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Phase Retrieval via Reweighted Amplitude Flow

Gang Wang
and Jie Chen

Abstract—This paper deals with finding an n-dimensional so-
lution = to a system of quadratic equations of the form y; =
[{a;,x)|? for 1 < i < m, which is also known as the general-
ized phase retrieval problem. For this NP-hard problem, a novel
approach is developed for minimizing the amplitude-based least-
squares empirical loss, which starts with a weighted maximal cor-
relation initialization obtainable through a few power or Lanczos
iterations, followed by successive refinements based on a sequence
of iteratively reweighted gradient iterations. The two stages (ini-
tialization and gradient flow) distinguish themselves from prior
contributions by the inclusion of a fresh (re)weighting regular-
ization procedure. For certain random measurement models, the
novel scheme is shown to be able to recover the true solution =
in time proportional to reading the data {(a;; y;) }1<i<m. This
holds with high probability and without extra assumption on the
signal vector x to be recovered, provided that the number m of
equations is some constant ¢ > 0 times the number n of unknowns
in the signal vector, namely m > cn. Empirically, the upshots of
this contribution are: first, (almost) 100% perfect signal recov-
ery in the high-dimensional (say n > 2000) regime given only an
information-theoretic limit number of noiseless equations, namely
m = 2n — 1,in the real Gaussian case; and second, (nearly) opti-
mal statistical accuracy in the presence of additive noise of bounded
support. Finally, substantial numerical tests using both synthetic
data and real images corroborate markedly improved recovery
performance and computational efficiency of the novel scheme rel-
ative to the state-of-the-art approaches.

Index Terms—Non-convex non-smooth optimization, regular-
ization, iteratively reweighted gradient flow, convergence to the
global optimum.
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I. INTRODUCTION

NE is often faced with solving quadratic equations of the
form y; = |(a;, z)|?, or equivalently,

,(/)i = ‘<a‘ia$>|7

where € R" is the wanted unknown n x 1 signal vector, given
observations v; and feature/sensing vectors a; € R” that are
collectively stacked in the data vector ¥ := [¢);]1 <j<n , and the
m X n sensing matrix A := [a;]1<i<m , respectively. Phrased
differently, when information about the (squared) modulus of
the inner products of « and several known measurement vectors
a; is provided, can one reconstruct exactly (up to a global sign)
x, or alternatively, the missing signs of (a;,x)? In fact, much
effort has recently been devoted to determining the number of
such equations necessary and/or sufficient to ensure uniqueness
of the solution z; see, for instance, [2], [3]. It has been proved
that a number m > 2n — 1 of generic measurement vectors a; '
(which includes the case of random vectors) are sufficient for
uniquely determining an n-dimensional real vector & (up to a
global sign), while m = 2n — 1 has also been shown neces-
sary [2]. In this sense, the number m = 2n — 1 of equations
as in (1) can be thought of as the information-theoretic limit
for such a quadratic system to be uniquely solvable. Neverthe-
less, even for random measurement vectors, despite the exis-
tence of a unique solution given the minimal number 2n — 1
of quadratic equations, it is unclear so far whether there is a
numerical polynomial-time algorithm that is able to stably find
the true solution (say with probability > 99%).

In diverse physical sciences and engineering fields, it is im-
possible or very difficult to record phase measurements. Recov-
ering the signal or phase from magnitude measurements only,
also commonly known as the phase retrieval problem, emerges
naturally [4]-[6]. Relevant application domains include e.g.,
X-ray crystallography, ptychography, astronomy, and coherent
diffraction imaging [6]. In such setups however, optical mea-
surement and detection systems record only the photon flux,
which is proportional to the (squared) magnitude of the field,
but not the phase. A related task of this kind is that of estimating
a mixture of linear regressions, where the latent membership in-
dicators can be converted into the missing phases [7]. Although
of simple form and practical relevance across different fields,
solving systems of nonlinear equations is arguably the most
difficult task numerically [8, Page 355].

1<i<m (1)

't is out of the scope of the present paper to explain the meaning of generic
vectors, whereas interested readers are referred to [2].
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Regarding notation used in this paper, lower-(upper-) case
boldface letters denote vectors (matrices). Calligraphic letters
are reserved for sets, e.g., S. Fractions are denoted by A/B
or %, but with a slight abuse of notation, we also use ¥; /v;,
to denote either y; or ;. The floor operation |c¢| denotes the
largest integer no greater than the given number ¢ > 0, |S| the
number of entries in set S, and ||| is the Euclidean norm.
Since € R" and —x are indistinguishable given {¢; } in (1),
letdist(z, ) = min{||z + x||, ||z — x|} be the Euclidean dis-
tance of any estimate z € R" to the solution set {+x} of (1).

A. Prior Contributions

Following the least-squares criterion (which coincides
with the maximum likelihood one when assuming additive
white Gaussian noise), the problem of solving systems of
quadratic equations can be recast as the ensuing empirical loss
minimization

m

minimize L(z) := %Zé(z;w;/yi) (2)

2eRn? <
i=1

where one can choose to work with the amplitude-based loss
function £(z;1;) == (¢ — |(a;, 2)|)?/2 [9], or the intensity-
based ones ((z;vy;) = (y; — [{a;, 2)|*)?/2 [10], [11], and
its related Poisson likelihood £(z;y;) := —y; log(|{(a;, 2)|?) +
|(a;, z)|* [12]. Either way, L(z) is non-convex; hence, it is in
general NP-hard, and computationally intractable to compute
the least-squares or the maximum likelihood estimate [13].

Minimizing the squared amplitude-based least-squares loss
in (2), several numerical polynomial-time algorithms have been
devised based on convex programming for certain choices of de-
sign vectors a; [14]-[18], [19], [20]. Relying upon the so-called
matrix-lifting technique semidefinite programming (SDP) based
convex approaches first express all intensity data into linear
terms in a new rank one matrix variable, followed by solving a
convex SDP after dropping the rank constraint (a.k.a. semidefi-
nite relaxation). It has been established that perfect recovery and
(near-)optimal statistical accuracy can be achieved in noiseless
and noisy settings, respectively, with an optimal-order number
of measurements [18]. Another line of convex relaxation [21],
[22], [23] reformulated the problem of phase retrieval as that of
sparse signal recovery, and solved a linear program in the natural
parameter vector domain. Although exact signal recovery can
be established assuming an accurate enough anchor vector, its
empirical performance is not competitive with state-of-the-art
non-convex phase retrieval approaches.

Instead of convex relaxation, recent proposals also advocate
judiciously initialized iterative procedures for coping with cer-
tain non-convex formulations directly, which include solvers
based on e.g., alternating minimization [24], Wirtinger flows
[10], [12], [25]-[32], amplitude flows [1], [9], [33]-[36], as
well as a prox-linear procedure via composite optimization
[37], [38], [39]. These non-convex approaches operate directly
upon vector optimization variables, therefore leading to signifi-
cant computational advantages over matrix-lifting based convex
counterparts. With random features, they can be interpreted as
performing stochastic optimization over acquired data samples
{(@i; i /yi) }1<i<m to approximately minimize the population
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risk functional L(2) := E(q, 4, /y:)[€(2; %i /y;)]. Itis well docu-
mented that minimizing non-convex functionals is computation-
ally intractable in general due to existence of many stationary
points [13]. Assuming random Gaussian sampling vectors how-
ever, such non-convex paradigms can provably locate the global
optimum under suitable conditions, some of which also achieve
optimal (statistical) guarantees. Specifically, starting with a ju-
diciously designed initial guess, successive improvement is ef-
fected through a sequence of (truncated) (generalized) gradient
iterations given by
t+1 t p'

z =z - —
m

S OVeE v y), t=0,1,... (3)

€Tt

where 2! denotes the estimate returned by the algorithm at the
t-th iteration, uf > 0 the learning rate, and V(2! 1; /y;) is
the (generalized) gradient of the modulus- or squared modulus-
based least-squares loss evaluated at z! [40]. Here, 7'*! C
{1,2,...,m} represents some time-varying index set signifying
the truncation.

