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Abstract—The rising interest in pattern recognition and data an-
alytics has spurred the development of innovative machine learning
algorithms and tools. However, as each algorithm has its strengths
and limitations, one is motivated to judiciously fuse multiple al-
gorithms in order to find the “best” performing one, for a given
dataset. Ensemble learning aims at such high-performance meta-
algorithm, by combining the outputs from multiple algorithms.
The present work introduces a blind scheme for learning from
ensembles of classifiers, using a moment matching method that
leverages joint tensor and matrix factorization. Blind refers to the
combiner who has no knowledge of the ground-truth labels that
each classifier has been trained on. A rigorous performance anal-
ysis is derived and the proposed scheme is evaluated on synthetic
and real datasets.

Index Terms—Ensemble learning, unsupervised, multiclass clas-
sification, crowdsourcing.

I. INTRODUCTION

T
HE massive amounts of generated and communicated data

has introduced society and computing to a data “deluge.”

Along with the increase in the amount of data, multiple machine

learning, signal processing and data mining algorithms have

been developed. These algorithms are usually tailored for

different datasets, and they often operate under different as-

sumptions. As such, finding an algorithm that works “well” for

a specific dataset can be prohibitively complex or impossible.

Ensemble learning refers to the task of designing a meta-

learner, by combining the results provided by multiple different

learners or annotators;1 see Fig. 1. This meta-learner should

generally be able to outperform the individual learners. In
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Catalunya BarcelonaTech, Barcelona 08034, Spain (e-mail:, alba.pages@upc.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2018.2860562

1The terms learner, annotator, and classifier will be used interchangeably
throughout this manuscript.

Fig. 1. Unsupervised ensemble classification setup, where the outputs of
learners are combined in parallel.

particular, ensemble classification refers to fusing the results

provided by different classifiers. Each classifier observes data,

decides one class, out of K possible, each of these data belong

to, and provides the meta-learner with those decisions. Such

a setup emerges in diverse disciplines including medicine [1],

biology [2], team decision making and economics [3], and has

recently gained attention with the advent of crowdsourcing [4],

as well as services such as Amazon’s Mechanical Turk [5],

CrowdFlower and Clickworker, to name a few. A related setup

appears in distributed detection [6], [7], where sensors collect

data, decide which one out of K possible hypotheses is in

effect, and transmit those decisions to a fusion center, that

makes a final decision. A similar task is also known as the CEO

problem or multiterminal source coding [8].

When training data are available, a meta-learner can learn

how to combine the results from individual classifiers, based

on these ground-truth labels [9]. One such approach is boost-

ing [10], where multiple classifiers are combined according to

their probability of error on the training set. In the boosting

regime, each classifier is also using information from the rest.

In many cases however, labeled data are not available to train the

combining meta-classifier, and/or, the individual classifiers can-

not be retrained, justifying the need for unsupervised (or blind)

ensemble learning methods. One such paradigm is provided by

crowdsourcing, where people are tasked with providing classi-

fication labels. Accordingly, in a distributed detection setup, the

fusion center might not have access to the sensors, once they

have been deployed.

The present work puts forth a novel scheme for multiclass

blind ensemble classification, built upon simple concepts from

probability and detection theory, as well as recent advances in

tensor decompositions [11] and optimization theory, that enable

assessing the reliability of multiple annotators and combining

their answers. Under our proposed model, each annotator has

a fixed probability of deciding that a datum belongs to class k,
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given that the true class of the datum is k′. Assuming that anno-

tators make decisions independent of each other, the proposed

method extracts these probabilities from the first-, second-, and

third-order statistics of annotator responses. This becomes pos-

sible thanks to a joint PARAFAC decomposition, which has

been employed in a related problem of identifying conditional

probabilities to complete a joint probability functions from its

projections [12]. The crux of our algorithm is a moment match-

ing method, that leverages the aforementioned PARAFAC de-

composition approach to obtain accurate estimates of annotator

decision probabilities along with class priors. These estimates

are then provided to the meta-detector to form the final estimate

of data labels.

To assess the proposed scheme, extensive numerical tests, on

synthetic as well as real data are presented, comparing the pro-

posed approach to state-of-the-art binary and multiclass blind

ensemble classification methods. In addition, a rigorous per-

formance analysis is provided, which showcases the conditions

under which our novel method works.

The rest of the paper is organized as follows. Section II

states the problem, provides preliminaries for the proposed ap-

proach along with a brief description of the prior art in un-

supervised ensemble classification. Section III introduces the

proposed scheme for multiclass unsupervised ensemble clas-

sification, while Section IV analyses the performance of the

proposed method. Section V presents numerical tests to com-

pare our method with state-of-the-art ensemble classification

algorithms. Finally, concluding remarks and future research di-

rections are given in Section VI. Detailed derivations are del-

egated to Appendix A, while proofs of theorems, propositions

and lemmata are deferred to Appendix B.

Notation: Unless otherwise noted, lowercase bold letters, x,

denote vectors, uppercase bold letters, X, represent matrices,

and calligraphic uppercase letters, X , stand for sets. The (i, j)th
entry of matrix X is denoted by [X]ij ; and its rank by rank(X);
X

� denotes the tranpose of matrix X; R
D stands for the D-

dimensional real Euclidean space, R+ for the set of positive real

numbers, Z+ for the set of positive integers, E[·] for expectation,

and ‖ · ‖ for the �2-norm. Underlined capital letters X denote

tensors, vec(·) denotes the vectorization operator, that stacks

columns of a matrix into a longer column vector; the vector

outer product is denoted by ◦, and, � denotes the Khatri-Rao

matrix product. For a 3-mode tensor X , X(:, :, i), X(:, i, :), and

X(i, :, :) denote the i-th frontal, longitudinal and lateral slabs

of X , respectively, while X(i, j, l) denotes the ijl-th element

of X .

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data (possibly vectors)

{xn}
N
n=1 each belonging to one of K possible classes with

corresponding labels {yn}
N
n=1 , e.g., yn = k if xn belongs to

class k. The pairs {(xn , yn )} are drawn independently from

an unknown joint distribution D, and X and Y denote ran-

dom variables such that (X,Y ) ∼ D. Consider now M anno-

tators that observe {xn}
N
n=1 , and provide estimates of labels.

Let fm (xn ) ∈ {1, . . . , K} denote the label assigned to datum

xn by the m-th annotator. All annotator responses are then col-

lected at a centralized meta-learner or fusion center. The task of

unsupervised ensemble classification is: Given only the anno-

tator responses {fm (xn ),m = 1, . . . , M}N
n=1 , we wish to esti-

mate the ground-truth labels of the data {yn}; see Fig. 1.

Similar to unsupervised ensemble classification, crowd-

sourced classification seeks to estimate ground-truth labels of

the data {yn} from annotator responses {fm (xn )}, with the ad-

ditional caveat that each annotator m may choose to provide

labels for only a subset Nm < N of data.

A. Prior Work

Probably the simplest scheme for blind or unsupervised en-

semble classification is majority voting, where the estimated

label of a datum is the one that most annotators agree upon.

Majority voting has been used in popular ensemble schemes

such as bagging, and random forests [13]. While relatively easy

to implement, majority voting presumes that all annotators are

equally “reliable,” which is rather unrealistic, both in crowd-

sourcing as well as in ensemble learning setups. Other blind

ensemble methods aim to estimate the parameters that charac-

terize the annotators’ performance. A joint maximum likelihood

(ML) estimator of the unknown labels and these parameters has

been reported using the expectation-maximization (EM) algo-

rithm [14]. As the EM algorithm does not guarantee convergence

to the ML solution, recent works pursue alternative estimation

methods. For binary classification, [15] assumes that annotators

adhere to the “one-coin” model, meaning each annotator m pro-

vides the correct (incorrect) label with probability δm (1 − δm );

see also [16] when annotators do not label all the data, and

[17] for an iterative method. Recently, [18], [19] advocated a

spectral decomposition technique of the second-order statistics

of annotator responses for binary classification, that yields the

reliability parameters of annotators, when class probabilities are

unknown, while [20] introduced a minimax optimal algorithm

that can infer annotator reliabilities. In the multiclass setting,

[17] solves multiple binary classification problems. In addition,

[21] and [22] utilize third-order moments and orthogonal tensor

decomposition to estimate the unknown reliability parameters

and then initialize the EM algorithm of [14]. This procedure

however, can be numerically unstable, especially when the num-

ber of classes K is large, and classes are unequally populated.

