
Distributed Stochastic Optimization of Network

Function Virtualization

Xiaojing Chen1,4, Wei Ni2, Tianyi Chen3, Iain B. Collings4, Xin Wang1, Ren Ping Liu5, and Georgios B. Giannakis3

1Key Lab of EMW Information (MoE), Dept. of Commun. Sci. & Engr., Fudan University, China
2Digital Productivity and Service (DP&S) Flagship, CSIRO, Australia

3Dept. of Elec. & Comput. Engr. and Digital Technology Center, University of Minnesota, USA
4Dept. of Engr., Macquarie University, Australia

5School of Comput. & Commun., University of Technology Sydney, Australia

Abstract—Decoupling network services from underlying hard-
ware, network function virtualization (NFV) is expected to
significantly improve agility and reduce network cost. However,
network services, sequences of network functions, need to be
processed in specific orders at specific types of virtual machines
(VMs), which couples decisions of VMs on processing or routing
network services. Built on a new stochastic dual gradient method,
our approach suppresses the couplings, minimizes the time-
average cost of NFV, stabilizes queues at VMs, and reduces the
backlogs of unprocessed services through online learning and
adaptation. Asymptotically optimal decisions are instantly gener-
ated at individual VMs, with a cost-delay tradeoff [𝜖, log2(𝜖)/

√
𝜖].

Numerical results show that the proposed method is able to
reduce the time-average cost of NFV by 30% and reduce the
queue length (or delay) by 83%, as compared to existing non-
stochastic approaches.

Index Terms—Network function virtualization, virtual ma-
chine, distributed optimization, stochastic approximation.

I. INTRODUCTION

Decoupling dedicated hardware from network services and

replacing with programmable virtual machines (VMs), Net-

work Function Virtualization (NFV) is able to provide crit-

ical network functions on top of optimally shared physical

infrastructure [1]. This can avoid disproportional hardware

investments on short-lived functions, and adapt quickly as

network functions evolve [2].

A network service (or service chain) can consist of multiple

virtual network functions (VNFs), which need to be run in a

predefined order at different VMs running different software

and processes [3]. Challenges arise from optimal decision-

makings of processing or routing VNFs at each VM, especially

in large-scale network platforms. On one hand, given the

sequence of VNFs per network service, the optimal decisions

of individual VMs are coupled. On the other hand, stochas-

ticity prevails in the arrivals of network services, and the link

capacity between VMs stemming from concurrent traffic [4].

Prices can also vary for the service of a VM, depending on

the pricing policy of the service providers. The stochasticity

results in couplings of optimal decisions in time.

Work in this paper was supported by the National Natural Science Founda-
tion of China grant 61671154, the Innovation Program of Shanghai Municipal
Education Commission; and US NSF 1509005, 1508993, 1423316, 1442686,
1202135.

These are open challenges and have not been captured in

previous works. Earlier works were focused on the placement

of VNFs under the assumption of persistent arrivals of VMs [5]

or full knowledge on the statistics of the arrivals [6], where

VNFs were instantly processed at the VMs admitting them

and routing was overlooked. Taking network service chains

into account, recent works studied optimal decision-makings

on processing and routing VNFs, under the assumption of

persistent service arrivals [7]. NP-complete mixed integer

linear programming (MILP) was formulated to minimize the

delay of network service chains [8]. These heuristics still need

to run in a centralized manner, limiting scalability. Moreover,

none of these works have taken random network service

arrivals or dynamic pricing into account.

In this paper, we propose a new distributed online opti-

mization of NFV, where asymptotically optimal decisions of

processing or routing VNFs are instantly generated at indi-

vidual VMs, adapting to the topology and stochasticity of the

network. Capturing random service arrivals and time-varying

prices, a new stochastic dual gradient method is developed to

decouple optimal decision-makings across different VMs and

different time slots, and minimize the time-average cost of

NFV while stabilizing the queues of VMs. The gradients can

be interpreted as the backlogs of the queues at every VM,

and updated locally by the VM. With a proved cost-delay

tradeoff [𝜖, 1/𝜖], the proposed method is able to asymptotical-

ly approach the offline-generated, causality-violating, global

optimum by tuning the coefficient 𝜖.

Another important contribution of this paper is that we

further speed up stabilizing the VMs and improve the cost-

delay tradeoff to [𝜖, log2(𝜖)/
√
𝜖]. A learn-and-adapt approach

is designed to accelerate the ascent of the aforementioned

gradients and reduce the steady-state queue lengths by learning

the statistics of the gradients from history.

The rest of the paper is organized as follows. In Section II,

the system model is described. In Section III, the distribut-

ed online optimization of service processing and routing is

developed. The learn-and-adapt enhancement is proposed in

Section IV. Numerical tests are provided in Section V, followed

by concluding remarks in Section VI.

978-1-5090-5019-2/17/$31.00 ©2017 IEEE

II. SYSTEM MODEL

Consider a platform consisting of 𝑁 VMs, supporting 𝐾
VNFs, and operating in a (possibly infinite) scheduling horizon

consisting of 𝑇 slots with a normalized slot duration “1”.

Assume that every VM can admit network services to be

processed on the platform, and output the results. 𝒩 =
{1, . . . , 𝑁} collects the 𝑁 VMs. Let 𝑓𝑘 (𝑘 = 1, . . . ,𝐾)

denote the 𝑘-th VNF which can only be processed at the VMs

running the corresponding software. Assume that every VM

runs the software for a single VNF. 𝒩 can be divided into 𝐾
subgroups, denoted by 𝒩𝑘, 𝑘 = 1, . . . ,𝐾. 𝒩𝑘 consists of the

VMs which can process VNF 𝑓𝑘.