Although they achieve optimal statistical guarantees in both
noiseless and noisy settings, state-of-the-art (convex and non-
convex) approaches studied under random Gaussian designs,
empirically require stable recovery of a number of equations
(several) times larger than the aforementioned information-
theoretic limit [10], [12], [27]. As a matter of fact, when there are
numerous enough measurements (on the order of the signal di-
mension n up to some polylog factors), the amplitude-square
based least-squares loss functional admits benign geometric
structure in the sense that [41]: with high probability, i) all
local minimizers are global; and, ii) there always exists a nega-
tive directional curvature at every saddle point. In a nutshell, the
grand challenge of solving systems of random quadratic equa-
tions remains to develop numerical polynomial-time algorithms
capable of achieving perfect recovery and optimal statistical
accuracy when the number of measurements approaches the
information-theoretic limit.

B. This Contribution

Building upon but going well beyond the scope of the
aforementioned non-convex paradigms, the present paper puts
forth a novel iterative linear-time procedure, meaning propor-
tional to that required by the processor to scan the entire data
{(@i; i) }1<i<m, which we term reweighted amplitude flow
and abbreviate as RAF. Our methodology is capable of solving
noiseless random quadratic equations exactly, and constructing
an estimate of (near)-optimal statistical accuracy from noisy
modulus observations. Exactness and accuracy hold with high
probability and without any extra assumption on the signal x
to be recovered, provided that the ratio m/n of the number of
measurements to that of the unknowns exceeds some large con-
stant. Empirically, our procedure is demonstrated to be able to
achieve perfect recovery of arbitrary high-dimensional signals
given a minimal number of equations, which in the real case
is m = 2n — 1. The new twist here is to leverage judiciously
designed yet conceptually simple (iterative) (re)weighting reg-
ularization techniques to enhance existing initializations and
also gradient refinements. An informal depiction of our RAF
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methodology is given in two stages below, with rigorous algo-
rithmic details deferred to Section III.

S1) Weighted maximal correlation initialization: Obtain
an initialization 2" maximally correlated with a
carefully selected subset S & M :={1,2,...,m} of
feature vectors a;, whose contributions toward con-
structing 2z are judiciously weighted by suitable pa-
rameters {w! > 0},cs; and
Iteratively reweighted “gradient-like” iterations: Loop
over 0 <t <T

S2)

m

P —z’——Zw V(255 ;) 4)

1=1

for some time-varying weights w! > 0 that are adapted
in time, each depending on the current iterate z; and the
datum (a;; ¢;).

Two attributes of our novel methodology are worth highlight-
ing. First, albeit being a variant of the orthogonality-promoting
initialization [9], the initialization here [cf. S1)] is distinct in
the sense that different importance is attached to each selected
datum (a;;;), or more precisely, to each selected directional
vector a,. Likewise, the gradient flow [cf. S2)] weighs judi-
ciously the search direction suggested by each datum (a;; ;).
In this manner, more accurate and robust initializations as well
as more stable overall search directions in the gradient flow
stage can be obtained even based only on a relatively limited
number of data samples. Moreover, with particular choices of

weights w!’s (for example, when they take 0/1 values), our
methodology subsumes as special cases the recently proposed
truncated amplitude flow (TAF) [9], and the reshaped Wirtinger
flow (RWF) [27].

II. ALGORITHM: REWEIGHTED AMPLITUDE FLOW

This section explains the intuition and the basic principles
behind each stage of RAF in detail. For concreteness, we focus
on the real Gaussian model with a real signal vector x, and inde-
pendent Gaussian random measurement vectors a; ~ N (0, I),
1 <7 < m. Nevertheless, RAF can be applied without algorith-
mic changes for the complex Gaussian model with x € C" and
independenta; ~ CN(0,1,) :=N(0,1,/2)+ jN(0,1,/2),
and also when coded diffraction pattern (CDP) models [40] are
considered.

A. Weighted Maximal Correlation Initialization

For general non-convex iterative heuristics to succeed in find-
ing the global optimum is to seed them with an excellent start-
ing point [43]. In fact, several smart initialization strategies
have been advocated for iterative phase retrieval algorithms; see
e.g., the spectral [24], [10], truncated spectral [12], [27], and
orthogonality-promoting [9] initializations. One promising ap-
proach among them is the one proposed in [9], which is robust
to outliers [37], and also enjoys better phase transitions than the
spectral procedures [44]. To hopefully achieve perfect signal
recovery at the information-theoretic limit however, its numer-
ical performance may still need further enhancement. On the
other hand, it is intuitive that improving the initialization perfor-
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mance (over state-of-the-art procedures) becomes increasingly
challenging as the number of acquired data samples approaches
the information-theoretic limit of m = 2n — 1.

In this context, we develop below a more flexible initializa-
tion scheme based on the correlation property (as opposed to
orthogonality), in which the added benefit relative to the initial-
ization procedure in [9] is the inclusion of a flexible weighting
regularization technique to better balance the useful information
exploited in all selected data. In words, we introduce carefully
designed weights to the initialization procedure developed in
[9]. Similar to related approaches, our strategy entails estimat-
ing both the norm ||« || and the unit direction & /||x||. Leveraging
the strong law of large numbers and the rotational invariance
of Gaussian a; sampling vectors (the latter suffices to assume
x = ||x|le;, with e; being the first canonical vector in R™), it
is clear that

m m m

Yowi =) lailelen] =) aflel® ~mlz|* &)
i=1

i=1 i=1

whereby ||z|| can be estimated as > ;17 /m. This estimate
proves very accurate even with an information-theoretic limit
number of data samples, because it is unbiased and tightly con-
centrated.

The challenge thus lies in accurately estimating the direction
of x, or seeking a unit vector maximally aligned with &, which
is a bit tricky. To gain intuition for our initialization strategy,
let us first present a variant of the initialization in [9], whose
generalizations have been discussed in [37], [45]. Note that the
larger the amplitude ¢); of the inner-product between a; and
x is, the known design vector a; is deemed more correlated
to the unknown solution x, hence bearing useful directional
information of x. Inspired by this fact and based on available
data {(a;;%;)}1<i<m, one can sort all (absolute) correlation
coefficients {1; }1<;<;, in an ascending order, to yield ordered
coefficients denoted by 0 < ) < -+ - < 9pp) < ¥fpy). Sorting
m records takes time proportional to O(m logm).” Let S S M
represent the set of selected feature vectors a; to be used for
computing the initialization, which is to be designed next. Fix
a priori the cardinality |S| to some integer on the order of m,
say |S| := [3m/13]. It is then natural to define S to collect the
a; vectors that correspond to one of the largest |S| correlation
coefficients {1y, }1<i<|s), each of which can be thought of as
pointing to (roughly) the direction of a. Approximating the
direction of a thus boils down to finding a vector to maximize
its correlation with the subset S of selected directional vectors
a;. Succinctly stated, the wanted approximation vector can be
efficiently found as the solution of

1 2
E;Kai,zﬂ = <|S|Zaa> (6)

ieS

maximize
[zll=1

where the superscript * represents transposition. Upon scaling
the solution of (6) by the norm estimate Y ;" ;1?7 /m in (5) to

match the size of x, we obtain what we will henceforth refer to
as maximal correlation initialization.

2For a given function g(n) of integer n > 0, O(g(n)) denotes the set of
functions O(g(n)) = {f(n): there exist positive constants C' and n such that
0 < f(n) < Cg(n)foralln > ng}.
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As long as |S] is chosen on the order of m, the maximal
correlation method outperforms the spectral ones in [10], [12],
[24], and has comparable performance to the orthogonality-
promoting method [9]. Its empirical performance around the
information-theoretic limit however, is still not the best that we
can hope for. Observe that all directional vectors {a; };cs se-
lected for forming the matrix Y := (1/|S|) ", s a;a; in (6)
are treated the same in terms of their contributions to construct-
ing the (direction of the) initialization. Nevertheless, according
to our starting principle, this ordering information carried by the
selected a; vectors has not been exploited by the initialization
scheme in (6) (see also [9], [37]). In words, if for selected data
i,j € S, the correlation coefficient of ¢); with a; is larger than
that of ¢; with a;, then a; is deemed more correlated (with
x) than a; is, hence bearing more useful information about
the wanted direction of . This prompts one to weight more
(i.e., attach more importance to) the selected a; vectors corre-
sponding to larger 1; values. Given the ordering information
w[\SH << ¢[2] < 1/1[1] available from the sorting procedure,
a natural way to achieve this goal is by weighting each a; vec-
tor with simple functions of ¢;, say e.g., taking the weights
w? = ;’, Vi € S, with the parameter v > 0 chosen to main-
tain the wanted ordering w()SI <. < wUZ] < w?l .In anutshell,
amore flexible initialization scheme, that we refer to as weighted
maximal correlation, can be summarized as follows

1 ,
S Z Y] a;al | z. (7)
€S

The upshot of (7) is that the objective can be efficiently mini-
mized in time proportional to O(n|S|) by means of the power
method or the Lanczos algorithm [46]. The proposed initializa-
tion can be obtained after scaling 2" from (7) with the estimate
of its norm, to obtain 2° := (31" ,%? /m)2". By default, we
take v := 1/2 in all reported numerical implementations, yield-
ing weights w! := /|{a;, z)| forall i € S.