Finally, all the methods mentioned in this section employ ML es-

timation, which implicitly assumes that the dataset is balanced,

meaning classes are roughly equiprobable. Another interesting

approach is presented in [23], where a joint moment matching

and maximum likelihood optimization problem is solved.

The present work puts forth a novel scheme for multiclass

blind ensemble classification, built upon simple concepts from

probability and detection theory. It relies on a joint PARAFAC

decomposition approach, which lends itself to a numerically

stable algorithm. At the same time, our novel approach takes

into account class prior probabilities to yield accurate estimates

of class labels. Compared to our conference precursor in [24],

here we do not require the prior probabilities to be known, and

we present comprehensive numerical tests, along with a rigorous

performance analysis.
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B. Canonical Polyadic Decomposition/PARAFAC

This subsection will outline tensor decompositions, which

will be used in the following sections to derive the proposed

scheme. Consider a 3-mode I × J × L tensor X , which can be

described by a matrix in 3 different ways

X
(1) := [vec(X(1, :, :)), . . . , vec(X(I, :, :))] (1a)

X
(2) := [vec(X(:, 1, :)), . . . , vec(X(:, J, :))] (1b)

X
(3) := [vec(X(:, :, 1)), . . . , vec(X(:, :, L))] (1c)

where X
(1) is of dimension JL × I , X

(2) is IL × J and

X
(3) is IJ × L. Under the Canonical Polyadic Decomposi-

tion(CPD)/Parallel Factor Analysis (PARAFAC) model [25], X
can be written as a sum of R rank one tensors (a.k.a. factors)

X =
R

∑

r=1

ar ◦ br ◦ cr (2)

where ar , br , cr are I × 1, J × 1 and L × 1 vectors, re-

spectively. Letting A := [a1 , . . . ,aR ],B := [b1 , . . . , bR ], and

C := [c1 , . . . , cR ] be the so-called factor matrices of the CPD

model, we write (2) compactly as

X = [[A,B,C]]R (3)

and (1) can be equivalently written as

X
(1) = (C � B)A� (4a)

X
(2) = (C � A)B� (4b)

X
(3) = (B � A)C� (4c)

where we have used the fact that for matrices A,B and a vector

c of appropriate dimensions, it holds that vec(Adiag(c)B�) =
(B � A)c. By vectorizing X

(3) , it is easy to show that the vec-

torization of the entire tensor will be of the form x := vec(X) =
vec(X(3)) = (C � B � A)1. Accordingly, vectorizing X

(1)

or X
(2) produces different vectorizations of the entire tensor,

where the order of factor matrices in the Khatri-Rao product is

permuted. Recovery of the factor matrices A,B and C, can be

done by solving the following non-convex optimization problem

[Â, B̂, Ĉ] = arg min
A ,B ,C

‖X − [[A,B,C]]R‖
2
F . (5)

Similar to the matrix case, the Frobenius norm here can be

defined as ‖X‖F :=
√

∑

i,j,l X(i, j, l)2 , and as (4) is just a

rearrangement of the terms in X , it holds that

‖X‖F = ‖X(1)‖F = ‖X(2)‖F = ‖X(3)‖F . (6)

Typically, (5) is solved using alternating optimization (AO) or

gradient descent [11]. Multiple off-the-shelf solvers are avail-

able for PARAFAC tensor decomposition; see e.g., [26], [27].

Furthermore, depending on extra properties of X , constraints

can be enforced on the factor matrices, such as nonnegativity

and sparsity to name a few, which can be effectively handled by

popular solvers such as AO-ADMM [28]. Under certain con-

ditions, the factorization of X into A,B, and C, is essentially

unique, or essentially identifiable, that is Â, B̂, and Ĉ can be

expressed as

Â = APΛa , B̂ = BPΛb , Ĉ = CPΛc (7)

where P is a common permutation matrix, and Λa ,Λb ,Λc are

diagonal scaling matrices such that ΛaΛbΛc = I [11]. For more

details regarding the PARAFAC decomposition and tensors with

more than 3 modes, interested readers are referred to the com-

prehensive tutorial in [11] and references therein.

III. UNSUPERVISED ENSEMBLE CLASSIFICATION

Each annotator in our model has a fixed probability of de-

ciding that a datum belongs to class k′, when presented with a

datum of class k. Thus, each annotator m can be characterized

by a so called confusion matrix Γm , whose (k′, k)-th entry is

[Γm ]k ′k := Γm (k′, k) = Pr (fm (X) = k′|Y = k) . (8)

The K × K matrix Γm has non-negative entries that obey the

simplex constraint, since
∑K

k ′=1 Pr (fm (X) = k′|Y = k) = 1,

for k = 1, . . . , K; hence, entries of eachΓm column sum up to 1,

that is, Γ�
m1 = 1 and Γm ≥ 0. The confusion matrix showcases

the statistical behavior of an annotator, as each column provides

the annotator’s probability of deciding the correct class, when

presented with a datum from each class. Before proceeding, we

adopt the following assumptions.

As1: Responses of different annotators per datum, are condi-

tionally independent, given the ground-truth label Y of

the same datum X; that is,

Pr (f1(X) = k1 , . . . , fM (X) = kM |Y = k)

=

M
∏

m=1

Pr (fm (X) = km |Y = k)

As2: Most annotators are better than random; e.g., most have

probability of correct detection exceeding 0.5 for K =2.

Clearly, for annotators that are better than random, the largest

elements of each column of their confusion matrix will be those

on the diagonal of Γm ; that is

[Γm ]kk ≥ [Γm ]k ′k , for k′, k = 1, . . . , K.

As1 suggests that annotators make decisions independently of

each other, which is rather a standard assumption [14], [19], [22].

Likewise, As2 is another standard assumption, used to allevi-

ate the inherent permutation ambiguity of the confusion matrix

estimates provided by our algorithm. Note that As2 is slightly

more relaxed than the corresponding assumption in [22], which

splits annotators into 3 groups and requires most annotators in

each group to be better than random.

A. Maximum a Posteriori Label Estimation

Given only annotator responses for all data, a straightforward

approach to estimating their ground-truth labels is through a

maximum a posteriori (MAP) classifier [29]. In particular, for

datum X the MAP classifier is

ŷMAP(X) = arg max
k∈{1,...,K }

L(X|k) Pr(Y = k) (9)
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where L(X|k) := Pr (f1(X) = k1 , . . . , fM (X) = kM |Y =k)
is the conditional likelihood of X . As annotators make inde-

pendent decisions, it holds that L(X|k) =
∏M

m=1 Pr(fm (X)
= km |Y = k), and thus the MAP classifier can be rewritten as

ŷMAP(X) = arg max
k∈{1,...,K }

log πk +
M
∑

m=1

log(Γm (km , k)) (10)

where πk := Pr(Y = k). It is well known from detection the-

ory [29] that the MAP classifier (10) minimizes the average

probability of error Pe , given by

Pe =

K
∑

k=1

πk Pr(ŷMAP = k′ 
= k|Y = k). (11)

If all classes are equiprobable, that is πk = 1/K for all k =
1, . . . , K, then (10) reduces to the ML classifier. In order to

obtain the MAP or ML classifier, {Γm}M
m=1 must be avail-

able, while in the MAP classifier case π := [π1 , . . . , πK ]� is

also required. Interestingly, the next section will illustrate that

{Γm}M
m=1 and π show up in (and can thus be estimated from)

the moments of annotator responses.

