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Abstract—This paper presents a new recursive Hybrid
consensus filter for distributed state estimation on a Hidden
Markov Model (HMM), which is well suited to multi-
robot applications and settings. The proposed algorithm
is scalable, robust to network failure and capable of han-
dling non-Gaussian transition and observation models and
is, therefore, quite general. No global knowledge of the
communication network is assumed. Iterative Conservative
Fusion (ICF) is used to reach consensus over potentially
correlated priors, while consensus over likelihoods is han-
dled using weights based on a Metropolis Hastings Markov
Chain (MHMC). The proposed method is evaluated in
a multi-agent tracking problem and a high-dimensional
HMM and it is shown that its performance surpasses the
competing algorithms.

I. INTRODUCTION

Estimation within robotic-sensor networks has many
applications and, thus, has been extensively studied in
recent years [1], [2], [3]. In a mobile sensor network,
robots carry sensors that make noisy observations of the
state of an underlying system of interest. Their estimation
process is considered centralized if all the nodes send their
raw observations to a central node who then calculates
an estimate based on the collective information [4]. This
is not always possible owing to link failures as well
as bandwidth and energy constraints [5]. One viable
alternative is to distribute the process.

In Distributed State Estimation (DSE), the processor
on each robot (or node) fuses local information with the
incoming information from neighbors and redistributes
the fused result on the network. The objective is to
design both a protocol for message passing between
nodes and local fusion rules so that the nodes reach a
consensus over their collective information. Although
the DSE algorithms are not guaranteed to match the
performance of the centralized estimator all the time,
their scalability, modularity and, robustness to network
failure motivates the ongoing research. These features
are important for the envisioned robotic applications of
such algorithms, such as multi-agent localization [6] and
cooperative target tracking [7].

DSE algorithms can be categorized on the basis of
assumptions they make. Any DSE method makes assump-
tions about one or more of the following aspects: the state
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(static [8] or dynamic [6]), state transition model (linear
[9] or non-linear [10], [11], [12], [13]), type of noise
(Gaussian [8], [9] or non-Gaussian [14]), topology of the
network (constant or changing [15], [8]), connectivity
of the network (always [10] or intermittent connection
[15], [8]), agents’ knowledge about the network topology
(global or local [15], [8], [10]) and finally the treatment of
mutual information between local estimate (exact solution
through bookkeeping [1] or conservative solutions that
avoid double counting [16], [17]).

The research on DSE for linear systems with Gaussian
noise is extensive (see [9], [18] for reviews). For nonlinear
systems with Gausssian noise, the distributed versions of
Extended Kalman Filters (EKF), Extended Information
Filters (EIF) and Unscented Kalman Filter (UKF) have
been proposed [19], [20], [10], respectively. For nonlinear
systems with non-Gaussian noise, different flavors of
Distributed Particle Filter (DPF) methods were proposed
by Mao and Yang [21].

For dynamic state systems within time-varying net-
works, the connectivity constraint is a determining factor
for choosing the proper DSE method. If the network
remains connected, DSE methods can maintain equality
of each node’s priors and then perform consensus on
likelihoods only [22], [23]. We refer to this approach
as Consensus on Likelihoods (CL). The advantage of
CL is that given enough time to reach consensus, it can
match the centralized estimator’s performance. However,
if the network becomes disconnected, priors start to
differ between nodes, and CL methods fail. In such
scenarios, the prevailing approach is to perform Iterative
Conservative Fusion (ICF) on node posteriors [24], [16],
[17]. ICF methods have a conservative fusion rule that
avoids double counting at the expense of down weighting
the uncorrelated information. As a consequence they are
inherently sub-optimal.

Researchers recently began combining ICF and CL
methods to benefit from their complementary features
[19], [10], [15]: CL can reach consensus over uncorrelated
new information, while ICF can handle correlated prior
information. In this paper we extend our previous method
[15] to general finite-state systems with non-Gaussian
noise. We propose a Hybrid method that is a synergistic
combination of CL and ICF. The contributions of the
paper are:

o The new Hybrid method that shows unmistakable



superiority over ICF in applications with large
number of agents and time-varying networks that
face intermittent disconnection.

e The method handles non-Gaussian noise models,
being particularly useful for collaborative tracking
and localization applications.

