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Abstract—Canonical correlation analysis (CCA) is a powerful
technique for discovering whether or not hidden sources are com-
monly present in two (or more) datasets. Its well-appreciated merits
include dimensionality reduction, clustering, classification, feature
selection, and data fusion. The standard CCA, however, does not
exploit the geometry of the common sources, which may be avail-
able from the given data or can be deduced from (cross-) correla-
tions. In this paper, this extra information provided by the common
sources generating the data is encoded in a graph, and is invoked as
a graph regularizer. This leads to a novel graph-regularized CCA
approach, that is termed graph (g) CCA. The novel gCCA ac-
counts for the graph-induced knowledge of common sources, while
minimizing the distance between the wanted canonical variables.
Tailored for diverse practical settings where the number of data is
smaller than the data vector dimensions, the dual formulation of
gCCA is developed too. One such setting includes kernels that are
incorporated to account for nonlinear data dependencies. The re-
sultant graph-kernel CCA is also obtained in closed form. Finally,
corroborating image classification tests over several real datasets
are presented to showcase the merits of the novel linear, dual, and
kernel approaches relative to competing alternatives.

Index Terms—Dimensionality reduction, correlation analysis,
signal processing over graphs, Laplacian regularization, general-
ized eigen-decomposition.

I. INTRODUCTION

I
N MANY fields, exploratory data analysis depends crit-

ically on dimensionality reduction, a process to discover

compact representations of large volumes of high-dimensional

data [24]. Dimensionality reduction has been a crucial first

step to obtain tractable learning tasks, such as classification,

clustering, and regression [18], [24]. Principal component
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analysis (PCA) is arguably the most widely used dimensionality

reduction method, finding low-dimensional representations

from high-dimensional data points while preserving most of

the data variance [19]. Nonetheless, ordinary PCA presumes

that data vectors lie close to a hyperplane - a gross geometrical

approximation for several datasets. Locally linear embedding

on the other hand, preserves linear relationships between

neighboring data [24], while Laplacian eigenmaps ensure that

data close in the original manifold are mapped to close by

locations in the low-dimensional space, therefore aiming to

preserve local distances [4].

Nonetheless, such dimensionality reduction methods deal

with one dataset at a time. They are challenged when it comes

to analyzing two (or more) datasets jointly. Moreover, they re-

quire all data vectors to have the same dimension. Canonical

correlation analysis (CCA) is a well-known method for extract-

ing low-dimensional representations from two datasets that can

have different dimensions, while maximizing their correlations

[16]. Although recent PCA variants such as discriminative PCA

can deal with two datasets at a time, their goal is to extract

the most discriminative features from the data of interest rel-

ative to the other [10]. Formally, CCA aims at finding latent

low-dimensional common structure from a paired dataset col-

lected from different views of the same entities, also known

as common sources. Each view contains high-dimensional rep-

resentations of the sources in a certain feature space. For ex-

ample, images of an individual captured by two cameras can

be interpreted as two different views of this individual (here

playing the role of a source). The ability of CCA to han-

dle multiple datasets of different dimensions is a key enabler

in diverse tasks such as multi-mode data fusion, where the

need arises to fuse information from different domains [15].

Ever since its proposition [16], CCA benefits have been doc-

umented in diverse applications, such as blind source separa-

tion, brain imaging, clustering and classification, word embed-

ding, and natural language processing, to name a few [12], [13],

[15], [32].

To account for nonlinearities present in the data, kernel and

deep CCA generalizations have also been developed based on

kernels or deep neural networks [1], [15]. Sparse CCA looking

for sparse canonical vectors was investigated by [33]. Multi-

view CCA on the other hand, generalizes ordinary CCA to han-

dle data from more than two modalities [15]. Even though CCA

solutions can be found via generalized eigen-decomposition,

the resultant computational complexity may not scale well with
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the problem dimensionality. This motivated decentralized CCA

alternatives [9].

However, all aforementioned PCA and CCA tools do not ex-

ploit structural graph-induced information on the sources that

may be available. Such information may be inferred from alter-

native views of the data, or it can be provided by the physics

that dictates the underlying graph. Indeed, graph-aware dimen-

sionality reduction methods have lately demonstrated promising

performance [17], [25]–[27], [30].

Building on recent advances in graph-aware dimensionality

reduction [17], [27], the present paper introduces a neat link

between graph embedding and canonical correlations, by putting

forward a novel graph (g) CCA approach. Our gCCA pursues

maximally correlated linear projections, while also leveraging

statistical dependencies due to the common sources hidden in

the paired dataset. The underlying source graph encoding these

dependencies can be either given, or be constructed based on

prior knowledge. When the number of data samples is smaller

than the data vector dimensions, we advocate the graph dual

(gd) CCA. Relative to gCCA, our gdCCA not only bypasses

the inversion of ill-conditioned data covariance matrices, but

also incurs lower complexity in high-dimensional setups. To

further account for nonlinearities, we also develop what we

term graph kernel (gK) CCA. Interestingly, solutions to all three

gCCA variants can be found analytically through generalized

eigenvalue decompositions.

Different from [7], [35], where CCA was regularized by two

graph Laplacians separately per view, gCCA here jointly lever-

ages a single graph induced by the common sources. This is

of major practical importance, e.g., in brain mapping, where

besides functional magnetic resonance imaging (MRI) and

diffusion-weighted MRI data collected at different brain re-

gions, one has also access to the connectivity patterns among

these regions [8]. Finally, numerical tests on several real-world

datasets are presented to corroborate the merits of our pro-

posed approaches for classification tasks over their competing

alternatives.

The rest of this paper is structured as follows. Upon intro-

ducing the standard CCA in Section II, our gCCA is motivated,

and derived in Section III. Its dual counterpart is developed in

Section IV. Generalizing linear gCCA variants, the kernel ver-

sion of gCCA is devised in Section V. Numerical tests on several

real-world datasets are presented in Section VI, and the paper is

concluded in Section VII.

