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Abstract—This paper presents a new recursive Hybrid
consensus filter for distributed state estimation on a Hidden
Markov Model (HMM), which is well suited to multi-
robot applications and settings. The proposed algorithm
is scalable, robust to network failure and capable of han-
dling non-Gaussian transition and observation models and
is, therefore, quite general. No global knowledge of the
communication network is assumed. Iterative Conservative
Fusion (ICF) is used to reach consensus over potentially
correlated priors, while consensus over likelihoods is han-
dled using weights based on a Metropolis Hastings Markov
Chain (MHMC). The proposed method is evaluated in
a multi-agent tracking problem and a high-dimensional
HMM and it is shown that its performance surpasses the
competing algorithms.

I. INTRODUCTION

Estimation within robotic-sensor networks has many

applications and, thus, has been extensively studied in

recent years [1], [2], [3]. In a mobile sensor network,

robots carry sensors that make noisy observations of the

state of an underlying system of interest. Their estimation

process is considered centralized if all the nodes send their

raw observations to a central node who then calculates

an estimate based on the collective information [4]. This

is not always possible owing to link failures as well

as bandwidth and energy constraints [5]. One viable

alternative is to distribute the process.

In Distributed State Estimation (DSE), the processor

on each robot (or node) fuses local information with the

incoming information from neighbors and redistributes

the fused result on the network. The objective is to

design both a protocol for message passing between

nodes and local fusion rules so that the nodes reach a

consensus over their collective information. Although

the DSE algorithms are not guaranteed to match the

performance of the centralized estimator all the time,

their scalability, modularity and, robustness to network

failure motivates the ongoing research. These features

are important for the envisioned robotic applications of

such algorithms, such as multi-agent localization [6] and

cooperative target tracking [7].

DSE algorithms can be categorized on the basis of

assumptions they make. Any DSE method makes assump-

tions about one or more of the following aspects: the state
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(static [8] or dynamic [6]), state transition model (linear

[9] or non-linear [10], [11], [12], [13]), type of noise

(Gaussian [8], [9] or non-Gaussian [14]), topology of the

network (constant or changing [15], [8]), connectivity

of the network (always [10] or intermittent connection

[15], [8]), agents’ knowledge about the network topology

(global or local [15], [8], [10]) and finally the treatment of

mutual information between local estimate (exact solution

through bookkeeping [1] or conservative solutions that

avoid double counting [16], [17]).

The research on DSE for linear systems with Gaussian

noise is extensive (see [9], [18] for reviews). For nonlinear

systems with Gausssian noise, the distributed versions of

Extended Kalman Filters (EKF), Extended Information

Filters (EIF) and Unscented Kalman Filter (UKF) have

been proposed [19], [20], [10], respectively. For nonlinear

systems with non-Gaussian noise, different flavors of

Distributed Particle Filter (DPF) methods were proposed

by Mao and Yang [21].

For dynamic state systems within time-varying net-

works, the connectivity constraint is a determining factor

for choosing the proper DSE method. If the network

remains connected, DSE methods can maintain equality

of each node’s priors and then perform consensus on

likelihoods only [22], [23]. We refer to this approach

as Consensus on Likelihoods (CL). The advantage of

CL is that given enough time to reach consensus, it can

match the centralized estimator’s performance. However,

if the network becomes disconnected, priors start to

differ between nodes, and CL methods fail. In such

scenarios, the prevailing approach is to perform Iterative

Conservative Fusion (ICF) on node posteriors [24], [16],

[17]. ICF methods have a conservative fusion rule that

avoids double counting at the expense of down weighting

the uncorrelated information. As a consequence they are

inherently sub-optimal.

Researchers recently began combining ICF and CL

methods to benefit from their complementary features

[19], [10], [15]: CL can reach consensus over uncorrelated

new information, while ICF can handle correlated prior

information. In this paper we extend our previous method

[15] to general finite-state systems with non-Gaussian

noise. We propose a Hybrid method that is a synergistic

combination of CL and ICF. The contributions of the

paper are:

• The new Hybrid method that shows unmistakable



superiority over ICF in applications with large

number of agents and time-varying networks that

face intermittent disconnection.

