manifest.
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Listing 3 Structure of location and Google Places immutable blobs.
Heimdall provides access to sensor and user data (e.g., location,
contacts). Web services RESTful APIs naturally produce JSON
structures that are stable and well documented. Heimdall defines
standard libraries for trusted services (e.g., Google Maps) on top of
these APIs.
"Location"

{

"lat": 40.7155809802915,

"lng": -73.9599399197085,

"time": "2012-04-23T18:25:43.511Z"

}

"googleapis:place"

{

"results":[

{ "name":"Subway",

"types":["restaurant"],

... }

...

]

}

Listing 4 Sample of possible malicious activities a collector may
attempt and how they are blocked in Heimdall.
1 def malicious visitCollector:

2

3 IB call_history = phone_service.getcalls()

4 #Error: Access to phone_service is denied.

5

6 IB loc = location_service.getloc()

7

8 submit loc

9 #Error: Location is not one of the approved data

types for collection.→֒

10

11 IB p = googleapis.place.search(38.8977,77.0365)

12 #Error: Parameters are not of type

IB:Location:lat and IB:Location:lng→֒

13

14 IB p = googleapis.place.search(loc[lat],loc[lng])

15

16 for result in p[results]:

17 if result[types]=="doctor":

18 submit result[name]

19 #Error: googleapis:place:results:name does not

meet the required conditions for collection.→֒

20

3.2 Heimdall Framework
As discussed above, collectors enable recommendation systems

to record implicit user preferences in a privacy-respecting way.
From a framework perspective, Heimdall uses two mechanisms
that enable useful and secure collector construction (Figure 3): (1)
Sandboxes in which collectors execute; (2) a trusted service that
makes sensitive resources available to sandboxed collectors using
immutable blobs. A collector in a sandbox can only communicate
with the trusted service. Furthermore, the trusted service ensures
that only immutable blobs cross sandbox boundaries.

We discuss the design of these components in the context of the
Android OS. We choose Android because the availability of source
code and ease of access to a wide variety of user data. Basing our
design on Android also allows Heimdall to be applicable to smart
home environments through Android variants such as Brillo [3] and
Google Weave [4].
Collectors and Immutable Blobs. Developers write collectors for
Heimdall in Java. A collector runs inside a sandbox that controls
its communication with the outside world. A collector may only

Sandbox

Collector

Secure 
API

Trusted Service

Policy
CheckerLogger

Sensors

Recommendation
System

Heimdall

…

User Data
Online 

Services

Anonymity Network

Immutable Blob

Figure 3: Design overview of Heimdall. Collector can gain access
to sensor, user data, and online services through Heimdall secure
API. Submission to recommendation system can happen in two
ways: 1) Direct submission which includes the device advertise-
ment ID, or 2) Anonymous submission which is sent through an
anonymity network (i.e., TOR)

access sensors, user data, and communication methods (e.g., meth-
ods to transmit data to the cloud) using a secure API that Heimdall
provides. Furthermore, these secure API calls only use immutable
blobs. Each immutable blob is a tuple: < D,P, Sig >, where D

is a JSON structure containing sensitive data, P is a path inside
D and is used when the collector wants to refer to a specific item
in D, and Sig is a SHA256 HMAC of D generated by the trusted
service. Any parameters used to invoke API calls by the collec-
tor are in form of immutable blobs. The trusted service verifies
the Sig whenever the collector attempts to transmit an immutable
blob outside the sandbox boundaries (e.g., either for submission to
the cloud back-end or as parameters to call other APIs). This en-
sures that any data leaving the sandbox is known and verified by
the trusted service.
Secure API. The secure API enables collectors to access sensitive
data. The API falls into two categories:

• Local API: provides access to local data (e.g., browsing his-
tory, contacts), sensors (e.g., gps, camera), and devices for
smart home environments (e.g., door lock, switch) . To keep
the structures of immutable blobs uniform, the secure API
converts data into pre-defined JSON structures similar to the
structure presented for location in Listing 3.

• Online Services API: provides access to selected online
services that Heimdall trusts (e.g., Google Places, Weather
Channel). A collector cannot query these services with ar-
bitrary parameters. The parameters used to call the online
services can only come from immutable blobs that have been
obtained from local sensors or queries previously run on
these online services. As these systems use REST APIs
with parameters whose structure is known, they automati-
cally supply a JSON response that can be signed and trans-
ferred as an immutable blob by the trusted service to the col-
lector.

