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Abstract—This paper deals with finding an n-dimensional so-
lution x to a system of quadratic equations of the form yi =
|〈ai, x〉|2 for 1 ≤ i ≤ m, which is also known as the general-
ized phase retrieval problem. For this NP-hard problem, a novel
approach is developed for minimizing the amplitude-based least-
squares empirical loss, which starts with a weighted maximal cor-
relation initialization obtainable through a few power or Lanczos
iterations, followed by successive refinements based on a sequence
of iteratively reweighted gradient iterations. The two stages (ini-
tialization and gradient flow) distinguish themselves from prior
contributions by the inclusion of a fresh (re)weighting regular-
ization procedure. For certain random measurement models, the
novel scheme is shown to be able to recover the true solution x
in time proportional to reading the data {(ai; yi)}1≤i≤m . This
holds with high probability and without extra assumption on the
signal vector x to be recovered, provided that the number m of
equations is some constant c > 0 times the number n of unknowns
in the signal vector, namely m > cn. Empirically, the upshots of
this contribution are: first, (almost) 100% perfect signal recov-
ery in the high-dimensional (say n ≥ 2000) regime given only an
information-theoretic limit number of noiseless equations, namely
m = 2n − 1, in the real Gaussian case; and second, (nearly) opti-
mal statistical accuracy in the presence of additive noise of bounded
support. Finally, substantial numerical tests using both synthetic
data and real images corroborate markedly improved recovery
performance and computational efficiency of the novel scheme rel-
ative to the state-of-the-art approaches.

Index Terms—Non-convex non-smooth optimization, regular-
ization, iteratively reweighted gradient flow, convergence to the
global optimum.
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I. INTRODUCTION

O
NE is often faced with solving quadratic equations of the

form yi = |〈ai ,x〉|2 , or equivalently,

ψi = |〈ai ,x〉|, 1 ≤ i ≤ m (1)

where x ∈ Rn is the wanted unknown n × 1 signal vector, given

observations ψi and feature/sensing vectors ai ∈ Rn that are

collectively stacked in the data vector ψ := [ψi ]1≤i≤m , and the

m × n sensing matrix A := [ai ]1≤i≤m , respectively. Phrased

differently, when information about the (squared) modulus of

the inner products of x and several known measurement vectors

ai is provided, can one reconstruct exactly (up to a global sign)

x, or alternatively, the missing signs of 〈ai ,x〉? In fact, much

effort has recently been devoted to determining the number of

such equations necessary and/or sufficient to ensure uniqueness

of the solution x; see, for instance, [2], [3]. It has been proved

that a number m ≥ 2n − 1 of generic measurement vectors ai
1

(which includes the case of random vectors) are sufficient for

uniquely determining an n-dimensional real vector x (up to a

global sign), while m = 2n − 1 has also been shown neces-

sary [2]. In this sense, the number m = 2n − 1 of equations

as in (1) can be thought of as the information-theoretic limit

for such a quadratic system to be uniquely solvable. Neverthe-

less, even for random measurement vectors, despite the exis-

tence of a unique solution given the minimal number 2n − 1
of quadratic equations, it is unclear so far whether there is a

numerical polynomial-time algorithm that is able to stably find

the true solution (say with probability ≥ 99%).

In diverse physical sciences and engineering fields, it is im-

possible or very difficult to record phase measurements. Recov-

ering the signal or phase from magnitude measurements only,

also commonly known as the phase retrieval problem, emerges

naturally [4]–[6]. Relevant application domains include e.g.,

X-ray crystallography, ptychography, astronomy, and coherent

diffraction imaging [6]. In such setups however, optical mea-

surement and detection systems record only the photon flux,

which is proportional to the (squared) magnitude of the field,

but not the phase. A related task of this kind is that of estimating

a mixture of linear regressions, where the latent membership in-

dicators can be converted into the missing phases [7]. Although

of simple form and practical relevance across different fields,

solving systems of nonlinear equations is arguably the most

difficult task numerically [8, Page 355].

1It is out of the scope of the present paper to explain the meaning of generic
vectors, whereas interested readers are referred to [2].
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Regarding notation used in this paper, lower-(upper-) case

boldface letters denote vectors (matrices). Calligraphic letters

are reserved for sets, e.g., S. Fractions are denoted by A/B
or A

B , but with a slight abuse of notation, we also use yi/ψi ,

to denote either yi or ψi . The floor operation �c� denotes the

largest integer no greater than the given number c > 0, |S| the

number of entries in set S, and ‖x‖ is the Euclidean norm.

Since x ∈ Rn and −x are indistinguishable given {ψi} in (1),

let dist(z,x) = min{‖z + x‖, ‖z − x‖} be the Euclidean dis-

tance of any estimate z ∈ Rn to the solution set {±x} of (1).

A. Prior Contributions

Following the least-squares criterion (which coincides

with the maximum likelihood one when assuming additive

white Gaussian noise), the problem of solving systems of

quadratic equations can be recast as the ensuing empirical loss

minimization

minimize
z∈Rn

L(z) :=
1

m

m
∑

i=1

�(z;ψi/yi) (2)

where one can choose to work with the amplitude-based loss

function �(z;ψi) := (ψi − |〈ai ,z〉|)2/2 [9], or the intensity-

based ones �(z; yi) := (yi − |〈ai ,z〉|2)2/2 [10], [11], and

its related Poisson likelihood �(z; yi) := −yi log(|〈ai ,z〉|2) +
|〈ai ,z〉|2 [12]. Either way, L(z) is non-convex; hence, it is in

general NP-hard, and computationally intractable to compute

the least-squares or the maximum likelihood estimate [13].

Minimizing the squared amplitude-based least-squares loss

in (2), several numerical polynomial-time algorithms have been

devised based on convex programming for certain choices of de-

sign vectors ai [14]–[18], [19], [20]. Relying upon the so-called

matrix-lifting technique semidefinite programming (SDP) based

convex approaches first express all intensity data into linear

terms in a new rank one matrix variable, followed by solving a

convex SDP after dropping the rank constraint (a.k.a. semidefi-

nite relaxation). It has been established that perfect recovery and

(near-)optimal statistical accuracy can be achieved in noiseless

and noisy settings, respectively, with an optimal-order number

of measurements [18]. Another line of convex relaxation [21],

[22], [23] reformulated the problem of phase retrieval as that of

sparse signal recovery, and solved a linear program in the natural

parameter vector domain. Although exact signal recovery can

be established assuming an accurate enough anchor vector, its

empirical performance is not competitive with state-of-the-art

non-convex phase retrieval approaches.

Instead of convex relaxation, recent proposals also advocate

judiciously initialized iterative procedures for coping with cer-

tain non-convex formulations directly, which include solvers

based on e.g., alternating minimization [24], Wirtinger flows

[10], [12], [25]–[32], amplitude flows [1], [9], [33]–[36], as

well as a prox-linear procedure via composite optimization

[37], [38], [39]. These non-convex approaches operate directly

upon vector optimization variables, therefore leading to signifi-

cant computational advantages over matrix-lifting based convex

counterparts. With random features, they can be interpreted as

performing stochastic optimization over acquired data samples

{(ai ;ψi/yi)}1≤i≤m to approximately minimize the population

risk functional L̄(z) := E(ai ,ψ i /y i ) [�(z;ψi/yi)]. It is well docu-

mented that minimizing non-convex functionals is computation-

ally intractable in general due to existence of many stationary

points [13]. Assuming random Gaussian sampling vectors how-

ever, such non-convex paradigms can provably locate the global

optimum under suitable conditions, some of which also achieve

optimal (statistical) guarantees. Specifically, starting with a ju-

diciously designed initial guess, successive improvement is ef-

fected through a sequence of (truncated) (generalized) gradient

iterations given by

zt+1 := zt − µt

m

∑

i∈T t + 1

∇�(zt ;ψi/yi), t = 0, 1, . . . (3)

where zt denotes the estimate returned by the algorithm at the

t-th iteration, µt > 0 the learning rate, and ∇�(zt , ψi/yi) is

the (generalized) gradient of the modulus- or squared modulus-

based least-squares loss evaluated at zt [40]. Here, T t+1 ⊆
{1, 2, . . . ,m} represents some time-varying index set signifying

the truncation.

Although they achieve optimal statistical guarantees in both

noiseless and noisy settings, state-of-the-art (convex and non-

convex) approaches studied under random Gaussian designs,

empirically require stable recovery of a number of equations

(several) times larger than the aforementioned information-

theoretic limit [10], [12], [27]. As a matter of fact, when there are

numerous enough measurements (on the order of the signal di-

mension n up to some polylog factors), the amplitude-square

based least-squares loss functional admits benign geometric

structure in the sense that [41]: with high probability, i) all

local minimizers are global; and, ii) there always exists a nega-

tive directional curvature at every saddle point. In a nutshell, the

grand challenge of solving systems of random quadratic equa-

tions remains to develop numerical polynomial-time algorithms

capable of achieving perfect recovery and optimal statistical

accuracy when the number of measurements approaches the

information-theoretic limit.

B. This Contribution

Building upon but going well beyond the scope of the

aforementioned non-convex paradigms, the present paper puts

forth a novel iterative linear-time procedure, meaning propor-

tional to that required by the processor to scan the entire data

{(ai ;ψi)}1≤i≤m , which we term reweighted amplitude flow

and abbreviate as RAF. Our methodology is capable of solving

noiseless random quadratic equations exactly, and constructing

an estimate of (near)-optimal statistical accuracy from noisy

modulus observations. Exactness and accuracy hold with high

probability and without any extra assumption on the signal x

to be recovered, provided that the ratio m/n of the number of

measurements to that of the unknowns exceeds some large con-

stant. Empirically, our procedure is demonstrated to be able to

achieve perfect recovery of arbitrary high-dimensional signals

given a minimal number of equations, which in the real case

is m = 2n − 1. The new twist here is to leverage judiciously

designed yet conceptually simple (iterative) (re)weighting reg-

ularization techniques to enhance existing initializations and

also gradient refinements. An informal depiction of our RAF
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methodology is given in two stages below, with rigorous algo-

rithmic details deferred to Section III.