Hidden Markov Models (HMMs) are adopted as the
general means for describing the system whose state is
being estimated. In Section II, the notation as well as the
assumptions used in this paper are explained, along with
the system model. Section III provides some preliminaries
on distributed state estimation, paving the way for the new
method. Our proposed method is presented in Section [V
and, finally, we evaluate its performance in Section V.

II. NOTATION AND MODELING

The Network Topology: Assume that we have n
homogeneous agents associated with the nodes of a graph.
These agents can communicate with each other under a
time-varying undirected network topology Gy = (V, &)
where V and & are the set of graph nodes and edges
at step k respectively. The node corresponding to the
i™ agent is denoted by v;. If (v;,v;) € &, it means
that agents ¢ and j can communicate directly at step
k. The set N; represent neighbors of node v; that are
connected by an edge to v;. The set N; = N; U {v;}
will also be used in some of the equations. The set CC,
represents the set of agents that are path-connected to
agent ¢ at step k. For an arbitrary set with s € N members
b ={b;, - ,b;}, the index set I}, = {i1,--- ,is} con-
tains the indices of b’s members. We use the abbreviated
form I, = {1,2,--- ,n}, and I, = {1,2,--- ,k} to
index the agents and time steps, respectively.

The Model: Consider a finite state HMM with the
following specification:

e The HMM has ng possible states X =
{S1,---,8nh,} and also, there are n, possible
observation symbols Z = {Oq,--- ,0,_}.

e The random variables X; € X and Z}'C e Z
represent the state and observation made by agent
¢ at step k, respectively. The realizations of those
random variables at step k are denoted as x; and
Zy,.

e The transition model is a ng X ng matrix denoted
as Pyp—1 = p(Xx|X,,_;). All the agents possess
this model.

o Each agent has an observation model, which is a
ns x n, matrix denoted as p(Z:|Xy),i € I,,. The
observation models of different agents can differ.

o The prior, prediction, and posterior probabilities are

1 X ngs random vectors
A i Vi€l
Tp—1 =P (Xk}—1|{zit}’]b€€1k_1> 4
~ A i V1€LR
Tk =P (Xk|{zgc}2€1k_1?xkfl> )
A i Vi€,
T =P (Xk|{z;€}261k> J
respectively.
The above HMM is well-defined for many distributed
estimation applications including ones with dynamic
state and time varying observation models. For example,

the following transition and observation models can be
represented in the above form:

X1 = fF(Xpg1, wi) Wi ~p(Wy), )]
Zi =P (Xpq1,vi) v ~p(Vy), ()

in which, W, and V are random variables representing
dynamics and observation noise. We further assume that
each agent has a processor and a sensor on-board. Sensors
make observations every At seconds and the processors
and the network can handle calculations based on message
passing among agents every dt seconds. We assume that
0t < At. We also assume that the agents exchange their
information over the communication channel which is free
of both delay and error. Note that the above specification
for the HMM and the model may easily be extended to
include control inputs but they are omitted as they are
not the focus this paper.

Henceforward, {Z; };Z is the indexed family of all
the observations made by all the agents up to step k.
Moreover, for each agent i, the variable R}/, j € N;
denotes the information that node ¢ receives from node
7, its neighbor at time k. The set R}‘€ contains all the
information that node ¢ has received from its neighbors up
to step k and I}, = R} UZ represents all the information
content that is available to agent ¢ at time k. (In general,
in this paper, the information in the variable that bears
the superscript i is a version local to the i" agent.
Moreover, symbol 1 with or without any sub/superscript
is a normalizing constant.)

III. DISTRIBUTED STATE ESTIMATION

In this section we will review some concepts in
Distributed State Estimation that help us better understand
the details of the proposed method in the next section. We
first define Recursive State Estimation in the context of
HMMs. Then, we discuss what is meant by Centralized
Estimation in the context of networked systems. We
proceed to define a method, within the Consensus on
Likelihoods (CL) class, called Distributed Consensus
Based Filtering which is particular to systems where
agents have identical prior information. Given that net-
work disconnection and early stopping of the consensus



process results in different priors among the agents, we
review Conservative Fusion and its iterative version as
a remedy for such cases. After reading this section, the
reader should find it straightforward to understand the
logic behind the proposed method as outlined in the
subsequent section.