Policy Checker. A collector can only submit data to its corre-
sponding online recommendation service through a submit func-
tion provided by the trusted service. On submission of data,
the policy checker will compare the submitted immutable blob
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against the approved list of submissions in the collector’s man-
ifest and verify that it meets the required constraints. In List-
ing 2, on submission of an immutable blob, the policy checker
first verifies the signature Sig. Next it verifies that the path
P inside the blob matches the legal submission types defined
in the manifest (i.e., googleapis:place:result:name

and the JSON structure meets the conditions defined in
the manifest (i.e., googleapis:place:results:types

=="restaurant"). Our implementation at this time supports
relation constraints (e.g., IF,AND,OR). If these conditions are
met, the policy checker will transmit the data to the submission link
that is pre-defined in the collector’s manifest. If the anonymization
flag is active, the transmission will be conducted through the TOR
network to anonymize the sender’s identity. Otherwise, the sub-
mission will include a unique device identifier associated with the
device running Heimdall. Any other attempt to leak an identifier
has to be declared in the collector’s manifest and will be detectable
to the user.
Logger. Heimdall provides transparency about the activities of
collectors by providing a detailed log of every interaction a col-
lector has with the trusted service. Logging dissuades malicious
collectors from using side-channels as a signaling method and also
enables auditing of collectors. Future work could also provide a
potential platform for anomaly detection to impede side-channels.
Creating such a detector, however, is outside of scope of this work
and we leave it for future work.

4. IMPLEMENTATION AND

EVALUATION
We implemented Heimdall on a smartphone running Android 4.1

and performed the evaluations on a Nexus 4 device. Heimdall cre-
ates the sandboxes with the isolatedProcess flag set. Setting the
isolatedProcess flag causes Android to activate a combination of
restrictive user IDs, IPC limitations, and strict SELinux policies.
These restrictions prevent isolated processes from communicating
with the outside world, except via an IPC interface connected to
the Trusted Service. The Trusted Service provides an API through
which collectors can access sensors and data on the device. It also
generates and validates immutable blob signatures on API calls or
submission. To give Heimdall access to smart switches, we devel-
oped a simple application on the Samsung SmartThings platform
that reports the status of all smart switches connected to the Smart-
Things hub. We use this app as a source in our framework.

We evaluate Heimdall from multiple perspectives. First, we run
a series of microbenchmarks to study the blob generation and stor-
age overhead, and the latency for calling a secure API. We find that
Heimdall adds modest overhead: A blob of size 1K bytes takes
282µs to generate and takes an additional 256 bits to store. A
parameter-less API call by a collector has 2.3ms overhead on av-
erage.

Second, we developed three simple collectors and integrated
them with Heimdall. For each collector, we evaluated the data col-
lection capability, the privacy guarantees, and the development ef-
fort of the app. Our results show that Heimdall allows recommen-
dation systems to collect the implicit data required and provides
privacy guarantees regarding the data collected. Our collectors are
on average 194 lines of code.

Finally, we conducted a user study with 166 participants on
Amazon Mechanical Turk.2 We evaluated the effect of Heimdall
on decreasing the privacy concerns of users for a restaurant recom-

2We received exemption from our institution’s IRB under title 45
CFR 46.101.(b). Survey data was collected anonymously and did
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Figure 4: Time overhead of blob generation based on the JSON
string size.

mendation system. Our results suggest that use of Heimdall signifi-
cantly lowers users’ concerns on sharing their location and browser
history data.

4.1 Microbenchmarks
Blob Generation Time. We recorded and averaged 10000 blob
generations with data size varying from 100 to 10000 bytes in
length. We note that a Google Places API response is ∼ 5KB long
so our experiments should cover most API response sizes. Figure 4
presents the results of this experiment. The blob generation time
increases as the size of the JSON string increases. Note that even
when the blob contains 10KB bytes, the generation time does not
exceed 340µs. This delay does not have a significant negative ef-
fect on a collector’s functionality as the IPC mechanism used in the
operating system has an order of magnitude more latency.
Storage Overhead. A Heimdall collector does not impose a sig-
nificant memory overhead compared to a collector written outside
of the framework. A Heimdall collector only needs to store addi-
tional HMACs received for any data that will be submitted to the
recommendation system. A SHA256 HMAC is 32B in length. As
storage/memory space is plentiful in modern phones, this is a very
modest overhead.
Call Latency Overhead. We varied the number of parameters of
a secure API from 0 to 10. We used immutable blobs with 1000

bytes data length as our parameters and repeated the experiment
100 times for each data point. We observed that as the number of
parameters for the secure API increased, the latency increased from
2.3ms to 4.2ms. These measurements include additional latency
caused by the IPC and immutable blob verification. This latency
is comparable to standard IPC call and is acceptable for collectors’
functions.