• The method handles non-Gaussian noise models,

being particularly useful for collaborative tracking

and localization applications.

Hidden Markov Models (HMMs) are adopted as the

general means for describing the system whose state is

being estimated. In Section II, the notation as well as the

assumptions used in this paper are explained, along with

the system model. Section III provides some preliminaries

on distributed state estimation, paving the way for the new

method. Our proposed method is presented in Section IV

and, finally, we evaluate its performance in Section V.

II. NOTATION AND MODELING

The Network Topology: Assume that we have n

homogeneous agents associated with the nodes of a graph.

These agents can communicate with each other under a

time-varying undirected network topology Gk = 〈V, Ek〉
where V and Ek are the set of graph nodes and edges

at step k respectively. The node corresponding to the

ith agent is denoted by vi. If (vi, vj) ∈ Ek, it means

that agents i and j can communicate directly at step

k. The set N i represent neighbors of node vi that are

connected by an edge to vi. The set Ni = N i ∪ {vi}
will also be used in some of the equations. The set CCik
represents the set of agents that are path-connected to

agent i at step k. For an arbitrary set with s ∈ N members

b = {bi1 , · · · , bis}, the index set Ib = {i1, · · · , is} con-

tains the indices of b’s members. We use the abbreviated

form In = {1, 2, · · · , n}, and Ik = {1, 2, · · · , k} to

index the agents and time steps, respectively.

The Model: Consider a finite state HMM with the

following specification:

• The HMM has ns possible states X =
{S1, · · · , Sns

} and also, there are nz possible

observation symbols Z = {O1, · · · , Onz
}.

• The random variables Xk ∈ X and Z
i
k ∈ Z

represent the state and observation made by agent

i at step k, respectively. The realizations of those

random variables at step k are denoted as xk and

z
i
k.

• The transition model is a ns × ns matrix denoted

as Pk|k−1 , p(Xk|Xk−1). All the agents possess

this model.

• Each agent has an observation model, which is a

ns × nz matrix denoted as p(Zik|Xk), i ∈ In. The

observation models of different agents can differ.

• The prior, prediction, and posterior probabilities are

1× ns random vectors

πk−1 , p
(

Xk−1|{z
i
k}
i∈In

k∈Ik−1

)

,

π̃k , p
(

Xk|{z
i
k}
i∈In

k∈Ik−1
,Xk−1

)

,

πk , p
(

Xk|{z
i
k}
i∈In

k∈Ik

)

,

respectively.

The above HMM is well-defined for many distributed

estimation applications including ones with dynamic

state and time varying observation models. For example,

the following transition and observation models can be

represented in the above form:

Xk+1 = f(Xk+1,wk) wk ∼ p(Wk), (1)

Z
i
k+1 = hi(Xk+1,vk) vk ∼ p(Vk), (2)

in which, Wk and Vk are random variables representing

dynamics and observation noise. We further assume that

each agent has a processor and a sensor on-board. Sensors

make observations every ∆t seconds and the processors

and the network can handle calculations based on message

passing among agents every δt seconds. We assume that

δt≪ ∆t. We also assume that the agents exchange their

information over the communication channel which is free

of both delay and error. Note that the above specification

for the HMM and the model may easily be extended to

include control inputs but they are omitted as they are

not the focus this paper.

Henceforward, {Zik}
i∈In

k∈Ik
is the indexed family of all

the observations made by all the agents up to step k.

Moreover, for each agent i, the variable R
ij
k , j ∈ N i

denotes the information that node i receives from node

j, its neighbor at time k. The set R
i
k contains all the

information that node i has received from its neighbors up

to step k and I
i
k = R

i
k∪Z

i
k represents all the information

content that is available to agent i at time k. (In general,

in this paper, the information in the variable that bears

the superscript i is a version local to the ith agent.

Moreover, symbol η with or without any sub/superscript

is a normalizing constant.)