Let ℐ collect all possible types of network services, each of

which is a permuted sequence of {𝑓1, . . . , 𝑓𝐾}. In this sense,

a network service needs to traverse among multiple subgroups

of VMs, until all the VNFs within the service are processed in

the correct order. Consider network services of type 𝑖 and VM

𝑛. 𝑈 𝑖
𝑛 denotes the set of the corresponding upstream VMs, 𝐷𝑖

𝑛

the set of the downstream VMs, and 𝑆𝑖𝑛 the set of VMs that

are able to process the same type of VNF as, and have virtual

links to, VM 𝑛. 𝑈 𝑖
𝑛 and 𝐷𝑖

𝑛 depend on the order of VNFs to

be processed in the network service.

We design up to 2∣ℐ∣ First-In-First-Out (FIFO) queues at

each VM 𝑛. Half of the queues buffer network services with 𝑓𝑘
being the head-of-line (HOL) unprocessed VNF; and the other

half buffer the result of the first half with 𝑓𝑘 processed and

to be routed to downstream VMs for further processing. Let

𝑄𝑖
𝑛(𝑡) and 𝑞𝑖𝑛(𝑡) denote the queue lengths of the unprocessed

and processed network services of type 𝑖 at node 𝑛, slot 𝑡.
Let Q(𝑡) = {𝑄𝑖

𝑛(𝑡), ∀𝑛 ∈ 𝒩 , 𝑖 ∈ ℐ}, q(𝑡) = {𝑞𝑖𝑛(𝑡), ∀𝑛 ∈
𝒩 , 𝑖 ∈ ℐ}, and A(𝑡) = {Q(𝑡),q(𝑡)}. 𝑅𝑖,𝑡

𝑛 ≤ 𝑅max denotes

the arrival rate (in services per slot) of a new network service

of type 𝑖 at node 𝑛, where 𝑅max is the maximum arrival rate.

We assume that any VM 𝑛 or directional link [𝑎, 𝑏] can only

process or transmit a single network service per slot. With the

data rate (in service per slot) of network services of type 𝑖
over directional link [𝑎, 𝑏], denoted by 𝑢𝑖[𝑎,𝑏](𝑡), it is easy to

see that at any time 𝑡, we have

𝑢𝑖[𝑎,𝑏](𝑡) ≥ 0,
∑

𝑖

𝑢𝑖[𝑎,𝑏](𝑡) = 𝑢
𝑖∗

[𝑎,𝑏](𝑡) ≤ 𝑢max
[𝑎,𝑏], ∀𝑖, [𝑎, 𝑏] (1)

where 𝑢max
[𝑎,𝑏] is the maximum data rate over link [𝑎, 𝑏], and a

network service of type 𝑖∗ is selected to be forwarded.

Let 𝛿𝑖𝑛(𝑡) denote the processing rate (in services per slot)

for network services of type 𝑖 on VM 𝑛. We also have

𝛿𝑖𝑛(𝑡) ≥ 0,
∑

𝑖

𝛿𝑖𝑛(𝑡) = 𝛿
𝑖∗

𝑛 (𝑡) ≤ 𝛿max
𝑛 , ∀𝑛, (2)

where 𝛿max
𝑛 is the maximum processing rate of VM 𝑛, and a

network service of type 𝑖∗ is selected to be processed.

Therefore, the queue length of unprocessed network services

of type 𝑖 at VM 𝑛 follows:

𝑄𝑖
𝑛(𝑡+ 1) = 𝑄𝑖

𝑛(𝑡)−
∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖[𝑛,𝑏](𝑡)− 𝛿𝑖𝑛(𝑡)

+
∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖[𝑎,𝑛](𝑡) +
∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖[𝑐,𝑛](𝑡) +𝑅
𝑖,𝑡
𝑛 , ∀𝑖, 𝑡, 𝑛.

(3)

The queue length of processed network services of type 𝑖 at

VM 𝑛 follows:

𝑞𝑖𝑛(𝑡+ 1) = 𝑞𝑖𝑛(𝑡)−
∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖[𝑛,𝑑](𝑡) + 𝛿
𝑖
𝑛(𝑡), ∀𝑖, 𝑡, 𝑛,

(4)

where 𝑞𝑖𝑛(𝑡) = 0 in the case that the last VNF of network

services of type 𝑖 is processed at VM 𝑛 and therefore output

from the platform.

We can define the network is stable if and only if the

following is met [9]:

lim
𝑇→∞

1

𝑇

𝑇∑

𝑡=1

𝔼[A(𝑡)] ≤ ∞. (5)

Considering the cost of processing and routing network

services in the platform, we can define the total cost of routing

services over all links and processing VNFs on all VMs per

slot 𝑡, as given by:

Φ(𝑢𝑖[𝑎,𝑏](𝑡), 𝛿
𝑖
𝑛(𝑡)) :=

∑

𝑎,𝑏,𝑖

𝑓(𝑢𝑖[𝑎,𝑏](𝑡)) +
∑

𝑛,𝑖

ℎ(𝛿𝑖𝑛(𝑡)), (6)

where 𝑓(𝑢𝑖[𝑎,𝑏](𝑡)) = 𝛽𝑡[𝑎,𝑏](𝑢
𝑖
[𝑎,𝑏](𝑡))

2 and ℎ(𝛿𝑖𝑛(𝑡)) =

𝛼𝑡𝑛(𝛿
𝑖
𝑛(𝑡))

2 are the prices that the network service provider

charges over usages of links and VMs, respectively, following

a quadratic pricing policy [10]. 𝛽𝑡[𝑎,𝑏] is the time-varying price

for delivering services over link [𝑎, 𝑏] and 𝛼𝑡𝑛 is the time-

varying price for processing services at VM 𝑛.