In the context of HMMs, Recursive State Estimation is
the process of recursively computing the posterior proba-
bility of a random dynamic process X, conditioned on a
sequence of measurements {Z}C}ZEEII’; Bayesian recursive
filtering, in a process with the Markov assumptions, has
the form

1
p(Xy|zx) = 5P(Zk\Xk)P(Xk|Zk71an—1) 3)

1 n l
=5Hm%mu/mxm%4mxmmhmmbr
=1

Performing recursive estimation in a sensor network
setting and for an HMM can be done in one of the
following ways:

Centralized Estimation involves a single distinguished
node in the network that receives observations zi 2
{zi }'¢I» from the rest. The above Bayesian filtering
recursion for step k of a finite state HMM consists of

first calculating the prediction 73 according to

“4)

Tk = Th—1Prk—1,

then, updating via

®)

T, = =70k,
n

where Oy, is an ng X n, diagonal matrix of likelihoods,
Pz X))

Distributed Consensus Based Filtering is based on
the insight that in (3) one can see that if all agents
share the same prior information, they can recover the
centralized estimator’s performance if they can reach a
consensus over the product of measurement probabilities.
Distributed averaging methods can be applied here as the
nodes need to reach a consensus over the log of the joint
measurement probabilities (log-likelihood),i.e.,

I, = %logHOi = %Zlog@i = %Z[}C (6)
i=1 i=1 i=1

Once consensus is reached, the updated estimate is

prediction

1 ni
Tp = — Th—1 Prjo—1 € ©
T~~~ ~

N

prior likelihood

Coming to some consensus over likelihoods can be
achieved for the discrete state variables using a distributed
averaging method based on Metropolis-Hastings Markov
Chains (MHMC). To avoid confusion we use m to

indicate consensus iterations throughout this paper. On a
communication graph GG one can use a message passing
protocol of the form

Wi m+ 1) = SN (m)ed (m),

st 3 () = 1, 4(0) =,

®)

to calculate the average of the values on the graph nodes
in which d;(m) = [N is the degree of the node v;, and

1 . ..

1+max{d;(m),d;(m)} if (Z’j) €&m,

1— > in if 1 =3,
(i,n)€E

0 otherwise.

vij(m) = )

With this messaging passing protocol,

lim ' (m) = I.
m— o0

Note that for each node 4, the +;;’s depend only on
the degrees of its neighboring nodes. As stated earlier,
once consensus has been reached over likelihoods, the
centralized estimate can be recovered. The prerequisite for
this method to work is that the network remains connected.
This requirement, however, is too restrictive for many
applications. Conservative Approximate Distributed Fil-
tering is an approach where, instead of putting effort into
keeping the dependencies between agents’ information,
a fusion rule is designed to guarantee that no double
counting of mutual information occurs. This usually
results in the replacement of independent information
with some form of conservative approximation. Such a
treatment results in inferior performance, compared to
the exact distributed filter’s output that is degraded.

Since Conservative Approximate Distributed Filtering
relies on fusion rules that combine conservative approxi-
mation of local PMFs, we need to clarify what constitutes
a conservative approximation for a PMF. The mechanics
of conservative fusion becomes easier to understand
thereafter.

Conservative approximation of a Probability Mass
Function (PMF) is possible under certain conditions. The
authors in [25] introduced a set of sufficient conditions
for a PMF p(X) to satisfy in order to be a conservative
approximation of p(X), a second PMF. The conditions
are

« the property of non-decreasing entropy:
H(p(X)) < H(p(X)),
o the order preservation property so that,
p(xi) < p(x;) iff p(xi) < p(x;), Vxi,x; € X.