III. DISTRIBUTED STATE ESTIMATION

In this section we will review some concepts in

Distributed State Estimation that help us better understand

the details of the proposed method in the next section. We

first define Recursive State Estimation in the context of

HMMs. Then, we discuss what is meant by Centralized

Estimation in the context of networked systems. We

proceed to define a method, within the Consensus on

Likelihoods (CL) class, called Distributed Consensus

Based Filtering which is particular to systems where

agents have identical prior information. Given that net-

work disconnection and early stopping of the consensus



process results in different priors among the agents, we

review Conservative Fusion and its iterative version as

a remedy for such cases. After reading this section, the

reader should find it straightforward to understand the

logic behind the proposed method as outlined in the

subsequent section.

In the context of HMMs, Recursive State Estimation is

the process of recursively computing the posterior proba-

bility of a random dynamic process Xk conditioned on a

sequence of measurements {zik}
i∈In

k∈Ik
. Bayesian recursive

filtering, in a process with the Markov assumptions, has

the form

p(Xk|zk) =
1

η
p(zk|Xk)p(Xk|zk−1,Xk−1) (3)

=
1

η

n
∏

i=1

p(zik|Xk)

∫

p(Xk|Xk−1)p(Xk−1|zk−1)dXk−1
.

Performing recursive estimation in a sensor network

setting and for an HMM can be done in one of the

following ways:

Centralized Estimation involves a single distinguished

node in the network that receives observations z
In

k ,

{zik}
i∈In from the rest. The above Bayesian filtering

recursion for step k of a finite state HMM consists of

first calculating the prediction π̃k according to

π̃k = πk−1Pk|k−1, (4)

then, updating via

πk =
1

η
π̃kOk, (5)

where Ok is an ns × ns diagonal matrix of likelihoods,

p(zIn

k |Xk).
Distributed Consensus Based Filtering is based on

the insight that in (3) one can see that if all agents

share the same prior information, they can recover the

centralized estimator’s performance if they can reach a

consensus over the product of measurement probabilities.

Distributed averaging methods can be applied here as the

nodes need to reach a consensus over the log of the joint

measurement probabilities (log-likelihood),i.e.,

l̃k =
1

n
log

n
∏

i=1

Oi
k =

1

n

n
∑

i=1

logOi
k =

1

n

n
∑

i=1

l̃ik. (6)

Once consensus is reached, the updated estimate is

πk =
1

η

prediction
︷ ︸︸ ︷

πk−1
︸ ︷︷ ︸

prior

Pk|k−1 e
nl̃k

︸︷︷︸

likelihood

. (7)

Coming to some consensus over likelihoods can be

achieved for the discrete state variables using a distributed

averaging method based on Metropolis-Hastings Markov

Chains (MHMC). To avoid confusion we use m to

indicate consensus iterations throughout this paper. On a

communication graph G one can use a message passing

protocol of the form

ψi(m+ 1) =
∑|Ni|
j=1γij(m)ψj(m), (8)

s.t.
∑

m

γij(m) = 1, ψi(0) = l̃ik,

to calculate the average of the values on the graph nodes

in which di(m) = |N i| is the degree of the node vi, and

γij(m) =















1
1+max{di(m),dj(m)} if (i, j) ∈ Em,

1−
∑

(i,n)∈E

γin if i = j,

0 otherwise.

(9)

With this messaging passing protocol,

lim
m→∞

ψi(m) = l̃k.

Note that for each node i, the γij’s depend only on

the degrees of its neighboring nodes. As stated earlier,

once consensus has been reached over likelihoods, the

centralized estimate can be recovered. The prerequisite for

this method to work is that the network remains connected.

This requirement, however, is too restrictive for many

applications. Conservative Approximate Distributed Fil-

tering is an approach where, instead of putting effort into

keeping the dependencies between agents’ information,

a fusion rule is designed to guarantee that no double

counting of mutual information occurs. This usually

results in the replacement of independent information

with some form of conservative approximation. Such a

treatment results in inferior performance, compared to

the exact distributed filter’s output that is degraded.

Since Conservative Approximate Distributed Filtering

relies on fusion rules that combine conservative approxi-

mation of local PMFs, we need to clarify what constitutes

a conservative approximation for a PMF. The mechanics

of conservative fusion becomes easier to understand

thereafter.