III. DISTRIBUTED ONLINE OPTIMIZATION OF

PROCESSING AND ROUTING

The objective of this paper is to minimize the time-average

cost of NFV on a network platform while preserving the stabil-

ity of the platform (i.e., finite queue lengths), under random

network service arrivals and prices. This is to be achieved

by making stochastically optimal decisions on processing or

routing network services at every VM and time slot in a

distributed fashion. Let x𝑡 := {𝑢𝑖[𝑎,𝑏](𝑡), ∀[𝑎, 𝑏], 𝑖; 𝛿𝑖𝑛(𝑡), ∀𝑛, 𝑖}
and 𝒳 := {x𝑡, ∀𝑡}. The problem of interest is to find

Φ∗ = min
𝒳

lim
𝑇→∞

1

𝑇

𝑇∑

𝑡=1

𝔼{Φ(x𝑡)} s.t. (1) − (5), ∀𝑡, (7)

where the expectation of Φ(x𝑡) is taken over all randomnesses.

The service arrival rate {𝑅𝑖,𝑡
𝑛 , ∀𝑛, 𝑖, 𝑡} and the routing and

processing prices {𝛽𝑡[𝑎,𝑏], 𝛼𝑡𝑛, ∀[𝑎, 𝑏], 𝑛, 𝑡} are all random.

A. Dual gradient and asymptotic optimality

It is difficult to solve (7) since the queue dynamics in (3)
and (4) couple the optimization variables in time, rendering
intractability for traditional solvers. Combining (3) and (4)
with (5), however, it can be shown that in the long term, the
service processing and routing rates must satisfy the following
necessary conditions of queue stability [9]

lim
𝑇→∞

1

𝑇

𝑇
∑

𝑡=1

𝔼[
∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](𝑡) +

∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](𝑡) +𝑅𝑖,𝑡

𝑛

−
∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](𝑡)− 𝛿𝑖𝑛(𝑡)] ≤ 0, ∀𝑖, 𝑛. (8a)

lim
𝑇→∞

1

𝑇

𝑇
∑

𝑡=1

𝔼[𝛿𝑖𝑛(𝑡)−
∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](𝑡)] ≤ 0, ∀𝑖, 𝑛. (8b)

As a result, (7) can be relaxed as

Φ̃∗ = min
𝒳

lim
𝑇→∞

1

𝑇

𝑇∑

𝑡=1

𝔼{Φ(x𝑡)} s.t. (1), (2), (8), ∀𝑡. (9)

Compared to (7), (9) eliminates the time coupling among

variables {A(𝑡), ∀𝑡} by replacing (3), (4) and (5) with (8). (9)

is a relaxation of (7) with its optimal objective Φ̃∗ ≤ Φ∗.
We can take a stochastic gradient approach to solving (9) in

an asymptotically optimal manner. Concatenate the random pa-
rameters into a state vector 𝒔𝑡 := [𝑅𝑖,𝑡

𝑛 , 𝛽
𝑡
[𝑎,𝑏], 𝛼

𝑡
𝑛, ∀[𝑎, 𝑏], 𝑛, 𝑖].

Suppose that 𝒔𝑡 is independent and identically distributed
(i.i.d.) across time slots, then we can rewrite (9) as [9]

Φ̃∗ = min
𝒳

𝔼{Φ(𝒳 (𝒔𝑡); 𝒔𝑡)} (10a)

s.t. 0 ≤
∑

𝑖

𝑢𝑖
[𝑎,𝑏](𝒔

𝑡) = 𝑢[𝑎,𝑏](𝒔
𝑡) ≤ 𝑢max, (10b)

0 ≤
∑

𝑖

𝛿𝑖𝑛(𝒔
𝑡) = 𝛿𝑛(𝒔

𝑡) ≤ 𝛿max, ∀𝑛 (10c)

𝔼[
∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](𝒔

𝑡) +
∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](𝒔

𝑡) +𝑅𝑖,𝑡
𝑛

−
∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](𝒔

𝑡)− 𝛿𝑖𝑛(𝒔
𝑡)] ≤ 0 (10d)

𝔼[𝛿𝑖𝑛(𝒔
𝑡)−

∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](𝒔

𝑡)] ≤ 0, (10e)

where 𝑢𝑖[𝑎,𝑏](𝒔
𝑡) := 𝑢𝑖[𝑎,𝑏](𝑡), 𝛿

𝑖
𝑛(𝒔

𝑡) := 𝛿𝑖𝑛(𝑡), ∀[𝑎, 𝑏], 𝑛, 𝑖, and

Φ(𝒳 (𝒔𝑡); 𝒔𝑡) := Φ(x𝑡).
Let 𝒳 𝑡 denote the set of {𝑢𝑖[𝑎,𝑏](𝑡), ∀[𝑎, 𝑏], 𝑖; 𝛿𝑖𝑛(𝑡), ∀𝑛, 𝑖}

satisfying constraints (1) and (2) per 𝑡. 𝜆𝑖𝑛,1 and 𝜆𝑖𝑛,2 denote

the Lagrange multipliers associated with the constraints (10d)

and (10e). With a convenient notation 𝝀 := {𝜆𝑖𝑛,1, 𝜆𝑖𝑛,2, ∀𝑛, 𝑖},

the partial Lagrangian function of (10) is

𝐿(𝒳 ,𝝀) := 𝔼[𝐿𝑡(x𝑡,𝝀)] (11)

where the instantaneous Lagrangian is given by

𝐿𝑡(x𝑡,𝝀) := Φ(x𝑡) +
∑

𝑖,𝑛

𝜆𝑖
𝑛,1(𝑡)(

∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](𝑡)