Notation: Bold uppercase (lowercase) letters denote matrices

(column vectors). Operators Tr(·), (·)−1 and (·)� are matrix

trace, inverse and transpose, respectively; ‖ · ‖2 stands for the

�2-norm of vectors; 0 is an all-zero vector whose dimension

is clear from the context; 〈a, b〉 denotes the inner product of

vectors a and b; and I represents the identity matrix of suitable

size.

II. PRELIMINARIES

Consider two datasets {xi}
N
i=1 and {yi}

N
i=1 with correspond-

ing dimensionality Dx and Dy , collected from two differ-

ent views of the same sources {si ∈ R
ρ}N

i=1 with possibly

ρ � min{Dx , Dy}. CCA amounts to finding low-dimensional

subspaces U ∈ R
Dx ×d and V ∈ R

D y ×d with d ≤ ρ, such that

the Euclidean distance between the low-dimensional representa-

tions {U�xi} and {V�yi} is minimized. Assume without loss

of generality that both datasets are centered, meaning their cor-

responding sample means have been removed from the datasets.

For ease of exposition, this section focuses on d = 1 first, while

generalization to d ≥ 2 will be discussed later. CCA solves the

following problem

(u∗, v∗) := arg min
u, v

1

N

N
∑

i=1

(

u�xi − v�yi

)2
(1a)

where u ∈ R
Dx and v ∈ R

D y are also termed a canonical pair.

To ensure unique nonzero solutions however, the ensuing stan-

dard constraints are imposed

u�Σxu = 1, and v�Σyv = 1 (1b)

where Σx :=(1/N)
∑N

i=1 xix
�
i and Σy :=(1/N)

∑N
i=1 yiy

�
i

denote the sample covariance matrices of {xi} and {yi},

respectively. Projections {x�
i u∗}N

i=1 and {y�
i v∗}N

i=1 form a

pair of canonical variables, which can be interpreted as low-

dimensional approximations of the common sources {si}
N
i=1 .

After simple manipulations, (1) leads to the following popular

formulation of CCA [15]

(u∗,v∗) := arg max
u, v

u�Σxyv (2a)

s. to u�Σxu = 1, and v�Σyv = 1 (2b)

where Σxy := (1/N)
∑N

i=1 xiy
�
i is the sample cross-

covariance matrix of {xi} and {yi}.

Using Lagrange duality theory, the solution of (2) will be

given next in analytical form. To this end, letting λ, µ ∈ R be

the dual variables associated with the two constraints in (2b),

one can write the Lagrangian as

L(u,v;λ, µ) = u�Σxyv −λ(u�Σxu − 1) − µ(v�Σyv − 1).

At the optimum (u∗, v∗), the KKT conditions assert that

Σxyv
∗ = 2λ∗Σxu

∗, (u∗)�Σxu
∗ = 1 (3a)

Σ�
xyu

∗ = 2µ∗Σyv
∗, (v∗)�Σyv

∗ = 1. (3b)

Left-multiplying the first equations in (3a) and (3b) by (u∗)�

and (v∗)�, respectively, leads to (u∗)�Σxyv
∗ = 2λ∗ = 2µ∗.

Hence, solving (2) reduces to solving the generalized eigenvalue

problem, see e.g., [15]

[

Σ�
xy 0

0 Σxy

] [

u

v

]

= 2λ

[

0 Σy

Σx 0

] [

u

v

]

. (4)

Maximizing the objective function (2a) is tantamount to finding

the largest generalized eigenvalue λ∗ := λ1 in (4), and the opti-

mal canonical vectors [(u∗)� (v∗)�]� to (2) are obtained from

the corresponding generalized eigenvector.

Consider the generalization of (2) to d ≤ min(Dx , Dy ) pairs

of canonical vectors, say {(ui ,vi)}d
i=1 . Upon letting u∗

1 := u∗
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and v∗
1 := v∗, one can iteratively solve

max
uk , vk

u�
k Σxyvk (5a)

s. to u�
k Σxuk = 1, v�

k Σyvk = 1 (5b)

u�
k Σxu

∗
i = 0, v�

k Σyv
∗
i = 0 (5c)

∀i = 1, 2, . . . , k − 1 (5d)

for k = 2, 3, . . . , d. For brevity, let us concatenate the d canon-

ical vectors {ui} and {vi} to form matrices U ∈ R
Dx ×d and

V ∈ R
D y ×d accordingly, and rewrite (5) in the following com-

pact form

max
U , V

Tr(U�ΣxyV) (6a)

s. to U�ΣxU = I, and V�ΣyV = I (6b)

which yields simultaneously multiple canonical vectors. As de-

duced earlier, the m-th columns of maximizers U∗ and V∗ of

(6) correspond to the left and right generalized eigenvectors

of (4) associated with the m-th largest generalized eigenvalue,

respectively.

III. CCA OVER GRAPHS

In diverse applications, the common sources {si}
N
i=1 may

be viewed as nodal vectors of a graph having N nodes. This

structural prior information can be leveraged when finding the

canonical vectors. In this paper, this extra knowledge of common

sources is encoded in a graph, and will be embodied in the

canonical variables through graph regularization.

We outline some basics of the graph theory first. A

graph is represented by a tuple G = {N , W}, where N :=
{1, 2, . . . , N} is the vertex set, and W := {wij}(i,j )∈N×N

stacks up edge weights wij over all vertex pairs (i, j). For

ease of exposition, this paper focuses on undirected graphs, for

which wij = wj i for all i, j ∈ N . Moreover, a graph is said

to be unweighted if all wij ’s take binary values 0 or 1. Upon

forming the so-called weighted adjacency matrix W ∈ R
N ×N

with its (i, j)-th entry being wij , and defining di :=
∑N

j=1 wij ,

the Laplacian matrix of graph G is given by

LG := D − W ∈ R
N ×N (7)

where the diagonal matrix D ∈ R
N ×N holds ordered entries

{di}N
i=1 on its diagonal.