Conservative approximation of a Probability Mass

Function (PMF) is possible under certain conditions. The

authors in [25] introduced a set of sufficient conditions

for a PMF p̃(X) to satisfy in order to be a conservative

approximation of p(X), a second PMF. The conditions

are

• the property of non-decreasing entropy:

H(p(X)) ≤ H(p̃(X)),

• the order preservation property so that,

p(xi) ≤ p(xj) iff p̃(xi) ≤ p̃(xj), ∀xi,xj ∈ X.

Conservative Fusion of two PMFs (CF) can be

achieved for two probability distribution functions



pa(X|Ia) and pb(X|Ib), with the Geometric Mean Den-

sity Rule (GMD):

pc(X) =
1

ηc
pa(X|Ia)

ωpb(X|Ib)
1−ω

=
1

ηc
pa(X|Ia \ Ib)

ωpb(X|Ib \ Ib)
1−ωpa(X|Ia ∩ Ib),

(10)

in which, 0 ≤ ω ≤ 1. Note that in the above equation the

PMFs are raised to the power of ω and multiplied together

element-wise. This rule never double counts mutual

information, replacing independent components with a

conservative approximation. The interesting property of

this fusion rule is that it works without the knowledge

of the dependence of the two initial PMFs. This rule

can also be generalized to more than two PMFs. For

example, in the context of this paper, node i calculates

a conservative approximation of the centralized estimate

and stores it in π̃i. The GMD fusion of these estimates

is also a conservative approximation of the centralized

estimate.

π̃k =
1

η

n
∏

i=1

(π̃ik)
ωi
, s.t.

∑n

i=1 ωi = 1. (11)

Remark 1. Several criteria have been proposed to choose

the ωi. One such criterion is [26]:

π̃ = argmin
π

max
i

{D(π‖π̃i)}, (12)

in which the D(π‖π̃i) is the Kullback-Leibler divergence

between π and π̃i.

Remark 2. In [25], it is shown that raising a PMF to the

power of ω ≤ 1 reduces its entropy. From (11) it can be

seen that applying the GMD rule reduces the entropy of

the likelihood probabilities that are independent. This is

undesirable and can be avoided by treating the likelihood

probabilities separately.

Iterative CF (ICF) is achieved as follows. At first

iteration of consensus, m = 0, for each agent j, take the

current local estimate π
j
k−1 and calculate the prediction

π̃
j
k. Initialize the local consensus variable to be

φj(0) =
1

ηi
π̃
j
kO

j
k.

Let ω = {ωj}
j∈I

Ni(m) and find ω∗ such that

ω∗ = argmin
ω

J
(1

η

∏

j∈N i(m)

[

φj(m)
]ωj

)

,

s.t.
∏

j∈N i(m)
ωj = 1, ∀j, ωj ≥ 0,

(13)

where η is the normalization constant and J (·) is an

optimization objective function. Specifically, it can be

entropy H(·) or the criteria in (12). The φis are then

updated locally for the next iteration as

φi(m+ 1) =
1

η∗

∏

j∈N i(m)

[

φj(m)
]ω∗

j . (14)

It is straightforward to show that after reaching consensus,

for all j ∈ CCik, local variables φj(m) converge to a

unique φ∗, and moreover, φ∗ is a convex combination

of initial consensus variables of all the agents in the set

CCik, i.e.,

lim
m→∞

φi(m) = φ∗ =
1

η

∏

j∈I
CCi

k

[

φj(0)
]ω∗

j , ∀i ∈ CCik.

(15)

To repeat the process iteratively, set π
j
k+1 = φ∗, ∀j ∈

CCik and repeat the whole process for step k + 1.

IV. HYBRID ICF AND CL

We propose a Hybrid approach that uses ICF to reach

consensus over priors and the Distributed Consensus

Based Filtering method (outlined above, which we refer

to as CL hereafter) for distributed averaging of local

information updates. Our method is summarized in

Algorithm 1. Imagine a scenario consisting of n agents,

observing xk, the state of a Markov chain at time k,

that are communicating with each other through a time-

varying network topology. Initially, the agents start with

priors {πi0}
i∈In . At step k the chain transitions to the new

state xk and agents calculate their own local prediction

{π̃ik}
i∈In (line 1 in the algorithm). Then they make

observations {zik}
i∈In , and compute the local likelihood

matrices {Oi
k}
i∈In (line 2 in the algorithm).