Conservative Fusion of two PMFs (CF) can be
achieved for two probability distribution functions



p,(X|Ia) and p,(X|Ip), with the Geometric Mean Den-
sity Rule (GMD):

1 w —w
pc(X) = ;pa(XIIa) pb(X‘Ib)l

(X1 \ 1)y (X[T \ 1) ~p, (X[La (1,

’ (10)
in which, 0 < w < 1. Note that in the above equation the
PMFs are raised to the power of w and multiplied together
element-wise. This rule never double counts mutual
information, replacing independent components with a
conservative approximation. The interesting property of
this fusion rule is that it works without the knowledge
of the dependence of the two initial PMFs. This rule
can also be generalized to more than two PMFs. For
example, in the context of this paper, node ¢ calculates
a conservative approximation of the centralized estimate
and stores it in 7. The GMD fusion of these estimates
is also a conservative approximation of the centralized
estimate.

n

Tk = 1 H (7)™,

n i=1

st Y wi=1. (1D

Remark 1. Several criteria have been proposed to choose
the w;. One such criterion is [26]:

7 = arg min max{D(x||7")}, (12)
in which the D(r||7?) is the Kullback-Leibler divergence
between 7 and 7.

Remark 2. In [25], it is shown that raising a PMF to the
power of w < 1 reduces its entropy. From (11) it can be
seen that applying the GMD rule reduces the entropy of
the likelihood probabilities that are independent. This is
undesirable and can be avoided by treating the likelihood
probabilities separately.

Iterative CF (ICF) is achieved as follows. At first
iteration of consensus, m = 0, for each agent j, take the
current local estimate 7, and calculate the prediction
ﬁi. Initialize the local consensus variable to be

$(0) = 7101,
Yk

?
Let w = {w; }’¢'+"em and find w* such that

1 w
w* = arg H}dinj(ﬁnjej\/i(m) [¢] m)]*),

. = j j >
5.t HjeNi(m)w] 1, Vj, w; >0,

where 7 is the normalization constant and J7(-) is an
optimization objective function. Specifically, it can be

(13)

entropy H(-) or the criteria in (12). The ¢'s are then
updated locally for the next iteration as

1

¢ 1) =— 14
@' (m+1) = (14)

Hjef\/i(m) [ m)] .

It is straightforward to show that after reaching consensus,
for all j € CCL, local variables ¢/ (m) converge to a
unique ¢*, and moreover, ¢* is a convex combination
of initial consensus variables of all the agents in the set
CCy, ie.,

. 1 p wr . ;
Jim ¢tm) =g = S]], [#O)7,ViecC.
’ (15)

To repeat the process iteratively, set wi L1 =05Vj €
CC;}, and repeat the whole process for step k + 1.

IV. HyBRID ICF AND CL

We propose a Hybrid approach that uses ICF to reach
consensus over priors and the Distributed Consensus
Based Filtering method (outlined above, which we refer
to as CL hereafter) for distributed averaging of local
information updates. Our method is summarized in
Algorithm 1. Imagine a scenario consisting of n agents,
observing xj, the state of a Markov chain at time k,
that are communicating with each other through a time-
varying network topology. Initially, the agents start with
priors {7} }?€In. At step k the chain transitions to the new
state x; and agents calculate their own local prediction
{7i}%€In» (line 1 in the algorithm). Then they make
observations {z¢ }*¢T», and compute the local likelihood
matrices {O} }'S1» (line 2 in the algorithm).

In the rest of the algorithm, the ICF approach is used
to find a consensus over the priors using (13) recursively.
The CL approach is used to form the consensus over the
new information available to agent 7 from other agents it

is path-connected to, i.e., Zjelcci l}'c. In line 12 of the
k

algorithm, |CC%| is the number of agents that form a
connected group with agent ¢, and can be determined by
assigning unique IDs to the agents and passing these IDs
along with the consensus variables. Each agent keeps
track of the unique IDs it receives and passes them to
its neighbors.

To better understand the benefit of the Hybrid method,
we compare the estimator performances under centralized,
ICF, and Hybrid schemes. The following set of equations
compares the estimates



1 _ .
CENﬂ,k+1 _ ; CENﬂ,k H Oiv (16)
JjEL,
. 1 . ICF . ICF
ICF,_i _ ICF ~J Jw J 1w
Th+1 = n H [ H (O3], am
€1 i ISP
J€ cch J€ cch
. 1 . HYB ;
HYB % _ HYB ~J (W J
Tt = T I (&= 11 ot (18)
jeIcc}'C jeIcci‘

Remark 3. The value produced as a prediction from
the centralized scheme is approximated by both the ICF
and Hybrid methods. Hybrid’s performance gain over
ICF comes from the fact that, unlike ICF, it does not
down-weight observations. This improvement becomes
increasingly pronounced as number of agents increase,
showing the scalibility of the Hybrid method.