4.2 Macrobenchmarks
We developed three collector applications for Heimdall frame-

work to evaluate the impact on their capability to collect implicit
data from user activities, their privacy guarantees, and the required
developer effort. Table 2 presents an overview of these applica-
tions. The RestaurantCollector can be used to augment restaurant
recommendation services such as Yelp. It tracks and analyses user
location and reports the name of the restaurant user have visited to
the recommendation system. Using this data, restaurant recommen-

not include any user-identifiable or sensitive information about the
participants.
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Name / Category Description Privacy Risk Implicit Signal LoC

RestaurantCollector /
Smartphone

Monitors location of smartphone de-
vice, infers when the device is at a
restaurant, submits name of restaurant
to cloud back-end. This helps generate
restaurant recommendations.

Can track user’s location. Fine-Grained GPS 359

NewsCollector / Smart-
phone

Reads user browsing history, detects
web pages belonging to news organi-
zations, transmits news items to cloud
back-end. This help generate list of
most popular news articles.

Sensitive browser history can
be leaked to attackers.

Browser History 64

EnergySaver / Smart
Home

Monitors power status of devices
around the home. Transmits usage of
only certain types of high-wattage de-
vices (e.g., oven) if they are used at
peak-hour. This helps generate energy
saving recommendations.

Can track activity in the home
(also, can detect whether the
home is occupied or not).

Power state of physical
devices

157

Table 2: Example Collectors built using Heimdall.
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dation system can gain insight into the popularity of each restaurant
and how busy they are during different times of day. This applica-
tion can also potentially use other data such as browsing history
(e.g., which restaurant website the user viewed) and purchase his-
tory (e.g., how much money the user spent in a restaurant) as addi-
tional signals.

NewsCollector can be used by news aggregators such as Digg,
Reddit, or feedly. It tracks the browsing history of the user and
sends the urls associated with news articles to the recommendation
system. Using this collector allows news aggregators to gain insight
into popularity of each article in a privacy-respecting manner. This
application can be augmented with data such as how much time is
spent on each article and subscriptions user has to newsletters for
more insight.

Finally, the EnergySaver collector gains access to the status of
smart switches in a smart home environment to understand the pat-
tern of energy usage during the day. An application can poten-
tially use this data to provide the user with energy saving sugges-
tions. These three collectors present a diverse set of data that can
be gained by relying on implicit user feedbacks.

Data Collection & Privacy. We discuss the data privacy risk that
each of the three collectors pose when running on existing platform
and examine how Heimdall eliminates those risks successfully.

• RestaurantCollector: The collector can potentially track all
user movement and misuse this data. Using Heimdall, the
collector can still use the location data to extract the restau-
rants user has visited, but it can only transmit their name to
the recommendation system.

• NewsCollector: This collector can leak all user browsing his-
tory to an attacker. Using Heimdall, the collector is limited to
reporting the urls from news organization domains. It cannot
report any other urls in an attempt to leak the user’s browsing
history.

• EnergySaver: It has the potential to leak data on all devices
usage in a smart home environment. Using Heimdall, the
collector can only report certain types of high-wattage de-
vices if they are being used at peak hours.

Developer Effort. Developing collectors for Heimdall does not im-
pose a significant burden over implementing the collector as a reg-
ular app in the Android environment. Table 2 provides the number
of lines of codes it took to write each collector. When developing
a collector in Heimdall, the developer is limited to using Heimdall
provided API for accessing user data. These APIs return their re-
sults in form of immutable blobs. Much of the extra code develop-
ers is required to develop is to maintain and use the immutable blob
structure. We envision that with appropriate tool support, many
boiler plate tasks for maintaining these blobs can be automated.