S1) Weighted maximal correlation initialization: Obtain

an initialization z0 maximally correlated with a

carefully selected subset S � M := {1, 2, . . . ,m} of

feature vectors ai , whose contributions toward con-

structing z0 are judiciously weighted by suitable pa-

rameters {w0
i > 0}i∈S ; and

S2) Iteratively reweighted “gradient-like” iterations: Loop

over 0 ≤ t ≤ T

zt+1 = zt − µt

m

m
∑

i=1

wt
i ∇�(zt ;ψi) (4)

for some time-varying weights wt
i ≥ 0 that are adapted

in time, each depending on the current iterate zt and the

datum (ai ;ψi).
Two attributes of our novel methodology are worth highlight-

ing. First, albeit being a variant of the orthogonality-promoting

initialization [9], the initialization here [cf. S1)] is distinct in

the sense that different importance is attached to each selected

datum (ai ;ψi), or more precisely, to each selected directional

vector ai . Likewise, the gradient flow [cf. S2)] weighs judi-

ciously the search direction suggested by each datum (ai ;ψi).
In this manner, more accurate and robust initializations as well

as more stable overall search directions in the gradient flow

stage can be obtained even based only on a relatively limited

number of data samples. Moreover, with particular choices of

weights wt
i ’s (for example, when they take 0/1 values), our

methodology subsumes as special cases the recently proposed

truncated amplitude flow (TAF) [9], and the reshaped Wirtinger

flow (RWF) [27].

II. ALGORITHM: REWEIGHTED AMPLITUDE FLOW

This section explains the intuition and the basic principles

behind each stage of RAF in detail. For concreteness, we focus

on the real Gaussian model with a real signal vector x, and inde-

pendent Gaussian random measurement vectors ai ∼ N (0, I),
1 ≤ i ≤ m. Nevertheless, RAF can be applied without algorith-

mic changes for the complex Gaussian model with x ∈ Cn and

independent ai ∼ CN (0, In ) := N (0, In/2) + jN (0, In/2),
and also when coded diffraction pattern (CDP) models [40] are

considered.

A. Weighted Maximal Correlation Initialization

For general non-convex iterative heuristics to succeed in find-

ing the global optimum is to seed them with an excellent start-

ing point [43]. In fact, several smart initialization strategies

have been advocated for iterative phase retrieval algorithms; see

e.g., the spectral [24], [10], truncated spectral [12], [27], and

orthogonality-promoting [9] initializations. One promising ap-

proach among them is the one proposed in [9], which is robust

to outliers [37], and also enjoys better phase transitions than the

spectral procedures [44]. To hopefully achieve perfect signal

recovery at the information-theoretic limit however, its numer-

ical performance may still need further enhancement. On the

other hand, it is intuitive that improving the initialization perfor-

mance (over state-of-the-art procedures) becomes increasingly

challenging as the number of acquired data samples approaches

the information-theoretic limit of m = 2n − 1.

In this context, we develop below a more flexible initializa-

tion scheme based on the correlation property (as opposed to

orthogonality), in which the added benefit relative to the initial-

ization procedure in [9] is the inclusion of a flexible weighting

regularization technique to better balance the useful information

exploited in all selected data. In words, we introduce carefully

designed weights to the initialization procedure developed in

[9]. Similar to related approaches, our strategy entails estimat-

ing both the norm ‖x‖ and the unit direction x/‖x‖. Leveraging

the strong law of large numbers and the rotational invariance

of Gaussian ai sampling vectors (the latter suffices to assume

x = ‖x‖e1 , with e1 being the first canonical vector in Rn ), it

is clear that
m

∑

i=1

ψ2
i =

m
∑

i=1

∣

∣〈ai , ‖x‖e1〉
∣

∣

2
=

m
∑

i=1

a2
i,1‖x‖2 ≈ m‖x‖2 (5)

whereby ‖x‖ can be estimated as
∑m

i=1ψ
2
i /m. This estimate

proves very accurate even with an information-theoretic limit

number of data samples, because it is unbiased and tightly con-

centrated.

The challenge thus lies in accurately estimating the direction

of x, or seeking a unit vector maximally aligned with x, which

is a bit tricky. To gain intuition for our initialization strategy,

let us first present a variant of the initialization in [9], whose

generalizations have been discussed in [37], [45]. Note that the

larger the amplitude ψi of the inner-product between ai and

x is, the known design vector ai is deemed more correlated

to the unknown solution x, hence bearing useful directional

information of x. Inspired by this fact and based on available

data {(ai ;ψi)}1≤i≤m , one can sort all (absolute) correlation

coefficients {ψi}1≤i≤m in an ascending order, to yield ordered

coefficients denoted by 0 < ψ[m ] ≤ · · · ≤ ψ[2] ≤ ψ[1] . Sorting

m records takes time proportional to O(m log m).2 Let S � M
represent the set of selected feature vectors ai to be used for

computing the initialization, which is to be designed next. Fix

a priori the cardinality |S| to some integer on the order of m,

say |S| := �3m/13�. It is then natural to define S to collect the

ai vectors that correspond to one of the largest |S| correlation

coefficients {ψ[i]}1≤i≤|S|, each of which can be thought of as

pointing to (roughly) the direction of x. Approximating the

direction of x thus boils down to finding a vector to maximize

its correlation with the subset S of selected directional vectors

ai . Succinctly stated, the wanted approximation vector can be

efficiently found as the solution of

maximize
‖z‖=1

1

|S|
∑

i∈S

∣

∣〈ai ,z〉
∣

∣

2
= z∗

(

1

|S|
∑

i∈S
aia

∗
i

)

z (6)

where the superscript ∗ represents transposition. Upon scaling

the solution of (6) by the norm estimate
∑m

i=1ψ
2
i /m in (5) to

match the size of x, we obtain what we will henceforth refer to

as maximal correlation initialization.

2For a given function g(n) of integer n > 0, O(g(n)) denotes the set of
functions O(g(n)) = {f (n) : there exist positive constants C and n0 such that
0 ≤ f (n) ≤ Cg(n) for all n ≥ n0}.
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As long as |S| is chosen on the order of m, the maximal

correlation method outperforms the spectral ones in [10], [12],

[24], and has comparable performance to the orthogonality-

promoting method [9]. Its empirical performance around the

information-theoretic limit however, is still not the best that we

can hope for. Observe that all directional vectors {ai}i∈S se-

lected for forming the matrix Y := (1/|S|)∑

i∈S aia
∗
i in (6)

are treated the same in terms of their contributions to construct-

ing the (direction of the) initialization. Nevertheless, according

to our starting principle, this ordering information carried by the

selected ai vectors has not been exploited by the initialization

scheme in (6) (see also [9], [37]). In words, if for selected data

i, j ∈ S, the correlation coefficient of ψi with ai is larger than

that of ψj with aj , then ai is deemed more correlated (with

x) than aj is, hence bearing more useful information about

the wanted direction of x. This prompts one to weight more

(i.e., attach more importance to) the selected ai vectors corre-

sponding to larger ψi values. Given the ordering information

ψ[|S|] ≤ · · · ≤ ψ[2] ≤ ψ[1] available from the sorting procedure,

a natural way to achieve this goal is by weighting each ai vec-

tor with simple functions of ψi , say e.g., taking the weights

w0
i := ψγ

i , ∀i ∈ S, with the parameter γ ≥ 0 chosen to main-

tain the wanted ordering w0
|S| ≤ · · · ≤ w0

[2] ≤ w0
[1] . In a nutshell,

a more flexible initialization scheme, that we refer to as weighted

maximal correlation, can be summarized as follows

z̃0 := arg max
‖z‖=1

z∗
(

1

|S|
∑

i∈S
ψγ

i aia
∗
i

)

z. (7)

The upshot of (7) is that the objective can be efficiently mini-

mized in time proportional to O(n|S|) by means of the power

method or the Lanczos algorithm [46]. The proposed initializa-

tion can be obtained after scaling z̃0 from (7) with the estimate

of its norm, to obtain z0 := (
∑m

i=1ψ
2
i /m)z̃0 . By default, we

take γ := 1/2 in all reported numerical implementations, yield-

ing weights w0
i :=

√

|〈ai ,x〉| for all i ∈ S.

Regarding the initialization procedure in (7), we next high-

light two features, while details and theoretical performance

guarantees are provided in Section III:

F1) The weights {w0
i } in the maximal correlation scheme

enable leveraging useful information that each feature

vector ai may bear regarding the direction of x.

F2) Taking w0
i := ψγ

i for all i ∈ S and 0 otherwise, (7) can

be equivalently rewritten as

z̃0 := arg max
‖z‖=1

z∗
(

1

m

m
∑

i=1

w0
i aia

∗
i

)

z (8)

which subsumes existing initialization schemes with

particular weight selections; e.g., the “plain-vanilla”

spectral initialization in [10], [24] is recovered by choos-

ing S := M, and w0
i := ψ2

i , ∀i = 1, . . . , m.