+
∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](𝑡) +𝑅𝑖,𝑡

𝑛 −
∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](𝑡)− 𝛿𝑖𝑛(𝑡))

+
∑

𝑖,𝑛

𝜆𝑖
𝑛,2(𝑡)(𝛿

𝑖
𝑛(𝑡)−

∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](𝑡)). (12)

Notice that the instantaneous objective Φ(x𝑡) and the instan-

taneous constraints associated with 𝝀 are parameterized by the

observed state 𝒔𝑡 at time 𝑡.
As a result, the Lagrange dual function is given by

𝐷(𝝀) := min
{x𝑡∈𝒳 𝑡}𝑡

𝐿(𝒳 ,𝝀), (13)

and the dual problem of (9) is: max𝝀ર0 𝐷(𝝀).
For the dual problem, we can take a standard gradient

method to obtain the optimal 𝝀∗. This amounts to running

the following iterations slot by slot

𝜆𝑖𝑛,1(𝑡+ 1) = [𝜆𝑖𝑛,1(𝑡) + 𝜖𝑔𝜆𝑖
𝑛,1

(𝑡)]+, ∀𝑖, 𝑛, (14a)

𝜆𝑖𝑛,2(𝑡+ 1) = [𝜆𝑖𝑛,2(𝑡) + 𝜖𝑔𝜆𝑖
𝑛,2

(𝑡)]+, ∀𝑖, 𝑛. (14b)

where 𝜖 > 0 is an appropriate stepsize. The gradient 𝒈(𝑡) :=
[𝑔𝜆𝑖

𝑛,1
(𝑡), 𝑔𝜆𝑖

𝑛,2
(𝑡), ∀𝑖, 𝑛] can be expressed as

𝑔𝜆𝑖
𝑛,1

(𝑡) = 𝔼[
∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](𝑡) +

∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](𝑡) +𝑅𝑖,𝑡

𝑛

−
∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](𝑡)− 𝛿𝑖𝑛(𝑡)] (15a)

𝑔𝜆𝑖
𝑛,2

(𝑡) = 𝔼[𝛿𝑖𝑛(𝑡)−
∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](𝑡)] (15b)

where x𝑡 := {𝑢𝑖[𝑎,𝑏](𝑡), ∀[𝑎, 𝑏], 𝑖; 𝛿𝑖𝑛(𝑡), ∀𝑛, 𝑖} are given by

x𝑡 = argmin
x
𝑡∈𝒳 𝑡

𝐿𝑡(x𝑡,𝝀). (16)

Note that an impassable challenge associated with (15)

is sequentially taking expectations over the random vector

𝒔𝑡 to compute 𝒈(𝑡). This would require high-dimensional

integration over an unknown probabilistic distribution function

of 𝒔𝑡. This requirement is impractical since the associated

computational complexity could be prohibitively high.
To bypass this impasse, we propose to rely on a stochastic

dual gradient approach. Specifically, dropping 𝔼 from (15),
we propose the following iterations

�̃�𝑖
𝑛,1(𝑡+ 1) = �̃�𝑖

𝑛,1(𝑡) + 𝜖[
∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](𝑡) +

∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](𝑡)

+𝑅𝑖,𝑡
𝑛 −

∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](𝑡)− 𝛿𝑖𝑛(𝑡)]

+
(17a)

�̃�𝑖
𝑛,2(𝑡+ 1) = �̃�𝑖

𝑛,2(𝑡) + 𝜖[𝛿𝑖𝑛(𝑡)−
∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](𝑡)]

+
(17b)

where �̃�𝑡 = {�̃�𝑖𝑛,1(𝑡), �̃�𝑖𝑛,2(𝑡), ∀𝑛, 𝑖} collects the stochastic

estimates of those in (14), and x𝑡(�̃�) is obtained by solving

(16) with 𝝀 replaced by �̃�𝑡, ∀𝑛, 𝑖.
Note that the interval of updating (17) coincides with slots.

In other words, the update of (17) is an online approximation

of (14) based on the instantaneous decisions x𝑡(�̃�𝑡) per

slot 𝑡. This stochastic approach is made possible due to the

decoupling of optimization variables over time in (9).

Relying on the so-called Lyapunov optimization technique

in [9], [11], [12], we can formally establish that:

Proposition 1: If 𝒔𝑡 is i.i.d. over slots, then the time-average

cost of (10) with the multipliers updated by (17) satisfies

Φ∗ ≤ lim
𝑇→∞

1

𝑇

𝑇−1∑

𝑡=0

𝔼
[
Φ(x𝑡))

]
≤ Φ∗ +𝒪(𝜖)

where Φ∗ is the optimal value of (7) under any feasible control

policy (i.e., the processing and routing decisions per VM),

even if that relies on knowing future random realizations.

The proofs for all propositions and theorems are omitted due to limited
space, and can be found in the extended journal version [13].

