
Pedestrian Detection: Performance Comparison

Using Multiple Convolutional Neural Networks

Meenu Ajith1 and Aswathy Rajendra Kurup1

University of New Mexico, Albuquerque NM, USA

Abstract. Pedestrian Detection in real world crowded areas is still one
of the challenging categories in object detection problems. Various mod-
ern detection architectures such as Faster R-CNN, R-FCN and SSD has
been analyzed based on speed and accuracy measurements. These mod-
els can detect multiple objects with overlaps and localize them using
a bounding box framing it. Evaluation of performance parameters pro-
vides high speed models which can work on live stream applications in
mobile devices or high accurate models which provide state-of-the-art
performance for various detection problems.These convolutional neural
network models are tested on the Penn-Fudan Dataset as well as Google
images with occlusions, which achieves high detection accuracies on each
of the detectors.

1 Introduction

Pedestrian detection has made immense progress over the last few years with
the arrival of convolutional neural networks. It persists as one of the challenging
problems because of the large variability of pedestrians in clothing, so that only
a few areas can be included as the real feature for distinguishing this category.
In addition, the lighting conditions, background overlaps, articulation, and oc-
cluding accessories such as umbrellas and backpacks may cause changes to the
silhouette of the pedestrian. Conventional pedestrian detection methods require
complex feature extraction manually and have a limitation of slow processing
time. However, modern convolutional neural network models such as Faster R-
CNN [1], R-FCN[2], Mobilenets[3] and SSD[4] has been found to have more ac-
curate and fast performances. But the appropriate tradeoff between speed and
accuracy for each of the models has not been evaluated for the application of
pedestrian detection. The detection speed is calculated in terms of seconds per
frame(SPF) and the accuracy metric used is mean average precision(mAP).

The State-of-the-art pedestrian detection frameworks depend on region pro-
posal algorithms to estimate the location of the pedestrians. After the advance-
ment of networks like SPPnet [5] and Fast R-CNN [6] the running time was
reduced thereby making the region proposal computation to impede. Th Re-
gion Proposal Network (RPN) introduced cost-free region proposals that share
convolutional features with the detection network. Thus, Faster R-CNN is com-
posed of a deep fully convolutional network that proposes regions, and these



regions are used by the Fast R-CNN detector to predicts object bounds and
objectness scores at each position. In case of PASCAL VOC 2007, 2012, and
MS COCO datasets this model achieved high detection accuracy with only 300
proposals per image. The region-based, fully convolutional networks(R-FCN),
in contrast to the region-based detectors such as Fast/Faster R-CNN have all
computations shared on the entire image. Meanwhile, the Faster R-CNN ap-
plies a costly per region network on the image large number of times thereby
increasing the computational burden. The R-FCN model can also use the Resid-
ual Networks(ResNets) [7] as a fully convolutional image classifier backbone for
various detection applications. To manage real-world applications such as self-
driving car and augmented reality, the recognition tasks must be performed
on a computationally limited platform. MobileNets are such small, low latency
models that can be easily matched to the design requirements for mobile and
embedded vision applications. They were primarily constructed by performing
depth wise separable convolutions. It was subsequently used in Inception models
[8] to reduce the computation in the first few layers.While accurate, the cur-
rent approaches have been too computationally intensive for embedded systems
and, too slow for real-time applications, even with high-end hardware. A single
deep neural network named SSD was introduced which achieved 77.2% mAP for
300300 input and 79.8% mAP for 512512 input on VOC2007, outperforming a
comparable state-of-the-art Faster R-CNN model. Several attempts were made
to build faster detectors, but so far, significantly increased speed comes only at
the cost of significantly decreased detection accuracy.

In this paper, the speed/accuracy trade-off of modern detection systems are
explored in the application of pedestrian detection. The test time performances,
duration of training, learning rate and loss functions for each model are com-
pared to find the optimal detector for this application. Here lesser training time
denotes faster convergence to a more accurate model using fewer parameters.
This reduces the complexity of the system as well as prevents overfitting. The
Faster R-CNN, R-FCN, and SSD at a high level consist of a single convolutional
network and are trained with a mixed regression and classification objective
thereby making it easier to compare and analyze these systems.The implemen-
tations of these architectures were done in TensorFlow which finally provided
the tradeoff results for various detection systems.