B. Statistics of Annotator Responses

Consider each label represented by the annotators using the

canonical K × 1 vector ek , denoting the k-th column of the

K × K identity matrix I. Let fm (X) denote the m-th annota-

tor’s response in vector format. Since fm (X) is just a vector rep-

resentation of fm (X), it holds that Pr (fm (X) = k′|Y = k) ≡
Pr (fm (X) = ek ′ |Y = k). With γm,k denoting the k-th column

of Γm , it thus holds that

E[fm (X)|Y = k] =

K
∑

k ′=1

ek ′ Pr (fm (X) = k′|Y = k)

= γm,k (12)

where the first equality comes from the definition of conditional

expectation, and the second one because ek ’s are columns of I.

Using (12) and the law of total probability, the mean vector of

responses from annotator m, is hence

E[fm (X)] =

K
∑

k=1

E[fm (X)|Y = k] Pr (Y = k) = Γm π.

(13)

Upon defining the diagonal matrix Π := diag(π), the K × K
cross-correlation matrix between the responses of annotators m
and m′ 
= m, can be expressed as

Rmm ′ := E[fm (X)f�m ′(X)]

=

K
∑

k=1

E[fm (X)|Y = k] E[f�m ′(X)|Y = k] Pr (Y = k)

= Γm diag(π)Γ�
m ′ = ΓmΠΓ

�
m ′ (14)

where we successively relied on the law of total probability,

As1, and (12). Consider now the K × K × K cross-correlation

tensor between the responses of annotators m, m′ 
= m and

m′′ 
= m′,m, namely

Ψmm ′m ′′ = E[fm (X) ◦ fm ′(X) ◦ fm ′′(X)]. (15)

It can be shown that Ψmm ′m ′′ obeys a CPD/PARAFAC model

[cf. Sec. II-B] with factor matrices Γm ,Γm ′ and Γm ′′ ; that is,

Ψmm ′m ′′ =

K
∑

k=1

πkγm,k ◦ γm ′,k ◦ γm ′′,k

= [[ΓmΠ,Γm ′ ,Γm ′′ ]]K . (16)

Note here that the diagonal matrix Π can multiply any of the

factor matrices Γm ,Γm ′ , or, Γm ′′ .

With Fm := [fm (x1), fm (x2), . . . , fm (xN )] the sample mean

of the m-th annotator responses can be readily obtained as

µm =
1

N

N
∑

n=1

fm (xn ) =
1

N
Fm1. (17)

Accordingly, the K × K sample cross-correlation Smm ′ matri-

ces between the responses of annotators m and m′ 
= m, are

given by

Smm ′ =
1

N

N
∑

n=1

fm (xn )f�m ′(xn ) =
1

N
FmF

�
m ′ . (18)

Lastly, the sample K×K×K cross-correlation tensors Tmm ′m ′′

between the responses of annotators m,m′ 
= m and m′′ 
=
m,m′ are

Tmm ′m ′′ =
1

N

N
∑

n=1

fm (xn ) ◦ fm ′(xn ) ◦ fm ′′(xn )

=
1

N
Fm ◦ Fm ′ ◦ Fm ′′ . (19)

Clearly, Smm ′ = S
�
m ′m , T

(2)
m ′mm ′′ = T

(3)
m ′m ′′m = T

(1)
mm ′m ′′ . In

addition, as N increases, the law of large numbers (LLN) implies

that, {µm}, {Smm ′}, and {Tmm ′m ′′} approach their ensemble

counterparts in (13), (14), and (15).

Having available first-, second-, and third-order statistics of

annotator responses, namely {µm}M
m=1 , {Smm ′}M

m,m ′=1 , and

{Tmm ′m ′′}M
m,m ′,m ′′=1

, estimates of {Γm}M
m=1 and π can be

readily extracted from them [cf. (13), (14), (15)]. This procedure

corresponds to the method-of-moments estimation [30]. Upon

obtaining {Γ̂m}M
m=1 and π̂, the MAP classifier of Section III-A

can be subsequently employed to estimate the label for each

datum. That is, for n = 1, . . . , N ,

ŷMAP(xn ) = arg max
k∈{1,...,K }

log π̂k +
M
∑

m=1

log Γ̂m (fm (xn ), k)

(20)

where Γ̂m (k′, k) = [Γ̂m ]k ′k , and π̂k = [π̂]k . The following

section provides an algorithm to estimate these unknown

quantities.

C. Confusion Matrix and Prior Probability Estimation

To estimate the unknown confusion matrices and prior

probabilities consider the following non-convex constrained
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optimization problem, where

hN ({Γm},π) :=
1

2

M
∑

m=1

‖µm − Γm π‖2
2

+
1

2

M
∑

m=1
m ′> m

‖Smm ′ − ΓmΠΓ
�
m ′‖2

F

+
1

2

M
∑

m=1
m ′> m

m ′′> m ′

‖Tmm ′m ′′ − [[ΓmΠ,Γm ′ ,Γm ′′ ]]K ‖2
F

and the subscript N in hN denotes the number of data used

to obtain annotator statistics. Collect the set of constraints per

matrix to the convex set C := {Γ ∈ R
K×K : Γ ≥ 0,Γ�

1 = 1},

where essentially each column lies on a probability simplex, and

let Cp := {u ∈ R
K : u ≥ 0,u�

1 = 1} denote the constraint

set for π.

As (21) is a non-convex problem, alternating optimiza-

tion will be employed to solve it. Specifically the alternating

optimization-alternating direction method of multipliers (AO-

ADMM) will be employed; see [28], and also [12] where a sim-

ilar formulation appears. Under the AO-ADMM paradigm, hN

is minimized per block of unknown variables {Γm} or π while

the other blocks remain fixed, as in block coordinate descent

schemes. Solving for one block of variables with the remain-

ing fixed is a convex constrained optimization problem under

convex C and Cp constraint sets. These optimization problems

are pretty standard and several solvers are available, includ-

ing proximal splitting methods, projected gradient descent or

ADMM [31]–[34]. Here, the solver of choice for each block of

variables will be ADMM.

The update for π involves minimizing hN with {Γm}M
m=1

fixed. Specifically, the following problem is solved

min
π∈Cp

gN,π (π) (22)

where

gN,π(π) :=
1

2

M
∑

m=1

‖µm − Γm π‖2
2 +

ν

2
‖π − π(prev)‖2

2

+
1

2

M
∑

m=1
m ′> m

‖smm ′ − (Γm ′ � Γm ) π‖2
2

+
1

2

M
∑

m=1
m ′> m

m ′′> m ′

‖tmm ′m ′′ − (Γm ′′ � Γm ′ � Γm )π‖2
2

smm ′ = vec(Smm ′), tmm ′m ′′ = vec(T
(3)
mm ′m ′′) [cf. (4)], ν is

a positive scalar, and we have used vec(Γm diag(π)Γ�
m ′) =

(Γm ′ � Γm ) π and vec([[Γm diag(π),Γm ′ ,Γm ′′ ]]K ) =
(Γm ′′ � Γm ′ � Γm )π. Note that gN,π contains all of the terms

in hN along with (ν/2)‖π − π(prev)‖2
2 , which is included to

ensure convergence of the AO-ADMM iterations to a stationary

Algorithm 1: Confusion Matrix and Prior Probability Esti-

mation Algorithm.

Input: Annotator responses {Fm}M
m=1 , λ > 0, ν > 0;

maximum number of iterations I ∈ Z+

Output: Estimates of {Γ̂m}M
m=1 and π̂

1: Compute {µm}, {Smm ′}, {Tmm ′m ′′} using (17), (18),

and (19).

2: Initialize {Γm} and π randomly.

3: do

4: for m = 1, . . . , M do

5: Update Γm using (23)

6: Γ
(prev)
m ← Γm

7: end for

8: Update π using (22)

9: π(prev) ← π

10: i ← i + 1
11: while not converged and i < IT

12: Find permutation matrix P̂, such that the majority of

{Γ̂m P̂}M
m=1 satisfy As2.

point of (21) [28], [35]. Here, π(prev) denotes the estimate of

π obtained by the previous solutions of (22).

