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Abstract—The rising interest in pattern recognition and data an-
alytics has spurred the development of innovative machine learning
algorithms and tools. However, as each algorithm has its strengths
and limitations, one is motivated to judiciously fuse multiple al-
gorithms in order to find the “best” performing one, for a given
dataset. Ensemble learning aims at such high-performance meta-
algorithm, by combining the outputs from multiple algorithms.
The present work introduces a blind scheme for learning from
ensembles of classifiers, using a moment matching method that
leverages joint tensor and matrix factorization. Blind refers to the
combiner who has no knowledge of the ground-truth labels that
each classifier has been trained on. A rigorous performance anal-
ysis is derived and the proposed scheme is evaluated on synthetic
and real datasets.

Index Terms—Ensemble learning, unsupervised, multiclass clas-
sification, crowdsourcing.

1. INTRODUCTION

HE massive amounts of generated and communicated data
has introduced society and computing to a data “deluge.”
Along with the increase in the amount of data, multiple machine
learning, signal processing and data mining algorithms have
been developed. These algorithms are usually tailored for
different datasets, and they often operate under different as-
sumptions. As such, finding an algorithm that works “well” for
a specific dataset can be prohibitively complex or impossible.
Ensemble learning refers to the task of designing a meta-
learner, by combining the results provided by multiple different
learners or annotators;' see Fig. 1. This meta-learner should
generally be able to outperform the individual learners. In
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Fig. 1. Unsupervised ensemble classification setup, where the outputs of
learners are combined in parallel.

particular, ensemble classification refers to fusing the results
provided by different classifiers. Each classifier observes data,
decides one class, out of K possible, each of these data belong
to, and provides the meta-learner with those decisions. Such
a setup emerges in diverse disciplines including medicine [1],
biology [2], team decision making and economics [3], and has
recently gained attention with the advent of crowdsourcing [4],
as well as services such as Amazon’s Mechanical Turk [5],
CrowdFlower and Clickworker, to name a few. A related setup
appears in distributed detection [6], [7], where sensors collect
data, decide which one out of K possible hypotheses is in
effect, and transmit those decisions to a fusion center, that
makes a final decision. A similar task is also known as the CEO
problem or multiterminal source coding [8].

When training data are available, a meta-learner can learn
how to combine the results from individual classifiers, based
on these ground-truth labels [9]. One such approach is boost-
ing [10], where multiple classifiers are combined according to
their probability of error on the training set. In the boosting
regime, each classifier is also using information from the rest.
In many cases however, labeled data are not available to train the
combining meta-classifier, and/or, the individual classifiers can-
not be retrained, justifying the need for unsupervised (or blind)
ensemble learning methods. One such paradigm is provided by
crowdsourcing, where people are tasked with providing classi-
fication labels. Accordingly, in a distributed detection setup, the
fusion center might not have access to the sensors, once they
have been deployed.

The present work puts forth a novel scheme for multiclass
blind ensemble classification, built upon simple concepts from
probability and detection theory, as well as recent advances in
tensor decompositions [11] and optimization theory, that enable
assessing the reliability of multiple annotators and combining
their answers. Under our proposed model, each annotator has
a fixed probability of deciding that a datum belongs to class k,
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given that the true class of the datum is &’. Assuming that anno-
tators make decisions independent of each other, the proposed
method extracts these probabilities from the first-, second-, and
third-order statistics of annotator responses. This becomes pos-
sible thanks to a joint PARAFAC decomposition, which has
been employed in a related problem of identifying conditional
probabilities to complete a joint probability functions from its
projections [12]. The crux of our algorithm is a moment match-
ing method, that leverages the aforementioned PARAFAC de-
composition approach to obtain accurate estimates of annotator
decision probabilities along with class priors. These estimates
are then provided to the meta-detector to form the final estimate
of data labels.

To assess the proposed scheme, extensive numerical tests, on
synthetic as well as real data are presented, comparing the pro-
posed approach to state-of-the-art binary and multiclass blind
ensemble classification methods. In addition, a rigorous per-
formance analysis is provided, which showcases the conditions
under which our novel method works.

The rest of the paper is organized as follows. Section II
states the problem, provides preliminaries for the proposed ap-
proach along with a brief description of the prior art in un-
supervised ensemble classification. Section III introduces the
proposed scheme for multiclass unsupervised ensemble clas-
sification, while Section IV analyses the performance of the
proposed method. Section V presents numerical tests to com-
pare our method with state-of-the-art ensemble classification
algorithms. Finally, concluding remarks and future research di-
rections are given in Section VI. Detailed derivations are del-
egated to Appendix A, while proofs of theorems, propositions
and lemmata are deferred to Appendix B.

Notation: Unless otherwise noted, lowercase bold letters, @,
denote vectors, uppercase bold letters, X, represent matrices,
and calligraphic uppercase letters, X, stand for sets. The (4, j)th
entry of matrix X is denoted by [X];;; and its rank by rank(X);
X" denotes the tranpose of matrix X; R” stands for the D-
dimensional real Euclidean space, R ; for the set of positive real
numbers, Z , for the set of positive integers, E[-] for expectation,
and || - || for the £5-norm. Underlined capital letters X denote
tensors, vec(-) denotes the vectorization operator, that stacks
columns of a matrix into a longer column vector; the vector
outer product is denoted by o, and, ® denotes the Khatri-Rao
matrix product. For a 3-mode tensor X, X (:,:,4), X(:,4,:), and
X(i,:,:) denote the i-th frontal, longitudinal and lateral slabs
of X, respectively, while X (i, j,1) denotes the iji-th element
of X.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data (possibly vectors)
{x,}N_, each belonging to one of K possible classes with
corresponding labels {y, }_,, e.g., y, = k if x,, belongs to
class k. The pairs {(x,,y,)} are drawn independently from
an unknown joint distribution D, and X and Y denote ran-
dom variables such that (X,Y) ~ D. Consider now M anno-
tators that observe {z, }'_,, and provide estimates of labels.
Let fo, (x,) € {1,..., K} denote the label assigned to datum
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x,, by the m-th annotator. All annotator responses are then col-
lected at a centralized meta-learner or fusion center. The task of
unsupervised ensemble classification is: Given only the anno-
tator responses { f, (v,,),m = 1,..., M}N_,, we wish to esti-
mate the ground-truth labels of the data {y, }; see Fig. 1.

Similar to unsupervised ensemble classification, crowd-
sourced classification seeks to estimate ground-truth labels of
the data {y, } from annotator responses { f,, (z,, ) }, with the ad-
ditional caveat that each annotator m may choose to provide
labels for only a subset IV,,, < NN of data.

A. Prior Work

Probably the simplest scheme for blind or unsupervised en-
semble classification is majority voting, where the estimated
label of a datum is the one that most annotators agree upon.
Majority voting has been used in popular ensemble schemes
such as bagging, and random forests [13]. While relatively easy
to implement, majority voting presumes that all annotators are
equally “reliable,” which is rather unrealistic, both in crowd-
sourcing as well as in ensemble learning setups. Other blind
ensemble methods aim to estimate the parameters that charac-
terize the annotators’ performance. A joint maximum likelihood
(ML) estimator of the unknown labels and these parameters has
been reported using the expectation-maximization (EM) algo-
rithm [14]. As the EM algorithm does not guarantee convergence
to the ML solution, recent works pursue alternative estimation
methods. For binary classification, [15] assumes that annotators
adhere to the “one-coin” model, meaning each annotator m pro-
vides the correct (incorrect) label with probability 6,, (1 — 6,,);
see also [16] when annotators do not label all the data, and
[17] for an iterative method. Recently, [18], [19] advocated a
spectral decomposition technique of the second-order statistics
of annotator responses for binary classification, that yields the
reliability parameters of annotators, when class probabilities are
unknown, while [20] introduced a minimax optimal algorithm
that can infer annotator reliabilities. In the multiclass setting,
[17] solves multiple binary classification problems. In addition,
[21] and [22] utilize third-order moments and orthogonal tensor
decomposition to estimate the unknown reliability parameters
and then initialize the EM algorithm of [14]. This procedure
however, can be numerically unstable, especially when the num-
ber of classes K is large, and classes are unequally populated.
Finally, all the methods mentioned in this section employ ML es-
timation, which implicitly assumes that the dataset is balanced,
meaning classes are roughly equiprobable. Another interesting
approach is presented in [23], where a joint moment matching
and maximum likelihood optimization problem is solved.