Regarding the initialization procedure in (7), we next high-
light two features, while details and theoretical performance
guarantees are provided in Section III:

F1) The weights {w!} in the maximal correlation scheme
enable leveraging useful information that each feature
vector a; may bear regarding the direction of x.
Taking w? = 1/)2 for all 7 € S and 0 otherwise, (7) can
be equivalently rewritten as

Zp := arg max z*
zl=1

F2)

_ 1 m
2) .= arg max z* | — w?aiaf z (8
l=]=1 m =

which subsumes existing initialization schemes with
particular weight selections; e.g., the “plain-vanilla”
spectral initialization in [10], [24] is recovered by choos-
ingS = M,andw) :==¢?,Vi=1,..., m.

For numerical comparison, define the Relativeerror :=
dist(z,x)/||x||. All simulated tests reported here were aver-
aged over 100 Monte Carlo realizations. Fig. 1 depicts the per-
formance of the proposed initialization relative to several state-
of-the-art strategies, and also with the information limit number
benchmarking the minimal number of samples required. It is
clear that our initialization is: i) consistently better than the
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—o— Spectral initialization
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n: signal dimension (m=2n-1)

5,000

Fig. 1. Relative initialization error for the real Gaussian model with n =
1,000 and m = 2n — 1 = 1,999.

state-of-the-art; and, ii) stable as the signal dimension n grows,
which is in sharp contrast to the instability encountered by the
spectral ones [10], [12], [24], [27]. It is also worth stressing that
about 5% empirical advantage is shown over the best in [9] at the
challenging information-theoretic benchmark, which is indeed
nontrivial, and constitutes one of the main advantages of RAF.
This numerical advantage becomes increasingly pronounced as
the ratio m/n grows. This suggests that our proposed initial-
ization procedure may be combined with other iterative phase
retrieval approaches to improve their numerical performance.

B. Adaptively Reweighted Gradient Flow

For independent data adhering to the real Gaussian model, the
direction that TAF moves along in stage S2) presented earlier is
given by the following (generalized) gradient [9], [41]

1 1 a’z

FOIMUCIORIT) DI R =) RO

m 4 m 4 latz|
ieT €T v

where the dependence on the iterate count ¢ is neglected for

@2 .0 is adopted if

la;z| -

notational brevity, and the convention
ajz=0.

Unfortunately, the (negative) gradient of the average in (9)
may not point towards the true x, unless the current iterate z is
already very close to . As a consequence, moving along such a
descent direction may not drag z closer to . To see this, consider
an initial guess z that has already been in a basin of attraction
(i.e., a region within which there is only a unique stationary
point) of . Certainly, there are summands (a’z — 1; ﬁ)az
in (9), that could give rise to “bad/misleading” search directions
due to the erroneously estimated signs ﬁ # ﬁ in (9) [9].
Those gradients as a whole may drag z away from «, and hence
out of the basin of attraction. Such an effect becomes increas-
ingly severe as the number m of acquired examples approaches
the information-theoretic limit of 2n — 1, thus rendering past
approaches less effective in this case. Although this issue is
somewhat remedied by TAF with a truncation procedure, its effi-
cacy is limited due to misses of bad gradients and mis-rejections
of meaningful ones at the information-theoretic limit.
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To address this challenge, our reweighted gradient flow ef-
fecting suitable search directions from almost all acquired data
samples {(a;; ¥;) }1<i<m will be adopted in a (timely) adaptive
fashion; that is,

zt+1 _ zl‘ o /itvgrw (Zt; wi)’

t=0,1,... (10

The reweighted gradient Vi, (2') evaluated at the current point
2" is given as
. i Vi(z;¢;) Y
Vg (2):=— w; z;;
= M
for suitable weights {w; }1<;<p to be designed shortly.

Toward that end, we observe that the truncation criterion
T:={1<i<m:l|afz| > alaiz|} with some given param-
eter a > 0 suggests to include only gradients associated with
|a} z| of relatively large sizes. This is because gradients of siz-

la; z|
able @]

offer reliable and meaningful directions pointing to

|a; z|

the true = with large probability [9]. As such, the ratio lata]
be viewed as a confidence score on the reliability or meaningful—
ness of the corresponding gradient V¢(z; 1);). Recognizing that
confidence can vary, it is natural to distinguish the contributions
that different gradients make to the overall search direction. An
easy way is to attach large weights to the reliable gradients,
and small weights to the spurious ones. Assume without loss of
generality that 0 < w; < 1 for all 1 < ¢ < m; otherwise, lump
the normalization factor achieving this into the learning rate u'.
Building upon this observation and leveraging the gradient reli-

@2 e weight per gradient V£(z; ;)

lajx|

in our proposed RAF algorithm is

1 )
U T el R
where {3; > 0}1<;<,, are some pre-selected parameters.

Regarding the weighting criterion in (28), three remarks are
in order.

Remark 1: The weights {w! },<;<,, are time adapted to the
iterate 2'. One can also interpret the reweighted gradient flow
2! in (10) as performing a single gradient step to minimize
the smooth reweighted loss (1/m) > " | wil(z; ;) with start-
ing point 2'; see also [47] for related ideas successfully ex-
ploited in the iteratively reweighted least-squares approach to
compressive sampling.

can

ability confidence score

12)

|a; 2|
la; x|
the corresponding weight w; will be. More importance will
be then attached to reliable gradients than to spurious ones.
Gradients from almost all data are accounted for, which is in
contrast to [9], where withdrawn gradients do not contribute the
information they carry.

Remark 3: Atthe points {z} where a} z = 0 for some datum
1 € M, the i-th weight will be w; = 0. In other words, the
squared losses £(z;;) in (2) that are non-smooth at points z
will be eliminated, to prevent their contribution to the reweighted
gradient update in (10). This simplifies the convergence analysis
of RAF considerably because it does not have to cope with the
non-smoothness of the objective function in (2).

Having elaborated on the two stages, RAF can be readily
summarized in Algorithm 1.

*
i

Remark 2: The larger the confidence score

is, the larger
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Algorithm 1: Reweighted Amplitude Flow (RAF).

1: Input: Data {(a;;v; }1<i<m; maximum number of
iterations 7T’; step sizes p! = 2/6 and weighting
parameters 3; = 10/5 for real and complex Gaussian
models; subset cardinality |S| = [3m/13], and
exponent v = 0.5.

2: Construct S to include indices associated with the |S|
largest entries among {1; }1<i<m -

3: Initialize z° := /3" | 7 /m z° with 2° being the

unit-norm principal eigenvector of

m .

1 0. 0 ;i€ SCM

— E w; a;a;, where w; = .

m — 0, otherwise.
i=

4: Loop:fort=0to7 — 1

t m t

a’z
ORI o (a;zt _ wiiit)ai (13)
m = laizt|

_ etz Vs
laiz![/d;+ i

5: Output: 27

where w! : foralll <i <m.

C. Parameters of the Algorithm

To optimize the empirical performance and facilitate numer-
ical implementations, the choice of pertinent RAF parameters
is outlined here. For the four RAF parameters, our theory and
experiments are based on: i) |S|/m < 0.25;11) 0 < §; < 10 for
all 1 <¢ < 'm;and,iii) 0 <~ < 1. For convenience, a constant
step size u' = p > 0 is suggested, but other step size rules such
as backtracking line search with the reweighted objective would
work as well. As will be formalized in Section III, RAF con-
verges if the constant 4 is not too large, with the upper bound
depending in part on the selection of {3; }1 << -

In the numerical tests presented in Sections Il and IV, we take
|S| := [3m/13], §; = 3:=10, v:= 0.5, and p := 2 (larger
step sizes can be afforded for larger m /n values).

III. MAIN RESULTS

Our main results summarized below establish exact recovery
under the real Gaussian model, whose proof is postponed to
Section V for readability. Our RAF methodology however, can
be generalized to the complex Gaussian as well as the CDP
models.