For numerical comparison, define the Relative error :=
dist(z,x)/‖x‖. All simulated tests reported here were aver-

aged over 100 Monte Carlo realizations. Fig. 1 depicts the per-

formance of the proposed initialization relative to several state-

of-the-art strategies, and also with the information limit number

benchmarking the minimal number of samples required. It is

clear that our initialization is: i) consistently better than the

Fig. 1. Relative initialization error for the real Gaussian model with n =
1, 000 and m = 2n − 1 = 1, 999.

state-of-the-art; and, ii) stable as the signal dimension n grows,

which is in sharp contrast to the instability encountered by the

spectral ones [10], [12], [24], [27]. It is also worth stressing that

about 5% empirical advantage is shown over the best in [9] at the

challenging information-theoretic benchmark, which is indeed

nontrivial, and constitutes one of the main advantages of RAF.

This numerical advantage becomes increasingly pronounced as

the ratio m/n grows. This suggests that our proposed initial-

ization procedure may be combined with other iterative phase

retrieval approaches to improve their numerical performance.

B. Adaptively Reweighted Gradient Flow

For independent data adhering to the real Gaussian model, the

direction that TAF moves along in stage S2) presented earlier is

given by the following (generalized) gradient [9], [41]

1

m

∑

i∈T
∇�(z;ψi) =

1

m

∑

i∈T

(

a∗
i z − ψi

a∗
i z

|a∗
i z|

)

ai (9)

where the dependence on the iterate count t is neglected for

notational brevity, and the convention
a

∗
i z

|a∗
i z|

:= 0 is adopted if

a∗
i z = 0.

Unfortunately, the (negative) gradient of the average in (9)

may not point towards the true x, unless the current iterate z is

already very close to x. As a consequence, moving along such a

descent direction may not drag z closer to x. To see this, consider

an initial guess z0 that has already been in a basin of attraction

(i.e., a region within which there is only a unique stationary

point) of x. Certainly, there are summands (a∗
i z − ψi

a
∗
i z

|a∗
i z|

)ai

in (9), that could give rise to “bad/misleading” search directions

due to the erroneously estimated signs
a

∗
i z

|a∗
i z|

�= a
∗
i x

|a∗
i x| in (9) [9].

Those gradients as a whole may drag z away from x, and hence

out of the basin of attraction. Such an effect becomes increas-

ingly severe as the number m of acquired examples approaches

the information-theoretic limit of 2n − 1, thus rendering past

approaches less effective in this case. Although this issue is

somewhat remedied by TAF with a truncation procedure, its effi-

cacy is limited due to misses of bad gradients and mis-rejections

of meaningful ones at the information-theoretic limit.
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To address this challenge, our reweighted gradient flow ef-

fecting suitable search directions from almost all acquired data

samples {(ai ;ψi)}1≤i≤m will be adopted in a (timely) adaptive

fashion; that is,

zt+1 = zt − µt∇�rw (zt ;ψi), t = 0, 1, . . . (10)

The reweighted gradient∇�rw (zt) evaluated at the current point

zt is given as

∇�rw (z) :=
1

m

m
∑

i=1

wi∇�(z;ψi) (11)

for suitable weights {wi}1≤i≤m to be designed shortly.

Toward that end, we observe that the truncation criterion

T :={1 ≤ i ≤ m : |a∗
i z| ≥ α|a∗

i x|} with some given param-

eter α > 0 suggests to include only gradients associated with

|a∗
i z| of relatively large sizes. This is because gradients of siz-

able
|a∗

i z|
|a∗

i x| offer reliable and meaningful directions pointing to

the true x with large probability [9]. As such, the ratio
|a∗

i z|
|a∗

i x| can

be viewed as a confidence score on the reliability or meaningful-

ness of the corresponding gradient ∇�(z;ψi). Recognizing that

confidence can vary, it is natural to distinguish the contributions

that different gradients make to the overall search direction. An

easy way is to attach large weights to the reliable gradients,

and small weights to the spurious ones. Assume without loss of

generality that 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ m; otherwise, lump

the normalization factor achieving this into the learning rate µt .

Building upon this observation and leveraging the gradient reli-

ability confidence score
|a∗

i z|
|a∗

i x| , the weight per gradient∇�(z;ψi)

in our proposed RAF algorithm is

wi :=
1

1 + βi/(|a∗
i z|/|a∗

i x|)
, 1 ≤ i ≤ m (12)

where {βi > 0}1≤i≤m are some pre-selected parameters.

Regarding the weighting criterion in (28), three remarks are

in order.

Remark 1: The weights {wt
i}1≤i≤m are time adapted to the

iterate zt . One can also interpret the reweighted gradient flow

zt+1 in (10) as performing a single gradient step to minimize

the smooth reweighted loss (1/m)
∑m

i=1 wt
i �(z;ψi) with start-

ing point zt ; see also [47] for related ideas successfully ex-

ploited in the iteratively reweighted least-squares approach to

compressive sampling.

Remark 2: The larger the confidence score
|a∗

i z|
|a∗

i x| is, the larger

the corresponding weight wi will be. More importance will

be then attached to reliable gradients than to spurious ones.

Gradients from almost all data are accounted for, which is in

contrast to [9], where withdrawn gradients do not contribute the

information they carry.

Remark 3: At the points {z}where a∗
i z = 0 for some datum

i ∈ M, the i-th weight will be wi = 0. In other words, the

squared losses �(z;ψi) in (2) that are non-smooth at points z

will be eliminated, to prevent their contribution to the reweighted

gradient update in (10). This simplifies the convergence analysis

of RAF considerably because it does not have to cope with the

non-smoothness of the objective function in (2).

Having elaborated on the two stages, RAF can be readily

summarized in Algorithm 1.

Algorithm 1: Reweighted Amplitude Flow (RAF).

1: Input: Data {(ai ;ψi}1≤i≤m ; maximum number of

iterations T ; step sizes µt = 2/6 and weighting

parameters βi = 10/5 for real and complex Gaussian

models; subset cardinality |S| = �3m/13�, and

exponent γ = 0.5.

2: Construct S to include indices associated with the |S|
largest entries among {ψi}1≤i≤m .

3: Initialize z0 :=
√

∑m
i=1 ψ2

i /m z̃0 with z̃0 being the

unit-norm principal eigenvector of

1

m

m
∑

i=1

w0
i aia

∗
i , where w0

i :=

{

ψγ
i , i ∈ S⊆M
0, otherwise.

4: Loop: for t = 0 to T − 1

zt+1 = zt − µt

m

m
∑

i=1

wt
i

(

a∗
i z

t − ψi
a∗

i z
t

|a∗
i z

t |
)

ai (13)

where wt
i :=

|a∗
i z

t |/ψ i

|a∗
i z

t |/ψ i +β i
for all 1 ≤ i ≤ m.

5: Output: zT .

C. Parameters of the Algorithm

To optimize the empirical performance and facilitate numer-

ical implementations, the choice of pertinent RAF parameters

is outlined here. For the four RAF parameters, our theory and

experiments are based on: i) |S|/m ≤ 0.25; ii) 0 ≤ βi ≤ 10 for

all 1 ≤ i ≤ m; and, iii) 0 ≤ γ ≤ 1. For convenience, a constant

step size µt ≡ µ > 0 is suggested, but other step size rules such

as backtracking line search with the reweighted objective would

work as well. As will be formalized in Section III, RAF con-

verges if the constant µ is not too large, with the upper bound

depending in part on the selection of {βi}1≤i≤m .

In the numerical tests presented in Sections II and IV, we take

|S| := �3m/13�, βi ≡ β := 10, γ := 0.5, and µ := 2 (larger

step sizes can be afforded for larger m/n values).

III. MAIN RESULTS

Our main results summarized below establish exact recovery

under the real Gaussian model, whose proof is postponed to

Section V for readability. Our RAF methodology however, can

be generalized to the complex Gaussian as well as the CDP

models.

Theorem 1 (Exact recovery): Consider m noiseless mea-

surements ψ = |Ax| for an arbitrary signal x ∈ Rn . If m ≥
c0 |S| ≥ c1n with |S| being the pre-selected subset cardinal-

ity in the initialization step and the learning rate µ ≤ µ0 , then

with probability at least 1 − c3e
−c2 m , the RAF estimates zt in

Algorithm 1 obey

dist(zt ,x) ≤ 1

10
(1 − ν)t‖x‖, t = 0, 1, . . . (14)

where c0 , c1 , c2 , c3 > 0, 0 < ν < 1, and µ0 > 0 are certain

numerical constants depending on the choice of algorithmic

parameters |S|, β, γ, and µ.

According to Theorem 1, a few interesting properties of our

RAF algorithm are worth highlighting. To start, RAF recovers
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the true solution exactly with high probability whenever the ra-

tio m/n of the number of equations to the unknowns exceeds

some numerical constant. Expressed differently, RAF achieves

the information-theoretic optimal order of sample complexity,

which is consistent with the state-of-the-art including truncated

Wirtinger flow (TWF) [12], TAF [9], and RWF [27]. Notice

that the error contraction in (14) also holds at t = 0, namely

dist(z0 ,x) ≤ ‖x‖/10, therefore providing theoretical perfor-

mance guarantees for the proposed initialization strategy (cf.

Step 1 of Algorithm 1). Moreover, starting from this initial esti-

mate, RAF converges exponentially fast to the true solution x.

In other words, to reach any ε-relative solution accuracy (i.e.,

dist(zT ,x) ≤ ε‖x‖), it suffices to run at most T = O(log 1/ε)
RAF iterations in Step 1 of Algorithm 1. This in conjunction

with the per-iteration complexityO(mn) (namely, the complex-

ity of one reweighted gradient update in (66)) confirms that RAF

solves exactly a quadratic system in time O(mn log 1/ε), which

is linear in O(mn), the time required by the processor to read

the entire data {(ai ;ψi)}1≤i≤m . Given the fact that the initial-

ization stage can be performed in time O(n|S|) and |S| < m,

the overall linear-time complexity of RAF is order-optimal.