Remark 4. The above equations demonstrate why, unlike
ICF, the Hybrid method is capable of recovering the
centralized estimate if, after a disconnection, the network
remains path-connected long enough thereafter. Assume
that a subset of agents resume connection at time k
after having being disconnected for some time. The
agents will have different priors at time k, and thus
their update steps are computed with either (17) for ICF,
or (18) for Hybrid. In general, at this point, either of
the posteriors can be closer to the centralized estimate.
However, as time goes forward, only the Hybrid method
will recover the centralized estimate if the system retains
path connectivity globally. This is because the priors of
the centralized estimate and the Hybrid method must
reconcile due to the forgetting property of Markov chains
[27]. According to this property a recursive estimator on
an HMM will exponentially forget the initial distribution
of the HMM. This implies that, after an extended interval
of path connectivity, the mismatch of local priors becomes
irrelevant and the Hybrid method can reap the benefit
of its consensus-based fusion part. So doing, it will
match the performance of the centralized estimator. In
contrast, ICF will continue fusing the local estimates with
a conservative fusion rule, incurring a performance loss
when compared to the centralized and Hybrid estimators.

Remark 5. The line of reasoning in the preceding remark
holds for connected components as well. This provides
evidence for the effectiveness of the Hybrid estimator’s
performance modulo network connectivity, and thus its
robustness to network failure.

V. EXPERIMENTS

The first experiment is concerned with a decentralized
target pose estimation problem in a grid using multiple ob-
servers connected through a changing topology network.
Fig. 1 depicts the 2D grid in which a target performs a

Algorithm 1: Hybrid Method
Input : 7
1 Use (5) to calculate 7,

Collect local observation 2}, and calculate O}, and I},
3 Initialize consensus variables

¢'(0) =7k, ¥'(0) =1,

[ 5]

m =20

while NOT CONVERGED do
BROADCAST[)*(m), ¢*(m)]
RECEIVE[YY (m), ¢’ (m)]
Collect received data

Ci(m) = {¢N' (m)}, M(m) = {/N (m)}

9 Do one iteration of ICF on consensus variables
for local prior information C;,

¢'(m +1) = 1CF(C(m))

Vi e N?

X N A

10 Do one iteration of MHMC on consensus
variables for new information

Y'(m + 1) = MEMC(M(m))

11 m=m-+1

-
[ 5]

Calculate the posteriors according to:

= e\CCi,Iwi(m)qgi(m)

random walk while six observers are trying to estimate
its position. Each white cell is modeled as a single state
of our HMM representing the position of the target on
the grid. The observers’ motion is deterministic; four of
them are rooks moving along the borders and the other
two are bishops moving diagonally on the grid. In order
to detect the target, each observer emits a straight beam,
normal to its direction of motion, as shown in the figure.
The beam hits either the target or an obstacle. In the
former case, the observer senses the position of the target
based on a discrete one dimensional Gaussian distribution
over the states that the beam has traversed; in the latter
case, under the assumption of no false positives, the
observer produces a ‘no target’ symbol as an additional
state (which is incorporated into the observation model
by setting zero probabilities in the likelihood matrix for
those states that beam has traveled through to hit a wall).

At each Markov transition, each observer carries out its
decentralized estimation step for the position of the target,
which is shared with other connected observers through a
communication network. The network topology has two
components; one has the rook observers and the other
one has the bishops. The observers in each component
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Fig. 1.  The grid map of the environment, dark cells depict obstacles; blue
circles are trackers and the red circle is the ground truth location of the
maneuvering target; the green circle depicts the observation of an agent.
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Fig. 2. Estimation performance in the tracking example

are always connected while the link between the two
components is intermittent. All communications occur at
a higher rate than Markov transition steps, which allows
the connected nodes to reach consensus over the shared
information.