Theorem 1 (Exact recovery): Consider m noiseless mea-
surements v = | Ax| for an arbitrary signal € R". If m >
¢|S| > cin with |S| being the pre-selected subset cardinal-
ity in the initialization step and the learning rate 1 < pi, then
with probability at least 1 — c3e~“*", the RAF estimates z' in
Algorithm 1 obey

dist(z', x) < 1io(1 -v)z|, t=0,1,... (14
where cg, ¢, c2, c3 >0, 0 <v <1, and py > 0 are certain
numerical constants depending on the choice of algorithmic
parameters |S|, 3, v, and p.

According to Theorem 1, a few interesting properties of our
RAF algorithm are worth highlighting. To start, RAF recovers
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the true solution exactly with high probability whenever the ra-
tio m/n of the number of equations to the unknowns exceeds
some numerical constant. Expressed differently, RAF achieves
the information-theoretic optimal order of sample complexity,
which is consistent with the state-of-the-art including truncated
Wirtinger flow (TWF) [12], TAF [9], and RWF [27]. Notice
that the error contraction in (14) also holds at ¢ = 0, namely
dist(2", ) < ||z||/10, therefore providing theoretical perfor-
mance guarantees for the proposed initialization strategy (cf.
Step 1 of Algorithm 1). Moreover, starting from this initial esti-
mate, RAF converges exponentially fast to the true solution x.
In other words, to reach any e-relative solution accuracy (i.e.,
dist(2?, x) < ¢€||z|)), it suffices to run at most 7' = O(log 1/e)
RAF iterations in Step 1 of Algorithm 1. This in conjunction
with the per-iteration complexity O(mn) (namely, the complex-
ity of one reweighted gradient update in (66)) confirms that RAF
solves exactly a quadratic system in time O(mn log 1/¢), which
is linear in O(mn), the time required by the processor to read
the entire data {(a;; ;) }1<i<m . Given the fact that the initial-
ization stage can be performed in time O(n|S|) and |S| < m,
the overall linear-time complexity of RAF is order-optimal.

IV. SIMULATED TESTS

Our theoretical findings about RAF have been corroborated
with comprehensive numerical experiments, a sample of which
are presented next. Performance of RAF is evaluated relative to
the state-of-the-art (T)WF [10], [12], RWF [27], and TAF [9] in
terms of the empirical success rate among 100 MC realizations,
where a success will be declared for an independent trial if the
returned estimate incurs error |4 — |AzT|||/||z| < 107°. Both
the real Gaussian and the physically realizable CDP models were
simulated. For fairness, all procedures were implemented with
their suggested parameter values. We generated the true a ~
N(0,I), and i.i.d. measurement vectors a; ~ N(0,I), 1 <
1 < m. Each iterative scheme obtained its initial guess based on
200 power or Lanczos iterations, followed by a sequence of 1" =
2,000 (which can be set smaller as the ratio m/n grows away
from the limit of 2) gradient-type iterations. All the numerical
experiments in this paper were implemented with MATLAB
R2016a on an Intel CPU @ 3.4 GHz (32 GB RAM) computer.
For reproducibility, the Matlab code of our RAF algorithm is
publicly available at https://gangwg.github.io/RAF.

To examine how the parameter value of ~y in (7) influences our
initialization performance, the relative error versus the parame-
ter value ranging from O to 1 is presented in Fig. 2, where the real
Gaussian model is simulated with n varying from 1,000 by 1,000
to 5,000 and m = 2n — 1 fixed. Evidently, the plots clearly val-
idate our choice of the default parameter value v = 0.5.

To show the power of RAF in the high-dimensional regime,
the function value L(z) in (2) evaluated at the returned estimate
2T (cf. Step 1 of Algorithm 1) after 200 MC realizations is
plotted (in negative logarithmic scale) in Fig. 3, where the
number of simulated noiseless measurements was set to be
the information-theoretic limit, namely m = 2n — 1 = 3,999
for n = 2,000. It is evident that our proposed RAF approach
returns a solution of function value L(z”) smaller than 10725
in all 200 independent realizations even at this challenging

2823

1.08

—e—n=1,000
—6—n=2,000
—a—n=3,000
—4—n=4,000
1.04 ¢ ——n=5,000

1.06 [

1.02

Relative error

0.98

0.96

0 0.2 0.4 06 0.8 1
~ value
Fig. 2. Relative error versus 7 for the proposed initialization scheme with n

varying from 1,000 to 5,000 and m = 2n — 1 fixed under the real Gaussian
model.

- lOglo(f(ZT))

0 20 40 60 80 100 120 140 160 180 200

Realization number

Fig.3. Function value (2" ) evaluated at the returned RAF estimate z” for
200 trials with n = 2,000 and m = 2n — 1 = 3,999.

information-theoretic limit condition. To the best of our knowl-
edge, RAF is the first algorithm that empirically reconstructs
any high-dimensional (say e.g., n > 1,500) signals exactly
from a minimal number of random quadratic equations, which
also provides a positive answer to the question posed earlier in
the Introduction.

Fig. 4 compares the empirical success rate of the five schemes
with the signal dimension being fixed at n = 1,000 while the
ratio m/n increasing by 0.1 from 1 to 5. Specifically, in the top
panel, each scheme uses its own initialization, while in the bot-
tom panel, all schemes start with the same maximally reweighted
correlation initialization. As clearly depicted by the plots, our
RAF approach (color coded red) outperforms its competing al-
ternatives in both cases. Moreover, it also achieves 100% signal
recovery as soon as m is about 2n, where the others do not show
perfect recovery. Through comparing the two figures, it is clear
that the performance of TAF and TWF can benefit from using
the proposed initialization.

Fig. 5 further compares the convergence speed of various
schemes in terms of the number of iterations to produce solutions
of a given accuracy. Evidently, RAF converges faster than WF
and TWE, and it has comparable efficiency as TAF and RWF
when using the real Gaussian model with € R0 and m =
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Fig. 4. Empirical success rate under the real Gaussian model using: different
initializations (top); and, the same reweighted maximal correlation initialization
(bottom).
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Fig. 5. Relative error versus iterations using: i) RAF; ii) TAF; iii) TWF;

iv) RWF; and v) WF with n = 1,000 and m /n = 5 under the real Gaussian
model.

5,000. Regarding running times, to reach solution accuracy
of relative error 107!% or a maximum of 500 iterations, the
computational times for RAF, TAF, TWF, RWEF, and WF are
0.63s,1.125,1.495,0.94 s, and 19.16 s, respectively.

To numerically demonstrate the stability and robustness of
RAF in the presence of additive noise, Fig. 6 examines the
normalized mean-square error NMSE := dist? (2”7, ) /||||?
as a function of the signal-to-noise ratio (SNR) for m/n tak-
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Fig. 6. NMSE vs. SNR for RAF under the real Gaussian model.

ing values {3,4, 5}. The noise model ¢; = |(a;,x)| + n; with
1 := Nili<icm ~ N(0,021,,) was simulated, where o was
set such that certain SNR := 10log;,(||Az||? /moc?) values
were achieved. For all choices of m (as small as 3n which
is nearly minimal), the numerical experiments illustrate that the
NMSE scales inversely proportional to the SNR, which corrob-
orates the stability of our RAF approach.

To demonstrate the efficacy and scalability of RAF in real-
world conditions, the last experiment entails the Galaxy image?
depicted by a three-way array X € RT080x1.920x3 '\whoge first
two coordinates encode the pixel locations, and the third the
RGB color bands. Consider the physically realizable CDP model
with random masks [10]. Letting © € R" (n ~ 2 x 10°) be a
vectorization of a certain band of X, the CDP model with K
masks is

Y = |FDWg|, 1<k<K (15)

where F' € C"*" is a discrete Fourier transform matrix, and
diagonal matrices D*) have their diagonal entries sampled uni-
formly at random from {1, —1, j, —j} with j := \/—1. Imple-
menting K = 4 masks, each algorithm performs independently
over each band 100 power iterations to obtain the initial guess,
which was refined by 100 gradient iterations. Recovered images
of TAF (top) and RAF (bottom) are displayed in Fig. 7, whose
relative errors were 1.0347 and 1.0715 x 103, respectively.
WF and TWF returned images of corresponding relative error
1.6870 and 1.4211, which are far away from the ground truth.

It is worth pointing out that RAF converges faster both in
time and in the number of iterations required to achieve certain
solution accuracy than TWF and WF in all our simulated exper-
iments, and it has comparable computational efficiency as TAF
and RWF.