Having introduced basic graph notation, we present a neat

link between canonical correlations and graph embedding next.

Consider for instance a graph G with adjacency matrix W, over

which the underlying sources {si}
N
i=1 are assumed to be smooth.

In other words, vectors (si , sj ) residing on two connected nodes

i, j ∈ G are deemed close to each other in Euclidean distance.

As remarked earlier, canonical variables u�xi and v�yj are ac-

cordingly one-dimensional approximates of si and sj . Building

on this fact, let us now focus on the weighted sum of distances

between any two pairs of canonical variables from {u�xi}
N
i=1

and {v�yi}N
i=1 over G, namely the quadratic term

N
∑

i=1

N
∑

j=1

wij

(

u�xi − v�yj

)2
. (8)

It is clear that by minimizing (8) over u and v, canonical

variablesu�xi andv�yj corresponding to adjacent nodes i, j ∈
G with large edge weights wij will be promoted to stay close to

each other. As such, invoking this term as a regularizer accounts

for the additional graph knowledge of the common sources,

while maximizing the linear correlation coefficient between the

canonical variables, yielding

min
u, v

1

2N

N
∑

i=1

(

u�xi−v�yi

)2
+

γ

2

N
∑

i=1

N
∑

j=1

wij

(

u�xi −v�yj

)2

s. to u�Σxu = 1, and v�Σyv = 1

in which γ ≥ 0 is a hyper-parameter that balances the distance

between canonical variable estimates with their smoothness over

G. After expanding the squares and removing the constant terms,

the problem at hand can be equivalently rewritten as

max
u, v

u�Σxyv−γu�XLGY
�v−

γ

2

N
∑

i=1

di

(

u�xi−v�yi

)2

(9a)

s. to u�Σxu = 1, and v�Σyv = 1 (9b)

where X := [x1 , x2 , . . . , xN ] ∈ R
Dx ×N , and Y := [y1 ,

y2 , . . . ,yN ] ∈ R
D y ×N .

Evidently, (9) is non-convex and is not amenable to efficient

solvers due to the bilinear terms as well as the quadratic equality

constraints. Even though block coordinate descent-type solvers

can be employed, only convergence to a stationary point can be

guaranteed in general [9]. Instead of coping with the objective

function (9a) directly, we shall pursue a lower bound of it, which

will turn out to afford an analytical solution.

Toward that end, it is easy to verify that with all {di ≥ 0}N
i=1 ,

the following holds for all u ∈ R
Dx and v ∈ R

D y

N
∑

i=1

di

(

u�xi −v�yi

)2
≤ 2dmaxN

(

u�Σxu + v�Σyv
)

(10)

where dmax := max1≤i≤N di , and the equality is achieved when

di = dmax and u�xi = −v�yi for all i = 1, 2, . . . , N . Subse-

quently, we replace the last term in (9a) with the right-hand-side

term, which contributes to a valid lower bound of (9a). Formally

stated, we have the following reformulation.

Proposition 1: Replacing the sum in (9a) with its upper

bound in (10) leads to an objective that lower bounds (9a).

Merging and ignoring the constant terms due to the equality

constraints (9b) leads to our novel gCCA formulation

max
u, v

u�Σxyv − γu�XLGY
�v (11a)

s. to u�Σxu = 1, and v�Σyv = 1. (11b)

Clearly, when γ = 0, our gCCA finds (u, v) that only maxi-

mizes the linear correlation between the pair of canonical vari-

ables. In this case, no graph knowledge is exploited, and our

gCCA reduces to the standard CCA. With γ increasing grad-

ually, gCCA accounts progressively for extra graph informa-

tion of the common sources when finding the canonical vari-

ables. Note that quantifying the gap between (9) and (11) is
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Algorithm 1: CCA with a Common Source Graph.

1: Input: {xi}N
i=1 , {yi}N

i=1 , d, W, and γ.

2: Form (cross-)covariance matrices, Σx , Σy and Σxy .

3: Build LG using (7).

4: Perform SVD on Σ
−1/2
x

(

Σxy − γXLGY
�
)

Σ
−1/2
y

5: Extract the first d leading left and right singular vectors

to obtain Ū∗ and V̄∗, respectively.

6: Compute U∗ = Σ
−1/2
x Ū∗ and V∗ = Σ

−1/2
y V̄∗.

7: Output: U∗ and V∗.

challenging, as it depends on the collected data realizations

{(xi , yi)}N
i=1 .

Next, let us consider multiple canonical pairs {(ui , vi)}
d
i=1 ,

and collect them to form matrices U := [u1 · · · ud ] and V :=
[v1 · · · vd ]. We can then generalize gCCA in (11) to d ≥ 2 as

max
U , V

Tr
(

U�ΣxyV − γU�XLGY
�V

)

(12a)

s. to U�ΣxU = I, and V�ΣyV = I. (12b)

Interestingly, even with the extra graph-inducing regularization

term, our gCCA in (12) still admits an analytical solution, un-

der the standard assumption that data covariance matrices Σx

and Σy are both nonsingular. For concreteness, the solution

is summarized in the following result, and for self-contained

presentation, its proof is provided in Appendix A.

Theorem 1: Given zero-mean data {xi ∈ R
Dx }N

i=1 and

{yi ∈ R
D y }N

i=1 , suppose that Σx = (1/N)
∑N

i=1xix
�
i and

Σy = (1/N)
∑N

i=1 yiy
�
i are nonsingular. Then the optimal so-

lution (U∗ ∈ R
Dx ×d , V∗ ∈ R

D y ×d) to the gCCA problem (12)

with d ≤ min(Dx , Dy ), is given by

U∗ := Σ−1/2
x Ū∗, and V∗ := Σ−1/2

y V̄∗ (13)

where the columns of Ū∗ ∈ R
Dx ×d and V̄∗ ∈ R

D y ×d are

the d left and right singular vectors of Σ
−1/2
x (Σxy −

γXLGY
�)Σ

−1/2
y associated with its d largest singular values.