The present work puts forth a novel scheme for multiclass
blind ensemble classification, built upon simple concepts from
probability and detection theory. It relies on a joint PARAFAC
decomposition approach, which lends itself to a numerically
stable algorithm. At the same time, our novel approach takes
into account class prior probabilities to yield accurate estimates
of class labels. Compared to our conference precursor in [24],
here we do not require the prior probabilities to be known, and
we present comprehensive numerical tests, along with a rigorous
performance analysis.
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B. Canonical Polyadic Decomposition/PARAFAC

This subsection will outline tensor decompositions, which
will be used in the following sections to derive the proposed
scheme. Consider a 3-mode I x J x L tensor X, which can be
described by a matrix in 3 different ways

XM = [vec(X(1,:,2)),...,vec(X(I,:,:))]  (la)
X = [vec(X(:,1,2)),...,vec(X(:, J,2))]  (1b)
XO) = [vec(X(:,:,1)),...,vec(X (5,1, L)) (lc)

where X1 is of dimension JL x I, X(?) is IL x .J and
X ) is I.J x L. Under the Canonical Polyadic Decomposi-
tion(CPD)/Parallel Factor Analysis (PARAFAC) model [25], X
can be written as a sum of R rank one tensors (a.k.a. factors)

R
X - Z a, © br o C, (2)
r=1

where a,,b.,c, are I x1,J x1 and L x 1 vectors, re-
spectively. Letting A := [aq,...,ar],B :=[by,...,bg], and
C := ey, ..., cr] be the so-called factor matrices of the CPD
model, we write (2) compactly as

X = [[A>B’C]]R 3)

and (1) can be equivalently written as

XY =(CcoB)A" (4a)
X? = (CoA)B' (4b)
X® =BoA)CT (4¢)

where we have used the fact that for matrices A, B and a vector
c of appropriate dimensions, it holds that vec(Adiag(c)B') =
(B ® A)ec. By vectorizing X(3), it is easy to show that the vec-
torization of the entire tensor will be of the form « := vec(X) =
vec(X®)) = (C®B ® A) 1. Accordingly, vectorizing X!
or X(2) produces different vectorizations of the entire tensor,
where the order of factor matrices in the Khatri-Rao product is
permuted. Recovery of the factor matrices A, B and C, can be
done by solving the following non-convex optimization problem

[A,B,C] = argmin|| X — [[A,B,CJ|g|}. (5)
A B.,C

Similar to the matrix case, the Frobenius norm here can be

defined as || X|[|r := /> ;, X(4,7,1)%, and as (4) is just a

rearrangement of the terms in X, it holds that
I1X[r = XM e = 11X p = 1XP)]p. (6)

Typically, (5) is solved using alternating optimization (AO) or
gradient descent [11]. Multiple off-the-shelf solvers are avail-
able for PARAFAC tensor decomposition; see e.g., [26], [27].
Furthermore, depending on extra properties of X, constraints
can be enforced on the factor matrices, such as nonnegativity
and sparsity to name a few, which can be effectively handled by
popular solvers such as AO-ADMM [28]. Under certain con-
ditions, the factorization of X into A, B, and C, is essentially
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unique, or essentially identifiable, that is A, B, and C can be
expressed as

A =APA,, B=BPA,, C=CPA, (7

where P is a common permutation matrix, and A,, Ay, A, are
diagonal scaling matrices such that A, Ay A. = I[11]. For more
details regarding the PARAFAC decomposition and tensors with
more than 3 modes, interested readers are referred to the com-
prehensive tutorial in [11] and references therein.

III. UNSUPERVISED ENSEMBLE CLASSIFICATION

Each annotator in our model has a fixed probability of de-
ciding that a datum belongs to class &', when presented with a
datum of class k. Thus, each annotator m can be characterized
by a so called confusion matrix T',,,, whose (k’, k)-th entry is

[Ty lin =T (K k) =Pr(fu(X)=K|Y =k). ()

The K x K matrix I';, has non-negative entries that obey the
simplex constraint, since E?/:l Pr(fn(X)=FK|Y =k)=1,
fork =1,..., K;hence,entriesofeachT';, columnsumupto I,
that is, I‘;L 1 =1andI',, > 0. The confusion matrix showcases
the statistical behavior of an annotator, as each column provides
the annotator’s probability of deciding the correct class, when
presented with a datum from each class. Before proceeding, we
adopt the following assumptions.
Asl: Responses of different annotators per datum, are condi-
tionally independent, given the ground-truth label Y of
the same datum X ; that is,

Pr(fi(X)=ki,..., fu(X)=ku|Y =k)

M
= H Pr (fm(X) = km|Y = k)
m=1

As2: Most annotators are better than random; e.g., most have
probability of correct detection exceeding 0.5 for K =2.
Clearly, for annotators that are better than random, the largest
elements of each column of their confusion matrix will be those

on the diagonal of I',,, ; that is

[I‘m]kk > [Fm]k’k, for k/7k7 =1,..., K.

Asl suggests that annotators make decisions independently of
each other, which is rather a standard assumption [14], [19], [22].
Likewise, As2 is another standard assumption, used to allevi-
ate the inherent permutation ambiguity of the confusion matrix
estimates provided by our algorithm. Note that As2 is slightly
more relaxed than the corresponding assumption in [22], which
splits annotators into 3 groups and requires most annotators in
each group to be better than random.

A. Maximum a Posteriori Label Estimation

Given only annotator responses for all data, a straightforward
approach to estimating their ground-truth labels is through a
maximum a posteriori (MAP) classifier [29]. In particular, for
datum X the MAP classifier is

Juap(X) = argke{r}laXK}L(XVf) Pr(Y=%k) (9

.....
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where L(X|I€) = Pr (fl (X) = kl, ey f]\,[ (X) = k?M |Y:k)
is the conditional likelihood of X. As annotators make inde-
pendent decisions, it holds that L(X|k) = Hm 1 Pr(fin (X)
=k, |Y = k), and thus the MAP classifier can be rewritten as

M

argmax log m; + Z log(I'y, (k. k) (10)
kell,.. K}

Ovap (X) =
m=1
where 7, := Pr(Y = k). It is well known from detection the-
ory [29] that the MAP classifier (10) minimizes the average
probability of error P,, given by

X

Pe = Zﬂ'k Pr(?}MAP = k/ 75 k‘Y = k)
k=1

D

If all classes are equiprobable, that is 7, = 1/K for all k =

, K, then (10) reduces to the ML classifier. In order to
obtam the MAP or ML classifier, {T';, }2/_, must be avail-
able, while in the MAP classifier case 7 := [my,...,mx] " is
also required. Interestingly, the next section will illustrate that
{T,,}M_, and 7 show up in (and can thus be estimated from)
the moments of annotator responses.