V. PROOFS

To prove Theorem 1, this section establishes a few lemmas
and the main ideas, whereas technical details are postponed
to the Appendix to facilitate readability. It is clear from
Algorithm 1 that the weighted maximal correlation initializa-
tion (cf. Step 3) and the reweighted gradient flow (cf. Step 4)

3Downloaded from http://pics-about-space.com/milky-way-galaxy.
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Fig. 7.

distinguish themselves from those procedures in (T)WF [10],
[12], TAF [9], and RWF [27]. Hence, new proof techniques
to cope with the weighting in both the initialization and the
gradient flow, as well as the non-smoothness and non-convexity
of the amplitude-based least-squares functional are required.
Nevertheless, part of the proof is built upon those in [9], [10],
[27], [48].

The proof of Theorem 1 consists of two parts: Section V-A be-
low asserts guaranteed theoretical performance of the proposed
initialization, which essentially achieves any given constant rel-
ative error as soon as the number of equations is on the order
of the number of unknowns; that is, m > ¢;n for some con-
stant ¢; > 0. It is worth mentioning that we reserve c and its
subscripted versions for absolute constants, even though their
values may vary with the context. Under the sample complexity
of order O(n), Section V-B further shows that RAF converges to
the true signal  exponentially fast whenever the initial estimate
lands within a relatively small-size neighborhood of « defined
by dist(2", ) < (1/10)||z||.

A. Weighted Maximal Correlation Initialization

This section is devoted to establishing analytical guarantees
for the novel initialization procedure, which is summarized in
the following proposition.

Proposition 1: For an arbitrary @ € R", consider the noise-
less measurements ¢; = |afxz|, 1 <i<m. If m > ¢|S| >
ci1n, then with probability exceeding 1 — c3e™“", the initial
guess z obtained by the weighted maximal correlation method
in Step 3 of Algorithm 1 satisfies

dist(2°, z) < p||z|| (16)

for p = 1/10 (or any sufficiently small positive number). Here,
cy, C1, C2, cg > 0 are some absolute constants.

The recovered Galaxy images after 100 truncated gradient iterations of TAF (top); and after 100 reweighted gradient iterations of RAF (bottom).

Due to the homogeneity, it suffices to prove the result when
lz]| = 1. Assume first that the norm ||| = 1 is also perfectly
known, and 2" has already been scaled such that [|2°] = 1.
At the end of this proof, this approximation error between the
actually employed norm estimate /) ;- , y;/m found based
on the strong law of large numbers and the unknown norm
||z|| = 1, will be taken care of. Consider independent Gaussian
random measurement vectors a; ~ A (0, I,,) and an arbitrary
unit-norm vector x. Since Gaussian distributions are rotationally
invariant, it suffices to prove the results for x = e;, where e; is
the first canonical vector in R".

Since the norm ||x|| = 1 is assumed known, the weighted
maximal correlation initialization in Step 3 finds the initial es-
timate 20 = 2° (the scaling factor is the exactly known norm 1
in this case) as the principal eigenvector of

1 . 1 v s
|$|B B= 5 ;w aa;

a7

where B := [1/);'/2@];65 is an |S| x n matrix, and S G {1,2,
..., m} includes the indices of the | S| largest entities among all
modulus data {t; }1<;<y, . The following result is a modification
of [9, Lemma 1], which is key to proving Proposition 1.
Lemma 1: Consider m noiseless measurements ¢; = |al x|,
1 <4 < m.Foran arbitrary € R" of unit norm, the next result
holds for all unit-norm vectors u € R" perpendicular to x; that

is, for all w € R satisfying u*x = 0 and ||u| = 1, we have
1 ¥ _ 30050y%(2 | Bu|?
3 ez — 2° (%), < | Bal? (18)
where 2 is given by
1 .
2V .= arg max —z"B*Bz. (19)
l=l=1 |S]
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Let us start with the proof of Proposition 1. The first step
consists in upper-bounding the quantity on the right-hand-side
of (18). This involves upper bounding its numerator, and lower
bounding its denominator, tasks summarized in Lemmas 2 and
3, whose proofs are deferred to Appendix B and Appendix C,
accordingly.

Lemma 2: In the setting of Lemma 1, if |S|/n > ¢4, then the
inequality

| Bul|* < 1.01y/27 /7T (y + 1/2)|S]| (20)

holds with probability at least 1 — 2e %", where I'(-) is the
Gamma function, and ¢, c; are certain universal constants.

Lemma 3: In the setting of Lemma 1, the following holds
with probability exceeding 1 — e™“"":

|Bz|* >0.99 x 1.147[S|[1 +log(m/|S|)]  (21)

provided that m > ¢|S| > ¢;n for some absolute constants
¢y, C1, cg > 0.

Taking together, the upper bound in (20) and the lower bound
in (21), one arrives at

|Bul> . C 4
|Ba|? = T+ loa(m/IS])

where C' :=1.02 x 1.1477,/27 /7T’(y + 1/2), and (22) holds
with probability at least 1 — 2e™%" — e™“"  with the proviso
that m > ¢|S| > ¢n. Since m = O(n), one can rewrite the
probability as 1 — cze~“*™ for certain constants ¢z, ¢z > 0. To
have a sense of the size of C, taking our default value v = 0.5
for instance gives rise to C' = 0.7854.

It is clear that the bound & in (22) can be rendered arbitrarily
small by taking sufficiently large m /|S| values (while maintain-
ing |S|/n to be some constant based on Lemma 3). With no loss
of generality, let us work with £ := 0.001 in the following.

The wanted upper bound on the distance between the initial-
ization z° and the true = can be obtained based upon similar
arguments found in [10, Section 7.8], which are delineated next.
For unit-norm z and z° = 2°,if 0 < # < 7/2 denotes the angle
between the spaces spanned by 2" and x, using (18) and (22)
yields

K (22)

|z*2°|* = cos?§ = 1 — sin* @

_ |Bu|?

|Ba?
>1-k (23)

thus giving rise to
dist*(2°, @) < [|2°|* + [|[|* — 2|="2°|

< (2-2/T=7) [al?

~ x| 24)

As discussed prior to Lemma 1, the exact norm ||z =1
is generally unknown, and one often scales the unit-norm di-

rectional vector found in (19) by the estimate /) i~ ; ¢ /m.

Next, the approximation error between the estimated norm

12°] = />_I, ¥? /m and the true norm || || = 1is accounted

for. Recall from (19) that the direction of x is estimated to
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be 2° (of unit norm). Using results similar to those in [10,
Lemma 7.8 and Section 7.8], the following holds with high
probability, as long as the ratio m/n exceeds some numerical
constant

12° = 2" = [lI2°(| — 1 < (1/20) || =]I. (25)

Taking the inequalities in (24) and (25) together, it is safe to
deduce that

dist(2", ) < ||2° — 2°|| + dist(2°, ) < (1/10)||z|| (26)

which confirms that the initial estimate obeys the relative er-
ror dist(2", x)/||z|| < 1/10 for any & € R" with probability
1 — c3e™2™ provided that m > ¢y|S| > ¢;n for some numer-
ical constants ¢y, ¢1, ¢z, c3 > 0.

B. Exact Phase Retrieval From Noiseless Data

It has been demonstrated that the initial estimate z” obtained
by means of the weighted maximal correlation initialization
strategy has at most a constant relative error to the globally opti-
mal solution z, i.e., dist(2°, z) < (1/10)||z||. We demonstrate
in the following that starting from such an initial estimate, the
RAF iterates (in Step 4 of Algorithm 1) converge at a linear rate
to the global optimum «; that is, dist(z!,z) < (1/10)c!||z||
for some constant 0 < ¢ < 1 depending on the step size p > 0,
the weighting parameter 3, and the data {(a;; ;) }1<i<m. This
constitutes the second part of the proof of Theorem 1. Toward
this end, it suffices to show that the iterative update of RAF is
locally contractive within a relatively small neighboring region
of the true x. Instead of directly coping with the moments in the
weights, we establish a conservative result based directly on [9]
and [27]. Recall first that our gradient flow uses the reweighted
gradient

I ;
Vi (z) := — ;wl (a;‘z — |a;z| Z};) a; (27)
with weights
1
w; <i<m (28)

T/l e S
in which the dependence on the iterate index ¢ is ignored for
notational brevity.