IV. SIMULATED TESTS

Our theoretical findings about RAF have been corroborated

with comprehensive numerical experiments, a sample of which

are presented next. Performance of RAF is evaluated relative to

the state-of-the-art (T)WF [10], [12], RWF [27], and TAF [9] in

terms of the empirical success rate among 100 MC realizations,

where a success will be declared for an independent trial if the

returned estimate incurs error ‖ψ − |AzT |‖/‖x‖ ≤ 10−5 . Both

the real Gaussian and the physically realizable CDP models were

simulated. For fairness, all procedures were implemented with

their suggested parameter values. We generated the true x ∼
N (0, I), and i.i.d. measurement vectors ai ∼ N (0, I), 1 ≤
i ≤ m. Each iterative scheme obtained its initial guess based on

200 power or Lanczos iterations, followed by a sequence of T =
2, 000 (which can be set smaller as the ratio m/n grows away

from the limit of 2) gradient-type iterations. All the numerical

experiments in this paper were implemented with MATLAB

R2016a on an Intel CPU @ 3.4 GHz (32 GB RAM) computer.

For reproducibility, the Matlab code of our RAF algorithm is

publicly available at https://gangwg.github.io/RAF.

To examine how the parameter value of γ in (7) influences our

initialization performance, the relative error versus the parame-

ter value ranging from 0 to 1 is presented in Fig. 2, where the real

Gaussian model is simulated with n varying from 1,000 by 1,000

to 5,000 and m = 2n − 1 fixed. Evidently, the plots clearly val-

idate our choice of the default parameter value γ = 0.5.

To show the power of RAF in the high-dimensional regime,

the function value L(z) in (2) evaluated at the returned estimate

zT (cf. Step 1 of Algorithm 1) after 200 MC realizations is

plotted (in negative logarithmic scale) in Fig. 3, where the

number of simulated noiseless measurements was set to be

the information-theoretic limit, namely m = 2n − 1 = 3, 999
for n = 2, 000. It is evident that our proposed RAF approach

returns a solution of function value L(zT ) smaller than 10−25

in all 200 independent realizations even at this challenging

Fig. 2. Relative error versus γ for the proposed initialization scheme with n
varying from 1,000 to 5,000 and m = 2n − 1 fixed under the real Gaussian
model.

Fig. 3. Function value L(zT ) evaluated at the returned RAF estimate z
T for

200 trials with n = 2, 000 and m = 2n − 1 = 3, 999.

information-theoretic limit condition. To the best of our knowl-

edge, RAF is the first algorithm that empirically reconstructs

any high-dimensional (say e.g., n ≥ 1, 500) signals exactly

from a minimal number of random quadratic equations, which

also provides a positive answer to the question posed earlier in

the Introduction.

Fig. 4 compares the empirical success rate of the five schemes

with the signal dimension being fixed at n = 1, 000 while the

ratio m/n increasing by 0.1 from 1 to 5. Specifically, in the top

panel, each scheme uses its own initialization, while in the bot-

tom panel, all schemes start with the same maximally reweighted

correlation initialization. As clearly depicted by the plots, our

RAF approach (color coded red) outperforms its competing al-

ternatives in both cases. Moreover, it also achieves 100% signal

recovery as soon as m is about 2n, where the others do not show

perfect recovery. Through comparing the two figures, it is clear

that the performance of TAF and TWF can benefit from using

the proposed initialization.

Fig. 5 further compares the convergence speed of various

schemes in terms of the number of iterations to produce solutions

of a given accuracy. Evidently, RAF converges faster than WF

and TWF, and it has comparable efficiency as TAF and RWF

when using the real Gaussian model with x ∈ R1,000 and m =
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Fig. 4. Empirical success rate under the real Gaussian model using: different
initializations (top); and, the same reweighted maximal correlation initialization
(bottom).

Fig. 5. Relative error versus iterations using: i) RAF; ii) TAF; iii) TWF;
iv) RWF; and v) WF with n = 1, 000 and m/n = 5 under the real Gaussian
model.

5, 000. Regarding running times, to reach solution accuracy

of relative error 10−15 or a maximum of 500 iterations, the

computational times for RAF, TAF, TWF, RWF, and WF are

0.63 s, 1.12 s, 1.49 s, 0.94 s, and 19.16 s, respectively.

To numerically demonstrate the stability and robustness of

RAF in the presence of additive noise, Fig. 6 examines the

normalized mean-square error NMSE := dist2(zT ,x)/‖x‖2

as a function of the signal-to-noise ratio (SNR) for m/n tak-

Fig. 6. NMSE vs. SNR for RAF under the real Gaussian model.

ing values {3, 4, 5}. The noise model ψi = |〈ai ,x〉| + ηi with

η := [ηi ]1≤i≤m ∼ N (0, σ2Im ) was simulated, where σ2 was

set such that certain SNR := 10 log10(‖Ax‖2/mσ2) values

were achieved. For all choices of m (as small as 3n which

is nearly minimal), the numerical experiments illustrate that the

NMSE scales inversely proportional to the SNR, which corrob-

orates the stability of our RAF approach.

To demonstrate the efficacy and scalability of RAF in real-

world conditions, the last experiment entails the Galaxy image3

depicted by a three-way array X ∈ R1,080×1,920×3 , whose first

two coordinates encode the pixel locations, and the third the

RGB color bands. Consider the physically realizable CDP model

with random masks [10]. Letting x ∈ Rn (n ≈ 2 × 106) be a

vectorization of a certain band of X , the CDP model with K
masks is

ψ(k) = |FD(k)x|, 1 ≤ k ≤ K (15)

where F ∈ Cn×n is a discrete Fourier transform matrix, and

diagonal matrices D(k) have their diagonal entries sampled uni-

formly at random from {1, −1, j, −j} with j :=
√
−1. Imple-

menting K = 4 masks, each algorithm performs independently

over each band 100 power iterations to obtain the initial guess,

which was refined by 100 gradient iterations. Recovered images

of TAF (top) and RAF (bottom) are displayed in Fig. 7, whose

relative errors were 1.0347 and 1.0715 × 10−3 , respectively.

WF and TWF returned images of corresponding relative error

1.6870 and 1.4211, which are far away from the ground truth.

It is worth pointing out that RAF converges faster both in

time and in the number of iterations required to achieve certain

solution accuracy than TWF and WF in all our simulated exper-

iments, and it has comparable computational efficiency as TAF

and RWF.

V. PROOFS

To prove Theorem 1, this section establishes a few lemmas

and the main ideas, whereas technical details are postponed

to the Appendix to facilitate readability. It is clear from

Algorithm 1 that the weighted maximal correlation initializa-

tion (cf. Step 3) and the reweighted gradient flow (cf. Step 4)

3Downloaded from http://pics-about-space.com/milky-way-galaxy.
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Fig. 7. The recovered Galaxy images after 100 truncated gradient iterations of TAF (top); and after 100 reweighted gradient iterations of RAF (bottom).

distinguish themselves from those procedures in (T)WF [10],

[12], TAF [9], and RWF [27]. Hence, new proof techniques

to cope with the weighting in both the initialization and the

gradient flow, as well as the non-smoothness and non-convexity

of the amplitude-based least-squares functional are required.

Nevertheless, part of the proof is built upon those in [9], [10],

[27], [48].

The proof of Theorem 1 consists of two parts: Section V-A be-

low asserts guaranteed theoretical performance of the proposed

initialization, which essentially achieves any given constant rel-

ative error as soon as the number of equations is on the order

of the number of unknowns; that is, m ≥ c1n for some con-

stant c1 > 0. It is worth mentioning that we reserve c and its

subscripted versions for absolute constants, even though their

values may vary with the context. Under the sample complexity

of orderO(n), Section V-B further shows that RAF converges to

the true signal x exponentially fast whenever the initial estimate

lands within a relatively small-size neighborhood of x defined

by dist(z0 ,x) ≤ (1/10)‖x‖.

A. Weighted Maximal Correlation Initialization

This section is devoted to establishing analytical guarantees

for the novel initialization procedure, which is summarized in

the following proposition.

Proposition 1: For an arbitrary x ∈ Rn , consider the noise-

less measurements ψi = |a∗
i x|, 1 ≤ i ≤ m. If m ≥ c0 |S| ≥

c1n, then with probability exceeding 1 − c3e
−c2 m , the initial

guess z0 obtained by the weighted maximal correlation method

in Step 3 of Algorithm 1 satisfies

dist(z0 ,x) ≤ ρ‖x‖ (16)

for ρ = 1/10 (or any sufficiently small positive number). Here,

c0 , c1 , c2 , c3 > 0 are some absolute constants.

Due to the homogeneity, it suffices to prove the result when

‖x‖ = 1. Assume first that the norm ‖x‖ = 1 is also perfectly

known, and z0 has already been scaled such that ‖z0‖ = 1.

At the end of this proof, this approximation error between the

actually employed norm estimate
√

∑m
i=1 yi/m found based

on the strong law of large numbers and the unknown norm

‖x‖ = 1, will be taken care of. Consider independent Gaussian

random measurement vectors ai ∼ N (0, In ) and an arbitrary

unit-norm vector x. Since Gaussian distributions are rotationally

invariant, it suffices to prove the results for x = e1 , where e1 is

the first canonical vector in Rn .