B. Statistics of Annotator Responses

Consider each label represented by the annotators using the
canonical K x 1 vector ey, denoting the k-th column of the
K x K identity matrix I. Let f,, (X) denote the m-th annota-
tor’s response in vector format. Since f,,, (X) is just a vector rep-
resentation of f,, (X), it holds that Pr (f,, (X) = K|Y =k) =
Pr (f,, (X) = ep|Y = k). With ~,, . denoting the k-th column
of I,,, it thus holds that

E[m( |Y_k )_k;’|Y:k;)

Z € PI‘ fm

k'=1
12)

where the first equality comes from the definition of conditional
expectation, and the second one because e;,’s are columns of I.
Using (12) and the law of total probability, the mean vector of
responses from annotator m, is hence

ZE i (
(13)

Upon defining the diagonal matrix IT := diag(7r), the K x K
cross-correlation matrix between the responses of annotators m
and m’ # m, can be expressed as

Rom = E[ﬂn( )fT( )]

_ZE

=T, diag(w )1"

= Ym,k

X)|Y = k]Pr(Y = k) = T .

X)|Y =K E[f, (X)|Y = k] Pr (Y = k)

=T,Ir,, (14)

m’

where we successively relied on the law of total probability,
Asl, and (12). Consider now the K x K x K cross-correlation
tensor between the responses of annotators m, m’ % m and
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m” # m’, m, namely

v E[f,, (X) o £, (X

mm'm” —

It can be shown that ¥, ., obeys a CPD/PARAFAC model

[cf. Sec. II-B] with factor matrices I';,,, I',,,» and T, »; that is,

gmm’m” = E TEkYm .,k ©Ym' k © Ym" k
k=1

= HFmH7F7n’7Fm”]]K (]6)

Note here that the diagonal matrix IT can multiply any of the
factor matrices I, , I',,/, or, T, .

WithF,,, := [f, (1), £, (22), ..., £, (x5 )] the sample mean
of the m-th annotator responses can be readily obtained as

Hpm = N Z f 5577 = le (17)

n=1
Accordingly, the K x K sample cross-correlation S,,,,,,» matri-
ces between the responses of annotators m and m’ # m, are
given by

m m’ =

1
me mn m’ -7371) = NFm Fm/ (18)

nl

Loy 11

Lastly, the sample K x K x K cross-correlation tensors 7', ., /..,
between the responses of annotators m,m’' # m and m” #
m, m’ are

N

Z

wn o fm SC") o fm”(mn)

mm 'm" —

= NFm O Fm/ ) qu (19)

Clearly’ Smm’ - Sm 'm > TE??/)'ITHILN = T£7z>m " Tir}Zn’m”‘ In
addition, as N increases, the law of large numbers (LLN) implies
that, {tt,, }, {Sim'}, and {T,,,,,,,,,»} approach their ensemble
counterparts in (13), (14), and (15).

Having available first-, second-, and third-order statistics of
annotator responses, namely {g,, }2_,, {S,,,/ 1M . _,, and
(T 3|, estimates of {T',,})/_; and 7 can be
readily extracted from them [cf. (13), (14), (15)]. This procedure
corresponds to the method-of-moments estimation [30]. Upon
obtaining {T',, }"_, and #, the MAP classifier of Section III-A
can be subsequently employed to estimate the label for each
datum. That is, forn =1,..., N,

M

Imap (T,) = ar{g max} log 7y, + Z logf‘ (fn (x), k)
ke{l,...,K m—1
(20)
where Fm(k k)= [ m ik, and 7t = [7];. The following

section provides an algorithm to estimate these unknown
quantities.

C. Confusion Matrix and Prior Probability Estimation

To estimate the unknown confusion matrices and prior
probabilities consider the following non-convex constrained
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optimization problem, where

Z ”Hm =T

m=1

1 M
+ 5 Z ||Smm’

m'>m

+ 5 E ||Imm’m” -

m= 1
m > m
m!”>m!

mﬂ'”;

hy ({T }, 7

- T, Ir, %

[I‘m H, r,, Fm”HK ”%‘

and the subscript N in hy denotes the number of data used
to obtain annotator statistics. Collect the set of constraints per
matrix to the convex setC := {I' € RE*X : T >0,T'"1 =1},
where essentially each column lies on a probability simplex, and
let C, :={u€RX :u>0,u"1=1} denote the constraint
set for 7.

As (21) is a non-convex problem, alternating optimiza-
tion will be employed to solve it. Specifically the alternating
optimization-alternating direction method of multipliers (AO-
ADMM) will be employed; see [28], and also [12] where a sim-
ilar formulation appears. Under the AO-ADMM paradigm, h
is minimized per block of unknown variables {T",,, } or 7 while
the other blocks remain fixed, as in block coordinate descent
schemes. Solving for one block of variables with the remain-
ing fixed is a convex constrained optimization problem under
convex C and C, constraint sets. These optimization problems
are pretty standard and several solvers are available, includ-
ing proximal splitting methods, projected gradient descent or
ADMM [31]-[34]. Here, the solver of choice for each block of
variables will be ADMM.

The update for 7 involves minimizing hy with {T',, }*

m 1

fixed. Specifically, the following problem is solved

min gy () (22)

meCy,
where

v prev
gV (7 Z it = T} + 5 e — w0
m=1
+ Z ||Smm Fm @ I‘m)ﬂ'”Q

m=1
m’'>m

1M

m/>m
m’>m!

||tmm’m” - (I‘m” O] I‘\m’ O] F'rn)ﬂ-Hg

Smm! = VeC(Smm’)’ tmimr = VeC(Tssznme) [cf. (4)]5 v is
a positive scalar, and we have used vec(T',, diag(w)T,} ) =
(T, o, and vec([[T,, diag(m), Ty, D)) =
(T,,» T, © T, ). Note that gV ﬂ contains all of the terms
in hy along with (v/2)||w — 7w(®™¥)||3, which is included to

ensure convergence of the AO-ADMM iterations to a stationary
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Algorithm 1: Confusion Matrix and Prior Probability Esti-
mation Algorithm.

Input: Annotator responses {F,, }}_ /X >0, v > 0;
maximum number of iterations [ € Z
Output: Estimates of {I',, }}_, and #

1‘ ComPUte {l’l‘fﬂ} {Smm } {Imm 'm ”} USIHg (17) (18)

and (19).
2: Initialize {T',, } and 7 randomly.
3: do
4. form=1,...,M do
5: Update T';,, using (23)
6: I‘grlz)rew — T,
7:  end for
8:  Update 7 using (22)
9:  glperey) g

10: i+—1+1
11: while not converged and ¢ < I

12: Find permutation matrix P, such that the majority of
(I, PYM_ satisfy As2.

point of (21) [28], [35]. Here, 7(Prev) denotes the estimate of
7 obtained by the previous solutions of (22).

Accordingly per I, , the following subproblem is solved with
{I‘,,L/}f‘,'f,#m and 7 fixed

Inuélc gN,m (Fm) (23)
where
1 2 (prev) 2
gnm (L) = §||,“m =Tyl + HI‘m - I 7
1 M
+ 5 Z ||Sm’m *I‘m/HI‘;”%
m'#m

(rm” © Fm’)HI‘; ||2F

1 M
1
+ 5 Z ||T7(n')m’m” -

m'>m
m U> m !

T 0 = vee(T(1,1,2), ... vee(T(K, 1)), T de-
notes the estimate of I',, obtained by the previous solution
of (23), v is a positive scalar, and we have used (6). Here, g .,
contains all the terms of N that involve I',,, with the additional
term (v/2)||T,, — D%V ||2., which ensures convergence of the
AO-ADMM iterations.