Moreover, the maximum objective value of (12a) is the sum of

the d largest singular values.

Our proposed gCCA scheme is summarized in Alg. 1. A

couple of remarks are now in order.

Remark 1: Different from our single regularizer in (12),

the approaches in [7], [35] rely on two regularizers or

two constraints involving graph priors U�XLGx
X�U and

V�YLGy
Y�V for the two-view data X and Y, respectively.

However, the problem formulation in [35] does not admit an

analytical solution. Although iterative algorithms can be used to

solve the involved nonconvex optimization problem, only con-

vergence to a stationary point can be ensured in general [6].

When the two datasets lie in two distinct graphs Gx and Gy ,

using the graph-Laplacian regularized constraints can improve

standard CCA performance [5]. This approach is mainly sug-

gested for semi-supervised learning, where Σxy is fully avail-

able. In contrast, (12) leverages the graph induced by the com-

mon sources, and our source graph regularizer U�XLGY
�V

directly exploits correlations between the low-dimensional

approximations of common sources over G. This is critical in

certain practical setups, in which one has prior knowledge about

the common sources besides the given datasets. In general, the

graph of inter-dependent sources can be a priori provided by

an ‘expert’ or dictated by the underlying physics, or, it can be

learned from alternate views of the data [14], [29]. For exam-

ple, in electric power networks, besides the power quantities

observed, one has also access to the grid topology [20] cap-

turing the connectivities between buses (substations) through

power lines. Likewise, in brain networks, in addition to the

functional MRI and diffusion-weighted MRI data collected at

different brain regions, the connectivity patterns among these

regions may also be available through other means [8]; see e.g.,

the UCLA Multimodal Connectivity Database1, a repository for

researchers to publicly share the connectivity matrices derived

from their research. Last but not the least, our proposed gCCA

framework features an analytical solution.

Remark 2: To induce different graph properties, rather than

relying on LG , a family of graph regularizations of the form

r(LG) :=
∑N

i=1 r(λl
i)νiν

�
i can be also employed [31], where

r(·) : R → R
+ is a scalar function, and appropriate choices of

r(λl
i) are helpful for inducing diverse graph properties; while

νi ∈ R
N is the eigenvector of LG associated with its i-th largest

eigenvalue λl
i .

Remark 3: The hyper-parameter γ can be determined

through e.g., the following two ways: i) cross-validation for

supervised tasks, where one is given labeled training samples,

and γ is chosen as the value optimizing empirical performance

on the training samples; and, ii) a spectral clustering based ap-

proach that automatically selects the best γ value from a given

set of candidate values, as in [10].

Remark 4: Bayesian approaches can also be adopted in cap-

turing prior knowledge of the common sources (which in fact can

be generic distributions). But when this distribution is not given

a priori, which is true in most data analytics applications, esti-

mating them requires typically a prohibitively large number of

training samples (a.k.a. “curse of dimensionality”). In contrast,

the pursued graph-regularized approach can capture much more

subtle, intricate, and (even) non-metric inter-dependencies of

the common sources. Consider for instance a binary adjacency

matrix W, and the matrix WW� which reveals the number of

common neighbors of any two nodes. The latter can be viewed as

a covariance matrix of sources with a Gaussian prior distribution

in a Bayesian setup, and can be obtained readily even without

source realizations. When the graph is unknown, identifying

an (even approximate) graph is often easier than estimating a

distribution from limited number of data samples.

IV. DUAL CCA OVER GRAPHS

Similar to dual PCA [27], various practical scenarios involv-

ing high-dimensional data vectors, have N � min{Dx , Dy},

in which case Σx and Σy become singular, and the results in

Theorem 1 do not apply. Even though this rank deficiency can

be remedied with appropriate Tikhonov regularization [15], the

1http://umcd.humanconnectomeproject.org.
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resultant computational complexity can be considerably higher

than the alternative of investigating gCCA in the dual domain. In

this direction, consider first expressing u ∈ R
Dx and v ∈ R

D y

in terms of their corresponding parts of the data matrices X and

Y as

u := Xα, and v := Yβ (14)

where α ∈ R
N and β ∈ R

N are the so-termed dual vectors.

Substituting (14) into (11) gives rise to our graph dual (gd)

CCA formulation for one pair of canonical vectors

max
α, β

α�X�XY�Yβ − γα�X�XLGY
�Yβ (15a)

s. to α�X�XX�Xα = 1 (15b)

β�Y�YY�Yβ = 1. (15c)

Similar to Section II, introducing variables λx ∈ R and λy ∈
R to be the Lagrange multipliers corresponding to constraints

(15b) and (15c), respectively, one can write the Lagrangian for

(15) as

L(α, β; λx , λy ) := −α�X�X(I − γLG)Y�Yβ

+
λx

2
(α�X�XX�Xα − 1) +

λy

2
(β�Y�YY�Yβ − 1).

Setting derivatives of the Lagrangian with respect to α and β to

zero further leads to

−X�X(I − γLG)Y�Yβ + λxX
�XX�Xα = 0 (16a)

−Y�Y(I − γLG)X�Xα + λyY
�YY�Yβ = 0. (16b)

Left-multiplying (16a) and (16b) by α� and β�, respectively,

and subsequently subtracting the latter from the former, we

arrive at

λxα�X�XX�Xα − λyβ�Y�YY�Yβ = 0. (17)

Taking into account (17), (15b), and (15c), it follows that at the

optimal solution, we have λ∗ := λ∗
x = λ∗

y . Supposing for now

that X�X and Y�Y are nonsingular, we find

α∗ :=
1

λ∗

(

X�X
)−1 (

Y�Y − γLGY
�Y

)

β∗. (18)

Plugging (18) into (16b) yields

(

Y�Y
)−1

(I − γLG)2
Y�Yβ∗ = (λ∗)2β∗ (19)

and similarly, one obtains that

(

X�X
)−1

(I − γLG)2
X�Xα∗ = (λ∗)2α∗. (20)

The last two equalities show that α∗ depends solely on X, and

β∗ solely on Y. This holds without any assumption about the

paired dataset X and Y whatsoever. Furthermore, when γ = 0,

both (19) and (20) lead to trivial solutions. However, recall that

our goal is to extract relations between data X and Y. As with

the dual CCA [15], in order to avoid such trivial solutions, we

invoke two Tikhonov regularization terms that lead to our graph

dual (gd) CCA formulation

max
α, β

α�
(

X�XY�Y − γX�XLGY
�Y

)

β (21a)

s. to α�X�XX�Xα + εα�X�Xα = 1 (21b)

β�Y�YY�Yβ + εβ�Y�Yβ = 1. (21c)

Here, the coefficient ε > 0 is a pre-selected penalty parameter.