Since the norm ‖x‖ = 1 is assumed known, the weighted

maximal correlation initialization in Step 3 finds the initial es-

timate z0 = z̃0 (the scaling factor is the exactly known norm 1

in this case) as the principal eigenvector of

1

|S|B
∗B =

1

|S|
∑

i∈S
ψγ

i aia
∗
i (17)

where B := [ψ
γ/2
i ai ]i∈S is an |S| × n matrix, and S � {1, 2,

. . . , m} includes the indices of the |S| largest entities among all

modulus data {ψi}1≤i≤m . The following result is a modification

of [9, Lemma 1], which is key to proving Proposition 1.

Lemma 1: Consider m noiseless measurements ψi = |a∗
i x|,

1 ≤ i ≤ m. For an arbitrary x ∈ Rn of unit norm, the next result

holds for all unit-norm vectors u ∈ Rn perpendicular to x; that

is, for all u ∈ Rn satisfying u∗x = 0 and ‖u‖ = 1, we have

1

2

∥

∥xx∗ − z̃0(z̃0)∗
∥

∥

2

F
≤ ‖Bu‖2

‖Bx‖2
(18)

where z̃0 is given by

z̃0 := arg max
‖z‖=1

1

|S|z
∗B∗Bz. (19)
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Let us start with the proof of Proposition 1. The first step

consists in upper-bounding the quantity on the right-hand-side

of (18). This involves upper bounding its numerator, and lower

bounding its denominator, tasks summarized in Lemmas 2 and

3, whose proofs are deferred to Appendix B and Appendix C,

accordingly.

Lemma 2: In the setting of Lemma 1, if |S|/n ≥ c4 , then the

inequality

‖Bu‖2 ≤ 1.01
√

2γ /πΓ(γ + 1/2)|S| (20)

holds with probability at least 1 − 2e−c5 n , where Γ(·) is the

Gamma function, and c4 , c5 are certain universal constants.

Lemma 3: In the setting of Lemma 1, the following holds

with probability exceeding 1 − e−c6 m :

‖Bx‖2 ≥ 0.99 × 1.14γ |S|
[

1 + log(m/|S|)
]

(21)

provided that m ≥ c0 |S| ≥ c1n for some absolute constants

c0 , c1 , c6 > 0.

Taking together, the upper bound in (20) and the lower bound

in (21), one arrives at

‖Bu‖2

‖Bx‖2
≤ C

1 + log(m/|S|)
�
= κ (22)

where C := 1.02 × 1.14−γ
√

2γ /πΓ(γ + 1/2), and (22) holds

with probability at least 1 − 2e−c5 n − e−c6 m , with the proviso

that m ≥ c0 |S| ≥ c1n. Since m = O(n), one can rewrite the

probability as 1 − c3e
−c2 m for certain constants c2 , c3 > 0. To

have a sense of the size of C, taking our default value γ = 0.5
for instance gives rise to C = 0.7854.

It is clear that the bound κ in (22) can be rendered arbitrarily

small by taking sufficiently large m/|S| values (while maintain-

ing |S|/n to be some constant based on Lemma 3). With no loss

of generality, let us work with κ := 0.001 in the following.

The wanted upper bound on the distance between the initial-

ization z0 and the true x can be obtained based upon similar

arguments found in [10, Section 7.8], which are delineated next.

For unit-norm x and z0 = z̃0 , if 0 ≤ θ ≤ π/2 denotes the angle

between the spaces spanned by z0 and x, using (18) and (22)

yields

|x∗z0 |2 = cos2 θ = 1 − sin2 θ

= 1 − ‖Bu‖2

‖Bx‖2

≥ 1 − κ (23)

thus giving rise to

dist2(z0 , x) ≤ ‖z0‖2 + ‖x‖2 − 2|x∗z0 |

≤
(

2 − 2
√

1 − κ
)

‖x‖2

≈ κ ‖x‖2 . (24)

As discussed prior to Lemma 1, the exact norm ‖x‖ = 1
is generally unknown, and one often scales the unit-norm di-

rectional vector found in (19) by the estimate
√

∑m
i=1 ψ2

i /m.

Next, the approximation error between the estimated norm

‖z0‖ =
√

∑m
i=1 ψ2

i /m and the true norm ‖x‖ = 1 is accounted

for. Recall from (19) that the direction of x is estimated to

be z̃0 (of unit norm). Using results similar to those in [10,

Lemma 7.8 and Section 7.8], the following holds with high

probability, as long as the ratio m/n exceeds some numerical

constant

‖z0 − z̃0‖ = |‖z0‖ − 1| ≤ (1/20)‖x‖. (25)

Taking the inequalities in (24) and (25) together, it is safe to

deduce that

dist(z0 ,x) ≤ ‖z0 − z̃0‖ + dist(z̃0 ,x) ≤ (1/10)‖x‖ (26)

which confirms that the initial estimate obeys the relative er-

ror dist(z0 , x)/‖x‖ ≤ 1/10 for any x ∈ Rn with probability

1 − c3e
−c2 m , provided that m ≥ c0 |S| ≥ c1n for some numer-

ical constants c0 , c1 , c2 , c3 > 0.

B. Exact Phase Retrieval From Noiseless Data

It has been demonstrated that the initial estimate z0 obtained

by means of the weighted maximal correlation initialization

strategy has at most a constant relative error to the globally opti-

mal solution x, i.e., dist(z0 ,x) ≤ (1/10)‖x‖. We demonstrate

in the following that starting from such an initial estimate, the

RAF iterates (in Step 4 of Algorithm 1) converge at a linear rate

to the global optimum x; that is, dist(zt ,x) ≤ (1/10)ct‖x‖
for some constant 0 < c < 1 depending on the step size µ > 0,

the weighting parameter β, and the data {(ai ;ψi)}1≤i≤m . This

constitutes the second part of the proof of Theorem 1. Toward

this end, it suffices to show that the iterative update of RAF is

locally contractive within a relatively small neighboring region

of the true x. Instead of directly coping with the moments in the

weights, we establish a conservative result based directly on [9]

and [27]. Recall first that our gradient flow uses the reweighted

gradient

∇�rw (z) :=
1

m

m
∑

i=1

wi

(

a∗
i z − |a∗

i x|
a∗

i z

|a∗
i z|

)

ai (27)

with weights

wi =
1

1 + β/(|a∗
i z|/|a∗

i x|)
, 1 ≤ i ≤ m (28)

in which the dependence on the iterate index t is ignored for

notational brevity.

Proposition 2 (Local error contraction): For an arbitrary

x ∈ Rn , consider m noise-free measurements ψi = |a∗
i x|, 1 ≤

i ≤ m. There exist some numerical constants c1 , c2 , c3 > 0,

and 0 < ν < 1 such that the following holds with probability

exceeding 1 − c3e
−c2 m

dist2(z − µ∇�rw (z), x) ≤ (1 − ν)dist2(z, x) (29)

for all x, z ∈ Rn obeying dist(z, x) ≤ (1/10)‖x‖, provided

that m ≥ c1n and the constant step size µ ≤ µ0 , where the

numerical constant µ0 depends on the parameter β > 0 and

data {(ai ;ψi)}1≤i≤m .

Proposition 2 suggests that the distance of RAF’s succes-

sive iterates to the global optimum x decreases monotonically

once the algorithm’s iterate zt enters a small neighboring region

around the true x. This small-size neighborhood is commonly

known as the basin of attraction, and has been widely discussed
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in recent non-convex optimization contributions; see e.g., [9],

[12], [27]. Expressed differently, RAF’s iterates will stay within

the region and will be attracted towards x exponentially fast as

soon as they land within the basin of attraction. To substanti-

ate Proposition 2, recall the useful analytical tool of the local

regularity condition [10], which plays a key role in establishing

linear convergence of iterative procedures to the global optimum

in [9], [10], [12], [27], [26], [31], [34].

For RAF, the reweighted gradient ∇�rw (z) in (27) is said

to obey the local regularity condition (LRC), denoted as

LRC(µ, λ, ε) for some constant λ > 0, if the next inequality

〈∇�rw (z), h〉 ≥ µ

2
‖∇�rw (z)‖2 +

λ

2
‖h‖2

(30)

holds for all z ∈ Rn such that ‖h‖ = ‖z − x‖ ≤ ε ‖x‖ for

some constant 0 < ε < 1, where the ball given by ‖z − x‖ ≤
ε ‖x‖ is the so-termed basin of attraction.

Letting h := z − x, manipulations in conjunction with the

regularity property (30) confirms that

dist2(z − µ∇�rw (z), x) = ‖z − µ∇�rw (z) − x‖2

= ‖h‖2 − 2µ 〈h,∇�rw (z)〉 + ‖µ∇�rw (z)‖2
(31)

≤ ‖h‖2 − 2µ

(

µ

2
‖∇�rw (z)‖2 +

λ

2
‖h‖2

)

+ ‖µ∇�rw (z)‖2

= (1 − λµ) ‖h‖2 = (1 − λµ) dist2(z, x) (32)

for all points z adhering to ‖h‖ ≤ ε ‖x‖. It is evident that if

LRC(µ, λ, ε) can be established for RAF, our ultimate goal of

proving the local error contraction in (29) follows straightfor-

wardly upon setting ν := λµ.