Detailed derivations of the ADMM iterations for solving (23)
and (22) are provided in Appendix A, while the AO-ADMM is
summarized in Algorithm 1. The computational complexity of
the entire AO-ADMM scheme is approximately O(Ip M3 K*),
where I is the number of required iterations until convergence
(see Appendix C). The entire unsupervised ensemble classifica-
tion procedure is listed in Algorithm 2.
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Algorithm 2: Unsupervised Multiclass Ensemble Classifi-
cation.
Input: Annotator responses {F,, }M_,
Output: Estimates of data labels {g, }/\_,
1: Find estimates {T",, }2_, and # using Algorithm 1
2: forn=1,...,N do
3:  Estimate label y,, using (20).
4: end for

D. Convergence and Identifiability

Convergence of the entire AO-ADMM scheme for (21), fol-
lows readily from results in [28, Prop. 1], stated next for our
setup.

Proposition 1: [28, Prop. 1] Algorithm 1 for M > 3, and
v > (0 converges to a stationary point of (21).

Having established the convergence of Algorithm 1 to a sta-
tionary point of (21) using Prop. 1, the suitability of the esti-
mates provided by Algorithm 1 for the ensemble classification
task needs to be assessed. As (21) involves joint tensor de-
compositions, under certain conditions the solutions {f‘m j
of (21) will be, similar to the PARAFAC decomposition of
Section II-B, essentially unique. Thus, in order to assess the
suitability of the estimates provided by Algorithm 1 the con-
ditions under which the model employed in (21) is identifiable
have to be established. Luckily, identifiability claims for the
present problem can be easily derived from recent results in
joint PARAFAC factorization [12], [36].

Lemma 1: Let {T'},}, * be the optimal solutions of (21),
and {I',, }, 7 the estimates provided by Algorithm 1. If at least
three {T",, }m 1 have full column rank, there exists a permuta-
tion matrix P such that

r,P=I;, m=1,....M, P'a=n"

Lemma 1 essentially requires that at least three annotators
respond differently to different classes, that is no two columns
of at least three confusion matrices are colinear. Possibly more
relaxed identifiability conditions could be derived using tech-
niques mentioned in [36]. Unlike the tensor decomposition men-
tioned in Section II-B, here we have no scaling ambiguity on
the confusion matrices or prior probabilities. This is important
because there are infinite scalings, but finite permutation ma-
trices since K is finite. Under As2, P can be easily obtained
since the largest elements of each column of a confusion matrix
must lie on the diagonal for the majority of annotators. Each
I',, can be multiplied by a permutation matrix P,,, such that
the largest elements are located on the diagonal. The final P can
be derived as the most commonly occurring permutation matrix
out of {P,, }M_,

Remark 1: While we relied on statistics of annotator re-
sponses up to order three, higher-order statistics can also be
employed. Higher-order moments however, will increase the
complexity of the algorithm, as well as the number of data re-
quired to obtain reliable (low-variance) estimates.
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Remark 2: Estimates of annotator confusion matrices {f‘m }
and data labels {g, }, provided by Algorithm 2, can be used to
initialize the EM algorithm of [14].

Remark 3: The orthogonal tensor decomposition used by
[21], [22] is a special case of the PARAFAC decomposition
employed in this work.

Remark 4: When 7 is known, (22) can be skipped, and cor-
respondingly steps 8 and 9 of Algorithm 1.

E. Reducing Complexity

When K and M are large Algorithm 1 may require long
computational time to converge. Our idea in this case is to split
the annotators into L groups, and solve (21) for each group. For
simplicity of exposition, consider non-overlapping groups, each
with M, > 3 annotators (Z/’L:1 M, = M). Let us,?,S,(o , and

mm
L

IEnZn m,, denote the sample statistics for annotators in group #,

and {I‘m }U‘

1 the confusion matrices in group £.

. . £ (0) M,
, L} confusion matrices {1"5,,,) ye

are estimated by solving a smaller

For each group (€ {1, . ..
and prior probabilities 7r(*)
version of (21), namely

m(H)l R (TP =)
LM
st. TV >0, 1’0 =1" m=1,...,M,
x>0, 1770 =1 (24)
where

M,

({Fm} Z H/’l’m Fmﬂ'”%
M,

+ 5 Z ||Smm F HFT HF

m= 1

m!'>m

| XM
p
+§ Z ||I£n>m’m” - [

m=1
m'>m
m>m’

[FmH, T, Fm”]]KH%'

Upon solving (24) for all L groups, estimates of {T',, }}/_,
are readily obtained, since we have assumed non-overlapping
groups. A final estimate of the prior probabilities 7v can be
obtained by averaging the L estimates {m’}}_|

As (24) incurs a complexity of O(IM} K?), the worst-case
complexity of this approach is O(I; K ZLI M}), where I
is the largest number of iterations required to converge among
all L groups. Since M?* = (337_, My)? > S1_, M} this ap-
proach reduces the computational and memory overhead signifi-
cantly compared to Algorithm 1. Note however, that this method
is expected to perform well when Asl and As2, as well as the
conditions outlined in Lemma 1 are satisfied for all L groups of
annotators, and NV is sufficiently large. The effectiveness of this
complexity reduction scheme is tested in Section V.
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E. Application to Crowdsourcing

While crowdsourced classification is a task related to ensem-
ble classification, it presents additional challenges. So far it has
been implicitly assumed that all annotators provide labels for
all {x,, }_, . In the crowdsourcing setup however, an annotator
m could provide labels just for a subset of N,,, < NN data.

Next, we outline a computationally attractive approach, that
takes into account only the available annotator responses. If an
annotator m does not provide a label for a datum, his/her re-
sponse s f,, () = Oorf,, (z) = Oin vector format. Let J,,, (x,,)
be an indicator function that takes the value 1 when annotator
m provides a label for x,,, and 0 when f,, (z,,) = 0. To account
for such cases, the annotator sample statistics become

N
1
Pm = =N 5, Jm (xn)fm (.13") (253)
S )
N T
S, = St Tl (0 ) @), () (25b)
anl Jm (zn)t]m’(zn)
T

_ Zn Jm (xn )Jm’ (l'n, )Jm ”(xn)fm (:13»,7,) °© fml ($n) ° fm” (wn)
ZJ: 1 Im (JU" )Jm( (x” )Jm// (l’n )

(25¢)

Upon computing the modified sample statistics of (25), we
can obtain estimates of the confusion matrices and prior prob-
abilities in the crowdsourcing setup, via Algorithm 1. Finally,
the MAP classifier in (20) has to be modified as follows

M

QMAP (l’) = argmax log ﬁ_k + § Jm (JL‘) IOg fm (fm (1’), k)
ke{l,...,K}
(26)

to take into account only the available annotator responses for
each z.

Having completed the algorithmic aspects of our approach,
we proceed with performance analysis.

m=1

IV. PERFORMANCE ANALYSIS

In this section, performance of the proposed method will be
quantified analytically. First, the consistency of the estimates
provided by Algorithm 1 as N — oo will be established,
followed by a performance analysis for the MAP classifier of
Section III-A.

A. Consistency of Algorithm 1 Estimates

As N — oo, the sample statistics in (17), (18), and (19) ap-
proach their ensemble counterparts, and we end up with the
following optimization problem for extracting annotator confu-
sion matrices and prior probabilities

min hoc({rm }%:1 ) 7T)

M
Tm )M

st. Ty, eC, m=1,...,.M, weC(,. 27

Clearly, the optimal solutions to (27) are the true confu-
sion matrices and prior probabilities. As N increases, it is
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desirable to show that the solutions obtained from Algorithm 1
converge to the true confusion matrices and prior probabili-
ties. To this end, techniques from statistical learning theory and
stochastic optimization will be employed [37], [38]. Specif-
ically, we will establish the uniform convergence of hy to
heo, wWhich implies the consistency of the solutions. Define
the distance between two sets A, B C R, for some g > 0, as
D(A, B) = sup, 4{inf,cp ||z — yl|2}. The following theorem
shows that as IV increases, the solutions of (21) approach those
of (27).