Proposition 2 (Local error contraction): For an arbitrary
x € R", consider m noise-free measurements ¢); = |a x|, 1 <
1 < m. There exist some numerical constants c{, ¢z, c3 > 0,
and 0 < v < 1 such that the following holds with probability
exceeding 1 — cze™ 2™

dist?(z — uVhy (2), ) < (1 — v)dist?(z, x) (29)

for all , z € R” obeying dist(z, ) < (1/10)||x||, provided
that m > ¢;n and the constant step size p < o, where the
numerical constant j, depends on the parameter 5 > 0 and
data {(a;; Vi) }1<i<m-

Proposition 2 suggests that the distance of RAF’s succes-
sive iterates to the global optimum x decreases monotonically
once the algorithm’s iterate z* enters a small neighboring region
around the true . This small-size neighborhood is commonly
known as the basin of attraction, and has been widely discussed
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in recent non-convex optimization contributions; see e.g., [9],
[12], [27]. Expressed differently, RAF’s iterates will stay within
the region and will be attracted towards x exponentially fast as
soon as they land within the basin of attraction. To substanti-
ate Proposition 2, recall the useful analytical tool of the local
regularity condition [10], which plays a key role in establishing
linear convergence of iterative procedures to the global optimum
in [9], [10], [12], [27], [26], [31], [34].

For RAF, the reweighted gradient V/, (z) in (27) is said
to obey the local regularity condition (LRC), denoted as
LRC(u, A, €) for some constant A > 0, if the next inequality

(Ve (), B) 2 2 V)P + 5 0P G0)
holds for all z € R™ such that ||h| = |z — x| < e|/z| for
some constant 0 < e < 1, where the ball given by ||z — x| <
€ ||x|| is the so-termed basin of attraction.

Letting h := z — x, manipulations in conjunction with the
regularity property (30) confirms that

dist? (z — uVly (2), ) = ||z — pVlhy (2) — x|

= ||h||2 = 2u(h, Vi (2)) + [|[pV iy (Z)HQ 3D

L A
< 1?20 (1980 1P + 5 1AIE ) + 1V (I

= (1= |h]* = (1 = M) dist (2, x) (32)
for all points z adhering to ||h|| < el|z||. It is evident that if
LRC(, A, €) can be established for RAF, our ultimate goal of
proving the local error contraction in (29) follows straightfor-
wardly upon setting v := Ap.

1) Proof of the Local Regularity Condition in (30): The first
step to proving the local regularity condition in (30) is to control
the size of the reweighted gradient V., (z); that is, to upper
bound the last term in (31). To start, rewrite the reweighted
gradient in a compact matrix-vector representation

m

1 * 1
Vi (z) = - izzlwi <afz — |a;‘w||z%i> a; 2 Edg(w)Av
(33)

where dg(w) € R"*" is a diagonal matrix holding in order the
entries of w := [wy -+ wy,]* € R™ on its main diagonal, and

vi=[v] - vy ]t € R with v; = alz — |a] x| ‘Z; Based
on the definition of the induced matrix 2-norm (or the matrix

spectral norm), it is easy to check that

1 1
. = || — < — . .
19660 (2)] = | 2-de(w) 0| < - dgtw)] - 1A] ol

1+6
<
SN

where we have used the inequalities ||dg(w)|| < 1duetow; < 1
forall 1 <i<m,and | Al < (1+§)y/m for some constant
d’ > 0 according to [48, Theorem 5.32], provided that m/n is
sufficiently large.

]l (34)
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The task therefore remains to bound ||v|| in (34), which is
addressed next. To this end, notice that

m

m
o> <> (lajz| - |aj])* <> (ajz —aja)*
i=1 i=1

<@ +d8")’mlR|*  (35)

for some numerical constant 6" > 0, where the last can be ob-
tained using [15, Lemma 3.1], and which holds with probability
atleast 1 — e “™ aslong as m > c;n holds true.

Combing (34) with (35) and taking 6 > 0 larger than the con-
stant (1+6")(1+0")—1, the size of V4, (2) can be bounded as

[Vl (2)]] < (1+6)[|h]| (36)

which holds with probability 1 —e™®"™, with a proviso that
m/n exceeds some numerical constant ¢; > 0. This result in-
deed asserts that the reweighted gradient of L(z) or the search
direction employed in our RAF algorithm is well behaved, im-
plying that the function value along the iterates does not change
too much.

In order to prove the LRC, it suffices to show that V/{,y, (z)
ensures sufficient descent, that is, there exists a numerical con-
stant ¢ > 0 such that along the search direction V¥, (z) the
following uniform lower bound holds

(Ve (2), h) = c||h|? (37

which will be addressed next. Formally, this can be summa-
rized in the following proposition, whose proof is deferred to
Appendix D.

Proposition 3: For the noise-free measurements ¢); = |a; x|,
1 <7< m, and any fixed sufficiently small constant ¢ > 0.
There exist some numerical constants ¢;, co, c3 > 0 such that
the following holds with probability at least 1 — cge™“*™

(h, Vi (2)) > Cs”h”Q

for all ¢, z € R" obeying |h| < (1/10)||«||, provided that
m/n > ¢, and that 8 >0 is small enough. Here, (3:=

1-¢ — 2(0.1271-(s +e¢)
oty — 2G O - g

Taking the results in (38) and (36) together back to (30), we
deduce that the LRC holds for pz and A obeying the inequality

(38)

A

G>Ea+02+2 (39)
2 2

For instance, taking =2, k=15, n = 0.5, and ¢ = 0.001,

we have (; = 0.8897 and (, = 0.0213, which confirms that

(b (2),h) > 0.1065||h||*. Setting further § = 0.001 leads to

0.1065 > 0.501x + 0.5\ (40)

which concludes the proof of the LRC in (30). The local error
contraction in (29) follows directly after substituting the LRC
into (32), hence validating Proposition 2.

VI. CONCLUSION

This paper puts forth a novel linear-time algorithm termed
reweighted amplitude flow (RAF) for solving high-dimensional
random systems of quadratic equations. Our procedure pro-
ceeds in two consecutive stages, namely, a weighted maximal
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correlation initialization that entails just a few power or Lanc-
zos iterations, and a sequence of simple iteratively reweighted
generalized gradient iterations for the non-convex non-smooth
least-squares loss function. Our RAF approach is conceptually
simple, easy-to-implement, as well as numerically scalable and
effective. It was also proved to achieve the optimal sample and
computational complexity orders. Substantial numerical tests
using both synthetic data and real-world images corroborated
the superior performance of RAF over state-of-the-art iterative
solvers. Empirically, RAF solves a set of random quadratic equa-
tions in the high-dimensional regime with large probability so
long as a unique solution exists, where the number m of equa-
tions in the real Gaussian case can be as small as 2n — 1 with n
being the number of unknowns to be recovered.

Future research includes studying robust and/or sparse phase
retrieval as well as (semi-definite) matrix recovery by means of
(stochastic) reweighted amplitude flow counterparts [17], [37].
Exploiting the possibility of leveraging suitable (re)weighting
regularization to improve empirical performance of other non-
convex iterative procedures such as [37], [28] is worth investi-
gating as well.

APPENDIX
PROOF DETAILS

By homogeneity of (1), we assume without loss of generality
that ||z|| = 1 in all proofs.

A. Proof of Lemma 2

Let {b}}1<i<|s denote rows of B € RIS which are ob-
tained by scaling rows of A := {a}};cs € RIS*" by weights
{w; = 1#?/2};65 [cf. (17)]. Since & = e;, we have ¥ = |Ae |
= | A1 |, while the index set S depends solely on the first col-
umn of A, and is independent of the other columns of A. Using
this, partition accordingly AS := [A$ AS], where AT € RIS
denotes the first column of AS, and AS € RISX("=1) ¢ol-
lects the remaining ones. Likewise, partition B = [B; B, ]
with B; € RIS*! and B, € RISIX(»=1)_ By this argument,
rows of AS are mutually independent, and Gaussian distributed
with mean O and covariance matrix I,,_;. Furthermore, the
weights 1/)’/ = |ate,|")? = |a 1]7/?%, Vi € S are also inde-
pendent of the entries in A°. As a consequence, rows of
B, are mutually independent, and one can explicitly write its
i-th row as b, ; = |a’[*i]el|7/2a[i]ﬁ\1 = |ag)1 "%y \1, where
apn € R"~! is obtained after removing the first entry of
aj;). It is easy to verify that E[b, ;] = 0, and E[b, ;b; ;] =
C, I,_1, where the constant C\, := /27 /7T (y + 1/2)||z|” =
/27 /7l(y 4+ 1/2), and I'(+) is the Gamma function.