Appealing to Lagrange duality theory again, one arrives at

(I − γLG)Y�Y(Y�Y + εI)−1(I − γLG)X�Xα∗

= (λ∗)2(X�X + εI)α∗ (22a)

(I − γLG)X�X(X�X + εI)−1(I − γLG)Y�Yβ∗

= (λ∗)2(Y�Y + εI)β∗ (22b)

suggesting that the maximizers α∗ and β∗ are accordingly the

eigenvectors of (22a) and (22b) associated with the largest gen-

eralized eigenvalue (λ∗
1)

2 . Moreover, the optimal objective func-

tion value in (21a) coincides with λ∗
1 .

When looking for d pairs of dual vectors {(αi , βi)}
d
i=1 ,

which are collected to form matrices A := [α1 · · · αd ] ∈
R

N ×d and B := [β1 · · · βd ] ∈ R
N ×d , our gdCCA becomes

max
A , B

Tr
(

A�X�XY�YB −γA�X�XLGY
�YB

)

(23a)

s. to A�X�XX�XA + εA�X�XA = I (23b)

B�Y�YY�YB + εB�Y�YB = I (23c)

for which the i-th columns of its optimal solutions A∗ and B∗ are

accordingly provided by the generalized eigenvectors in (22a)

and (22b) associated with the i-th largest generalized eigenvalue.

Once A∗, B∗ are found, the optimal canonical vectors sought

can be obtained via (14) as U∗ = XA∗ and V∗ = YB∗.

V. KCCA OVER GRAPHS

Although linear models are attractive due to their simplic-

ity, they cannot capture complex nonlinear data dependencies

that are common in real-world applications, including genomics

[34], functional MRI [7], and acoustic feature learning [1].

Going beyond linearity, we generalize our linear models of

CCA over graphs in Sections III and IV to take into account

nonlinear relationships between data X and Y using kernel

methods. In this context, a graph kernel (gK) CCA framework

is developed. We begin with transforming the two datasets us-

ing two nonlinear functions to higher (possibly infinite) dimen-

sional feature spaces, and subsequently find low-dimensional

canonical variables. Specifically, let φx be a mapping from

space R
Dx to space R

Dh (possibly with Dh = ∞). It is clear

from (23) that both the objective and the constraints depend

on the data X only through the similarities {〈xi , xj 〉}N
i, j=1 .

Therefore, upon ‘lifting’ all data vectors {xi}
N
i=1 to obtain

{φ(xi)}N
i=1 , all similarities {〈xi , xj 〉}N

i,j=1 can be readily re-

placed with {〈φ(xi), φ(xj )〉}
N
i,j=1 . Nonetheless, evaluating

{〈φ(xi), φ(xj )〉}
N
i,j=1 can be computationally intractable due

to the high-dimensionality.
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To circumvent the cost of explicitly working in the high-

dimensional space, the so-called ‘kernel trick’ is employed [2].

To this end, we select some kernel function κx , such that

κx(xi , xj ) := 〈φx(xi), φx(xj )〉 for all i, j = 1, 2, . . . , N ,

which form the (i, j)-th entries of the so-termed kernel ma-

trix K̄x ∈ R
N ×N . Similarly, we can build the kernel matrix

K̄y ∈ R
N ×N for data Y using a different kernel function κy . As

in linear gCCA and gdCCA discussed is Sections III and IV, we

require that the data in the mapped feature spaces {φx(xi)}
N
i=1

and {φy (yi)}
N
i=1 be centered, where φy (yi) is the nonlinear

mapping for ‘lifting’ data yi to render kernel matrix Ky . Us-

ing the kernel trick again, the required centering in the high-

dimensional space can be realized by centering the kernel matrix

for data X as

Kx(i, j) := K̄x(i, j) −
1

N

N
∑

�=1

K̄x(�, j) −
1

N

N
∑

�=1

K̄x(i, �)

+
1

N 2

N
∑

m=1

N
∑

n=1

K̄x(m,n) (24)

and likewise for centering Ky .

Upon replacing X�X and Y�Y in (23) with Kx and Ky ,

we arrive at our gKCCA

max
A , B

Tr(A�KxKyB − γA�KxLGKyB) (25a)

s. to A�K2
xA + εA�KxA = I (25b)

B�K2
yB + εA�KyB = I. (25c)

It is clear that with properly selected kernel matrices Kx and

Ky , gKCCA is able to capture nonlinear correlations between X

and Y, while also leveraging the graph prior information of the

common sources. Following the steps used to solve the gCCA

problem (12), the solution to (25) is summarized in Theorem 2,

with its proof deferred to Appendix B. The main steps of the

gKCCA are listed in Alg. 2.

Theorem 2: If Kx and Ky are nonsingular, the optimal so-

lutions A∗ and B∗ to (25) are given by

A∗ := K−1/2
x (Kx + εI)−1/2Ā∗ (26a)

B∗ := K−1/2
y (Ky + εI)−1/2B̄∗ (26b)

where matrices Ā∗ ∈ R
N ×d and B̄∗ ∈ R

N ×d collect as columns

the top d left and right singular vectors of

C := (Kx + εI)−1/2K1/2
x (I − γLG)K1/2

y (Ky + εI)−1/2 .