Theorem 1: If S, and Sy denote the sets of solutions of
problems (27) and (21), respectively, then D(Sy,S.) — 0, as
N — oo almost surely.

Under As2 and the conditions outlined in Lemma 1,
Algorithm 1 can recover the true solutions of (21) or (27). Then,
by Theorem 1 we know that as N — oo the solutions of (21)
converge to the solutions of (27), which together with the result
of Lemma 1 implies the statistical consistency of the solutions
of Algorithm 1. As a result, the estimates {I',, }/_,, and #
from Algorithm 1 will converge to their true values w.p. 1 as
N — oo0.

B. MAP Classifier Performance

With consistency of the confusion matrix and prior probability
estimates established, the performance of the final component
of the proposed algorithm has to be studied. The behavior of the
MAP classifier of Section III-A can be quantified in terms of its
average probability of error

.
P. = ZPr(g)MAp =K #k|Y =k)Pr(Y =k)
k=1

Here, a well-known asymptotic result for distributed binary de-
tection under the MAP detector [6] is extended to the multiclass
case.

Theorem 2: Under Asl, and given {T',, }}/_, and mr, there
exist constants « > 0,3 > 0 such that the MAP classifier of
Section III-A satisfies

P. < ae M,

In words, Theorem 2 suggests that when accurate estimates
of {T',, }M_, and m are available, the error rate decreases at an
exponential rate with the number of annotators M.

In order to validate our theoretical results and evaluate the per-
formance of the proposed scheme, the following section presents
numerical tests with synthetic and real data.

V. NUMERICAL TESTS

For K > 2, Algorithm 2, using both MAP and ML criteria in
step 3, (denoted as Algorithm 2 MAP and Algorithm 2 ML re-
spectively) is compared to majority voting, the algorithm of [17]
(denoted as KOS), and the EM algorithm initialized both with
majority voting and with the spectral method of [22] (denoted
as EM + MV and EM + Spectral, respectively). For K = 2,
Algorithm 2 is also compared to the binary ensemble learn-
ing methods of [19], [20] and [16], denoted as SML, TE and
EigenRatio, respectively. For synthetic data, the performance of
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TABLE I
CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR
PROBABILITIES 7 = [0.9003,0.0997] 7 AND M = 10 ANNOTATORS
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TABLE II
CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR
PROBABILITIES 7 = [0.5856,0.4144] T AND M = 10 ANNOTATORS

“oracle” estimators, that is MAP/ML classifiers with true con-
fusion matrices of the annotators, and the true class priors, is
also evaluated for benchmarking purposes. The metric utilized
in all experiments is the classification error rate (ER), defined
as the percentage of misclassified data,

# of misclassified data
N

where ER = 100% indicates that all N data have been misclas-
sified, and FR = 0% indicates perfect classification accuracy.
For synthetic data, the average confusion matrix and prior prob-
ability estimation error is also evaluated

M o M
1 I — Tt 1 .
=y En = — N, - Ty,
M~ T M I b

"L”l m=1

ER = x 100%,

oM =

En = || — 7.

All results represent averages over 10 independent Monte Carlo
runs, using MATLAB [39]. In all experiments, the parameters
A and v of Algorithm 1 are set as suggested in [28], [35]. Verti-
cal lines in some figures indicate standard deviation. For some
experiments, classification times (in seconds) required by the
ensemble algorithms are also reported. Note that classification
times for majority voting and oracle estimators are not reported
as the time required by these methods is negligible compared to
the rest of the algorithms.

A. Synthetic Data

For the synthetic data tests, N ground-truth labels {y, }2_,
each corresponding to one out of K possible classes, were
generated i.i.d. at random according to 7, that is y,, ~ 7, for
n=1,...,N. Afterwards, {T',, }}/_, were generated at ran-
dom, such that "), € C, for all m =1,..., M, and annota-
tors are better than random, as per As2. Then annotators’ re-
sponses were generated as follows: if y,, = k, then the response
of annotator m will be generated randomly according to the
k-th column of its confusion matrix, ~y,, ; [cf. Sec. II], that is
f’m (xn) ~ Ym k-

Table I lists the classification ER of different algorithms, for
a synthetic dataset with K = 2 classes with prior probabilities
m = [0.9003,0.0997] ", and M = 10 annotators. Table II lists
the results for a similar experiment, with K = 2 classes, priors

Algorithm N =100 | N=1000 | N=10% | N =10 Algorithm N=100 | N=1000 | N=10% [ N =10°

Majority Voting 6.3 7.08 7.04 7.13 Majority Voting 8.10 8.27 8.27 8.19
KOS 27.70 33.33 32.21 32.53 KOS 8.30 6.46 6.65 6.58
EigenRatio 6.30 5.75 5.69 5.64 EigenRatio 7.40 6.35 6.39 6.21
TE 4.20 4.91 4.61 4.67 TE 10.20 6.04 6.35 6.20
SML 15.80 11.38 11.82 12.26 SML 13.10 8.47 4.66 4.61

EM + MV 21.2 27.67 26.50 27.01 EM + MV 6.60 5.15 4.93 4.87
EM + Spectral 17.7 27.72 26.50 27.01 EM + Spectral 6.60 5.15 4.93 4.87
Alg. 2 ML 6.30 2.70 1.97 1.87 Alg. 2 ML 6.50 4.86 4.66 4.61
Alg. 2 MAP 2.40 1.40 1.13 1.11 Alg. 2 MAP 6.20 4.85 4.59 4.51
Oracle ML 1.6 2.05 1.81 1.86 Oracle ML 4.10 4.86 4.66 4.61
Oracle MAP 1.1 1.31 1.11 1.11 Oracle MAP 3.90 4.81 4.58 4.50

TABLE III

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 2,
PRIOR PROBABILITIES 7r = [0.5856,0.4144] T AND M = 10 ANNOTATORS

Algorithm N=100 | N=1000 | N=10% | N =10°
KOS 0.013 0.004 0.005 0.05
EigenRatio 0.003 0.002 0.005 0.03
TE 0.003 0.001 0.012 0.10
SML 0.04 0.09 0.76 11.98
EM + MV 0.01 0.02 0.12 1.47
EM + Spectral 1.48 1.55 1.58 3.00
Alg. 2 1.82 2.32 2.05 3.01

m = [0.5856,0.4144] ", and M = 10 annotators, while Table III
shows the clustering time required by all algorithms. Note that
when the class probabilities are similar, the ML and MAP clas-
sifiers perform comparably as expected. Furthermore, majority
voting gives good results for a reduced number of instances
N. Fig. 2 depicts the average estimation errors for the confu-
sion matrices and prior probabilities in the two aforementioned
experiments. Clearly, as N increases, the proposed classifiers
approach the performance of the oracle ones, and as suggested
by Theorem 1, the estimation error for the confusion matrices
and prior probabilities approaches 0.