Accordingly per Γm , the following subproblem is solved with

{Γm ′}M
m ′ 
=m and π fixed

min
Γm ∈C

gN,m (Γm ) (23)

where

gN,m (Γm ) :=
1

2
‖µm − Γm π‖2

2 +
ν

2
‖Γm − Γ

(prev)
m ‖2

F

+
1

2

M
∑

m ′ 
=m

‖Sm ′m − Γm ′ΠΓ
�
m‖2

F

+
1

2

M
∑

m ′>m
m ′′> m ′

‖T
(1)
mm ′m ′′ − (Γm ′′ � Γm ′)ΠΓ

�
m‖2

F

T
(1)
mm ′m ′′ = [vec(T (1, :, :)), . . . , vec(T (K, :, :))], Γ

(prev)
m de-

notes the estimate of Γm obtained by the previous solution

of (23), ν is a positive scalar, and we have used (6). Here, gN,m

contains all the terms of hN that involve Γm with the additional

term (ν/2)‖Γm − Γ
(prev)
m ‖2

F , which ensures convergence of the

AO-ADMM iterations.

Detailed derivations of the ADMM iterations for solving (23)

and (22) are provided in Appendix A, while the AO-ADMM is

summarized in Algorithm 1. The computational complexity of

the entire AO-ADMM scheme is approximately O(IT M 3K4),
where IT is the number of required iterations until convergence

(see Appendix C). The entire unsupervised ensemble classifica-

tion procedure is listed in Algorithm 2.
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Algorithm 2: Unsupervised Multiclass Ensemble Classifi-

cation.

Input: Annotator responses {Fm}M
m=1

Output: Estimates of data labels {ŷn}
N
n=1

1: Find estimates {Γ̂m}M
m=1 and π̂ using Algorithm 1

2: for n = 1, . . . , N do

3: Estimate label yn using (20).

4: end for

D. Convergence and Identifiability

Convergence of the entire AO-ADMM scheme for (21), fol-

lows readily from results in [28, Prop. 1], stated next for our

setup.

Proposition 1: [28, Prop. 1] Algorithm 1 for M ≥ 3, and

ν > 0 converges to a stationary point of (21).

Having established the convergence of Algorithm 1 to a sta-

tionary point of (21) using Prop. 1, the suitability of the esti-

mates provided by Algorithm 1 for the ensemble classification

task needs to be assessed. As (21) involves joint tensor de-

compositions, under certain conditions the solutions {Γ̂m}, π̂
of (21) will be, similar to the PARAFAC decomposition of

Section II-B, essentially unique. Thus, in order to assess the

suitability of the estimates provided by Algorithm 1 the con-

ditions under which the model employed in (21) is identifiable

have to be established. Luckily, identifiability claims for the

present problem can be easily derived from recent results in

joint PARAFAC factorization [12], [36].

Lemma 1: Let {Γ∗
m}, π∗ be the optimal solutions of (21),

and {Γ̂m}, π̂ the estimates provided by Algorithm 1. If at least

three {Γm}M
m=1 have full column rank, there exists a permuta-

tion matrix P̂ such that

Γ̂m P̂ = Γ
∗
m , m = 1, . . . , M, P̂

�π̂ = π∗.

Lemma 1 essentially requires that at least three annotators

respond differently to different classes, that is no two columns

of at least three confusion matrices are colinear. Possibly more

relaxed identifiability conditions could be derived using tech-

niques mentioned in [36]. Unlike the tensor decomposition men-

tioned in Section II-B, here we have no scaling ambiguity on

the confusion matrices or prior probabilities. This is important

because there are infinite scalings, but finite permutation ma-

trices since K is finite. Under As2, P̂ can be easily obtained

since the largest elements of each column of a confusion matrix

must lie on the diagonal for the majority of annotators. Each

Γ̂m can be multiplied by a permutation matrix P̂m , such that

the largest elements are located on the diagonal. The final P̂ can

be derived as the most commonly occurring permutation matrix

out of {P̂m}M
m=1 .

Remark 1: While we relied on statistics of annotator re-

sponses up to order three, higher-order statistics can also be

employed. Higher-order moments however, will increase the

complexity of the algorithm, as well as the number of data re-

quired to obtain reliable (low-variance) estimates.

Remark 2: Estimates of annotator confusion matrices {Γ̂m}
and data labels {ŷn}, provided by Algorithm 2, can be used to

initialize the EM algorithm of [14].

Remark 3: The orthogonal tensor decomposition used by

[21], [22] is a special case of the PARAFAC decomposition

employed in this work.

Remark 4: When π is known, (22) can be skipped, and cor-

respondingly steps 8 and 9 of Algorithm 1.

E. Reducing Complexity

When K and M are large Algorithm 1 may require long

computational time to converge. Our idea in this case is to split

the annotators into L groups, and solve (21) for each group. For

simplicity of exposition, consider non-overlapping groups, each

with M� ≥ 3 annotators (
∑L

�=1 M� = M ). Let µ
(�)
m ,S

(�)
mm ′ and

T
(�)
mm ′m ′′ denote the sample statistics for annotators in group �,

and {Γ
(�)
m }M �

m=1 the confusion matrices in group �.

For each group �∈{1, . . . , L} confusion matrices {Γ̂
(�)
m }M �

m=1

and prior probabilities π(�) are estimated by solving a smaller

version of (21), namely

min
π( � )

{Γ
( � )
m }M

m = 1

h
(�)
N ({Γ(�)

m }M
m=1 ,π

(�))

s.t. Γ
(�)
m ≥ 0, 1

�
Γ

(�)
m = 1

�, m = 1, . . . , M�

π(�) ≥ 0, 1
�π(�) = 1 (24)

where

h
(�)
N ({Γm},π) :=

1

2

M �
∑

m=1

‖µ(�)
m − Γm π‖2

2

+
1

2

M �
∑

m=1
m ′> m

‖S
(�)
mm ′ − ΓmΠΓ

�
m ′‖2

F

+
1

2

M
∑

m=1
m ′> m

m ′′> m ′

‖T
(�)
mm ′m ′′ − [[ΓmΠ,Γm ′ ,Γm ′′ ]]K‖

2
F .

Upon solving (24) for all L groups, estimates of {Γm}M
m=1

are readily obtained, since we have assumed non-overlapping

groups. A final estimate of the prior probabilities π can be

obtained by averaging the L estimates {π�}L
�=1 .

As (24) incurs a complexity of O(IM 3
� K3), the worst-case

complexity of this approach is O(IM K3
∑L

�=1 M 3
� ), where IM

is the largest number of iterations required to converge among

all L groups. Since M 3 = (
∑L

�=1 M�)
3 >

∑L
�=1 M 3

� this ap-

proach reduces the computational and memory overhead signifi-

cantly compared to Algorithm 1. Note however, that this method

is expected to perform well when As1 and As2, as well as the

conditions outlined in Lemma 1 are satisfied for all L groups of

annotators, and N is sufficiently large. The effectiveness of this

complexity reduction scheme is tested in Section V.
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F. Application to Crowdsourcing

While crowdsourced classification is a task related to ensem-

ble classification, it presents additional challenges. So far it has

been implicitly assumed that all annotators provide labels for

all {xn}
N
n=1 . In the crowdsourcing setup however, an annotator

m could provide labels just for a subset of Nm < N data.

Next, we outline a computationally attractive approach, that

takes into account only the available annotator responses. If an

annotator m does not provide a label for a datum, his/her re-

sponse is fm (x) = 0 or fm (x) = 0 in vector format. Let Jm (xn )
be an indicator function that takes the value 1 when annotator

m provides a label for xn , and 0 when fm (xn ) = 0. To account

for such cases, the annotator sample statistics become

µm =
1

∑N
n=1 Jm (xn )

N
∑

n=1

Jm (xn )fm (xn ) (25a)

Smm ′ =

∑N
n=1 Jm (xn )Jm ′(xn )fm (xn )f�m ′(xn )

∑N
n=1 Jm (xn )Jm ′(xn )

(25b)

Tmm ′m ′′

=

∑

n Jm (xn )Jm ′(xn )Jm ′′(xn )fm (xn) ◦ fm ′(xn) ◦ fm ′′(xn)
∑N

n=1 Jm (xn )Jm ′(xn )Jm ′′(xn )
.