2 Model Architecture

The detection framework consists of the convolutional object detectors with
different meta architectures and feature extractors. The meta architectures in-
clude proposal based methods such as R-FCN and Faster R-CNN and proposal
free method with SSDs. In Faster R-CNN the computational burden is shared
and the region proposals are generated using neural networks. Hence this archi-
tecture has improved efficiency while in R-FCN the removal of fully-connected
layers improves speed as well as accuracy. SSD uses different bounding boxes
and small convolutional filters for prediction. It achieves high detection speed



even while using relatively low-resolution input. In particular, several pre-trained
models such ResNet, MobileNet, and Inception are used for feature extraction.
Thus the proposed network uses a combination of these architectures and trained
them with the multi-task loss function for object detection and localization.

2.1 Modern Convolutional Detectors

Single Shot Detector SSD uses a single deep Neural Network to detect the
objects. SSD makes the output space of bounding boxes discrete to form a set
of default boxes. These default boxes are formed over different aspect ratios
and scales for each of the feature map location. During the prediction, scores
are generated for each of the object category in each default box and the box
dimensions are adjusted to fit the object shape better[4] .

Single Shot Multibox Detector is a feed forward Convolutional network pro-
ducing a collection of bounding box which have fixed-size. The scores are gener-
ated for the presence of an object class instance in those boxes, following which
a non-maximum suppression step is done which produce the final detection. The
base network layers are based on standard architecture used for higher quality
image classification. Feature Layers are added to the truncated base network
which decrease in size progressively as shown in Fig. 1 . Hence, the detections
at multiple scales is possible. Using a set of Convolutional filters each of the
added feature layers formulates a fixed set of detection predictions. For a feature
Layer, the parameters used for prediction is mainly a kernel of size 3 x 3 x p
(the feature layer having size m x n with p channels) which produces either a
score for a category or the shape offset with respect to the default box position
relative to feature map location [4]. Each feature map cell has a default bound-
ing box assigned to it. For each of these feature map cell the offsets relative to
the default box shapes in the cell are calculated. Also, the scores that indicate
the presence of a class instance in these boxes are predicted for each class. At
the training time, the default boxes are first compared with the ground truth
boxes following the calculation of model loss. The model loss calculated is hence
a weighted sum between Localization loss [6] which corresponds to the shape off-
set and confidence loss calculated from the confidences for all object categories.

SSD Training Objective The training objective is obtained from the Multibox
Objective [9][10]. The Objective Loss function is the weighted sum of Localiza-
tion Loss (loc) and Confidence Loss (conf) [1] given by equation (1).

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (1)

N is the number of matched default boxes. Localization Loss is computed in
the form of a smooth L1 loss [6] between the parameters corresponding to the
predicted box (l) and the ground truth box (g). [4]. Confidence loss is mainly
the loss over different class confidences (c). For N=0, loss is set to zero.



Fig. 1: Architecture of SSD

Faster R-CNN Faster R-CNN (Faster region-based convolutional neural net-
works) is a single, unified network mainly used for object detection [1]. Fast
R-CNN developed before the Faster R-CNNs were able to achieve near real-time
rates using very deep networks [11], ignoring the time spent on region propos-
als. [1] The Region proposal step was computationally expensive with a huge
running time.