The next synthetic data experiment investigates how the
proposed method performs when presented with multiclass
data. Furthermore, to showcase that accurate estimation of 7
is beneficial, we also compare against Algorithm 2 with 7
fixed to the uniform distribution, i.e., # = 1/K (denoted as
Algorithm 2 - fixed ). Fig. 3 shows the simulation results
for a synthetic dataset with K = 5 classes, prior probabili-
ties 7 = [0.2404,0.2679,0.0731,0.1950,0.2236] ", and M =
10 annotators, while Fig. 4 shows the simulation results
for a synthetic dataset with K =7 classes, priors 7 =
[0.2347,0.0230, 0.0705,0.1477,0.2659, 0.0043, 0.2539] " and
M = 10 annotators. Tables IV and V show classification times
for the K =5 and K =7 experiments, respectively. Fig. 5
shows the average estimation errors for the confusion matri-
ces and prior probabilities in the two aforementioned multiclass
experiments. Note that for K = 5 for small values of N and
K = 7 the EM+Spectral approach of [22] suffers from numer-
ical issues during the tensor whitening procedure, which ex-
plains its worst classification ER and slow runtimes. Here, the
proposed approaches exhibit similar behavior to the binary case,
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Fig. 2. Average estimation errors of confusion matrices (top); and prior prob-

abilities (bottom), for two synthetic datasets with X' = 2 and M = 10 annota-
tors.

80
<=Alg. 2 MAP
7 =Alg. 2 ML
2 <Alg. 2 fixed w
o 60 Majority Vote
Lg ~KOS
S0 ~EM - MV
s R, X A EM - Spectral-----
% <©-Oracle MAP
240" +Oracle ML
(&)
10° 10* 10° 10°

N

Fig. 3. Classification ER for a synthetic dataset with K = 5 classes, priors
7 = [0.2404,0.2679,0.0731,0.1950,0.2236] " and M = 10 annotators.
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Fig. 4. Classification ER for a synthetic dataset with X' = 7 classes, priors
7 = [0.2347,0.0230,0.0705,0.1477,0.2659,0.0043,0.2539] " and M =
10 annotators.
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TABLE IV
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 5
CLASSES, PRIORS 7v = [0.2404,0.2679,0.0731,0.1950, 0.2236]T AND
M = 10 ANNOTATORS

Algorithm N=1000 | N=10" | N=10° | N = 10°
KOS 0.016 0.02 0.17 2.03
EM + MV 0.04 0.27 3.43 37.27
EM + Spectral 119.35 124.94 119.35 160.54
Alg. 2 28.27 40.23 36.08 4717
Alg. 2 fixed 7 13.34 6.23 6.11 18.16
TABLE V

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 7
CLASSES, PRIORS 7 = [0.2347,0.0230,0.0705,0.1477,0.2659, 0.0043,
0.2539]" AND M = 10 ANNOTATORS

Algorithm N=1000 | N=10% | N=10° | N = 10°
KOS 0.017 0.025 0.23 2.83
EM + MV 0.05 0.30 4.80 48.87
EM + Spectral 619.61 616.47 621.30 676.95
Alg. 2 46.19 52.66 54.50 69.99
Alg. 2 fixed 7 34.94 38.88 39.11 40.17
1
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Fig.5. Average estimation errors of confusion matrices (top); and prior prob-

abilities (bottom) for two synthetic datasets with X' = 5 and K = 7 classes and
M = 10 annotators.

as expected from Theorem 1; as the number of data increases,
their performance approaches the clairvoyant “oracle” estima-
tors, and the estimation accuracy of the confusion matrices and
prior probabilities increases. In addition, our methods outper-
form the competing alternatives for almost all values of /V. Here
we also see that running Algorithm 2 with fixed = = 1/K pro-
duces lower quality estimates than Algorithm 2 that solves for
7. Specifically, Algorithm 2 with fixed 7 performs similarly to
the EM algorithm when initialized with majority voting.
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Fig. 6. Classification ER for a synthetic dataset with K = 3 classes, priors
7 =[0.2318,0.4713,0.2969] " and N = 10° data.
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Fig. 7. Classification ER for a synthetic dataset with K = 5 classes, priors
7 = [0.3596,0.1553,0.1229, 0.3258,0.0364] " and N = 105 data.

TABLE VI
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 3
CLASSES, PRIORS 7 = [0.2318,0.4713,0.2969] " AND N = 105 DaTA

Algorithm M=5| M=10 | M =20 | M =30
KOS 0.44 0.96 4.13 5.29
EM + MV 11.48 21.67 41.88 62.19
EM + Spectral 21.92 32.77 53.88 75.24
Alg. 2 4.85 15.43 83.73 271.71
TABLE VII

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH K = 5
CLASSES, PRIORS 7 = [0.3596, 0.1553,0.1229, 0.3258, ().0364]T AND

N = 10 DATA
Algorithm M=5| M=10 | M=20 | M =30
KOS 0.85 1.90 8.99 11.11
EM + MV 18.47 34.68 67.14 99.82
EM + Spectral | 136.30 153.35 186.99 221.50
Alg. 2 12.92 28.89 150.33 471.22

Next, we evaluate how the number of annotators M af-
fects the classification ER, for fixed N = 10°. Fig. 6 depicts
an experiment for K = 3 classes with priors 7 = [0.2318,
0.4713, 0.2969]T, while Fig. 7 shows an experiment for K =
5 classes with priors 7 = [0.3596,0.1553,0.1229, 0.3258,
0.0364] ". Tables VI and VII list classification times for the
K =3 and K = 5 experiments, respectively. Fig. 8 plots the
results of an experiment with K = 5 classes with the same pri-
ors as those in Fig. 7 and N = 5, 000 data, for varying number
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Fig. 8. Classification ER for a synthetic dataset with K = 5 classes, priors
7 = [0.3596,0.1553,0.1229, 0.3258, (].()364]T and N = 5,000 data.

of annotators. The average estimation error for the confusion
matrices and prior probabilities, for the aforementioned tests,
is shown in Fig. 9. As expected from Theorem 2, the classi-
fication ER decreases as the number of annotators increase,
for all methods considered. In addition, our proposed algorithm
outperforms the competing alternatives for all values of M. Fur-
thermore, the results of Fig. 8 indicate that when the number of
data is small, increasing the number of annotators provides a
boost to the classification performance. Fig. 9 shows another
interesting feature: as the number of annotators increases the
estimation accuracy of {I'y, } and 7 also increases.

The following experiment evaluates the effectiveness of the
complexity reduction scheme of Section III-E, for a dataset
with M = 30 annotators with K = 3 classes with priors 7w =
[0.3096,0.3416, 0.3488] ", and a varying number of data N. An-
notators are split into L = {1, 2,4, 5} non-overlapping groups.
Fig. 10 shows the classifcation ER and time (in seconds) re-
quired for the ensemble classification task, for different group
sizes. When N is large we observe similar ER for all L, how-
ever larger number of groups require significantly less time than
L=1.

In all aforementioned experiments, all annotators were gener-
ated to be better than random. The next experiment, investigates
the effect of adversarial annotators, that is annotators for who
the largest values of the confusion matrix are not located on its
diagonal. Let o denote the percentage of adversarial annotators.
Fig. 11 shows the classification ER on a synthetic dataset with
K =3, N=10% 7 =[0.31,0.34,0.35] " and M = 10 anno-
tators, for varying «v. While all approaches, with the exception
of majority voting, seem to be robust to a small number of ad-
versarial annotators, Algorithm 2 can handle values of « of up
to 50%, which speaks for the potential of the novel approach in
adversarial learning setups [40], [41].