(25c)

Upon computing the modified sample statistics of (25), we

can obtain estimates of the confusion matrices and prior prob-

abilities in the crowdsourcing setup, via Algorithm 1. Finally,

the MAP classifier in (20) has to be modified as follows

ŷMAP(x) = arg max
k∈{1,...,K }

log π̂k +
M
∑

m=1

Jm (x) log Γ̂m (fm (x), k)

(26)

to take into account only the available annotator responses for

each x.

Having completed the algorithmic aspects of our approach,

we proceed with performance analysis.

IV. PERFORMANCE ANALYSIS

In this section, performance of the proposed method will be

quantified analytically. First, the consistency of the estimates

provided by Algorithm 1 as N → ∞ will be established,

followed by a performance analysis for the MAP classifier of

Section III-A.

A. Consistency of Algorithm 1 Estimates

As N → ∞, the sample statistics in (17), (18), and (19) ap-

proach their ensemble counterparts, and we end up with the

following optimization problem for extracting annotator confu-

sion matrices and prior probabilities

min
π

{Γ m }M
m = 1

h∞({Γm}M
m=1 ,π)

s.t. Γm ∈ C, m = 1, . . . , M, π ∈ Cp . (27)

Clearly, the optimal solutions to (27) are the true confu-

sion matrices and prior probabilities. As N increases, it is

desirable to show that the solutions obtained from Algorithm 1

converge to the true confusion matrices and prior probabili-

ties. To this end, techniques from statistical learning theory and

stochastic optimization will be employed [37], [38]. Specif-

ically, we will establish the uniform convergence of hN to

h∞, which implies the consistency of the solutions. Define

the distance between two sets A,B ⊆ R
q , for some q > 0, as

D(A,B) = supx∈A{infy∈B ‖x − y‖2}. The following theorem

shows that as N increases, the solutions of (21) approach those

of (27).

Theorem 1: If S∗ and SN denote the sets of solutions of

problems (27) and (21), respectively, then D(SN ,S∗) → 0, as

N → ∞ almost surely.

Under As2 and the conditions outlined in Lemma 1,

Algorithm 1 can recover the true solutions of (21) or (27). Then,

by Theorem 1 we know that as N → ∞ the solutions of (21)

converge to the solutions of (27), which together with the result

of Lemma 1 implies the statistical consistency of the solutions

of Algorithm 1. As a result, the estimates {Γ̂m}M
m=1 , and π̂

from Algorithm 1 will converge to their true values w.p. 1 as

N → ∞.

B. MAP Classifier Performance

With consistency of the confusion matrix and prior probability

estimates established, the performance of the final component

of the proposed algorithm has to be studied. The behavior of the

MAP classifier of Section III-A can be quantified in terms of its

average probability of error

Pe =

K
∑

k=1

Pr(ŷMAP = k′ 
= k|Y = k) Pr(Y = k)

Here, a well-known asymptotic result for distributed binary de-

tection under the MAP detector [6] is extended to the multiclass

case.

Theorem 2: Under As1, and given {Γm}M
m=1 and π, there

exist constants α > 0, β > 0 such that the MAP classifier of

Section III-A satisfies

Pe ≤ αe−βM .

In words, Theorem 2 suggests that when accurate estimates

of {Γm}M
m=1 and π are available, the error rate decreases at an

exponential rate with the number of annotators M .

In order to validate our theoretical results and evaluate the per-

formance of the proposed scheme, the following section presents

numerical tests with synthetic and real data.

V. NUMERICAL TESTS

For K ≥ 2, Algorithm 2, using both MAP and ML criteria in

step 3, (denoted as Algorithm 2 MAP and Algorithm 2 ML re-

spectively) is compared to majority voting, the algorithm of [17]

(denoted as KOS), and the EM algorithm initialized both with

majority voting and with the spectral method of [22] (denoted

as EM + MV and EM + Spectral, respectively). For K = 2,

Algorithm 2 is also compared to the binary ensemble learn-

ing methods of [19], [20] and [16], denoted as SML, TE and

EigenRatio, respectively. For synthetic data, the performance of
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TABLE I
CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR

PROBABILITIES π = [0.9003, 0.0997]� AND M = 10 ANNOTATORS

“oracle” estimators, that is MAP/ML classifiers with true con-

fusion matrices of the annotators, and the true class priors, is

also evaluated for benchmarking purposes. The metric utilized

in all experiments is the classification error rate (ER), defined

as the percentage of misclassified data,

ER =
# of misclassified data

N
× 100%,

where ER = 100% indicates that all N data have been misclas-

sified, and ER = 0% indicates perfect classification accuracy.

For synthetic data, the average confusion matrix and prior prob-

ability estimation error is also evaluated

ε̄C M :=
1

M

M
∑

m=1

‖Γm − Γ̂m‖1

‖Γm‖1
=

1

M

M
∑

m=1

‖Γm − Γ̂m‖1

ε̄π := ‖π − π̂‖1 .

All results represent averages over 10 independent Monte Carlo

runs, using MATLAB [39]. In all experiments, the parameters

λ and ν of Algorithm 1 are set as suggested in [28], [35]. Verti-

cal lines in some figures indicate standard deviation. For some

experiments, classification times (in seconds) required by the

ensemble algorithms are also reported. Note that classification

times for majority voting and oracle estimators are not reported

as the time required by these methods is negligible compared to

the rest of the algorithms.

A. Synthetic Data

For the synthetic data tests, N ground-truth labels {yn}
N
n=1 ,

each corresponding to one out of K possible classes, were

generated i.i.d. at random according to π, that is yn ∼ π, for

n = 1, . . . , N . Afterwards, {Γm}M
m=1 were generated at ran-

dom, such that Γm ∈ C, for all m = 1, . . . , M , and annota-

tors are better than random, as per As2. Then annotators’ re-

sponses were generated as follows: if yn = k, then the response

of annotator m will be generated randomly according to the

k-th column of its confusion matrix, γm,k [cf. Sec. II], that is

fm (xn ) ∼ γm,k .

Table I lists the classification ER of different algorithms, for

a synthetic dataset with K = 2 classes with prior probabilities

π = [0.9003, 0.0997]�, and M = 10 annotators. Table II lists

the results for a similar experiment, with K = 2 classes, priors

TABLE II
CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR

PROBABILITIES π = [0.5856, 0.4144]� AND M = 10 ANNOTATORS

TABLE III
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 2,

PRIOR PROBABILITIES π = [0.5856, 0.4144]� AND M = 10 ANNOTATORS

π = [0.5856, 0.4144]�, and M = 10 annotators, while Table III

shows the clustering time required by all algorithms. Note that

when the class probabilities are similar, the ML and MAP clas-

sifiers perform comparably as expected. Furthermore, majority

voting gives good results for a reduced number of instances

N . Fig. 2 depicts the average estimation errors for the confu-

sion matrices and prior probabilities in the two aforementioned

experiments. Clearly, as N increases, the proposed classifiers

approach the performance of the oracle ones, and as suggested

by Theorem 1, the estimation error for the confusion matrices

and prior probabilities approaches 0.

The next synthetic data experiment investigates how the

proposed method performs when presented with multiclass

data. Furthermore, to showcase that accurate estimation of π

is beneficial, we also compare against Algorithm 2 with π

fixed to the uniform distribution, i.e., π = 1/K (denoted as

Algorithm 2 - fixed π). Fig. 3 shows the simulation results

for a synthetic dataset with K = 5 classes, prior probabili-

ties π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]�, and M =
10 annotators, while Fig. 4 shows the simulation results

for a synthetic dataset with K = 7 classes, priors π =
[0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]� and

M = 10 annotators. Tables IV and V show classification times

for the K = 5 and K = 7 experiments, respectively. Fig. 5

shows the average estimation errors for the confusion matri-

ces and prior probabilities in the two aforementioned multiclass

experiments. Note that for K = 5 for small values of N and

K = 7 the EM+Spectral approach of [22] suffers from numer-

ical issues during the tensor whitening procedure, which ex-

plains its worst classification ER and slow runtimes. Here, the

proposed approaches exhibit similar behavior to the binary case,
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Fig. 2. Average estimation errors of confusion matrices (top); and prior prob-
abilities (bottom), for two synthetic datasets with K = 2 and M = 10 annota-
tors.