4.3 User Study
To evaluate whether Heimdall is a step towards reducing user

privacy concerns, we conducted a user study with 166 Amazon
Mechanical Turk users. We asked the participants how comfort-
able they are about a restaurant recommendation service accessing
various private data and asked them to rate their level of concern
(Likert Scale). We provided the participants with the following de-
scription and choices:

We are building a restaurant recommendation app for

Android and iOS. For it to provide good recommenda-

tions, we need to access various kinds of information
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Implicit Signal Question
Avg. Level of Concern

(1-5 Range)

Fine-Grained GPS [Q1] The recommendation app records and transmits your exact location all the
time to its cloud service

3.31

[Q2] The recommendation app records and transmits your exact location to its
cloud service only when you are using the app

2.68

[Q3] The recommendation app records and transmits only the name of the
restaurants you visit to its cloud service

2.41

Purchase History [Q4] The recommendation app records and transmits your purchase history to
its cloud service

3.15

[Q5] The recommendation app records and transmits how much you spend on
meals to its cloud service

3.03

Browser History [Q6] The recommendation app records and transmits your browsing history to
its cloud service

3.42

[Q7] The recommendation app records and transmits only restaurant websites
you visit using your browser to its cloud service

2.61

Table 3: The seven questions in our user study of 166 MTurk participants. All questions concern a restaurant recommendation collector.
After filtering for random clickers, we averaged the level of concern users reported for 150 participants. The level of concern is encoded as
1 = not concerned, 5 = would not allow this data collection to happen. We see a significant reduction in concern between Q1 and Q3, and
between Q6 and Q7. We did not see a significant reduction in concern between Q4 and Q5, partly due to the general sensitivity of purchase
history. Q3, Q5, and Q7 represent the behavior of a Heimdall collector.

about you from your smartphone. In what follows, we

will describe type of information being collected. This

collected information is transmitted to our recommen-

dation system cloud service. Your task is to rate your

feelings towards such collection based on the follow-

ing scale:

1. Not Concerned - Select this option if you are not

concerned about sharing the specified data with

third parties.

2. Mildly Concerned - Select this option if you

are mildly concerned about sharing the specified

data with third parties.

3. Concerned - Select this option if you are con-

cerned about sharing the specified data with

third parties.

4. Very Concerned - Select this option if you are

very concerned about sharing the specified data

with third parties.

5. Would Not Allow - Select this option if you would

not allow the specified data to be shared with

third parties.

After filtering for random clickers with the help of responses to
trap questions [29], we were left with 150 filtered responses. Ta-
ble 3 contains the survey questions and the average level of concern
that users reported. Q1, Q2, Q4, and Q5 represent the behavior of
current collectors. Q3, Q5 and Q7 represent the behavior of Heim-
dall collectors. We conducted a paired t-test for Q1 and Q3 (see
Table 3) and found a significantly reduced level of concern (p <
0.05) when the recommendation app only collected fine-grained
and relevant information (i.e., a location value only when it is a
restaurant). A t-test for Q2 and Q3 indicated a significant effect (p
< 0.05)—even if data is being collected only when the app is being
used, users are significantly less concerned when Heimdall informs
them that only restaurant names are sent out.

We conducted another paired t-test for Q4 and Q5, but did not
find a significant effect (p > 0.05). We believe the reason for no
significant reduction in level of concern is probably because of the
generally sensitive nature of purchase data—be it specific to a kind
of item or generic purchase data. Finally, we conducted a paired
t-test for Q6 and Q7 and observed a significant effect (p < 0.05)
suggesting a reduced level of concern. As Q3, Q5, and Q7 repre-
sent the behavior of Heimdall collectors, these results suggest that
users are possibly more comfortable with purpose-specific data col-
lection that Heimdall enables as compared to the current state of the
art where no restrictions exist on how and what data recommenda-
tion systems can implicitly record. Although this brief user survey
suggests that Heimdall is a step in the right direction, our results do
have limitations.
User Study Limitations. Our survey questions were presented
in the same specific order to all participants—questions relating
to how collectors function today followed by questions relating to
how collectors function in Heimdall. This ordering is a potential
source of option bias.

Even though Heimdall collectors do not arbitrarily collect sensi-
tive information, our study suggests that users are still mildly con-
cerned about data collection. We believe that this level of concern
can be further reduced by coupling Heimdall with a mechanism that
enforces data-use policies on the recommendation system back-
end, to gain an end-to-end privacy guarantee that collected data is
only used for recommendation purposes. We elaborate further on
this aspect in §5.