In the rest of the algorithm, the ICF approach is used

to find a consensus over the priors using (13) recursively.

The CL approach is used to form the consensus over the

new information available to agent i from other agents it

is path-connected to, i.e.,
∑

j∈I
CCi

k

l̃ik. In line 12 of the

algorithm, |CCik| is the number of agents that form a

connected group with agent i, and can be determined by

assigning unique IDs to the agents and passing these IDs

along with the consensus variables. Each agent keeps

track of the unique IDs it receives and passes them to

its neighbors.

To better understand the benefit of the Hybrid method,

we compare the estimator performances under centralized,

ICF, and Hybrid schemes. The following set of equations

compares the estimates



CENπk+1 =
1

η
CENπ̃k

∏

j∈In

Oj
k, (16)

ICFπik+1 =
1

η′

∏

j∈I
CCi

k

[

ICFπ̃
j
k]
ωICF

j

∏

j∈I
CCi

k

[

Oj
k]
ωICF

j , (17)

HYBπik+1 =
1

η′′

∏

j∈I
CCi

k

[

HYBπ̃
j
k]
ωHYB

j

∏

j∈I
CCi

k

Oj
k. (18)

Remark 3. The value produced as a prediction from

the centralized scheme is approximated by both the ICF

and Hybrid methods. Hybrid’s performance gain over

ICF comes from the fact that, unlike ICF, it does not

down-weight observations. This improvement becomes

increasingly pronounced as number of agents increase,

showing the scalibility of the Hybrid method.

Remark 4. The above equations demonstrate why, unlike

ICF, the Hybrid method is capable of recovering the

centralized estimate if, after a disconnection, the network

remains path-connected long enough thereafter. Assume

that a subset of agents resume connection at time k

after having being disconnected for some time. The

agents will have different priors at time k, and thus

their update steps are computed with either (17) for ICF,

or (18) for Hybrid. In general, at this point, either of

the posteriors can be closer to the centralized estimate.

However, as time goes forward, only the Hybrid method

will recover the centralized estimate if the system retains

path connectivity globally. This is because the priors of

the centralized estimate and the Hybrid method must

reconcile due to the forgetting property of Markov chains

[27]. According to this property a recursive estimator on

an HMM will exponentially forget the initial distribution

of the HMM. This implies that, after an extended interval

of path connectivity, the mismatch of local priors becomes

irrelevant and the Hybrid method can reap the benefit

of its consensus-based fusion part. So doing, it will

match the performance of the centralized estimator. In

contrast, ICF will continue fusing the local estimates with

a conservative fusion rule, incurring a performance loss

when compared to the centralized and Hybrid estimators.

Remark 5. The line of reasoning in the preceding remark

holds for connected components as well. This provides

evidence for the effectiveness of the Hybrid estimator’s

performance modulo network connectivity, and thus its

robustness to network failure.

V. EXPERIMENTS

The first experiment is concerned with a decentralized

target pose estimation problem in a grid using multiple ob-

servers connected through a changing topology network.

Fig. 1 depicts the 2D grid in which a target performs a

Algorithm 1: Hybrid Method

Input : πik−1

1 Use (5) to calculate π̃ik
2 Collect local observation zik and calculate Oi

k and l̃ik
3 Initialize consensus variables

φi(0) = π̃ik, ψi(0) = l̃ik

4 m = 0
5 while NOT CONVERGED do

6 BROADCAST[ψi(m), φi(m)]
7 RECEIVE[ψj(m), φj(m)] ∀j ∈ N i

8 Collect received data

Ci(m) = {φj∈N i

(m)}, Mi(m) = {ψj∈N i

(m)}

9 Do one iteration of ICF on consensus variables

for local prior information Cim

φi(m+ 1) = ICF(Ci(m))