Faster R-CNN has two modules. The first module being the deep fully con-
volutional network proposing regions. The second module is the detector module
from Fast R-CNN [6]. These detectors use the proposed regions. The recently
popular term attention [12] mechanisms, the Region Proposal Network tells the
Fast R-CNN detector module where to look at [1]. Fig. 2 shows the description
of the layers. A Region Proposal Network (RPN) takes an image as input. The
output is a set of rectangular proposals for the objects with a score depicting
the objects presence. RPN is modelled using a fully connected convolutional
network. The region proposals are generated by sliding a small network over
the convolutional feature map. This feature map is obtained from the previous
convolutional layer. The small network takes in an n x n spatial window of the
feature map as the input. These windows are then mapped to a lower dimen-
sional feature. The Lowdimensional features are then fed to two fully connected
layers namely box regression layer (reg) and box-classification layer (cls). [1] In
Fig. 3 , for k locations corresponding to maximum possible proposals reg layers
have 4k outputs showing coordinates of k boxes whereas cls layer has 2k scores
which help in estimating the probability of object occurrence for each proposal.
These k proposals are parameterized with respect to k reference box called as
anchor. Anchor based approach helps in addressing the multiple scale and aspect
ratio issues. This design hence avoids extra cost for addressing scales.

The loss function for an image while training RPN is defined as:

L(pi, ti) =
1

Ncls

∑

i

Lcls(pi, p
∗

i ) + λ
1

Nreg

∑

i

p∗iLreg(ti, t
∗

i ) (2)







process into two different layers. The first layer does filtering, and the second
layer performs the combination. This mainly helps in reducing the computa-
tional cost and reduces the Model size.Both batchnorm and ReLU nonlinearities
are used for both layers [3].

In the MobileNet structure, all the layers are built based on depthwise sep-
arable convolutional Layers except the first layer which is full convolution [3].
All Layers are followed by batchnormal and ReLU nonlinearity. The final Layer
is the exception which has no nonlinearity but is followed by a softmax Layer
instead which helps in classification [13]. MobileNet models were trained in Ten-
sorFlow [14] using RMSprop [15] with asynchronous gradient descent similar to
Inception V3 [3][16].

Inception v2 This model mainly aims at utilizing added computation as effi-
ciently as possible to perform factorized convolutions and aggressive regulariza-
tion. The convolutional networks can be scaled up in an efficient way by using
Inception concepts. Th convolutions involving a kernel greater than size 3x 3
can be easily and efficiently performed using a series of smaller convolutions.
[16] Further, factorization of convolutions and improved normalizations can be
other tricks that are adopted to improve its efficiency.

Inception networks are fully convolutional, and each weight corresponds to
multiplication per activation. If the factorization is done properly the parameters
can be more disentangled and hence can lead to faster training. Inception-v2
network is 42 layers deep. The computational cost is only about 2.5 higher than
that of GoogLeNet and is more efficient than VGGNet [16].

3 Experimental Setup

The pedestrian detector is trained on the Penn-Fudan dataset [17]. This database
contains images of pedestrians are taken from scenes around campus and urban
street. Each image will have at least one pedestrian in it. There is a total of 170
images in which 80% are used for training while the rest are used for testing. The
convolutional neural network models are pre-trained on the COCO dataset, the
Kitti dataset, and the Open Images dataset and hence lesser data is required for
re-training the models. The detections on COCO dataset based on these models
are shown in Fig. 5. In case of the COCO dataset, the different models provide
a trade off between speed of execution and the accuracy in placing bounding
boxes as shown in table .

Further, in order to train the model, for each image, the width, height and
each class with their bounding box parameters are required.Hence the input data
is labeled manually using the graphical image annotation tool named LabelImg.
It uses Qt for its graphical interface and the annotations for each image are saved
as XML files in PASCAL VOC format. A labeled map associated with each of the
datasets and this label map defines a mapping from string class name (person)
to integer class ids which always start from id 1. During training, TensorFlow





Fig. 6: Experimental flow chart

learning is done by removing the last 90 neuron classification layer of the network
and replacing it with a new layer. Here this is implemented so that training will
be quicker and the data required will be less.Thus the five pre-trained models are
taken and the last layer is clipped off and replaced with the class of the current
dataset.The SSD MobileNet and SSD Inception used a batch size of 10 while
the rest of the models used a much lesser batch size of 3. Here each of the five
models is trained for 5000 number of steps and these steps mainly depends on
the size of the dataset. The initial learning rates are in the range of 0.002-0.004
for each of the models.