Proposition 2: Assume that there exists a stationary

policy 𝒳 and 𝔼[
∑

𝑎∈𝑈𝑖
𝑛
𝑢𝑖[𝑎,𝑛](𝑡) +

∑

𝑐∈𝑆𝑖
𝑛
𝑢𝑖[𝑐,𝑛](𝑡) +

𝑅𝑖,𝑡
𝑛 − ∑

𝑏∈𝑆𝑖
𝑛
𝑢𝑖[𝑛,𝑏](𝑡) − 𝛿𝑖𝑛(𝑡)] ≤ −𝜁, and

𝔼[𝛿𝑖𝑛(𝑡) − ∑

𝑑∈𝐷𝑖
𝑛
𝑢𝑖[𝑛,𝑑](𝑡)] ≤ −𝜁, where 𝜁 > 0 is a

slack vector constant, then all queues are stable, and the

time-average queue length satisfies:

lim
𝑇→∞

1

𝑇

𝑇∑

𝑡=1

∑

𝑛,𝑖

𝔼[𝑄𝑖
𝑛(𝑡) + 𝑞

𝑖
𝑛(𝑡)] = 𝒪(

1

𝜖
). (18)

Propositions 1 and 2 assert that the time-average cost of (10)

obtained by the stochastic dual gradient approach converges

to a region within an optimality gap of 𝒪(𝜖), which vanishes

as the stepsize 𝜖→ 0. The typical tradeoff from the stochastic

network optimization holds in this case [9]: an 𝒪(1/𝜖) queue

length is necessary, when an 𝒪(𝜖) close-to-optimal cost is

achieved.

B. Distributed online implementation

The dual iteration (17) coincides with (3) and (4) for

�̂�𝑖𝑛,1(𝑡)/𝜖 = 𝑄𝑖
𝑛(𝑡) and �̂�𝑖𝑛,2(𝑡)/𝜖 = 𝑞𝑖𝑛(𝑡), ∀𝑛, 𝑖, 𝑡; this can

be interpreted by using the concept of virtual queue of this

parallelism [9]. With �̂�𝑖𝑛,1(𝑡) substituted by 𝜖𝑄𝑖
𝑛(𝑡) and �̂�𝑖𝑛,2(𝑡)

substituted by 𝜖𝑞𝑖𝑛(𝑡), we can obtain the desired x𝑡(A(𝑡)) by
solving the following problem:

min
x
𝑡∈𝒳 𝑡

1

𝜖
Φ(x𝑡) +

∑

𝑛,𝑖

𝑄𝑖
𝑛(𝑡)[

∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](𝑡) +

∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](𝑡)

+𝑅𝑖,𝑡
𝑛 −

∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](𝑡)− 𝛿𝑖𝑛(𝑡)]

+
∑

𝑛,𝑖

𝑞𝑖𝑛(𝑡)[𝛿
𝑖
𝑛(𝑡)−

∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](𝑡)].

(19)

Through rearrangement, (19) is equivalent to

min
x
𝑡∈𝒳 𝑡

∑

𝑛,𝑖

[
𝛼𝑡
𝑛

𝜖
(𝛿𝑖𝑛(𝑡))

2 − (𝑄𝑖
𝑛(𝑡)− 𝑞𝑖𝑛(𝑡))𝛿

𝑖
𝑛(𝑡)]

+
∑

𝑛,𝑖,𝑏∈𝑆𝑖
𝑛

[
𝛽𝑡
[𝑛,𝑏]

𝜖
(𝑢𝑖

[𝑛,𝑏](𝑡))
2 − (𝑄𝑖

𝑛(𝑡)−𝑄𝑖
𝑏(𝑡))𝑢

𝑖
[𝑛,𝑏](𝑡)]

+
∑

𝑛,𝑖,𝑑∈𝐷𝑖
𝑛

[
𝛽𝑡
[𝑛,𝑑]

𝜖
(𝑢𝑖

[𝑛,𝑑](𝑡))
2 − (𝑞𝑖𝑛(𝑡)−𝑄𝑖

𝑑(𝑡))𝑢
𝑖
[𝑛,𝑑](𝑡)],

(20)

which can be readily solved by decoupling between
𝛿𝑖𝑛(𝑡), 𝑢

𝑖
[𝑛,𝑏](𝑡) and 𝑢𝑖[𝑛,𝑑](𝑡) and between the VMs, and

evaluating the first-order derivatives of the decoupled ob-
jectives. The optimal solutions for network services of

type 𝑖 at VM 𝑛 are 𝛿𝑖𝑛
∗
(𝑡) = max{ 𝜖(𝑄𝑖

𝑛(𝑡)−𝑞𝑖𝑛(𝑡))
2𝛼𝑡

𝑛
, 0},

𝑢𝑖[𝑛,𝑏]
∗
(𝑡) = max{ 𝜖(𝑄𝑖

𝑛(𝑡)−𝑄𝑖
𝑏(𝑡))

2𝛽𝑡
[𝑛,𝑏]

, 0}, and 𝑢𝑖[𝑛,𝑑]
∗
(𝑡) =

max{ 𝜖(𝑞𝑖𝑛(𝑡)−𝑄𝑖
𝑑(𝑡))

2𝛽𝑡
[𝑛,𝑑]

, 0}, with the corresponding objectives:

𝑊 𝑖
𝑛 :=

{

− 𝜖(𝑄𝑖
𝑛(𝑡)−𝑞𝑖𝑛(𝑡))2

4𝛼𝑡
𝑛

, if 𝑄𝑖
𝑛(𝑡)− 𝑞𝑖𝑛(𝑡) > 0

0, if 𝑄𝑖
𝑛(𝑡)− 𝑞𝑖𝑛(𝑡) ≤ 0

𝑊 𝑖
[𝑛,𝑏] :=

⎧

⎨

⎩

− 𝜖(𝑄𝑖
𝑛(𝑡)−𝑄𝑖

𝑏(𝑡))
2

4𝛽𝑡
[𝑛,𝑏]

, if 𝑄𝑖
𝑛(𝑡)−𝑄𝑖

𝑏(𝑡) > 0

0, if 𝑄𝑖
𝑛(𝑡)−𝑄𝑖

𝑏(𝑡) ≤ 0

Algorithm 1 Distributed Online Optimization of NFV

1: for 𝑡 = 1, 2 . . . do

2: Each VM 𝑛 observes the queue lengths of its own and

its one-hop neighbors.