Given z*x' = ejx = 0, one can write == = [07*]* with
any unit vector » € R"~!; hence,
|Bz*||* = | BlO]"|* = | B,r|’ 1)

with independent sub-Gaussian rows b, ; = |aj11\"// Qaj7\1 if
0 <~ < 1. Standard concentration results on the sum of ran-
dom positive semi-definite matrices composed of independent
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non-isotropic sub-Gaussian rows [48, Remark 5.40.1] assert that

B, —C,I, <6 (42)

—B
|

holds with probability at least 1 — 2e~%" provided that |S|/n
is larger than some positive constant. Here, § > 0 is a numerical
constant that can take arbitrarily small values, and ¢; > 0 is a
constant depending on §. With no loss of generality, take ¢ :=

0.01C, in (42). For any unit vector 7 € R"~!, the following
holds with probability at least 1 — 2¢~“"

H|S|T*B B,r —Cyrir|| <dr'r=96¢ (43)
or
|B,r|* = r*BB,r < 1.01C,|S|. (44)
Taking (44) back to (41) confirms that
|Bz*|* < 1.01C, S| (45)

holds with probability at least 1 — 2e~ %" if |S|/n exceeds some
constant. Note that c¢; depends on the maximum sub-Gaussian
norm of the rows b; in B,, and we assume without loss of
generality ¢; > 1/2. Therefore, one confirms that the numerator
| Bul||? in (18) is upper bounded after replacing z* with u
in (45).

B. Proof of Lemma 3

This section is devoted to obtaining a meaningful lower bound
for the denominator || Bz||? in (21). Note first that

IS IS IS

S el =yl = Yyl
i=1

Taking without loss of generality = e, the term on the right
side of the last equality reduces to

|Bz|* =

||

=D lag[*.
i=1

Since aj;),; follows the standardized normal distribution, the

| Bx|® (46)

probability density function (pdf) of random variables |aj;) |2+
can be given in closed form as
2 1 L4y 1,7y
t)y=y/=-—t77e 2 t>0 47
pt) =1/~ 57 5 47

which is rather complicated and whose cumulative density func-
tion (cdf) does not come in closed form in general. Therefore,
instead of dealing with the pdf in (47) directly, we shall take a
different route by deriving a lower bound that is a bit looser yet
suffices for our purpose.

Since |ays)1| < - < lajpi| < lappa
1 <1 < |S] that |a[7¢]_’1|2+7 > |a[|5”‘1|""a[22.]71

, which yields

IS IS

D lapa ™ = lagsya Y afy -

i=1 i=1

| Bx|® = (48)

We will next demonstrate that deriving a lower bound for | Bz ||?
suffices to derive a lower bound for the summation on the right
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hand side (48). The latter can be achieved by appealing to a
result in [9, Lemma 3], which for completeness is included in
the following.

Lemma 4: For an arbitrary unit-norm vector € R”, let
¥; = |aizx|, 1 <i < m be m noiseless measurements. Then
with probability at least 1 — e~“2™, the following holds

IS

Zaﬁ-],l > 0.99|S|[1 + log(m/|S|)] (49)
i=1

provided that m > ¢;|S| > ¢;n for some numerical constants
cg, C1, c2 > 0.
Combining the results in Lemma 4 and (48), one further
deduces that
|S]

IBx|* > |agsya "> aty,

i=1

> |ags)1]” - 0.99|S|[1 +log(m/[S])].  (50)

The task remains to estimate the size of ‘a[\«SHJ , which we
recall is the |S|-th largest among the m independent realizations
{t; = |a;1|}1<i<m. Taking v = 1 in (47) gives the pdf of the
half-normal distribution

2 2
p(t) =1/Ze 7 t>0 (51)
m
whose corresponding cdf is
F(1) = erf(1/V2). (52)

Setting F'(7is) := 1 — |S|/m or using the complementary
cdf |S|/m := erfc(r/+/2) based on the complementary error
function gives rise to an estimate of the size of the |S|-th largest
(or equivalently, the (m — |S|)-th smallest) entry in the m real-
izations, namely

75| = V2erfe ™! (18] /m) (53)

where erfc™!(-) represents the inverse complementary error
function. In the sequel, we show that the deviation of the |S|-th
largest realization vy s from its expected value 7)5/ in (53) is
bounded with high probability.

For random variable ¢ = |a| with a obeying the standard
Gaussian distribution, consider the event ¢ < 75 — ¢ for a
fixed constant 6 > 0. Define the indicator random variable
X = ]l{b/,gﬂ s—d}> Whose expectation can be obtained by sub-
stituting 7 = 75| — ¢ into the pdf in (52) as

Elxi] = erf(ns) — 5/\/5)

Considering now the m independent
iy, ST‘S‘,(;}}IQS,” of , the following holds

(54)

copies {yx; =

P(ypsy <mis)—0) =P <Z Xi <m-— 3|>
i=1

P (; >~ Eba)<1- - Eb«D

i=1

Clearly, since random variables y; are bounded, they are
sub-Gaussian [49]. For notational brevity, lett := 1 — |S|/m —

2829

E[x;] =1 — |S|/m — erf(rs| — §//2). Appealing to a large
deviation inequality for sums of independent sub-Gaussian ran-
dom variables, one establishes that

P sy < 7151 — 0)

—P <lz<xi _Ep) <1- 2

m “ m
i=1

- E[Xi]) < e omt’
(55)
where ¢; > 0 is some absolute constant. On the other hand,

using the definition of the error function and properties of
integration gives rise to

2 [Ts/V2 .
t:1—\8|/m—erf(7'|3‘—5/\/5):—/ e ds
(

ﬁ T151=0)/V2
L2
> \/55e P> \/55.
T T

Taking the results in (55) and (56) together, one concludes that
fixing any constant 6 > 0, the following holds with probability
atleast 1 —e ™

(56)

Yisy = s — 0 = V2erfe ™ (|S]/m) — §

where ¢, := (2/7)c56%. Furthermore, choosing without loss
of generality ¢ := 0.0175) above leads to vy s > 1.4 erfc™?

(IS[/m).
Substituting the last inequality into (50), and under our work-
ing assumption |S|/m < 0.25, one readily obtains that

|Bz|? > [L4erfc'(|S|/m)]" - 0.99|S|[1 + log(m/|S|)]
> 0.99 - 1.147[S|[1 + log(m/|S|)]

which holds with probability exceeding 1 — e~ “"™ for some
constant co > 0, thus concluding the proof of Lemma 3.

C. Proof of Proposition 3

To proceed, let us introduce the following events for all 1 <
< m:

D; == {(ajx)(ajz) <0} (57)

g o= [laizl, 1
la;x| 1+

for some fixed constant 7 > 0, in which the former corresponds
to the gradients involving wrongly estimated signs, namely
% #+ ﬁ, and the second will be useful for deriving er-

(58)

ror bounds. Based on the definition of D; and with 1p, denoting
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the indicator function of the event D;, we have

<€rw(z),h>:—2w, (aza :c|| |)( h)

1 m ;kz i
—ZwL a;h+ajx — |ajx|— (aih)
— |a; 2|
m m

—Z Z2wzaw (aih)lp,

—Zwl (a; h — —Z2w,’a wHa h|]lp

(39)

\ V

In the following, we will derive a lower bound for the term
on the right hand side of (59). Specifically, a lower bound for
the first term (1/m) >, w;(a;h)? and an upper bound for
the second term (1/m)> " 2w;
tained, based on Lemmas 5 and 6, with their proofs postponed
to Appendix E and Appendix F, respectively.

Lemma 5: Fix fixed n, 8 > 0, and any sufficiently small
constant ¢ > 0, the following holds with probability at least
1 _ 26765 em

* lee 2
*Zw% ‘h)’ _71+ﬁ(1+n)||h|| (60)

with w; = 1/[1 + 3/(la;z|/|a;z|)] for all 1 <4 <m, pro-
vided that m/n > (cs - € 2loge ') for certain numerical con-
stants c5, cg > 0.