1) Proof of the Local Regularity Condition in (30): The first

step to proving the local regularity condition in (30) is to control

the size of the reweighted gradient ∇�rw (z); that is, to upper

bound the last term in (31). To start, rewrite the reweighted

gradient in a compact matrix-vector representation

∇�rw (z) =
1

m

m
∑

i=1

wi

(

a∗
i z − |a∗

i x|
a∗

i z

|a∗
i z|

)

ai
�
=

1

m
dg(w)Av

(33)

where dg(w) ∈ Rn×n is a diagonal matrix holding in order the

entries of w := [w1 · · · wm ]∗ ∈ Rm on its main diagonal, and

v := [v1 · · · vm ]∗ ∈ Rm with vi := a∗
i z − |a∗

i x|
a

∗
i z

|a∗
i z|

. Based

on the definition of the induced matrix 2-norm (or the matrix

spectral norm), it is easy to check that

‖∇�rw (z)‖ =

∥

∥

∥

∥

1

m
dg(w)Av

∥

∥

∥

∥

≤ 1

m
‖dg(w)‖ · ‖A‖ · ‖v‖

≤ 1 + δ′√
m

‖v‖ (34)

where we have used the inequalities ‖dg(w)‖ ≤ 1 due to wi ≤ 1
for all 1 ≤ i ≤ m, and ‖A‖ ≤ (1 + δ′)

√
m for some constant

δ′ > 0 according to [48, Theorem 5.32], provided that m/n is

sufficiently large.

The task therefore remains to bound ‖v‖ in (34), which is

addressed next. To this end, notice that

‖v‖2 ≤
m

∑

i=1

(|a∗
i z| − |a∗

i x|)2 ≤
m

∑

i=1

(a∗
i z − a∗

i x)2

≤ (1 + δ′′)2m‖h‖2 (35)

for some numerical constant δ′′ > 0, where the last can be ob-

tained using [15, Lemma 3.1], and which holds with probability

at least 1 − e−c2 m as long as m > c1n holds true.

Combing (34) with (35) and taking δ > 0 larger than the con-

stant (1+δ′)(1+δ′′)−1, the size of ∇�rw (z) can be bounded as

‖∇�rw (z)‖ ≤ (1 + δ)‖h‖ (36)

which holds with probability 1 − e−c2 m , with a proviso that

m/n exceeds some numerical constant c7 > 0. This result in-

deed asserts that the reweighted gradient of L(z) or the search

direction employed in our RAF algorithm is well behaved, im-

plying that the function value along the iterates does not change

too much.

In order to prove the LRC, it suffices to show that ∇�rw (z)
ensures sufficient descent, that is, there exists a numerical con-

stant c > 0 such that along the search direction ∇�rw (z) the

following uniform lower bound holds

〈∇�rw (z), h〉 ≥ c‖h‖2 (37)

which will be addressed next. Formally, this can be summa-

rized in the following proposition, whose proof is deferred to

Appendix D.

Proposition 3: For the noise-free measurements ψi = |a∗
i x|,

1 ≤ i ≤ m, and any fixed sufficiently small constant ε > 0.

There exist some numerical constants c1 , c2 , c3 > 0 such that

the following holds with probability at least 1 − c3e
−c2 m

〈h,∇�rw (z)〉 ≥ ζ3‖h‖2 (38)

for all x, z ∈ Rn obeying ‖h‖ ≤ (1/10)‖x‖, provided that

m/n > c1 , and that β ≥ 0 is small enough. Here, ζ3 :=
1−ζ1 −ε

1+β (1+η ) − 2(ζ2 + ε) − 2(0.1271−ζ2 +ε)
1+β/k .

Taking the results in (38) and (36) together back to (30), we

deduce that the LRC holds for µ and λ obeying the inequality

ζ3 ≥ µ

2
(1 + δ)2 +

λ

2
. (39)

For instance, taking β = 2, k = 5, η = 0.5, and ε = 0.001,

we have ζ1 = 0.8897 and ζ2 = 0.0213, which confirms that

〈�rw (z),h〉 ≥ 0.1065‖h‖2 . Setting further δ = 0.001 leads to

0.1065 ≥ 0.501µ + 0.5λ (40)

which concludes the proof of the LRC in (30). The local error

contraction in (29) follows directly after substituting the LRC

into (32), hence validating Proposition 2.

VI. CONCLUSION

This paper puts forth a novel linear-time algorithm termed

reweighted amplitude flow (RAF) for solving high-dimensional

random systems of quadratic equations. Our procedure pro-

ceeds in two consecutive stages, namely, a weighted maximal
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correlation initialization that entails just a few power or Lanc-

zos iterations, and a sequence of simple iteratively reweighted

generalized gradient iterations for the non-convex non-smooth

least-squares loss function. Our RAF approach is conceptually

simple, easy-to-implement, as well as numerically scalable and

effective. It was also proved to achieve the optimal sample and

computational complexity orders. Substantial numerical tests

using both synthetic data and real-world images corroborated

the superior performance of RAF over state-of-the-art iterative

solvers. Empirically, RAF solves a set of random quadratic equa-

tions in the high-dimensional regime with large probability so

long as a unique solution exists, where the number m of equa-

tions in the real Gaussian case can be as small as 2n − 1 with n
being the number of unknowns to be recovered.

Future research includes studying robust and/or sparse phase

retrieval as well as (semi-definite) matrix recovery by means of

(stochastic) reweighted amplitude flow counterparts [17], [37].

Exploiting the possibility of leveraging suitable (re)weighting

regularization to improve empirical performance of other non-

convex iterative procedures such as [37], [28] is worth investi-

gating as well.

APPENDIX

PROOF DETAILS

By homogeneity of (1), we assume without loss of generality

that ‖x‖ = 1 in all proofs.

A. Proof of Lemma 2

Let {b∗
i }1≤i≤|S| denote rows of B ∈ R|S|×n , which are ob-

tained by scaling rows of AS := {a∗
i }i∈S ∈ R|S|×n by weights

{wi = ψ
γ/2
i }i∈S [cf. (17)]. Since x = e1 , we have ψ = |Ae1 |

= |A1 |, while the index set S depends solely on the first col-

umn of A, and is independent of the other columns of A. Using

this, partition accordingly AS := [AS
1 AS

r ], where AS
1 ∈ R|S|×1

denotes the first column of AS , and AS
r ∈ R|S|×(n−1) col-

lects the remaining ones. Likewise, partition B = [B1 Br ]
with B1 ∈ R|S|×1 and Br ∈ R|S|×(n−1) . By this argument,

rows of AS are mutually independent, and Gaussian distributed

with mean 0 and covariance matrix In−1 . Furthermore, the

weights ψ
γ/2
i = |a∗

i e1 |γ/2 = |ai,1 |γ/2 , ∀i ∈ S are also inde-

pendent of the entries in AS . As a consequence, rows of

Br are mutually independent, and one can explicitly write its

i-th row as br,i = |a∗
[i]e1 |γ/2a[i],\1 = |a[i],1 |γ/2a[i],\1 , where

a[i],\1 ∈ Rn−1 is obtained after removing the first entry of

a[i] . It is easy to verify that E[br,i ] = 0, and E[br,ib
∗
r,i ] =

Cγ In−1 , where the constant Cγ :=
√

2γ /πΓ(γ + 1/2)‖x‖γ =
√

2γ /πΓ(γ + 1/2), and Γ(·) is the Gamma function.

Given x∗x⊥ = e∗
1x

⊥ = 0, one can write x⊥ = [0 r∗]∗ with

any unit vector r ∈ Rn−1 ; hence,

‖Bx⊥‖2 = ‖B[0 r∗]∗‖2 = ‖Brr‖2 (41)

with independent sub-Gaussian rows br,i = |aj,1 |γ/2aj,\1 if

0 ≤ γ ≤ 1. Standard concentration results on the sum of ran-

dom positive semi-definite matrices composed of independent

non-isotropic sub-Gaussian rows [48, Remark 5.40.1] assert that
∥

∥

∥

∥

1

|S|B
∗
rBr − Cγ In−1

∥

∥

∥

∥

≤ δ (42)

holds with probability at least 1 − 2e−c5 n provided that |S|/n
is larger than some positive constant. Here, δ > 0 is a numerical

constant that can take arbitrarily small values, and c5 > 0 is a

constant depending on δ. With no loss of generality, take δ :=
0.01Cγ in (42). For any unit vector r ∈ Rn−1 , the following

holds with probability at least 1 − 2e−c5 n

∥

∥

∥

∥

1

|S|r
∗B∗

rBrr − Cγ r∗r

∥

∥

∥

∥

≤ δr∗r = δ (43)

or

‖Brr‖2 = r∗B∗
rBrr ≤ 1.01Cγ |S|. (44)

Taking (44) back to (41) confirms that

‖Bx⊥‖2 ≤ 1.01Cγ |S| (45)

holds with probability at least 1 − 2e−c5 n if |S|/n exceeds some

constant. Note that c5 depends on the maximum sub-Gaussian

norm of the rows bi in Br , and we assume without loss of

generality c5 ≥ 1/2. Therefore, one confirms that the numerator

‖Bu‖2 in (18) is upper bounded after replacing x⊥ with u

in (45).

B. Proof of Lemma 3

This section is devoted to obtaining a meaningful lower bound

for the denominator ‖Bx‖2 in (21). Note first that

‖Bx‖2 =

|S|
∑

i=1

|b∗
i x|2 =

|S|
∑

i=1

ψγ
[i]|a∗

[i]x|2 =

|S|
∑

i=1

|a∗
[i]x|2+γ .

Taking without loss of generality x = e1 , the term on the right

side of the last equality reduces to

‖Bx‖2 =

|S|
∑

i=1

|a[i],1 |2+γ . (46)

Since a[i],1 follows the standardized normal distribution, the

probability density function (pdf) of random variables |a[i],1 |2+γ

can be given in closed form as

p(t) =

√

2

π
· 1

2 + γ
t−

1 + γ
2 + γ e−

1
2 t

2
2 + γ

, t > 0 (47)

which is rather complicated and whose cumulative density func-

tion (cdf) does not come in closed form in general. Therefore,

instead of dealing with the pdf in (47) directly, we shall take a

different route by deriving a lower bound that is a bit looser yet

suffices for our purpose.