B. Real Data

Further tests were conducted using real datasets. In this case,
in addition to other ensemble learning algorithms, the proposed
methods are also compared to the single best annotator, that is
the classifier that exhibited the highest accuracy. For all exper-
iments, a collection of M = 15 classification algorithms from
MATLAB’s machine learning toolbox were trained, each on a
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N = 10% data, and a synthetic dataset with X' = 5 classes and N = 5,000
data.

different randomly selected subset of the dataset. Afterwards,
the algorithms provided labels for all data in each dataset. The
classification algorithms considered were k-nearest neighbor
classifiers, for varying number of neighbors k and different
distance measures; support vector machine classifiers, utilizing
different kernels; and decision trees with varying depth. The
real datasets considered are the MNIST dataset [42], and 5 UCI
datasets [43]: the CoverType database, the PokerHand dataset,
the Connect-4 dataset, the Magic dataset and the Dota 2 dataset.
MNIST contains N = 70,000 28 x 28 images of handwritten
digits, each belonging to one of K = 10 classes (one per digit).
For this dataset, each classification algorithm was trained on
subsets of 2,000 instances. The CoverType dataset consists of
N = 581,012 data belonging to K = 7 classes. Each cluster
corresponds to a different forest cover type. Data are vectors
of dimension D = 54 that contain cartographic variables, such
as soil type, elevation, hillshade etc. Here, each classification
algorithm was trained on a subset of 1,000 instances. The Pok-
erHand database contains N = 10° data belonging to K = 10
classes. Each datum is a 5-card hand drawn from a deck of
52 cards, with each card being described by its rank and suit
(spades, hearts, diamonds, and clubs). Each class represents
a valid Poker hand. For this experiment the 3 most prevalent
classes are considered. Here, each classification algorithm was
trained on a subset of 10,000 instances. Connect-4 contains
N = 67,557 vectors of size 42 x 1, each representing the pos-
sible positions in a connect-4 game. These vectors belong to
one of K = 3 classes, indicating whether the first player is in a
position to win, lose, or, tie the game. Here, each classification
algorithm was trained on a subset of 300 instances. The Magic
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Fig. 11.  Classification ER for a synthetic dataset with K = 3 classes, priors

7 =1[0.31,0.34,0.35] T, N = 105, M = 10 annotators and varying percent-
age of adversarial annotators a.

dataset contains N = 19,020 data captured by ground-based
atmospheric Cherenkov gamma-ray detector. The dataset con-
tains K = 2 classes, each indicating the presence or abscence
of Gamma rays. For this dataset, each classification algorithm
was trained on subsets of 100 instances. The Dota 2 dataset
contains N = 102,944 data, corresponding to different Dota 2
games played, between two teams of 5 players. The dataset is
splitinto K = 2 classes, corresponding to the team that won the
game. Each datum consists of the starting parameters of each
game, such as the game type (ranked or amateur) and which
heroes were chosen from the players. Finally, for this dataset,
each classification algorithm was trained on subsets of 5,000
instances.

Table VIII lists classification ER results for the real data
experiments. For most datasets, the proposed approaches
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TABLE VIII
CLASSIFICATION ER FOR REAL DATA EXPERIMENTS WITH M = 15

Dataset | K || Single best MV EigenRatio | TE ‘ SML | KOS | EM + MV | EM + Spectral | Alg. 2 MAP [ Alg. 2 ML
MNIST 10 7.29 7.0986 - - - 9.84 6.23 6.23 6.3986 6.3843
CoverType 7 29.89 28.642 - - - 31.13 58.68 95.62 28.574 28.913
PokerHand 3 41.95 43.365 - - - 49.62 53.62 78.38 39.436 39.339
Connect-4 3 29.17 31.636 - - - 32.33 44.27 61.20 26.176 26.86
Magic 2 21.32 21.73 26.25 26.28 21.27 21.29 21.17 21.14 20.77 20.98
Dota 2 2 41.27 42.174 45.55 45.75 40.568 40.59 40.80 59.19 40.497 40.549

TABLE IX
CLASSIFICATION ER FOR CROWDSOURCING DATA EXPERIMENTS

Dataset N | K | M | Labels || MV EigenRatio | TE | SML ‘ KOS | EM + MV [ EM + Spectral | Alg. 2 MAP | Alg. 2 ML
Adult 11,028 4 38 347 36.023 - - - 80.98 40.63 38.90 33.429 34.87
TREC 19,033 2 23 | 2,275 50.002 43.34 48.97 | 48.44 | 54.68 56.04 40.62 37.846 39.824
Bird 108 2 39 108 24.07 27.78 17.59 11.11 11.11 11.11 10.19 10.19 10.19

outperform the competing alternatives, as well as the single-
best classifier. For the MNIST dataset the EM methods of [22]
outperform our approaches. Nevertheless, Algorithm 1 comes
very close to the performance of the EM schemes and if the con-
fusion matrix estimates {T',, }2’_, of Algorithm 2 are refined
using EM, we also reach a classification ER of 6.23%.

C. Crowdsourcing Data

In this section, the proposed scheme of Section III-F is
evaluated on crowdsourcing data. The datasets considered are
the Adult dataset [44], the TREC dataset [45] and the Bird
dataset [46]. In most datasets, only a small set of ground-truth
labels was available, and the performance of each method was
evaluated on this set.

For the Adult dataset, annotators were tasked with classifying
N = 11,028 websites into ' = 4 different classes, using Ama-
zon’s Mechanical Turk [5]. The 4 classes correspond to different
levels of adult content of a website. To maintain reasonable com-
putational complexity, we only considered annotators that had
given labels for all 4 classes and provided labels for more than
370 websites.

For the TREC dataset, annotators from Amazon’s Mechanical
Turk [5] were tasked with classifying N = 19, 033 websites into
K = 2classes: “relevant” or “irrelevant” to some search queries.
Again, to maintain reasonable computational complexity for our
approach, we only considered annotators that had given labels
for both classes and provided labels for more than 708 websites.

For the bird dataset, annotators from Amazon’s Mechanical

tor responses to assess their quality and combine their an-
swers. Compact expressions of annotator moments, based on
PARAFAC tensor decompositions were derived, and a novel
moment matching scheme was developed using AO-ADMM.
The performance of the novel algorithm was evaluated on real
and synthetic data.

Several interesting research venues open up: i) Distributed
and online implementations of the proposed algorithm to facil-
itate truly large-scale ensemble classification; ii) multiclass en-
semble classification with dependent classifiers, along the lines
of [47]; iii) ensemble clustering and regression; and iv) further
investigation into the theoretical and practical implications of
adversarial annotators along with possible remedies.

APPENDIX A
ALGORITHM DERIVATION

A. ADMM Subproblem for w

Consider the following problem that is equivalent to (22)

min gy () + pc, ()

Tr7

st. m=¢ (28)
where ¢ is an auxiliary variable used to capture the smooth part
of the optimization problem, and p¢, is an indicator function for
the constraints of (22), namely

Turk were tasked with classifying N = 108 images of birds into pe. (u) == 0 ifuecC, (29)
K = 2 classes: “Indigo Bunting” or “Blue Grosbeak”. v ' oo otherwise.

Table IX lists classification ER for the two crowdsourcing ex-
periments. The column “Labels” denotes the number of ground-  The augmented Lagrangian of (28) is then
truth labels available. As with the previous experiments, our
approach exhibits lower classification ER than the competing . A 2
alternatives, in both multiclass and binary classification settings. {=9gvx(¢)+ pe, (m) + 2 e — &+ 4l (30)

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced a novel approach to blind ensemble
and crowdsourced classification that relies solely on annota-

where the K x 1 vector d contains the scaled Lagrange multipli-
ers for subproblem (22). Per ADMM iteration, (30) is minimized
w.r.t. ¢ and 7 before performing a gradient ascent step for 4.
Specifically, the update for ¢ at iteration 7 + 1 is obtained by
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setting the gradient of ¢ w.r.t. ¢ to 0, and solving for ¢; that is,