10 Do one iteration of MHMC on consensus

variables for new information

ψi(m+ 1) = MHMC(Mi(m))

11 m = m+ 1

12 Calculate the posteriors according to:

πik = e|CC
j

k
|ψi(m)φi(m)

random walk while six observers are trying to estimate

its position. Each white cell is modeled as a single state

of our HMM representing the position of the target on

the grid. The observers’ motion is deterministic; four of

them are rooks moving along the borders and the other

two are bishops moving diagonally on the grid. In order

to detect the target, each observer emits a straight beam,

normal to its direction of motion, as shown in the figure.

The beam hits either the target or an obstacle. In the

former case, the observer senses the position of the target

based on a discrete one dimensional Gaussian distribution

over the states that the beam has traversed; in the latter

case, under the assumption of no false positives, the

observer produces a ‘no target’ symbol as an additional

state (which is incorporated into the observation model

by setting zero probabilities in the likelihood matrix for

those states that beam has traveled through to hit a wall).

At each Markov transition, each observer carries out its

decentralized estimation step for the position of the target,

which is shared with other connected observers through a

communication network. The network topology has two

components; one has the rook observers and the other

one has the bishops. The observers in each component



Fig. 1. The grid map of the environment, dark cells depict obstacles; blue

circles are trackers and the red circle is the ground truth location of the

maneuvering target; the green circle depicts the observation of an agent.

Fig. 2. Estimation performance in the tracking example

are always connected while the link between the two

components is intermittent. All communications occur at

a higher rate than Markov transition steps, which allows

the connected nodes to reach consensus over the shared

information.

We evaluate the performance of the proposed Hybrid

method during the phase where the rooks become

disconnected from bishops, and are then reconnected

after some interval. For purposes of comparison, each

node performs three estimation processes. In one instance

it uses our Hybrid method to fuse its prior along with

the received priors. In the second instance it uses the

ICF method to fuse its posterior along with the received

posteriors. The third instance concerns a hypothetical

god’s-eye-view centralized estimator, to give a baseline

for comparison. To quantify differences, we use the

Bhattacharyya Coefficient [28] between the estimation

results and the centralized estimator. The Bhattacharyya

coefficient can be used to evaluate the similarity of two

probability mass functions, π1(X), π2(X) as:

BC(π1(X), π2(X)) =
∑

x∈X

√

π1(x)π2(x). (19)

In the case of complete similarity, p1 = p2, we have

BC(p1, p2) = 1. Moreover, BC(p1, p2) = 0 describes

maximal dissimilarity.

Fig. 2 compares the performance of the Hybrid and ICF

methods, showing that the proposed method outperforms

CF and is able to recover performance very close to

centralized solution after reconnection. Based on the

Bhattacharyya coefficient, closeness between centralized

and decentralized estimates drops during the interval of

network partition. This is expected, since observers do

not have access to all the information available to the

centralized estimator. While the Hybrid method is able to

start to recover immediately after reconnection, ICF con-

tinues with degraded performance even after reconnection

owing to the fact that it ignores the correlations.

Fig. 2 also gives a detailed view of the performance

of the Hybrid method and compares the estimation

results of observer 3, a rook, and observer 5, a bishop,

during three different time steps. The shaded area shows

the time during which rooks are disconnected from

the bishops. The higher difference between centralized

and decentralized estimate for the fifth observer can be

explained based on the fact that the bishop has less

information at its disposal. However, after reconnection

both groups are able to converge to the same value, which

is very close to the centralized estimator.

In a second experiment we have evaluated the robust-

ness of the proposed method for networks with different

likelihoods of link failure. We report the Bhattacharyya

coefficient vs. link failure probability for a general

decentralized HMM with a network of size 20 and

state size 30 with each node roughly connected to 10%

of the other nodes. We simulate the system multiple

times, each time for 150 time steps but with different

probability of link failure. At the beginning of each step,

a 2 regular graph with 15 nodes is generated and, given a

probability of failure for each link, some links in the graph

will randomly be disconnected. The graph still remains

connected some portion of the time, but this depends on
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