Fig. 3. Classification ER for a synthetic dataset with K = 5 classes, priors
π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]� and M = 10 annotators.

Fig. 4. Classification ER for a synthetic dataset with K = 7 classes, priors
π = [0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]� and M =
10 annotators.

TABLE IV
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 5

CLASSES, PRIORS π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]� AND

M = 10 ANNOTATORS

TABLE V
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 7

CLASSES, PRIORS π = [0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043,

0.2539]� AND M = 10 ANNOTATORS

Fig. 5. Average estimation errors of confusion matrices (top); and prior prob-
abilities (bottom) for two synthetic datasets with K = 5 and K = 7 classes and
M = 10 annotators.

as expected from Theorem 1; as the number of data increases,

their performance approaches the clairvoyant “oracle” estima-

tors, and the estimation accuracy of the confusion matrices and

prior probabilities increases. In addition, our methods outper-

form the competing alternatives for almost all values of N . Here

we also see that running Algorithm 2 with fixed π = 1/K pro-

duces lower quality estimates than Algorithm 2 that solves for

π. Specifically, Algorithm 2 with fixed π performs similarly to

the EM algorithm when initialized with majority voting.
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Fig. 6. Classification ER for a synthetic dataset with K = 3 classes, priors
π = [0.2318, 0.4713, 0.2969]� and N = 106 data.

Fig. 7. Classification ER for a synthetic dataset with K = 5 classes, priors
π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]� and N = 106 data.

TABLE VI
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 3

CLASSES, PRIORS π = [0.2318, 0.4713, 0.2969]� AND N = 106 DATA

TABLE VII
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 5

CLASSES, PRIORS π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]� AND

N = 106 DATA

Next, we evaluate how the number of annotators M af-

fects the classification ER, for fixed N = 106 . Fig. 6 depicts

an experiment for K = 3 classes with priors π = [0.2318,
0.4713, 0.2969]�, while Fig. 7 shows an experiment for K =
5 classes with priors π = [0.3596, 0.1553, 0.1229, 0.3258,
0.0364]�. Tables VI and VII list classification times for the

K = 3 and K = 5 experiments, respectively. Fig. 8 plots the

results of an experiment with K = 5 classes with the same pri-

ors as those in Fig. 7 and N = 5, 000 data, for varying number

Fig. 8. Classification ER for a synthetic dataset with K = 5 classes, priors

π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]� and N = 5, 000 data.

of annotators. The average estimation error for the confusion

matrices and prior probabilities, for the aforementioned tests,

is shown in Fig. 9. As expected from Theorem 2, the classi-

fication ER decreases as the number of annotators increase,

for all methods considered. In addition, our proposed algorithm

outperforms the competing alternatives for all values of M . Fur-

thermore, the results of Fig. 8 indicate that when the number of

data is small, increasing the number of annotators provides a

boost to the classification performance. Fig. 9 shows another

interesting feature: as the number of annotators increases the

estimation accuracy of {Γm} and π also increases.

The following experiment evaluates the effectiveness of the

complexity reduction scheme of Section III-E, for a dataset

with M = 30 annotators with K = 3 classes with priors π =
[0.3096, 0.3416, 0.3488]�, and a varying number of data N . An-

notators are split into L = {1, 2, 4, 5} non-overlapping groups.

Fig. 10 shows the classifcation ER and time (in seconds) re-

quired for the ensemble classification task, for different group

sizes. When N is large we observe similar ER for all L, how-

ever larger number of groups require significantly less time than

L = 1.

In all aforementioned experiments, all annotators were gener-

ated to be better than random. The next experiment, investigates

the effect of adversarial annotators, that is annotators for who

the largest values of the confusion matrix are not located on its

diagonal. Let α denote the percentage of adversarial annotators.

Fig. 11 shows the classification ER on a synthetic dataset with

K = 3, N = 106 , π = [0.31, 0.34, 0.35]� and M = 10 anno-

tators, for varying α. While all approaches, with the exception

of majority voting, seem to be robust to a small number of ad-

versarial annotators, Algorithm 2 can handle values of α of up

to 50%, which speaks for the potential of the novel approach in

adversarial learning setups [40], [41].

B. Real Data

Further tests were conducted using real datasets. In this case,

in addition to other ensemble learning algorithms, the proposed

methods are also compared to the single best annotator, that is

the classifier that exhibited the highest accuracy. For all exper-

iments, a collection of M = 15 classification algorithms from

MATLAB’s machine learning toolbox were trained, each on a
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Fig. 9. Average estimation errors of confusion matrices (top); and prior proba-
bilities (bottom) for two synthetic datasets with K = 3 and K = 5 classes and
N = 106 data, and a synthetic dataset with K = 5 classes and N = 5, 000
data.

different randomly selected subset of the dataset. Afterwards,

the algorithms provided labels for all data in each dataset. The

classification algorithms considered were k-nearest neighbor

classifiers, for varying number of neighbors k and different

distance measures; support vector machine classifiers, utilizing

different kernels; and decision trees with varying depth. The

real datasets considered are the MNIST dataset [42], and 5 UCI

datasets [43]: the CoverType database, the PokerHand dataset,

the Connect-4 dataset, the Magic dataset and the Dota 2 dataset.

MNIST contains N = 70, 000 28 × 28 images of handwritten

digits, each belonging to one of K = 10 classes (one per digit).

For this dataset, each classification algorithm was trained on

subsets of 2,000 instances. The CoverType dataset consists of

N = 581, 012 data belonging to K = 7 classes. Each cluster

corresponds to a different forest cover type. Data are vectors

of dimension D = 54 that contain cartographic variables, such

as soil type, elevation, hillshade etc. Here, each classification

algorithm was trained on a subset of 1,000 instances. The Pok-

erHand database contains N = 106 data belonging to K = 10
classes. Each datum is a 5-card hand drawn from a deck of

52 cards, with each card being described by its rank and suit

(spades, hearts, diamonds, and clubs). Each class represents

a valid Poker hand. For this experiment the 3 most prevalent

classes are considered. Here, each classification algorithm was

trained on a subset of 10,000 instances. Connect-4 contains

N = 67, 557 vectors of size 42 × 1, each representing the pos-

sible positions in a connect-4 game. These vectors belong to

one of K = 3 classes, indicating whether the first player is in a

position to win, lose, or, tie the game. Here, each classification

algorithm was trained on a subset of 300 instances. The Magic

Fig. 10. Classification ER (top); and time (in seconds) (bottom) for a synthetic
dataset with K = 3 classes, priors π = [0.3096, 0.3416, 0.3488]� , M = 30
annotators for varying number of data N and annotator groups L.

Fig. 11. Classification ER for a synthetic dataset with K = 3 classes, priors
π = [0.31, 0.34, 0.35]�, N = 106 , M = 10 annotators and varying percent-
age of adversarial annotators α.

dataset contains N = 19, 020 data captured by ground-based

atmospheric Cherenkov gamma-ray detector. The dataset con-

tains K = 2 classes, each indicating the presence or abscence

of Gamma rays. For this dataset, each classification algorithm

was trained on subsets of 100 instances. The Dota 2 dataset

contains N = 102, 944 data, corresponding to different Dota 2

games played, between two teams of 5 players. The dataset is

split into K = 2 classes, corresponding to the team that won the

game. Each datum consists of the starting parameters of each

game, such as the game type (ranked or amateur) and which

heroes were chosen from the players. Finally, for this dataset,

each classification algorithm was trained on subsets of 5,000

instances.