3: Repeatedly send network services to the VM processor

or outgoing links with the minimum non-zero queue-price

weights, until either the processor and all outgoing links

are scheduled or the remaining weights are all zero.

4: Update 𝑄𝑖
𝑛(𝑡) and 𝑞𝑖𝑛(𝑡) for all nodes and services via

the dynamics (3) and (4).

5: end for

𝑊 𝑖
[𝑛,𝑑] :=

⎧

⎨

⎩

− 𝜖(𝑞𝑖𝑛(𝑡)−𝑄𝑖
𝑑(𝑡))

2

4𝛽𝑡
[𝑛,𝑑]

, if 𝑞𝑖𝑛(𝑡)−𝑄𝑖
𝑑(𝑡) > 0

0, if 𝑞𝑖𝑛(𝑡)−𝑄𝑖
𝑑(𝑡) ≤ 0

∀𝑖, 𝑏 ∈ 𝑆𝑖
𝑛, 𝑑 ∈ 𝐷𝑖

𝑛. (21)

In light of this, at each slot, a VM can prioritize the queues

of different types of networks services, and process or route

services from the queue with the highest priority. The priority

is ranked based on (21). For this reason, we refer to 𝑊 𝑖
𝑛,

𝑊 𝑖
[𝑛,𝑏] and 𝑊 𝑖

[𝑛,𝑑] as queue-price weights, and the processing

and routing decisions can be made by one-to-one mapping

between the queues and outgoing links/processor to minimize

the total of the selected non-zero weights, as summarized in

Algorithm 1.

Note that Algorithm 1 is decentralized, since every VM

only needs to know the queue lengths of its own and its

immediate neighbors. Optimal decisions of a VM, locally

made by comparing the queue-price weights, comply with (17)

and therefore preserve the asymptotic optimality of the entire

network, as dictated in Propositions 1 and 2.

Also note that the actual routing decisions are discretized,

since the number of network services delivered over a link

is integer for the integrity of the services. To this end, the

decisions x𝑡 needs to be replaced by ⌈x𝑡⌉. It can be proved that

the discretization does not violate the asymptotic optimality of

Algorithm 1 [13].

IV. DISTRIBUTED ONLINE LEARN-AND-ADAPT

OPTIMIZATION

With a cost-delay tradeoff [𝜖, 1/𝜖], Algorithm 1 may ac-

cumulate long queues per VM to achieve the near-optimality

(with sufficiently small 𝜖). We propose to improve the tradeoff

and reduce the queue lengths through learning and adapta-

tion [10]. By incrementally learn the Lagrangian multipliers

from observed data, we can speed up the convergence of the

multipliers driven by the learning process.

In the proposed learn-and-adapt scheme, with the online

learning of �̃�𝑖𝑛,1(𝑡) and �̃�𝑖𝑛,2(𝑡), ∀𝑛, 𝑖 at each slot 𝑡, two

stochastic gradients are updated using the current 𝒔𝑡. The

first gradient 𝜸𝑡 is designed to minimize the instantaneous

Lagrangian for optimal decision makings on processing or

Algorithm 2 Distributed Online Learn-and-Adapt Optimiza-

tion of NFV

1: for 𝑡 = 1, 2 . . . do

2: Online processing and routing (1st gradient):

3: Construct the effective dual variable via (22b), observe

the current state 𝒔𝑡, and obtain processing and routing

decisions x𝑡(𝜸𝑡) by minimizing online Lagrangian (22a).

4: Update the instantaneous queue length Q(𝑡 + 1) and

q(𝑡+ 1) with x𝑡(𝜸𝑡) via queue dynamics (3) and (4).

5: Statistical learning (2nd gradient):

6: Obtain variable x𝑡(�̂�𝑡) by solving online Lagrangian

minimization with sample 𝒔𝑡 via (23b).

7: Update the empirical dual variable �̂�𝑡+1 via (23a).

8: end for

routing network services, as given by [cf. (16)]

x𝑡(𝜸𝑡) = arg min
x
𝑡∈𝒳 𝑡

𝐿𝑡(x𝑡,𝜸𝑡) (22a)

which depends on what we term effective multiplier 𝜸𝑡 :=
{𝛾𝑖𝑛,1(𝑡), 𝛾𝑖𝑛,2(𝑡), ∀𝑛, 𝑖}, as given by

𝜸𝑡

︸ ︷︷ ︸

effective multiplier

= �̂�𝑡

︸ ︷︷ ︸

statistical learning

+ 𝜖A(𝑡) − 𝜽
︸ ︷︷ ︸

online adaptation

,

(22b)

where �̂�𝑡 := {�̂�𝑖𝑛,1(𝑡), �̂�𝑖𝑛,2(𝑡), ∀𝑛, 𝑖} is the empirical dual

variable, and 𝜽 controls the bias of 𝜸𝑡 in the steady state,

and can be judiciously designed to achieve the improved cost-

delay tradeoff, as will be shown in Theorem 1.