(26c)

Furthermore, the optimal objective value (25a) is the sum of

the d largest singular values of C.

Remark 5: When the kernel functions needed to form

Kx and Ky are not available, one may presume Kx :=
∑M

m=1 θmKm and Ky :=
∑M

m=1 δmKm for (25). Here,

{Km}M
m=1 are known kernel matrices for a preselected dic-

tionary of kernels, while {θm , δm}M
m=1 are unknown coeffi-

cients to be optimized along with the canonical vectors through

(25). Such a data-driven approach is also known as multi-kernel

Algorithm 2: Graph Kernel Canonical Correlation Analy-

sis.

1: Input: {xi}N
i=1 , {yi}N

i=1 , W, d, γ, ε, κx(·), and κy (·).
2: Construct Kx and Ky using (24).

3: Build LG using (7).

4: Perform SVD on C := UΣV� in (26c), where the

diagonal elements of Σ are organized in descending

order; U ∈ R
N ×N , V ∈ R

N ×N , and Σ ∈ R
N ×N .

5: Extract the first d columns of U and V to form

Ā∗ ∈ R
N ×d and B̄∗ ∈ R

N ×d , respectively.

6: Compute A∗ = K
−1/2
x (Kx + εI)−1/2Ā∗ and

B∗ = K
−1/2
y (Ky + εI)−1/2B̄∗.

7: Output: A∗ and B∗.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

learning, and it has been broadly studied; see for example,

[3], [23].

In terms of computational cost, we summarize the complex-

ities of gCCA, gdCCA, gKCCA, CCA, dCCA, and KCCA in

Table I, where D := max(Dx , Dy ). Note that gCCA incurs

higher computational cost than standard CCA, due to the ex-

tra multiplication term of XLGY
T in gCCA. If N � D, then

gCCA in its present form is not feasible, or suboptimal even if

the pseudo-inverse or Tikhonov regularization is employed, at

computational complexity O(D3). In this case, gdCCA is com-

putationally more attractive since its complexity grows only

linearly with D. In terms of gKCCA, when D � N , evaluating

the kernel matrices dominates the computational complexity,

giving rise to O(DN 2). When D � N , Steps 4 and 6 in Alg. 2

dominate the complexity, incurring complexity of O(N 3).

VI. NUMERICAL TESTS

To showcase the merits of our novel approaches, several clas-

sification experiments using real datasets are reported in this

section. Classification accuracies of our proposed gCCA, gd-

CCA and gKCCA are compared with competing alternatives.

A. Tests for gCCA

In this experiment, the AR face dataset [22], and the Ex-

tended Yale-B (EYB) face image dataset [21], were used to

examine the classification performance of different schemes,

including gCCA, CCA, graph (g) PCA [27], PCA, graph regu-

larized multi-set (GrM) CCA [35], and the k-nearest neighbors

(KNN) method.

The AR face database contains color face images of 100

individuals, each depicted in 26 images. These 26 images

per person were taken under different lighting conditions,
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occlusions and expressions. Each image was cropped and re-

sized to 40 × 30 pixels, converted to grayscale image, and vec-

torized to obtain a 1,200 × 1 vector. The 1,200 features of each

image were unevenly split into two views, where one view

consists of the first 300 features collected in one column of

X0 ∈ R
300×2,600 (2,600 columns for all the images) , while the

remaining 900 features were used to form Y0 ∈ R
900×2,600 .

Suppose that Ntr columns were randomly drawn from 26

columns ofX0 andY0 that correspond to one person, to form the

training data X ∈ R
300×100N t r and Y ∈ R

900×100N t r , respec-

tively. For the remaining (26 − Ntr) columns of X0 associated

with each person, half of them were used for tuning the hyper-

parameters, and the other half for testing, which were collected

in Xtu ∈ R
300×100(13−0.5N t r ) and Xte ∈ R

300×100(13−0.5N t r )

accordingly. Here, we consider the scenario where only one

view, namely Xte , is available in the testing phase, which is

of practical importance when one only has partial information

about the testing images.

The EYB database consists of frontal face images of 38 indi-

viduals, each of which has around 65 color images of 192 × 168

pixels. All images were resized to 30 × 20 pixels and converted

to grayscale before being vectorized to obtain a 600 × 1 vec-

tor. Then, the vector associated with each image was split into

two subvectors (views) with Dx = 250 and Dy = 350. For each

individual, Ntr images were randomly selected and the corre-

sponding two views were used to construct the training datasets

X ∈ R
Dx ×38N t r and Y ∈ R

D y ×38N t r . Among the remaining

images, (30 − 0.5Ntr) images per individual were used for tun-

ing dataset Xtu ∈ R
Dx ×38(30−0.5N t r ) and another (30 − 0.5Ntr)

for testing dataset Xte ∈ R
Dx ×38(30−0.5N t r ) , after following a

similar process to build X.

Letting N := 100Ntr for the AR data experiment (N :=
38Ntr for EYB), we collected all common sources {si}N

i=1

into matrix S, which was constructed using the training data as

follows: S := [X� Y�]� = [s1 · · · sN ]. Based on S, matrix W

was formed to have (i, j)-th entry given by

wij :=

{

s�i sj

‖si ‖2 ‖sj ‖2
si ∈ Nk (sj ) or sj ∈ Nk (si)

0 otherwise
(27)

for i, j = 1, 2, . . . , N , where Nk (sj ) denotes the set of the

k-nearest neighbors of sj that belong to the same class (person)

in S. In this experiment, k = Ntr − 1 was kept fixed.

In this experiment, 30 Monte Carlo (MC) simulations were

run to assess the classification performance of gCCA, standard

CCA, GrMCCA, gPCA, PCA, and KNN on the AR face dataset,

as well as the EYB dataset. For fairness, the weight matrix W in

(27) was used for gPCA. The classification accuracy is defined as

the ratio between the number of correctly classified images and

the total number of images tested. For gCCA, CCA, GrMCCA,

gPCA, and PCA, 50 (100) canonical vectors for the AR (EYB)

face dataset were found to obtain the low-dimensional repre-

sentations of testing data, which were subsequently classified

through the 10-nearest neighbors algorithm based on the Eu-

clidean distance metric. The hyper-parameters in gCCA, gPCA,

and GrMCCA were tuned among 30 logarithmically-spaced

Fig. 1. Classification accuracy of gCCA on the AR face dataset [22].