Table VIII lists classification ER results for the real data

experiments. For most datasets, the proposed approaches
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TABLE VIII
CLASSIFICATION ER FOR REAL DATA EXPERIMENTS WITH M = 15

TABLE IX
CLASSIFICATION ER FOR CROWDSOURCING DATA EXPERIMENTS

outperform the competing alternatives, as well as the single-

best classifier. For the MNIST dataset the EM methods of [22]

outperform our approaches. Nevertheless, Algorithm 1 comes

very close to the performance of the EM schemes and if the con-

fusion matrix estimates {Γ̂m}M
m=1 of Algorithm 2 are refined

using EM, we also reach a classification ER of 6.23%.

C. Crowdsourcing Data

In this section, the proposed scheme of Section III-F is

evaluated on crowdsourcing data. The datasets considered are

the Adult dataset [44], the TREC dataset [45] and the Bird

dataset [46]. In most datasets, only a small set of ground-truth

labels was available, and the performance of each method was

evaluated on this set.

For the Adult dataset, annotators were tasked with classifying

N = 11, 028 websites into K = 4 different classes, using Ama-

zon’s Mechanical Turk [5]. The 4 classes correspond to different

levels of adult content of a website. To maintain reasonable com-

putational complexity, we only considered annotators that had

given labels for all 4 classes and provided labels for more than

370 websites.

For the TREC dataset, annotators from Amazon’s Mechanical

Turk [5] were tasked with classifying N = 19, 033 websites into

K = 2 classes: “relevant” or “irrelevant” to some search queries.

Again, to maintain reasonable computational complexity for our

approach, we only considered annotators that had given labels

for both classes and provided labels for more than 708 websites.

For the bird dataset, annotators from Amazon’s Mechanical

Turk were tasked with classifying N = 108 images of birds into

K = 2 classes: “Indigo Bunting” or “Blue Grosbeak”.

Table IX lists classification ER for the two crowdsourcing ex-

periments. The column “Labels” denotes the number of ground-

truth labels available. As with the previous experiments, our

approach exhibits lower classification ER than the competing

alternatives, in both multiclass and binary classification settings.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced a novel approach to blind ensemble

and crowdsourced classification that relies solely on annota-

tor responses to assess their quality and combine their an-

swers. Compact expressions of annotator moments, based on

PARAFAC tensor decompositions were derived, and a novel

moment matching scheme was developed using AO-ADMM.

The performance of the novel algorithm was evaluated on real

and synthetic data.

Several interesting research venues open up: i) Distributed

and online implementations of the proposed algorithm to facil-

itate truly large-scale ensemble classification; ii) multiclass en-

semble classification with dependent classifiers, along the lines

of [47]; iii) ensemble clustering and regression; and iv) further

investigation into the theoretical and practical implications of

adversarial annotators along with possible remedies.

APPENDIX A

ALGORITHM DERIVATION

A. ADMM Subproblem for π

Consider the following problem that is equivalent to (22)

min
π,φ

gN,π(φ) + ρCp
(π)

s.t. π = φ (28)

where φ is an auxiliary variable used to capture the smooth part

of the optimization problem, and ρCp
is an indicator function for

the constraints of (22), namely

ρCp
(u) :=

{

0 if u ∈ Cp

∞ otherwise.
(29)

The augmented Lagrangian of (28) is then

� = gN,π(φ) + ρCp
(π) +

λ

2
‖π − φ + δ‖2

2 (30)

where the K × 1 vector δ contains the scaled Lagrange multipli-

ers for subproblem (22). Per ADMM iteration, (30) is minimized

w.r.t. φ and π before performing a gradient ascent step for δ.

Specifically, the update for φ at iteration i + 1 is obtained by
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setting the gradient of � w.r.t. φ to 0, and solving for φ; that is,

(

(λ + ν)I +
M
∑

m=1

Γ
�
mΓm +

M
∑

m=1
m ′> m

K
�
m ′mKm ′m

+

M
∑

m=1
m ′> m

m ′′> m ′

(Γm ′′ � Km ′m )�(Γm ′′ � Km ′m )

)

φ[i + 1]

=

M
∑

m=1

Γ
�
m µm +

M
∑

m=1
m ′> m

K
�
m ′m smm ′ + νπ(prev)

+ λ(π[i] + δ[i]) +
∑

m=1
m ′> m

m ′′> m ′

(Γm ′′ � Km ′m )�tmm ′m ′′ , (31)

where Kmm ′ := Γm � Γm ′ . Brackets here indicate ADMM it-

eration indices. Accordingly, the update for π is given by

π[i + 1] = PCp

(

φ[i + 1] − δ[i]
)

(32)

where PCp
is the projection operator onto the convex set Cp ; that

is, φ[i + 1] − δ[i] is projected onto the probability simplex.

This projection can be performed using efficient methods [48].

Finally, a gradient ascent step is performed for δ as

δ[i + 1] = δ[i] + π[i + 1] − φ[i + 1]. (33)

Note that products of the form K
�
m ′mKm ′m = (Γm � Γm ′)�

(Γm � Γm ′) can be efficiently computed by using the fol-

lowing observation: (Γm � Γm ′)�(Γm � Γm ′) = (Γ�
mΓm ) ∗

(Γ�
m ′Γm ′), where ∗ denotes the elementwise matrix prod-

uct [11]. In addition, the products Γ
�
mΓm do not have to be

explicitly computed each time (28) is solved, as they can be

cached every time (34) is solved. As suggested in [28], the max-

imum number of ADMM iterations, I , for each subproblem can

be set to be small, e.g., I = 10.

B. ADMM Subproblem for Γm

Proceeding along similar lines with the previous subsection,

consider the following problem which is equivalent to (23)

min
Γm ,Φ

ḡN,m (Γm ,Φ)

s.t. Γm = Φ
� (34)

where Φ is an auxiliary variable used to capture the smooth part

of the optimization problem in (23), and

ḡN,m (Γm ,Φ) = gN,m (Φ�) + ρC(Γm ).

The augmented Lagrangian of (34) is then

�′ = ḡN,m (Γm ,Φ) +
λ

2
‖Γm − Φ

� + ∆m‖2
F (35)

where the K × K matrix ∆m contains the scaled Lagrange

multipliers for subproblem (23), and λ is a positive scalar. As

in the previous section, per ADMM iteration, (35) is minimized

with respect to (w.r.t.) Φ and Γm before performing a gradient

ascent step for ∆m . Specifically, the update for Φ at iteration

i + 1 is obtained by setting the gradient of �′ w.r.t. Φ to 0, and

solving for Φ. Since Sm ′m = S
�
mm ′ and Π = Π

�, it is easy to

see that the update w.r.t. Φ can be expressed as

(

(λ + ν)I + ππ� +

M
∑

m ′ 
=m

ΠΓ
�
m ′Γm ′Π

+
∑

m ′>m
m ′′> m ′

ΠK
�
m ′′m ′Km ′′m ′Π

)

Φ[i + 1]

= πµ�
m +

M
∑

m ′ 
=m

ΠΓ
�
m ′Sm ′m +

∑

m ′>m
m ′′> m ′

ΠK
�
m ′′m ′T

(1)
mm ′m ′′

+ νΓ(prev)
m

� + λ(Γm [i] + ∆m [i])�. (36)

Accordingly, the update for Γm is given by

Γm [i + 1] = PC

(

Φ
�[i + 1] − ∆m [i]

)

(37)

where PC is the projection operator onto the convex set C with

each column of Φ
�[i + 1] − ∆m [i] projected onto the proba-

bility simplex. Finally, a gradient ascent step is performed per

∆m , as follows

∆m [i + 1] = ∆m [i] + Γm [i + 1] − Φ
�[i + 1]. (38)

C. Algorithm Complexity

For the ADMM subproblems of Apps. A-A and A-B the

complexity per iteration is dominated by the matrix inversions

required in (31) and (36) respectively, that is O(K3). How-

ever, in order to instantiate the left- and right-hand sides of (31),

O(M 3K2) andO(M 3K4) operations are required respectively.