For a better illustration of the effective multiplier in (22b),

we call �̂�(𝑡) the statistically learnt dual variable to obtain the

exact optimal argument of the dual problem max𝝀ર0 𝐷(𝝀).
We call 𝜖A(𝑡) the online adaptation term, since it can track the

instantaneous change of system statistics. The control variable

𝜖 tunes the weights of these two factors.
The second gradient is designed to simply learn the stochas-

tic gradient of (13) at the previous empirical dual variable �̂�𝑡,
and implement a gradient ascent update as

�̂�𝑖
𝑛,1(𝑡+ 1) = �̂�𝑖

𝑛,1(𝑡) + 𝜂(𝑡)[
∑

𝑎∈𝑈𝑖
𝑛

𝑢𝑖
[𝑎,𝑛](�̂�

𝑖
𝑛,1(𝑡)) +𝑅𝑖,𝑡

𝑛

+
∑

𝑐∈𝑆𝑖
𝑛

𝑢𝑖
[𝑐,𝑛](�̂�

𝑖
𝑛,1(𝑡))−

∑

𝑏∈𝑆𝑖
𝑛

𝑢𝑖
[𝑛,𝑏](�̂�

𝑖
𝑛,1(𝑡))− 𝛿𝑖𝑛(�̂�

𝑖
𝑛,1(𝑡))]

+

�̂�𝑖
𝑛,2(𝑡+ 1) = �̂�𝑖

𝑛,2(𝑡) + 𝜂(𝑡)[𝛿𝑖𝑛(�̂�
𝑖
𝑛,2(𝑡))−

∑

𝑑∈𝐷𝑖
𝑛

𝑢𝑖
[𝑛,𝑑](�̂�

𝑖
𝑛,2(𝑡))]

+

(23a)

where 𝜂(𝑡) is a proper diminishing stepsize, and the “virtual”

allocation x𝑡(�̂�𝑡) can be found by solving

x𝑡(�̂�𝑡) = arg min
x
𝑡∈𝒳 𝑡

𝐿𝑡(x𝑡, �̂�𝑡). (23b)

With learn-and-adaption incorporated, Algorithm 2 takes

an additional learning step in Algorithm 1, i.e., (23a), which

adopts gradient ascent with diminishing stepsize 𝜂(𝑡) to find

the “best empirical” dual variable from all observed network

states. In the transient stage, the extra gradient evaluations

and empirical dual variables accelerate the convergence speed

0 1 2 3 4

x 10
4

0

20

40

60

80

100

120

140

160

180

Time slot
(a)

A
v
er

ag
e

co
st

Heu

Algorithm 1

Algorithm 2

0 1 2 3 4

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Time slot
(b)

In
st

an
ta

n
eo

u
s

q
u
eu

e
le

n
g
th

Heu

Algorithm 1

Algorithm 2

Fig. 1. Comparison of time-average costs and instantaneous queue lengths,
where 𝜖 = 0.1.

of Algorithm 1; while in the steady stage, the empirical dual

variable approaches the optimal multiplier, which significantly

reduces the steady-state queue lengths.

Using the Learn-and-adapt approach, we are ready to arrive

at the following theorem [10, Theorems 2-3].

Theorem 1: Suppose that the assumptions in Propositions 1

and 2 are satisfied. Then with 𝜸𝑡 defined in (22b) and 𝜽 =
𝒪(

√
𝜖 log2(𝜖)), Algorithm 2 yields a near-optimal solution for

(7) in the sense that

Φ∗ ≤ lim
𝑇→∞

1

𝑇

𝑇∑

𝑡=1

𝔼
[
Φ
(
x𝑡(𝜸𝑡)

)]
≤ Φ∗ +𝒪(𝜖). (24)

The long-term average expected queue length satisfies

lim
𝑇→∞

1

𝑇

𝑇∑

𝑡=1

∑

𝑛,𝑖

𝔼[𝑄𝑖
𝑛(𝑡) + 𝑞

𝑖
𝑛(𝑡)] = 𝒪

(
log2(𝜖)√
𝜖

)

, (25)

where x𝑡(𝜸𝑡) denotes the real-time operations obtained from

the Lagrangian minimization (22a).

Theorem 1 asserts that by setting 𝜽 = 𝒪(
√
𝜖 log2(𝜖)), Algo-

rithm 2 is asymptotically 𝒪(𝜖)-optimal with an average queue

length 𝒪(log2(𝜖)/
√
𝜖). This implies that the algorithm is able

to achieve a near-optimal cost-delay tradeoff [𝜖, log2(𝜖)/
√
𝜖];

see [9], [10]. Comparing with the standard tradeoff [𝜖, 1/𝜖]
under Algorithm 1, the learn-and-adapt design of Algorithm 2

remarkably improves the delay performance.

V. NUMERICAL TESTS

Numerical tests are provided to confirm our analytical

claims and demonstrate the merits of the proposed algorithms.

Two types of network services are considered on the plat-

form with 𝑁 = 7 VMs. The first type of network service

is {𝑓1, 𝑓2, 𝑓3} and the second type of network service is

{𝑓3, 𝑓1, 𝑓2}. 𝒩1 = {1, 2}, 𝒩2 = {3, 4} and 𝒩3 = {5, 6, 7}.

The processing and routing prices 𝛼𝑡𝑛 and 𝛽𝑡[𝑎,𝑏] are uniformly

distributed over [0.1, 1] by default. 𝛿max
𝑛 and 𝑢max

[𝑎,𝑏] are generat-

ed from a uniform distribution within [10, 20]. 𝑅𝑖
𝑛 is uniformly

distributed [1, 5]. The stepsize is 𝜂(𝑡) = 1/
√
𝑡,∀𝑡, the tradeoff

variable is 𝜖 = 0.1, and the bias correction vector is chosen

as 𝜽 = 2
√
𝜖 log2(𝜖). Apart from the proposed Algorithms 1

and 2, we also simulate a heuristic algorithm (Heu) as the

0 0.05 0.1
120

130

140

150

160

170

180

Parameter ε

(a)

S
te

ad
y
−

st
at

e
co

st

Heu

Algorithm 1

Algorithm 2

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Parameter ε

(b)

S
te

ad
y
−

st
at

e
q
u
eu

e
le

n
g
th

Heu

Algorithm 1

Algorithm 2

Fig. 2. Comparison of steady-state costs and queue lengths (after 104 slots).