Now we turn to the second termin (59). For ease of exposition,
let us first introduce the following events

(61)
(62)

B; == {|ajz| < |ajh| < (k +1)|az|}
O, := {(k+1)|aia| < |a;hl}

for all 1 < ¢ < m and some fixed constant k > 0. The second
term can be bounded as follows

1 m
Ez2wi|a;‘w||a§‘h|ﬂpf
i=1

1 m
< oy Z w; [(a?fc)Q

—Zwt a’r)
_ . )2
< m;wz [(alw)

m

+ (a;h)?] Lj(a:2)(ata) <0}

+ (a;h)?] L(a:h)(atw)+ (atw)? <0}

+(a;h)*] Lja:al< a:n))

2 *
< Z wi (a;h)’ L{ja:z/< | hi}

2 m
= > wilaih) Ljare|< ot hi<(k+1) ot al}

i=1
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m

2 *
+— > wilaih) L1 1) et el ki)

i=1
_ 2 iw-(a’-‘h)Q]lB + 2 iw-(a’-‘h)Q]lo
mis o - omio o L

where the first equality is derived by substituting z = h +
x according to the definition of h, the second event suf-
fices for (a‘h)(a;x) + (aiz)?> <0, and the second equal-
ity follows from writing the indicator function ]1{|ajm‘<‘afh‘}
as the summation of two indicator functions of two events

(63)

Yjara|<|arhi<(k+1) a2} A0 L{jazh|> (k+1)|aiz]}-
The task so far remains to derive upper bounds for the two
terms on the right hand side of (63), which leads to Lemma 6.
Lemma 6: Fixing afixed k > 0, define (» to be the maximum
of E[w;] in (72) for ¢ = 0.01 and v = 0.1, which depends only
onk.Foranye > 0,ifm/n > ¢ €2 log ¢!, the following hold
simultaneously with probability at least 1 — cye 2 m

m

—sz ath)’lo, < (G2 + )|l (64)
and
L~ 0.1271 — G + €, 1o
mez(alh) I < ey [h]I" (65)

forall h € R™ obeying ||h||/||z| < 1/10,where ¢y, ca, ¢35 >0
are some universal constants.

Substituting (60), (63), and (64)-(65) established in
Lemmas 5 and 6 back into (59), we conclude that

1 & 1 &
b (2),h)> — J(aih) e —— Y 2w;
(en (D)2 10> Zun(aih e =S

= Ce”hHQ

which will be rendered positive, provided that 3 > 0 is small
enough, and that parameters 7, & > 0 are suitably chosen.

(66)

D. Proof of Lemma 5

Plugging in the weighting parameters w; = 1/[1 + 3/(|a;
z|/|afx|)] and based on the definition of &;, the first term in
(59) can be lower bounded as

m

1 (a* 2 - 5
LN wiain)? > 21+6/ (la: z\/la )

i=1

(67)

m

1 1
ZE;Hﬂ(Hn)

i 1
\afz\zun

ajh 2]1 a*z
(aih) !

B 1 l m . )
=TT 80T —> (ajh)’ls  (68)

i=1

where the first inequality arises from dropping some nonnega-
tive terms from the left hand side, and the second one after re-
placing the ratio |a}z|/|a} x| in the weights by its lower bound
1/(1 4+ n) because the weights are monotonically increasing
functions of |a;z|/|a;x|. Using [9, Lemma 5], the last term in
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Fig. 8. The expectation [E[w;] as a function of p over [—1, 1].

(68) can be further bounded by

m

—Zwl ah

1
- - h)?
1+61+n mza

1—C1—€

2
EREETAe

(69)

for any fixed sufficiently small constant € > 0, which holds with
probability at least 1 — 2¢~€" ™ if m > (cg - € 2 loge " )n.

E. Proof of Lemma 6

The proof is adapted from [27, Lemma 9]. We first prove the
bound (64) for any fixed h obeying ||| < ||x||/10, and subse-
quently develop a uniform bound at the end of this section. The
bound (65) can be derived directly after subtracting the bound
in (64) with k from that bound with k£ = 0, followed by an ap-
plication of the Bernstein-type sub-exponential tail bound [48].
We only discuss the first bound (64). Because of the disconti-
nuity hence non-Lipschitz of the indicator functions, let us ap-
proximate them by a sequence of auxiliary Lipschitz functions.
Specifically, with some constant o > 0, define forall1 < i < m
the continuous functions y;(s) in (70) as shown at the bottom
of this page. Clearly, all ;(s)’s are random Lipschitz functions
with constant 1/p. Furthermore, it is easy to verify that

la; B Lt 1)aral< an < Xi(la;h|?)

< laihP* =50+ Vjazai<laza (7D

Since the second term involves the addition event &; in (58),
‘2

Hh” ]1{\/7 (k+1)|atz|<|a’h|} for 1 < 1 < m, and

V= % for convenience. If f (71, 75 ) denotes the density of two

Joint Gaussian random variables with correlation coefficient p =

% € (—1,1), then the expectation of w; can be obtained

define w; :=

2831

using the conditional expectation

E[w] :/Z]E

:/ / o L T=a(h+ V)l <o o} f (71, T2 ) A1 dT)
—00 J —00

(v/[VI= ok +1)]—
\/%/ 5 exp(—T5 /2) [erf(

[wilaix = 7||z||, aih = 7||h||]f (1, 72)dT A7

P)TQ>

2(1-p?)
(v/[VI—o(k+1)]+p)m
+erf< ) )] dmy (72)
= (. (73)

It is not difficult to see that E[w;] = 0 for p = 1, and E[w;]
is continuous over p € (—1, 1) due to the integration property of
continuous functions over a continuous interval. Although the
last term in (72) can not be expressed in closed form, it can be
evaluated numerically. Note first that for fixed parameters o > 0
and v < 0.1, the integration in (72) is monotonically decreasing
in k > 0, and achieves the maximum at £ = 0. For parameter
values £ =5, v = 0.1 and p = 0.01, Fig. 8 plots E[w;] as a
function of p, whose maximum (5 = 0.0213. is achieved at
p = 0. Further, from the integration in (72) for fixed k > 0,
E[w;] is a monotonically increasing function of both v and p,
and it is therefore safe to conclude that for all 0 < v < 0.1, and
o = 0.01, we have

Efw;] < ¢ = 0.0213. (74)
Hence, we can infer that E[x;(|a;h|?)] < 0.0213||h||? for v <
0.1, 0 =0.01, and k= 5. Since the x;(Ja;h|*’s are sub-
exponential with sub-exponential norm of the order O(||h|?),
Bernstein-type sub-exponential tail bound [48] confirms that

(laih[?)

< E:Mumv

for some numerical constant e > 0, provided that |hl| <
|lz]| /10. Finally, due to the fact that w; < 1 forall 1 <i <m,
the following holds

1 & i
—Zwixz-(laihf) <
m i=1

>G4+ e) <eerme(75)

(G +o)|h|? (76)

2
—c7me”

with probability at least 1 — e

We have proved the bound in (64) for a fixed vector h, and
the uniform bound for all vectors h obeying ||h|| < ||«||/10 can
be obtained by similar arguments in the proof [27, Lemma 9]
with only minor changes in the constants.

S

Ls — (k+1)*(a}=)?]
01

Xi(s) ==

+ (k+1)%*(aiz)?, (1-o0)(k+1)2(aix

> (14 k)*(ajz)?

)? <5< (k+1)*(ajz)? (70)

otherwise.
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Regarding the second bound (65), it is easy to see that

— > _1aih*1jazal< jashi(h+1) o)
i=1
1 - *12 * 112
“m Z [‘aih‘ Vaizi<lazhly — 1@ P L(k+ 1) a2l < s b}
i=1

< (01271 = G + €) ||| a7
where the last inequality follows from subtracting the bound
in (64) of k from that corresponding to k = 0. To account
for the weights w; = 1/[1 + 8/(|afz|/|a;x|)], first notice that
a’h =ajz — ajz, and that our second bound works with

(a’z)(aix) < 0 in (59), hence 1221 < %M _ 1 Recall that

laiz| = |a;x|
the second bound (65) assumes the event {|ajx| < |alh| <

. . * *h
(k + 1)|afx|}, implying \‘Zill < }Zm} — 1 < k. Further, be-
) . . ' . I la; z| ) 1
cause w; is monotonically increasing in ‘a?wl,then w; < g Y

Taking this result back to (77) yields

1 m
*7.12
- E wi|a; h|"1{jar )< |arhi<(k+1)|ar 2]}
i=1

0.1271 — Gy + ¢

< hl?
S Y | Rl

(78)
which proves the second bound in (65).
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