We evaluate the performance of the proposed Hybrid
method during the phase where the rooks become
disconnected from bishops, and are then reconnected

after some interval. For purposes of comparison, each
node performs three estimation processes. In one instance
it uses our Hybrid method to fuse its prior along with
the received priors. In the second instance it uses the
ICF method to fuse its posterior along with the received
posteriors. The third instance concerns a hypothetical
god’s-eye-view centralized estimator, to give a baseline
for comparison. To quantify differences, we use the
Bhattacharyya Coefficient [28] between the estimation
results and the centralized estimator. The Bhattacharyya
coefficient can be used to evaluate the similarity of two
probability mass functions, m (X), m2(X) as:

BCO(m1(X), m2(X)) = > rex V1 (X)T2(x).

In the case of complete similarity, p; = p2, we have
BC(p1,p2) = 1. Moreover, BC(p1,p2) = 0 describes
maximal dissimilarity.

Fig. 2 compares the performance of the Hybrid and ICF
methods, showing that the proposed method outperforms
CF and is able to recover performance very close to
centralized solution after reconnection. Based on the
Bhattacharyya coefficient, closeness between centralized
and decentralized estimates drops during the interval of
network partition. This is expected, since observers do
not have access to all the information available to the
centralized estimator. While the Hybrid method is able to
start to recover immediately after reconnection, ICF con-
tinues with degraded performance even after reconnection
owing to the fact that it ignores the correlations.

Fig. 2 also gives a detailed view of the performance
of the Hybrid method and compares the estimation
results of observer 3, a rook, and observer 5, a bishop,
during three different time steps. The shaded area shows
the time during which rooks are disconnected from
the bishops. The higher difference between centralized
and decentralized estimate for the fifth observer can be
explained based on the fact that the bishop has less
information at its disposal. However, after reconnection
both groups are able to converge to the same value, which
is very close to the centralized estimator.

In a second experiment we have evaluated the robust-
ness of the proposed method for networks with different
likelihoods of link failure. We report the Bhattacharyya
coefficient vs. link failure probability for a general
decentralized HMM with a network of size 20 and
state size 30 with each node roughly connected to 10%
of the other nodes. We simulate the system multiple
times, each time for 150 time steps but with different
probability of link failure. At the beginning of each step,
a 2 regular graph with 15 nodes is generated and, given a
probability of failure for each link, some links in the graph
will randomly be disconnected. The graph still remains
connected some portion of the time, but this depends on

19)
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Fig. 3.  Performance comparison between the proposed method and ICF.

the degree and probability of failure. If the regularity
degree goes down or the probability of failure increases,
more often than not, the graph becomes disconnected.
In practice, for p > 0.05, consensus methods that rely
on full connectivity no longer succeed since the network
almost always suffers disconnection at some point in
time.

We ran our method for 150 steps for a range of
probabilities of link failure and compared performances
with the ideal centralized result (which is obtained by
assuming full connectivity at all times). The performance
is evaluated by calculating the average value for the
Bhattacharyya coefficient and determinant ratio measure
at all steps and for all receptors. Based on Fig. 3, for
the case considered in this experiment, our decentralized
estimator performs close to the ideal centralized one for
p € [0.0,0.1], drastically outperforming ICF in all cases.
This means that in the case considered here, our method
can perform almost as well as the ideal estimator for
an unreliable network. Obviously the performance can
vary from one system to another and under different
network topologies, but the results show that the method
can recover the performance of the centralized method
despite operating on an unreliable network and, moreover,
substantially outperforms ICF. This latter fact has also
already been established theoretically.

V1. CONCLUSION

This paper proposes a distributed state estimator for
discrete-state dynamic systems with non-Gaussian noise
in networks with changing topology and those that do not

remain connected all the time. Separating the process of
consensus for the correlated and uncorrelated information
was the key to achieving better performance compared to
ICF alone. Evaluating the proposed method on a multi-
agent tracking application and a high-dimensional HMM
distributed state estimator problem showed substantial
performance improvement compared to the state of the
art. We are able to achieve robustness and recover
performance after an interval of disconnection.
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