These operations have to be performed only once and cached to

be used in each iteration. The increased complexity of the right-

hand side is due to the matricized tensor times Khatri-Rao prod-

uct (MTTKRP) (Γm ′′ � Km ′m )�tmm ′m ′′ . These MTTKRPs

however, can be computed efficiently due to the Khatri-Rao

structure, and are easily parallelizable, see e.g., [49]. This brings

the overall complexity of App. A-A to O(M 3K4 + IK3), with

I denoting the number of ADMM iterations. Accordingly, the

operations required to instantiate the left- and right-hand sides

of (36) are O(M 2K2) and O(M 2K4) respectively. This brings

the total complexity of App. A-B to O(M 2K4 + IK3). As the

number of iterations for the ADMM algorithms of Apps. A-A

and A-B is set to be small the overall computational complexity

of Algorithm 1 is O(IT M 3K4), where IT is the number of

AO-ADMM iterations required until convergence.

Furthermore, the number of tensors Tmm ′m ′′ required to solve

(21) is
(

M
3

)

, while the number of matrices Smm ′ required is
(

M
2

)

,

and the number of vectors µm is M . Thus, for K classes, the

memory needed for storing all the tensors, matrices and vectors

involved is O(
(

M
3

)

K3 +
(

M
2

)

K2 + MK). Finally, computing

the cross-correlation tensors, matrices and mean vectors of an-

notators incurs a complexity of O(M 3KN) as each of the an-

notator response matrices {Fm}M
m=1 is of size K × N and has

N nonzero entries.
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APPENDIX B

PROOFS

Proof of Lemma 1: Suppose that rank(Γm ) = rank(Γm ′) =
rank(Γm ′′) = K, for some m 
= m′,m′′ and m′ 
= m′′. Then by

[11, Thm. 2] the decomposition of Ψmm ′m ′′ is essentially unique.

Invoking [36, Prop 4.10] the joint tensor decomposition of (21)

is essentially unique, meaning the solutions of (21) will be of

the form

Γ̂m = Γ
∗
mPΛm , m = 1, . . . , M, π̂ = ΛP

�π∗

where P is a permutation matrix, and {Λm}M
m=1 , Λ are di-

agonal scaling matrices such that ΛmΛm ′Λm ′′ = Λ
−1 , for

m 
= m′,m′′, m′ 
= m′′. Since {Γ̂m} and π̂ are the solutions

to (21), they must satisfy the constraints of the optimization

problem; that is Γ̂m ∈ C m = 1, . . . , M and π̂ ∈ Cp . Since

Γ
∗
m

�
1 = 1 for all m, and P

�
1 = 1, we have

Γ̂
�
m1 = 1 ⇒ ΛmP

�
Γ
∗
m

�
1 = 1 ⇒ Λm1 = 1 m = 1, . . . , M

which implies that Λm = I for m = 1, . . . , M . Since

ΛmΛm ′Λm ′′ = Λ
−1 , for m 
= m′,m′′, m′ 
= m′′, we arrive at

Λ = I. Thus, the constraints of (21) solve the possible scaling

ambiguities. Letting P̂ = P
� = P

−1 , we arrive at the statement

of the lemma. �

Proof of Theorem 1: For notational convenience, collect all

optimization variables in θ, and denote the aggregated constraint

set as C̄. Note that C̄ is a compact set, since the probability

simplex is compact and C̄ is an intersection of simplexes. Since

hN (θ) is continuous and C̄ is compact, hN (θ) is uniformly

continuous on C̄, that is, ∀ε > 0 there exists a neighborhood V
of θ̃ such that

sup
θ∈V∩C̄

|hN (θ) − hN (θ̃)| < ε/2. (39)

Due to the compactness of C̄ there exist a finite number of points

θ1 , . . . ,θL ∈ C̄, with corresponding neighborhoods V1 , . . . ,VL

that cover C̄, that is

sup
θ∈V� ∩C̄

|hN (θ) − hN (θ�)| < ε/2, for � = 1, . . . , L. (40)

Invoking the LLN, it is straightforward to show that, for suffi-

ciently large N , w.p. 1

|hN (θ�) − h∞(θ�)| < ε/2, for � = 1, . . . , L. (41)

Using the triangle inequality along with (40), and (41) we have

sup
θ∈C̄

|hN (θ) − h∞(θ)| < ε, (42)

that is, for sufficiently large N , hN converges uniformly to h∞

on C̄. Then, by [38, Thm. 5.3] we have that D(SN ,S∗) → 0 as

N → ∞. �

Proof of Theorem 2: Let L̄(x|k) = L(x|k)πk , with L(x|k)
as defined in Section III-A. Then the average probability of

error of the MAP detector can be expressed as

Pe =

K
∑

k=1

Pe,kπk (43)

where Pe,k = Pr(L̄(x|k) < L̄(x|k′), k′ 
= k|Y = k). By apply-

ing a union bound on Pe,k it is easy to show that

Pe,k ≤
∑

k ′ 
=k

Pr(L̄(x|k) < L̄(x|k′)|Y = k). (44)

Defining PL̄ (k, k′) := Pr(L̄(x|k) < L̄(x|k′)|Y = k), substi-

tuting (44) in (43) and grouping terms we have

Pe ≤

K
∑

k=1

K
∑

k ′>k

πkPL̄ (k, k′) + πk ′PL̄ (k′, k). (45)

Consider now the binary hypothesis testing problem between

classes k and k′ 
= k. The average probability of error of a MAP

detector for the binary problem is

Pe(k, k′) =
πk

πk + πk ′

PL̄ (k, k′) +
πk ′

πk + πk ′

PL̄ (k′, k). (46)

Then

πkPL̄ (k, k′) + πk ′PL̄ (k′, k)

= (πk + πk ′)Pe(k, k′) ≤ Pe(k, k′) (47)

where the inequality is due to πk + πk ′ ≤ 1. Combining (47)

with (45) yields

Pe ≤

K
∑

k=1

K
∑

k ′>k

Pe(k, k′). (48)

Therefore, we have upper bounded the average probability of

error of our M -class hypothesis testing problem by the average

error probabilities of binary hypothesis testing problems. For

the binary hypothesis testing problem between classes k and

k′ 
= k, collect all annotator responses in an M × 1 vector f̃

and define two complementary regions R and RC as

R = {f̃ : L̄(x|k) < L̄(x|k′)} (49a)

RC = {f̃ : L̄(x|k′) < L̄(x|k)}. (49b)

Upon defining π̃k,k ′ = πk

πk +πk ′
and using (49), (46) can be

rewritten as

Pe(k, k′) = Pr(̃f ∈ R|Y = k)π̃k,k ′ + Pr(̃f ∈ RC|Y = k′)π̃k ′,k

=

M
∏

m=1

Pr([f̃ ]m ∈ Rm |Y = k)π̃k,k ′

+

M
∏

m=1

Pr([f̃ ]m ∈ RC
m |Y = k′)π̃k ′,k (50)

where the second equality follows from As. 1 and Rm ,RC
m

denote the subsets of R,RC corresponding to the m-th entry of

f̃ , respectively. Now let

m∗ = arg max
m

Pr([f̃ ]m ∈ Rm |Y = k)M π̃k,k ′

+ Pr([f̃ ]m ∈ RC
m |Y = k′)M π̃k ′,k (51)
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and define

P̄e(k, k′) = Pr([f̃ ]m ∗ ∈ Rm ∗ |Y = k)M π̃k,k ′

+ Pr([f̃ ]m ∗ ∈ RC
m ∗ |Y = k′)M π̃k ′,k . (52)

Clearly Pe(k, k′) ≤ P̄e(k, k′). From standard results in detec-

tion theory (52) can be bounded as [50], [51]

P̄e(k, k′) ≤ exp(−Md(p||q)) (53)

where p := Pr([f̃ ]m ∗ ∈ Rm ∗ |Y = k), q := Pr([f̃ ]m ∗ ∈ RC
m ∗ |

Y = k′), and d(p||q) denotes the Chernoff information between

pdfs p and q. Combining (53) with (48) yields the claim of the

theorem. �
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