Our survey does not determine whether users would stop giving
explicit feedback because they (possibly erroneously) assume that
implicit feedback is sufficient. This is an interesting side-effect of
privacy-respecting implicit feedback collection, and we envision a
future survey that is designed to study this aspect.
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5. DISCUSSION
Implicit vs Explicit Feedback. Heimdall does not replace explicit
feedback, but rather augments it with implicit feedback. Use of
implicit feedback only allows a collector to infer a user’s interest
and preferences; it does not replace user experiences reflected in
textual reviews or explicit ratings in scoring systems. Heimdall,
however, gives a voice to the vast majority of users who do not
provide any feedback on their experiences when using recommen-
dation systems.
Targeted Explicit Feedback. Currently, recommendation systems
solicit explicit feedback on all products and services irrespective
of whether these products and services are relevant to users. Using
implicit feedback that Heimdall enables, a recommendation system
can personalize how it solicits explicit feedback. For example, if a
recommendation system learns that a user has visited two restau-
rants very frequently in the past month, the system can dynami-
cally generate explicit feedback UI for only those two restaurants,
that are arguably more relevant to a user than all the other restau-
rants. We believe that this can incentivize users to provide explicit
feedback. We leave it to future work to design such a system.
Pluggable Secure APIs. Although our current prototype supports
a limited set of secure APIs, we envision a pluggable architecture
(e.g., using dynamic code loading) where modules containing new
secure APIs can be connected to the basic Heimdall framework.
Open source developers can build and vet such plugin-based secure
APIs to extend the functionality of the Heimdall framework.
Limitations. Heimdall allows recommendation systems to access
a wide variety of user’s implicit signals that they can use to infer
user preferences, thus improving the quality of recommendations.
In Heimdall, collectors can use arbitrarily complex models to ex-
tract user preference from their data (e.g., This user likes California
sushi roll). Collectors, however, are not designed to create digests
of these preferences. Questions such as “How many times the user
has eaten out this month?” cannot be answered by a collector di-
rectly because of the limitations imposed by immutable blobs, but
they can be answered on the recommendation system by collecting
data on user’s restaurant visits.

The recommendation system itself can possibly misuse data that
collectors submit (e.g., leak user behavior to third parties). Our
design currently does not provide any guarantees on the behav-
ior of the recommendation system. Information flow control ap-
proaches are a promising step in providing end-to-end privacy guar-
antees [36], including recent work on structuring code to make
flows explicit [17]. Nevertheless, Heimdall collectors are a first
step towards achieving the end-to-end privacy goal, and is the fo-
cus of this work. Another promising direction to obtain end-to-end
guarantees is the notion of policy-carrying data [34]. A collec-
tor could attach a policy before submitting to the recommendation
system. Then, the recommendation system can only access the sub-
mitted data if it publicly acknowledges (in an unforgeable way) that
it will follow the rules of the associated policy. If it deviates from
the policy, then either technical mechanisms or legal instruments
could be used to address the privacy breach.
Side/Covert Channels. Heimdall controls the data that collectors
gather by enforcing fine-grained data type tracking through im-
mutable blobs that contain multiple data fields (e.g., type of lo-
cation, name of location, value of sensor). However, it is possible
for a malicious collector to transmit information through side and
covert channels, such as encoding data within timing, frequency,
or pattern of data submissions. While we don’t address these chal-
lenges, many of the techniques proposed in the literature (e.g., cre-
ating a delay before any submission to protect against timing side
channels) are applicable to Heimdall [44,45]. Furthermore, provid-

ing an accurate log of collector’s activities allows for auditing and
anomaly detection.

6. RELATED WORK
Recommendation Systems. As discussed in §1, recommendation
systems suffer from three shortcomings: (1) users have privacy
concerns while sharing preferences [9, 42, 43], (2) users must take
extra steps to provide explicit feedback by interacting with review-
related UI elements like rating bars, and (3) users often leave feed-
back only after an extreme experience [8, 26]. Our key insight
in Heimdall is that all of these problems can be solved if recom-
mendation systems could collect implicit preferences in a privacy-
respecting manner. Therefore, Heimdall is design with this goal
in mind. Heimdall enables recommendation systems to construct
collectors that augment explicit preferences with a user’s implicit
preferences.

Automatically collecting implicit preferences can increase the
privacy concerns of the user if they do not have control of the pro-
cess or are unaware that such collection occurs. Heimdall forces
implicit preference collectors to declare what data is exported to the
recommendation system’s back-end. Therefore, users are informed
that data collection is occurring and can choose to block undesired
collection. Zhang et al. showed that adding privacy control mech-
anisms to implicit data input addressed user privacy concerns [43].