Since |a[|S|],1 | ≤ · · · ≤ |a[2],1 | ≤ |a[1],1 |, then it holds for all

1 ≤ i ≤ |S| that |a[i],1 |2+γ ≥ |a[|S|],1 |γ a2
[i],1 , which yields

‖Bx‖2 =

|S|
∑

i=1

|a[i],1 |2+γ ≥ |a[|S|],1 |γ
|S|
∑

i=1

a2
[i],1 . (48)

We will next demonstrate that deriving a lower bound for ‖Bx‖2

suffices to derive a lower bound for the summation on the right
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hand side (48). The latter can be achieved by appealing to a

result in [9, Lemma 3], which for completeness is included in

the following.

Lemma 4: For an arbitrary unit-norm vector x ∈ Rn , let

ψi = |a∗
i x|, 1 ≤ i ≤ m be m noiseless measurements. Then

with probability at least 1 − e−c2 m , the following holds

|S|
∑

i=1

a2
[i],1 ≥ 0.99|S|

[

1 + log(m/|S|)
]

(49)

provided that m ≥ c0 |S| ≥ c1n for some numerical constants

c0 , c1 , c2 > 0.

Combining the results in Lemma 4 and (48), one further

deduces that

‖Bx‖2 ≥ |a[|S|],1 |γ
|S|
∑

i=1

a2
[i],1

≥ |a[|S|],1 |γ · 0.99|S|
[

1 + log(m/|S|)
]

. (50)

The task remains to estimate the size of |a[|S|],1 |, which we

recall is the |S|-th largest among the m independent realizations

{ψi = |ai,1 |}1≤i≤m . Taking γ = 1 in (47) gives the pdf of the

half-normal distribution

p(t) =

√

2

π
e−

1
2 t2

, t > 0 (51)

whose corresponding cdf is

F (τ) = erf(τ/
√

2). (52)

Setting F (τ|S|) := 1 − |S|/m or using the complementary

cdf |S|/m := erfc(τ/
√

2) based on the complementary error

function gives rise to an estimate of the size of the |S|-th largest

(or equivalently, the (m − |S|)-th smallest) entry in the m real-

izations, namely

τ|S| =
√

2 erfc−1(|S|/m) (53)

where erfc−1(·) represents the inverse complementary error

function. In the sequel, we show that the deviation of the |S|-th
largest realization ψ[|S|] from its expected value τ|S| in (53) is

bounded with high probability.

For random variable ψ = |a| with a obeying the standard

Gaussian distribution, consider the event ψ ≤ τ|S| − δ for a

fixed constant δ > 0. Define the indicator random variable

χ := 1{ψ≤τ |S|−δ}, whose expectation can be obtained by sub-

stituting τ = τ|S| − δ into the pdf in (52) as

E[χi ] = erf(τ|S| − δ/
√

2). (54)

Considering now the m independent copies {χi =
1{ψ i ≤τ |S|−δ}}1≤i≤m of χ, the following holds

P (ψ[|S|] ≤ τ|S| − δ) = P

(

m
∑

i=1

χi ≤ m− |S|
)

= P

(

1

m

m
∑

i=1

(χi − E[χi ])≤1− |S|
m

− E[χi ]

)

Clearly, since random variables χi are bounded, they are

sub-Gaussian [49]. For notational brevity, let t := 1 − |S|/m −

E[χi ] = 1 − |S|/m − erf(τ|S| − δ/
√

2). Appealing to a large

deviation inequality for sums of independent sub-Gaussian ran-

dom variables, one establishes that

P (ψ[|S|] ≤ τ|S| − δ)

= P

(

1

m

m
∑

i=1

(χi − E[χi ]) ≤ 1 − |S|
m

− E[χi ]

)

≤ e−c5 mt2

(55)

where c5 > 0 is some absolute constant. On the other hand,

using the definition of the error function and properties of

integration gives rise to

t = 1 − |S|/m − erf(τ|S| − δ/
√

2) =
2√
π

∫ τ |S|/
√

2

(τ |S|−δ)/
√

2

e−s2

ds

≥
√

2

π
δe−

τ 2
|S|
2 ≥

√

2

π
δ. (56)

Taking the results in (55) and (56) together, one concludes that

fixing any constant δ > 0, the following holds with probability

at least 1 − e−c2 m :

ψ[|S|] ≥ τ|S| − δ ≥
√

2 erfc−1(|S|/m) − δ

where c2 := (2/π)c5δ
2 . Furthermore, choosing without loss

of generality δ := 0.01τ|S| above leads to ψ[|S|] ≥ 1.4 erfc−1

(|S|/m).
Substituting the last inequality into (50), and under our work-

ing assumption |S|/m ≤ 0.25, one readily obtains that

‖Bx‖2 ≥ [1.4 erfc−1(|S|/m)]γ · 0.99|S|
[

1 + log(m/|S|)
]

≥ 0.99 · 1.14γ |S|
[

1 + log(m/|S|)
]

which holds with probability exceeding 1 − e−c2 m for some

constant c2 > 0, thus concluding the proof of Lemma 3.

C. Proof of Proposition 3

To proceed, let us introduce the following events for all 1 ≤
i ≤ m:

Di :=
{

(a∗
i x)(a∗

i z) < 0
}

(57)

Ei :=

{ |a∗
i z|

|a∗
i x|

≥ 1

1 + η

}

(58)

for some fixed constant η > 0, in which the former corresponds

to the gradients involving wrongly estimated signs, namely
a

∗
i z

|a∗
i z|

�= a
∗
i x

|a∗
i x| , and the second will be useful for deriving er-

ror bounds. Based on the definition of Di and with 1Di
denoting
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the indicator function of the event Di , we have

〈�rw (z),h〉 =
1

m

m
∑

i=1

wi

(

a∗
i z − |a∗

i x|
a∗

i z

|a∗
i z|

)

(a∗
i h)

=
1

m

m
∑

i=1

wi

(

a∗
i h + a∗

i x − |a∗
i x|

a∗
i z

|a∗
i z|

)

(a∗
i h)

=
1

m

m
∑

i=1

wi(a
∗
i h)2 +

1

m

m
∑

i=1

2wi

(

a∗
i x

)

(a∗
i h)1Di

≥ 1

m

m
∑

i=1

wi(a
∗
i h)2 − 1

m

m
∑

i=1

2wi

∣

∣a∗
i x

∣

∣

∣

∣a∗
i h

∣

∣1Di
.

(59)

In the following, we will derive a lower bound for the term

on the right hand side of (59). Specifically, a lower bound for

the first term (1/m)
∑m

i=1 wi(a
∗
i h)2 and an upper bound for

the second term (1/m)
∑m

i=1 2wi

∣

∣a∗
i x

∣

∣

∣

∣a∗
i h

∣

∣1Di
will be ob-

tained, based on Lemmas 5 and 6, with their proofs postponed

to Appendix E and Appendix F, respectively.

Lemma 5: Fix fixed η, β > 0, and any sufficiently small

constant ε > 0, the following holds with probability at least

1 − 2e−c5 ε2 m

1

m

m
∑

i=1

wi(a
∗
i h)2 ≥ 1 − ζ1 − ε

1 + β(1 + η)

∥

∥h
∥

∥

2
(60)

with wi = 1/[1 + β/(|a∗
i z|/|a∗

i x|)] for all 1 ≤ i ≤ m, pro-

vided that m/n > (c6 · ε−2 log ε−1) for certain numerical con-

stants c5 , c6 > 0.

Now we turn to the second term in (59). For ease of exposition,

let us first introduce the following events

Bi :=
{

|a∗
i x| < |a∗

i h| ≤ (k + 1)|a∗
i x|

}

(61)

Oi :=
{

(k + 1)|a∗
i x| < |a∗

i h|
}

(62)

for all 1 ≤ i ≤ m and some fixed constant k > 0. The second

term can be bounded as follows

1

m

m
∑

i=1

2wi

∣

∣a∗
i x

∣

∣

∣

∣a∗
i h

∣

∣1Di

≤ 1

m

m
∑

i=1

wi

[

(a∗
i x)2 + (a∗

i h)2
]

1{(a∗
i z)(a∗

i x)<0}

=
1

m

m
∑

i=1

wi

[

(a∗
i x)2 + (a∗

i h)2
]

1{(a∗
i h)(a∗

i x)+(a∗
i x)2 <0}

≤ 1

m

m
∑

i=1

wi

[

(a∗
i x)2 + (a∗

i h)2
]

1{|a∗
i x|< |a∗

i h|}

≤ 2

m

m
∑

i=1

wi(a
∗
i h)21{|a∗

i x|< |a∗
i h|}

=
2

m

m
∑

i=1

wi(a
∗
i h)21{|a∗

i x|< |a∗
i h|≤(k+1)|a∗

i x|}

+
2

m

m
∑

i=1

wi(a
∗
i h)21{(k+1)|a∗

i x|< |a∗
i h|}

=
2

m

m
∑

i=1

wi(a
∗
i h)21Bi

+
2

m

m
∑

i=1

wi(a
∗
i h)21Oi

(63)

where the first equality is derived by substituting z = h +
x according to the definition of h, the second event suf-

fices for (a∗
i h)(a∗

i x) + (a∗
i x)2 < 0, and the second equal-

ity follows from writing the indicator function 1{|a∗
i x|< |a∗

i h|}
as the summation of two indicator functions of two events

1{|a∗
i x|< |a∗

i h|≤(k+1)|a∗
i x|} and 1{|a∗

i h|>(k+1)|a∗
i x|}.