Fig. 2. Classification accuracy of gCCA on the EYB dataset [21].

values between 10−3 and 103 to maximize the classification

accuracies on ‘tuning set’ of images.

Figures 1 and 2 depict the classification accuracies of gCCA,

CCA, GrMCCA, gPCA, PCA, and KNN on the AR data, and

the EYB data, respectively, for a varying number of training

samples. It is evident that the accuracies of all simulated schemes

improve as Ntr grows, and our proposed gCCA outperforms

alternatives for Ntr ≥ 10. This corroborates that incorporating

the source graph that encodes dependencies among common

sources, pays off.

B. Tests for gdCCA

The second experiment evaluates the capability of gdCCA

for classification using again the AR face dataset and the

EYB dataset. Per MC run on the AR face dataset, we col-

lected all images of 10 randomly sampled people. For each

selected person, Ntr , (13 − 0.5Ntr), and (13 − 0.5Ntr) im-

ages were randomly drawn for training, tunning, and testing,

respectively. In the training phase, each image was first con-

verted to a grayscale image, resized to 80 × 60 pixels, and

subsequently lexicographically ordered to obtain a 4,800 × 1
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Fig. 3. Classification accuracy of gdCCA using dataset [22].

vector. To create the two views, this vector was partitioned

into two subvectors of size Dx = 1,000 for X ∈ R
Dx ×10N t r

and of size Dy = 3,800 for Y ∈ R
D y ×10N t r . Similarly, the

training data Xtu ∈ R
Dx ×10(13−0.5N t r ) and testing data Xte ∈

R
Dx ×10(13−0.5N t r ) were generated.

Per realization on the EYB dataset, images of 10 individuals

were randomly selected, and the two-view data X ∈ R
Dx ×10N t r

and Y ∈ R
D y ×10N t r were generated using the same procedure

described for the AR data, except for Dx = 1,000 and Dy =
7,000. For both the tuning data Xtu ∈ R

Dx ×10(30−0.5N t r ) and

the testing data Xte ∈ R
Dx ×10(30−0.5N t r ) , a number of (30 −

0.5Ntr) images were randomly chosen per person.

The two-view data in the training phase formed S =
[X� Y�]� and were further used to build W as in (27). For

fairness, graph dual (gd) PCA [27] was tested with the same W

as in gdCCA. Moreover, the two associated graph adjacency ma-

trices in Laplacian regularized (Lr) CCA [7] were constructed

via (27) after substituting S by X and Y, respectively. We tuned

the hyper-parameters in gdCCA, dual (d) CCA, LrCCA and

gdPCA among 30 logarithmically spaced values between 10−3

and 103 to maximize the classification accuracy on data Xtu .

Here, dCCA was implemented by gdCCA after assigning γ = 0.

In gdCCA, dCCA, LrCCA, gdPCA and dPCA [27], 20 and 100

projection vectors were used for obtaining lower-dimensional

representations of Xte for AR data and EYB data, respectively.

Then, the KNN rule with K = 10 was applied to carry out the

classification tasks.

Figures 3 and 4 present the averaged classification accura-

cies of gdCCA, dCCA, LrCCA, gdPCA, dPCA, and KNN for

a varying number of training images per person over 30 MC

realizations. Clearly, our gdCCA enjoys the best classification

performance among all simulated schemes for different training

samples.

There are two hyper-parameters, namely γ and ε in gdCCA.

To understand how the hyper-parameters influence the clas-

sification performance, the gdCCA was simulated on the AR

face dataset for a range of γ and ε values. For each person, 17

(9) images were employed for training (testing). Fig. 5 plots

the averaged classification accuracies over 30 MC runs, with γ
varying from 10−3 to 103 and ε from 10−5 to 103 . For small γ

Fig. 4. Classification accuracy of gdCCA using dataset [21].

Fig. 5. Classification accuracy of gdCCA versus γ and ε.

values, the performance of gdCCA with small ε values outper-

forms that using large ε values. This is because with small γ,

gdCCA approximates dCCA, and the Tikhonov regularization

with excessively large ε values dominates the term for promot-

ing uncorrelatedness between canonical variables. When ε is

small, with γ increasing, the classification accuracy gradually

increases by progressively exploiting the graph information, but

subsequently decreases due to discarding the maximization of

canonical correlations. Those observations confirm the asser-

tion that with properly selected and nonzero γ and ε values, the

performance of gdCCA reaches the best, in which case both

maximizing the canonical correlations and exploiting the graph

knowledge are in effect.

C. Tests for gKCCA

This last experiment assesses gKCCA for classification

using the MNIST dataset.2 There are 10 classes of hand-

written 28 × 28 grayscale digit images in the MNIST, and

each class (digit) consists of 7,000 images. Per MC run,

5 classes of images were randomly sampled for classifica-

tion. For each selected class, Ntr , 0.5Ntr , and 0.5Ntr images

2Downloaded from http://yann.lecun.com/exdb/mnist/.
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were randomly sampled for training, parameter tuning, and

testing, respectively. The two-view data were created as fol-

lows. The images were first resized to 20 × 20 pixels, fol-

lowed by vectorization. Each vector was split to 2 subvec-

tors of sizes Dx and Dy = 400 − Dx for the two views.

The first/second view of training data was denoted by train-

ing dataset X ∈ R
Dx ×5N t r /Y ∈ R

D y ×5N t r . The tuning/testing

dataset Xtu/Xte were the first views of tuning/testing

images.