There is a body of work discussing privacy attacks on recom-
mendation services. Calandrino et al. leverage temporal changes in
the public output of a recommendation service to infer information
about a specific customer’s transactions with only a small amount
of auxiliary information [11]. Ramakrishnan et al. discuss how in-
formation on the existence of customers with eclectic preferences
in products, or straddlers, can be used to reveal personal details of
other customers with similar preferences [33]. These are attacks
on the algorithm the recommendation system uses to produce rec-
ommendations. In contrast, our work is concerned with privately
leveraging implicit signals to improve the quality of recommen-
dations. Preventing attacks on the recommendation algorithm are
orthogonal to our goals.
Implicit Preference Collection. A recent class of systems are
emerging that perform entity recognition and task extraction di-
rectly on data that appears on smartphone UI. For instance, Fer-
nandes et al. built Appstract [18], and Chandramouli et al. built
Insider [13]. These systems extract structured data from smart-
phone app UI and associate semantics to that data. Such extraction
creates a rich data source that recommendation systems can use for
implicit preference collection. However, these systems leave de-
signing proper security controls for third-party access to this data
as future work. We believe that Heimdall is a suitable framework
that enables recommendation systems to leverage this rich source
of semantically labeled data in a privacy-respecting manner.
Information Flow Tracking. JFlow and Jif are security-typed lan-
guages where developers must learn a new type-system to gain se-
curity benefits [5, 31]. Heimdall draws on ideas from such lan-
guages, but it simplifies the type-system to only include a single
new security-oriented type—immutable blobs. A collector may
only sink specific immutable blobs declared in its manifest.

FlowFence is a general-purpose information flow control system
aims at Internet of Things apps [17] that only allows data to flow
from a source to a sink if the data policy permits. In contrast, Heim-
dall does not monitor data flows from a source to a sink. Instead, it
simply ensures that data exported at a sink has been declared in a
collector’s manifest and has been approved by the user. However, a
system like FlowFence, which supports information flow control as
a first-class primitive (as opposed to bolt-on approaches discussed
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below), can be used on the recommendation system itself to obtain
end-to-end privacy guarantees that limit the misuse of data submit-
ted by collectors.

A large body of work deals with dynamic and static taint anal-
yses that track how data flow of a program affects the contents of
variables containing sensitive information [36]. These techniques,
which introduce large performance overheads, are generally ap-
plied in non-adversarial settings such as test generation and in-
tegrity protection, where the attacker does not control the code that
is being taint checked. Within an adversarial setting, attackers can
defeat current taint analysis techniques using control flows and con-
currency [35]. Heimdall does not use taint tracking to achieve its
privacy goals because the application area is very specific and does
not require tracking data and control flow—a collector’s only func-
tion is to sink an immutable blob whose contents, by definition,
cannot be changed by data or control flow of the collector’s code.

Linkability & K-Anonymity. Heimdall enables users to
anonymize their submissions to the recommendation system using
an anonymity network such as TOR. While this approach removes
any direct link between different data submissions of an individ-
ual, it does not provide an unlinkability guarantee. Prior work such
as Narayanan et al. [32] has shown how large sparse datasets of
recommendations can get deanonymized by collusion between dif-
ferent sources. Providing such guarantees fall outside our threat
model, but has been extensively studied in K-Anonymity litera-
ture [23–25, 28, 38, 40] .

7. CONCLUSION
Many users today rely on online recommendation systems

(e.g., Yelp, Goodreads, IMDB) to better inform their decisions
about whether or not to use a certain product or service. These
systems seek to aggregate large amounts of implicit (e.g., GPS
data, purchase history, browsing history) and explicit (e.g., written
reviews, ratings) user feedback in order to produce high quality
recommendations. However, due to user privacy concerns, these
systems are not given access to implicit data sources, and thus must
rely on explicit feedback, which most users do not provide. We
have proposed Heimdall, a practical privacy-respecting preference
collection framework that allows recommendation systems to
collect implicit feedback. Implicit preference collectors declare
the type (e.g., location) and granularity (e.g., restaurant name) of
data they share. Users approve or reject these requests to share
data and Heimdall ensures that the collectors behave in accordance
with their declared data accesses and the user’s decision. Heimdall
introduces immutable blobs as a mechanism to help provide these
guarantees. We built Heimdall for Android (and also interfaced
it with Samsung SmartThings). Our evaluation indicates that
performance overhead is minimal—generating immutable blobs
adds a 340µs delay to IPCs that transfer data into a collector. We
conducted a user study with 166 MTurk participants to determine
whether Heimdall collectors decrease privacy concerns. We find
that users are significantly less concerned with data collection
when they have control over the collection process and when
the nature of the collected data is made explicit (e.g., collecting
fine-grained location vs. using location to only collect restaurant
names).
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