The fine-tuning of an existing model is highly accurate and easy since most
of the features that are learned by CNNs are often object agnostic.Thus all
the feature detectors trained in the previous model are used to detect the new
class.When the loss function for each of the models is around 1 or starts rising
the training is stopped.Finally, the graph for inference is exported and the newly
trained model is validated using the remaining 20% test data as well raw Google
images. These images are in the RGB format with varying sizes and are in .png
image format. Many of these images contain multiple pedestrians and those
holding many occluding object artifacts such as bags and umbrellas.Each of the
trained models is tested at multiple checkpoints to see which one performs the
best.The entire experimentation is shown in the flowchart in Fig. 6.



4 Results

4.1 Detection time on test images on CPU

The detection time per image was calculated for each model as shown in table
2 .It was seen that faster RCNN inception and SSD models are faster requiring
around 2.5 s on average detection time per image. However faster RCNN resnet
models has a higher computation burden and thereby require around 18 s.

The overall mAP calculation of different models is shown in table 2 .It is
observed that faster rcnn inception outperformed other models with a higher
accuracy value.Based on the ranking of detection scores for each class the per-
formance of the detectors are evaluated using mean average precision over entire
test data.

Table 2: Speed accuracy trade-off

Model name Time(s) mAP

ssd mobilenet 1 0.78
ssd inception v2 1.2 0.92
faster rcnn inception 4.7 0.96
rfcn resnet101 7.31 0.95
faster rcnn resnet101 18.23 0.95

4.2 Sample Detections

The visualization of detections in the test images of the Penn-Fudan dataset can
be seen in Fig. 7.Thus a comparative analysis is done between the 5 models to
find the optimum detector for the pedestrian detection application. The Penn-
Fudan dataset consist of different categories of pedestrians such people carrying
umbrellas, suitcases and other occluding objects. There also exist variable cases
such as multiple people on the same screen and overlapping scenarios. Thus
sample detections done on this dataset can be considered to be highly comparable
to real life situations. From the figures it is clear that all the models perform
consistently well except that SSD is unable to detect pedestrians which are
farther away and it also shows low detection rate in case of overlaps. Further,
sample detection using Faster R-CNN Inception on a Google image is shown in
Fig. 10.



(a) (b)

(c) (d)

(e)

Fig. 7: Example detection for (a) SSD Mobilenets (b) SSD Inception (c) R-FCN
Resnet (d) Fast RCNN Resnet (e) Fast RCNN Inception

4.3 Total Loss Function

The loss function for the models is the total loss in doing detection and generating
bounding box. Each of the models was trained for 5000 steps since the size of the
dataset was comparatively small.The loss for SSD (both with ResNet 101 and
Inception-v2) models started off with a value around 13 and converged around
the value 2. In case of Faster R-CNN (both with ResNet 101 and Inception-v2)
and R-FCN models, the loss function converged to a relatively smaller value
around 0.2.









References

1. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. (2015) 91–99

2. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully
convolutional networks. In: Advances in neural information processing systems.
(2016) 379–387

3. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

4. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision,
Springer (2016) 21–37

5. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. In: european conference on computer vision,
Springer (2014) 346–361

6. Girshick, R.: Fast r-cnn. arXiv preprint arXiv:1504.08083 (2015)
7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.
(2016) 770–778

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using
deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2014) 2147–2154

10. Szegedy, C., Reed, S., Erhan, D., Anguelov, D., Ioffe, S.: Scalable, high-quality
object detection. arXiv preprint arXiv:1412.1441 (2014)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-
based models for speech recognition. In: Advances in neural information processing
systems. (2015) 577–585

13. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

14. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

15. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine
learning 4(2) (2012) 26–31

16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2016) 2818–2826

17. Wang, L., Shi, J., Song, G., Shen, I.f.: Object detection combining recognition and
segmentation. In: Asian conference on computer vision, Springer (2007) 189–199