Gaussian kernels were used for X, Y, and the common source

S := [X� Y�]�, whose bandwidth parameters were set as the

medians of the corresponding Euclidean distances. The idea to

generate the W in Section VI-A was adopted and adjusted for

constructing the graph adjacency matrix, which was also de-

noted by W for notational simplicity. Obviously, the similarity

between two sources in S can not be measured by the linear

correlation coefficient, which instead can be represented by a

corresponding element in the kernel matrix of S, namely Ks .

Specifically,

wij :=

{

Ks(i, j) si ∈ Mk1
(sj ) or sj ∈ Mk1

(si)

0 otherwise
(28)

for i, j = 1, 2, . . . , 5Ntr , where si denotes the i-th source (i-th
column) in S, and Mk1

(sj ) is the set containing the k1-nearest

neighbors of sj from the same class. In the simulations of this

subsection, k1 = Ntr − 1. Further, graph kernel (gK) PCA [27]

was simulated with the same W as in gKCCA. The graph Lapla-

cian regularized (Lr) KCCA [7] was associated with two graph

adjacency matrices, which were obtained by (28) after sub-

stituting Ks with Kx and Ky accordingly. For fairness, all

the kernel-based methods, namely gKCCA, KCCA, LrKCCA,

gKPCA, and KPCA, shared the same kernel Kx (and Ky ).

When implementing the CCA-based and PCA-based subspace

methods, 20 projection vectors were used for classification us-

ing the K-NN algorithm with K = 10. The hyper-parameters of

gKCCA, KCCA, gdCCA, dCCA, LrKCCA, LrCCA, gKPCA,

and gdPCA, were selected from 30 logarithmically spaced val-

ues between 10−3 and 103 . For each algorithm, the parameters

were selected with the best classification accuracy on the tun-

ing dataset Xtu . In the following tests, the classification per-

formance of all aforementioned algorithms was achieved after

running 30 independent realizations.

In Fig. 6, the classification accuracies of simulated schemes

for a variable number of training samples are reported, with

Dx = 120 and Dy = 280. The plots validate the advantage of

our gKCCA relative to the other 10 methods. Moreover, with ex-

tra training samples becoming available, the performance of all

simulated schemes improves. Figure 7 depicts the classification

accuracies of all methods for different Dx values, with Ntr = 30

kept fixed. It is clear that gKCCA outperforms alternatives un-

der different vector splittings. Meanwhile, with Dx decreasing,

it becomes more challenging to classify the testing data, so the

classification accuracies of all schemes decrease. Interestingly,

the performance gap between gKCCA and the others widens for

smaller Dx values.

Fig. 6. Classification accuracy of gKCCA versus Ntr .

Fig. 7. Classification accuracy of gKCCA versus Dx .

VII. CONCLUSION

Graph regularized CCA, dual CCA, as well as kernel CCA

methods were revisited in this paper to exploit hidden low-

dimensional common structures from two-view data of the same

sources. Distinguishing itself from prior CCA contributions, our

gCCA framework leverages additional information to improve

the low-dimensional approximations through the canonical vari-

ables, by embedding the hidden common sources in a graph

and invoking this graph prior knowledge as a CCA regularizer.

As such, canonical pairs that are able to capture the structural

information between data vectors can be revealed. In certain

practical setups where the number of data samples is small rela-

tive to the data vector dimensionality, our gCCA is not directly

applicable, or leads to suboptimal performance and incurs high

computational complexity. To bypass this, the dual model of

gCCA, namely gdCCA, is put forth. To further account for non-

linear data dependencies, the graph kernel CCA is developed.

Numerical tests on several real-world datasets are presented to

demonstrate the merits of the novel approaches.

This paper opens up several intriguing directions for future

research. To start, evaluating analytically the performance of
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proposed schemes using (possibly) concentration inequality

bounds is pertinent. Developing data-driven approaches to se-

lect the appropriate kernels (graphs) from a given or constructed

dictionary of kernels (graphs) [28] is also meaningful. To endow

the proposed gCCA algorithms with scalability, distributed and

online implementations are well-motivated for handling large-

scale and/or high-dimensional streaming data. Generalizing our

gCCA models to unpaired or multi-view datasets constitutes

another interesting direction.

APPENDIX A

A. Proof of Theorem 1

Letting

Ū := Σ1/2
x U ∈ R

Dx ×d , and V̄ := Σ1/2
y V ∈ R

D y ×d

the objective function (12a) can be rewritten as

Tr(Ū�CV̄) := Tr(Ū�Σ−1/2
x (Σxy − γXLGY

�)Σ−1/2
y V̄)

and problem (12) boils down to

max
Ū , V̄

Tr(Ū�CV̄) (29a)

s. to Ū�Ū = I, and V̄�V̄ = I. (29b)

Clearly, problem (29) is a typical truncated SVD formulation.

So the columns of the optimal solutions Ū∗ and V̄∗ collect the

d left and right singular vectors of C associated with the first d
largest singular values, respectively.

Once having computed Ū∗ and V̄∗, the optimal solutions

U∗ and V∗ to problem (12) are obtained as U∗ := Σ−1/2
x Ū∗

and V∗ := Σ−1/2
y V̄∗. Moreover, the maximal value of (12a)

becomes the sum of the first d largest singular values of C.

APPENDIX B

B. Proof of Theorem 2

Upon defining

Ā := (Kx + εI)1/2K1/2
x A

B̄ := (Ky + εI)1/2K1/2
y B

problem (25) can be rewritten as

(Ā∗, B̄∗) := arg max
Ā , B̄

Tr(Ā�CB̄)

s. to Ā�Ā = I, and B̄�B̄ = I.

Using the results in Appendix A, one readily concludes that the

columns of optimizers Ā∗, B̄∗ consist of the d left and right

singular vectors of C associated with the first d largest singular

values, respectively, which leads to

A∗ = K−1/2
x (Kx + εI)−1/2Ā∗

B∗ = K−1/2
y (Ky + εI)−1/2B̄∗.

Likewise, the maximal value of (25a) is given by the sum of the

d largest singular values of C.
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