The task so far remains to derive upper bounds for the two

terms on the right hand side of (63), which leads to Lemma 6.

Lemma 6: Fixing a fixed k > 0, define ζ2 to be the maximum

of E[wi ] in (72) for � = 0.01 and ν = 0.1, which depends only

on k. For any ε > 0, if m/n > c6ε
−2 log ε−1 , the following hold

simultaneously with probability at least 1 − c3e
−c2 ε2 m

1

m

m
∑

i=1

wi(a
∗
i h)21Oi

≤ (ζ2 + ε)‖h‖2 (64)

and

1

m

m
∑

i=1

wi(a
∗
i h)21Bi

≤ 0.1271 − ζ2 + ε

1 + β/k
‖h‖2 (65)

for all h ∈ Rn obeying ‖h‖/‖x‖ ≤ 1/10, where c1 , c2 , c3 > 0
are some universal constants.

Substituting (60), (63), and (64)–(65) established in

Lemmas 5 and 6 back into (59), we conclude that

〈�rw (z),h〉≥ 1

m

m
∑

i=1

wi(a
∗
i h)21Ei

− 1

m

m
∑

i=1

2wi

∣

∣a∗
i x

∣

∣

∣

∣a∗
i h

∣

∣1Di

= ζe‖h‖2 (66)

which will be rendered positive, provided that β > 0 is small

enough, and that parameters η, k > 0 are suitably chosen.

D. Proof of Lemma 5

Plugging in the weighting parameters wi = 1/[1 + β/(|a∗
i

z|/|a∗
i x|)] and based on the definition of Ei , the first term in

(59) can be lower bounded as

1

m

m
∑

i=1

wi(a
∗
i h)2 ≥ 1

m

m
∑

i=1

(a∗
i h)21Ei

1 + β/(|a∗
i z|/|a∗

i x|)
(67)

≥ 1

m

m
∑

i=1

1

1 + β(1 + η)
(a∗

i h)21{ |a∗
i
z|

|a∗
i
x|≥

1
1 + η

}

=
1

1 + β(1 + η)
· 1

m

m
∑

i=1

(a∗
i h)21Ei

(68)

where the first inequality arises from dropping some nonnega-

tive terms from the left hand side, and the second one after re-

placing the ratio |a∗
i z|/|a∗

i x| in the weights by its lower bound

1/(1 + η) because the weights are monotonically increasing

functions of |a∗
i z|/|a∗

i x|. Using [9, Lemma 5], the last term in
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Fig. 8. The expectation E[wi ] as a function of ρ over [−1, 1].

(68) can be further bounded by

1

m

m
∑

i=1

wi(a
∗
i h)2 ≥ 1

1 + β(1 + η)
· 1

m

m
∑

i=1

(a∗
i h)21Ei

≥ 1 − ζ1 − ε

1 + β(1 + η)
‖h‖2 (69)

for any fixed sufficiently small constant ε > 0, which holds with

probability at least 1 − 2e−c5 ε2 m , if m > (c6 · ε−2 log ε−1)n.

E. Proof of Lemma 6

The proof is adapted from [27, Lemma 9]. We first prove the

bound (64) for any fixed h obeying ‖h‖ ≤ ‖x‖/10, and subse-

quently develop a uniform bound at the end of this section. The

bound (65) can be derived directly after subtracting the bound

in (64) with k from that bound with k = 0, followed by an ap-

plication of the Bernstein-type sub-exponential tail bound [48].

We only discuss the first bound (64). Because of the disconti-

nuity hence non-Lipschitz of the indicator functions, let us ap-

proximate them by a sequence of auxiliary Lipschitz functions.

Specifically, with some constant � > 0, define for all 1 ≤ i ≤ m
the continuous functions χi(s) in (70) as shown at the bottom

of this page. Clearly, all χi(s)’s are random Lipschitz functions

with constant 1/�. Furthermore, it is easy to verify that

|a∗
i h|21{(k+1)|a∗

i x|< |a∗
i h|} ≤ χi(|a∗

i h|2)

≤ |a∗
i h|21{√1−�(k+1)|a∗

i x|< |a∗
i h|}. (71)

Since the second term involves the addition event Ei in (58),

define wi :=
|a∗

i h|2
‖h‖2 1{√1−�(k+1)|a∗

i x|< |a∗
i h|} for 1 ≤ i ≤ m, and

ν := ‖h‖
‖x‖ for convenience. If f(τ1 , τ2) denotes the density of two

joint Gaussian random variables with correlation coefficient ρ =
h

∗
x

‖h‖‖x‖ ∈ (−1, 1), then the expectation of wi can be obtained

using the conditional expectation

E[wi ] =

∫ ∞

−∞
E[wi |a∗

i x = τ1‖x‖,a∗
i h = τ1‖h‖]f(τ1 , τ2)dτ1dτ2

=

∫ ∞

−∞

∫ ∞

−∞
τ 2
2 1{√1−�(k+1)|τ1 |< |τ2 |ν}f(τ1 , τ2)dτ1dτ2

=
1√
2π

∫ ∞

0

τ 2
2 exp(−τ 2

2 /2)

[

erf

(

(ν/[
√

1− �(k + 1)]− ρ)τ2
√

2(1 − ρ2)

)

+erf
( (ν/[

√
1 − �(k + 1)] + ρ)τ2
√

2(1 − ρ2)

)

]

dτ2 (72)

:= ζ2 . (73)

It is not difficult to see that E[wi ] = 0 for ρ = ±1, and E[wi ]
is continuous over ρ ∈ (−1, 1) due to the integration property of

continuous functions over a continuous interval. Although the

last term in (72) can not be expressed in closed form, it can be

evaluated numerically. Note first that for fixed parameters � > 0
and ν ≤ 0.1, the integration in (72) is monotonically decreasing

in k ≥ 0, and achieves the maximum at k = 0. For parameter

values k = 5, ν = 0.1 and � = 0.01, Fig. 8 plots E[wi ] as a

function of ρ, whose maximum ζ2 = 0.0213. is achieved at

ρ = 0. Further, from the integration in (72) for fixed k ≥ 0,

E[wi ] is a monotonically increasing function of both ν and �,

and it is therefore safe to conclude that for all 0 < ν ≤ 0.1, and

� = 0.01, we have

E[wi ] ≤ ζ2 = 0.0213. (74)

Hence, we can infer that E[χi(|a∗
i h|2)] ≤ 0.0213‖h‖2 for ν <

0.1, � = 0.01, and k = 5. Since the χi(|a∗
i h|2’s are sub-

exponential with sub-exponential norm of the order O(‖h‖2),
Bernstein-type sub-exponential tail bound [48] confirms that

p

(

1

m

m
∑

i=1

χi(|a∗
i h|2)

‖h‖2
> ζ2 + ε

)

< e−c7 mε2

(75)

for some numerical constant ε > 0, provided that ‖h‖ ≤
‖x‖/10. Finally, due to the fact that wi ≤ 1 for all 1 ≤ i ≤ m,

the following holds

1

m

m
∑

i=1

wiχi(|a∗
i h|2) < (ζ2 + ε)‖h‖2 (76)

with probability at least 1 − e−c7 mε2
.

We have proved the bound in (64) for a fixed vector h, and

the uniform bound for all vectors h obeying ‖h‖ ≤ ‖x‖/10 can

be obtained by similar arguments in the proof [27, Lemma 9]

with only minor changes in the constants.

χi(s) :=

⎧

⎪

⎨

⎪

⎩

s, s > (1 + k)2(a∗
i x)2

1
� [s − (k + 1)2(a∗

i x)2 ] + (k + 1)2(a∗
i x)2 , (1 − �)(k + 1)2(a∗

i x)2 ≤ s ≤ (k + 1)2(a∗
i x)2

0, otherwise.

(70)
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Regarding the second bound (65), it is easy to see that

1

m

m
∑

i=1

|a∗
i h|21{|a∗

i x|< |a∗
i h|(k+1)|a∗

i x|}

=
1

m

m
∑

i=1

[

|a∗
i h|21{|a∗

i x|< |a∗
i h|} − |a∗

i h|21{(k+1)|a∗
i x|< |a∗

i h|}
]

≤ (0.1271 − ζ2 + ε)‖h‖2 (77)

where the last inequality follows from subtracting the bound

in (64) of k from that corresponding to k = 0. To account

for the weights wi = 1/[1 + β/(|a∗
i z|/|a∗

i x|)], first notice that

a∗
i h = a∗

i z − a∗
i x, and that our second bound works with

(a∗
i z)(a∗

i x) < 0 in (59), hence
|a∗

i z|
|a∗

i x| ≤
|a∗

i h|
|a∗

i x| − 1. Recall that

the second bound (65) assumes the event {|a∗
i x| < |a∗

i h| ≤
(k + 1)|a∗

i x|}, implying
|a∗

i z|
|a∗

i x| ≤
|a∗

i h|
|a∗

i x| − 1 ≤ k. Further, be-

cause wi is monotonically increasing in
|a∗

i z|
|a∗

i x| , then wi ≤ 1
1+β/k .

Taking this result back to (77) yields

1

m

m
∑

i=1

wi |a∗
i h|21{|a∗

i x|< |a∗
i h|≤(k+1)|a∗

i x|}

≤ 0.1271 − ζ2 + ε

1 + β/k
‖h‖2 (78)

which proves the second bound in (65).
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