0 0.02 0.04 0.06 0.08
110

120

130

140

150

160

170

180

Price Variance
(a)

S
te

ad
y
−

st
at

e
co

st

Heu

Algorithm 1

Algorithm 2

0.01 0.01 0.04 0.06 0.08
500

1000

1500

2000

2500

3000

3500

Price Variance
(b)

S
te

ad
y
−

st
at

e
q
u
eu

e
le

n
g
th

Heu

Algorithm 1

Algorithm 2

0 0.02 0.04 0.06 0.08
40.6

40.8

41

41.2

41.4

Price Variance
(c)

A
v
er

ag
e

p
ro

ce
ss

in
g
 r

at
e

Heu

Algorithm 1

Algorithm 2

0 0.02 0.04 0.06 0.08

15

20

25

30

Price Variance
(d)

A
v
er

ag
e

ro
u
ti

n
g
 r

at
e

Heu

Algorithm 1

Algorithm 2

Fig. 3. Comparison of steady-state costs, queue lengths, processing and
routing rates (after 104 slots).

benchmark, which decides the processing and routing rates

only based on queue differences, with no price considerations.

Fig. 1 compares the three algorithms in terms of the time-

average cost and the instantaneous queue length, as the time

elapses. It can be seen from Fig. 1(a) that the time-average

cost of Algorithm 2 converges slightly higher than that of

Algorithm 1, while the time-average cost of Heu is about

30.0% larger. We can also see that Algorithm 2 exhibits

faster convergence than Algorithm 1 and Heu, as its time-

average cost quickly researches the optimal steady-state value

by leveraging the learning process. Fig. 1(b) shows that

Algorithm 2 incurs the shortest queue lengths among the

three algorithms, followed by Algorithm 1. Particularly, the

aggregated instantaneous queue length of Algorithm 2 is about

75.7% and 82.7% smaller than those of Algorithm 1 and Heu,

respectively. Clearly, the learn-and-adapt procedure reduces

delay without markedly compromising the time-average cost.

Fig. 2 compares the steady-state cost and queue length of

the three algorithms, with the growth of the stepsize (tradeoff

coefficient) 𝜖. It is observed that as 𝜖 grows, the steady-

state costs of all three algorithms increase and the steady-

state queue lengths declines. This validates our findings in

Propositions 1 and 2, and Theorem 1.

The steady-state cost and queue length are also compared

under different price variances in Figs. 3(a) and (b). Here,

processing and routing prices are generated with the mean of

0.55 and variance from 3.3 × 10−5 to 8.3 × 10−2. The costs

and queue lengths of Algorithms 1 and 2 decrease as the price

variance increases, while those of Heu remain unchanged.

This is because Heu adopts price-independent processing and

routing rates, while Algorithms 1 and 2 are able to minimize

the cost by taking advantage of price differences among VMs

and links. As further shown in Figs. 3(c) and (d), the average

processing and routing rates of Algorithms 1 and 2 rise with

the growth of price variance, since the algorithms either choose

a lower priced link with a higher routing rate, or a lower priced

VM with a higher processing rate.

VI. CONCLUSIONS

In this paper, a new distributed online optimization was

developed to minimize the time-average cost of NFV, while

stabilizing the function queues of VMs. Asymptotically opti-

mal decisions of processing and routing VNFs were instantly

generated at individual VMs, adapting to the topology and

stochasticity of the network. A learn-and-adapt approach was

further proposed to speed up stabilizing the VMs and achieve

a cost-delay tradeoff [𝜖, log2(𝜖)/
√
𝜖].

REFERENCES

[1] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, Dec. 2015.

[2] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.
236–262, 2016.

[3] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM

Trans. Netw., pp. 1–18, Mar. 2017.
[4] R. Riggio, A. Bradai, D. Harutyunyan, and T. Rasheed, “Scheduling

wireless virtual networks functions,” IEEE Trans. Netw. Service Manag.,
vol. 13, no. 2, pp. 240–252, June 2016.

[5] T. Enokido and M. Takizawa, “An energy-efficient load balancing
algorithm for virtual machine environments to perform communication
type application processes,” in Proc. IEEE AINA, 2016.

[6] Z. Á. Mann, “Multicore-aware virtual machine placement in cloud data
centers,” IEEE Trans. Comput., vol. 65, no. 11, pp. 3357–3369, Nov.
2016.

[7] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE CloudNet,
2015.

[8] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Trans. Com-

mun., vol. 64, no. 9, pp. 3746–3758, Sept. 2016.
[9] M. J. Neely, “Stochastic network optimization with application to

communication and queueing systems,” Synthesis Lectures on Commu-

nication Networks, vol. 3, no. 1, pp. 1–211, 2010.
[10] T. Chen, Q. Ling, and G. B. Giannakis, “Learn-and-adapt stochastic

dual gradients for network resource allocation,” Available online: https:
//arxiv.org/pdf/1703.01673v1.pdf, 2017.

[11] X. Wang, X. Chen, T. Chen, L. Huang, and G. B. Giannakis, “Two-scale
stochastic control for integrated multipoint communication systems with
renewables,” IEEE Trans. Smart Grid, vol. PP, no. 99, pp. 1–1, 2016.

[12] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, and G. B. Giannakis,
“Real-time energy trading and future planning for fifth-generation wire-
less communications,” IEEE Wireless Commun., to appear, Aug. 2017.

[13] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, R. P. Liu, and
G. B. Giannakis, “Distributed online optimization of network function
virtualization under stochastic arrivals of network service chains,” IEEE

J. Sel. Areas Commun., submitted, Mar. 2017.