M M
(()\ +)I+ Y LT+ Y K Ko,

m=1 m=1

m'>m

M
+ Z (Fm” © Km’m)—r(]-—‘m” © Km’m)) ¢[Z =+ 1]

m=1
m'>m
m //> m /

M M
T T rev
= E I‘m M + § Km’m Smm’ + Vﬂ-(p )
m=1 m=1

m/>m

+ )\(TI'[Z] + J[ZD + Z (I"m” © K'rn’rrL)Tt'rrmz’m”7 (31)
m=1

where K,,,,,,» :=I',,, ® I';,,. Brackets here indicate ADMM it-
eration indices. Accordingly, the update for 7 is given by

i+ 1] = Pe, (oli + 1] — d[i])

where I, is the projection operator onto the convex set C, ; that
is, ¢[i + 1] — 8[7] is projected onto the probability simplex.
This projection can be performed using efficient methods [48].
Finally, a gradient ascent step is performed for § as

Oli+ 1) =0 +m[i+ 1] — p[i + 1]. (33)
Note that products of the form K, K, = (T @ L)’
(T,, ®T,,/) can be efficiently computed by using the fol-
lowing observation: (T',, ®T,,))" (T, ®T,,/) = (T} T,,) *
(T, T,), where * denotes the elementwise matrix prod-
uct [11]. In addition, the products I‘; I',, do not have to be
explicitly computed each time (28) is solved, as they can be
cached every time (34) is solved. As suggested in [28], the max-
imum number of ADMM iterations, I, for each subproblem can
be set to be small, e.g., [ = 10.

(32)

B. ADMM Subproblem for T,

Proceeding along similar lines with the previous subsection,
consider the following problem which is equivalent to (23)

min g]\;",rrz, (FTIL ’ @)

mos

st. T, =®" (34)

where ® is an auxiliary variable used to capture the smooth part
of the optimization problem in (23), and

GNm (L s @) = gnm ((I)T) + pc(Trm ).
The augmented Lagrangian of (34) is then
A

2

where the K x K matrix A,, contains the scaled Lagrange
multipliers for subproblem (23), and A is a positive scalar. As
in the previous section, per ADMM iteration, (35) is minimized
with respect to (w.r.t.) ® and I, before performing a gradient
ascent step for A,,. Specifically, the update for ® at iteration

El = g]\“'ﬁm, (Fm ) (I)) + Hrm - @T + Am H%? (35)
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i+ 1 is obtained by setting the gradient of ¢ w.r.t. ® to 0, and
solving for ®. Since S,,,,, = S;;m, and TI =TI, itis easy to
see that the update w.r.t. @ can be expressed as

M
(()\ + )+ 7’ + Z mnr,, r,,II

m'#m

+ ) HK;,,WK,,L”,,L,H><I>[¢+1}

m'>m
m>m’

M
_ T Z T Z T (1)
=Tl + Hrm’Sm'm + HKm”m’Tmnﬂm”
m'#m m'>m

m>m!

+ v T 4 N, [i] + A [i]) (36)
Accordingly, the update for I',, is given by
Tfi+ 1] =Pe(®"[i +1] — A, [i]) (37)

where I is the projection operator onto the convex set C with
each column of ®'[i + 1] — A,, [i] projected onto the proba-
bility simplex. Finally, a gradient ascent step is performed per
A,,, as follows

Anli+1]=A,0+T,i+1]—-@ [i+1].  (38)

C. Algorithm Complexity

For the ADMM subproblems of Apps. A-A and A-B the
complexity per iteration is dominated by the matrix inversions
required in (31) and (36) respectively, that is O(K*). How-
ever, in order to instantiate the left- and right-hand sides of (31),
O(M?K?)and O(M?K*) operations are required respectively.
These operations have to be performed only once and cached to
be used in each iteration. The increased complexity of the right-
hand side is due to the matricized tensor times Khatri-Rao prod-
uct (MTTKRP) (T,,» ® K, ) "t mrme. These MTTKRPs
however, can be computed efficiently due to the Khatri-Rao
structure, and are easily parallelizable, see e.g., [49]. This brings
the overall complexity of App. A-A to O(M?K* + I K?), with
I denoting the number of ADMM iterations. Accordingly, the
operations required to instantiate the left- and right-hand sides
of (36) are O(M?K?) and O(M?K*) respectively. This brings
the total complexity of App. A-B to O(M?K* + I K?). As the
number of iterations for the ADMM algorithms of Apps. A-A
and A-B is set to be small the overall computational complexity
of Algorithm 1 is O(Ir M3 K*"), where I7 is the number of
AO-ADMM iterations required until convergence.

Furthermore, the number of tensors T, , ,.,,,,» required to solve
(21)is (]g ) , while the number of matrices S,,, ,,,» required is (‘2[) s
and the number of vectors u,,, is M. Thus, for K classes, the
memory needed for storing all the tensors, matrices and vectors
involved is O((Y ) K* + (%)) K? + M K). Finally, computing
the cross-correlation tensors, matrices and mean vectors of an-
notators incurs a complexity of O(M?3 K N) as each of the an-
notator response matrices {F,, }27_, is of size K x N and has
N nonzero entries.
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APPENDIX B
PROOFS

Proof of Lemma 1: Suppose that rank(T',,, ) = rank(T",,/) =
rank(T,,,») = K, for some m # m’, m” and m’ # m”. Then by
[11, Thm. 2] the decomposition of \Ilm m'me 18 essentially unique.
Invoking [36, Prop 4.10] the joint tensor decomposition of (21)
is essentially unique, meaning the solutions of (21) will be of
the form

I, =T PA,, m=1,....M, &=AP'xn*

PR B

where P is a permutation matrix, and {A,, }}_, A are di-
agonal scaling matrices such that A, A, A,,» = AL, for
m #m/,m", m' #m”". Since {I',,} and 7 are the solutions
to (21), they must satisfy the constraints of the optimization
problem; that is I,eC m= 1,...,M and 7 € C,. Since
r* "1=1forallm,and P'1 = 1 we have

m

I'1=1=2A,PI* "1=1=A,1=1m=1,...,.M

m m

which implies that A,, =1 for m=1,..., M. Since
A A Ay = A7Y form #£m/,m", m' #m”, we arrive at
A = 1. Thus, the constraints of (21) solve the possible scaling
ambiguities. Letting P = PT = P!, we arrive at the statement
of the lemma. |

Proof of Theorem 1: For notational convenience, collect all
optimization variables in 6, and denote the aggregated constraint
set as C. Note that C is a compact set, since the probability
simplex is compact and C is an intersection of simplexes. Since
hy (0) is continuous and C is compact, hy (6) is uniformly
continuous on C, that is, Ve > 0 there exists a neighborhood V
of @ such that

N (0)] <e/2. (39)

sup |hy (6) —
ocvnc

Due to the compactness of C there exist a finite number of points

0,...,0;, € C, with corresponding neighborhoods V;, ..., V;,
that cover C, that is
sup |hn(0) —hy(00)] <e/2, forl=1,...,L. (40)
GEV[ﬂé

Invoking the LLN, it is straightforward to show that, for suffi-
ciently large N, w.p. 1

iy (80) — hoo(00)] < /2, forl=1,....L.  (41)
Using the triangle inequality along with (40), and (41) we have
sup [hy () — hoo(0)] <, (42)

o<C

that is, for sufficiently large IV, hy converges uniformly to h.,
on C. Then, by [38, Thm. 5.3] we have that D(Sy,S.) — 0 as
N — 0. |

Proof of Theorem 2: Let L(z|k) = L(x|k)my, with L(xz|k)
as defined in Section III-A. Then the average probability of
error of the MAP detector can be expressed as

K
P. = Z Pe,kﬂ'k
k=1

(43)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 18, SEPTEMBER 15, 2018

where P, . = Pr(L(z|k) < L(z|k'), k' # k|Y = k). By apply-
ing a union bound on P, y it is easy to show that

ok<ZPr

k'4k

(zlk) < LK) |Y = k). (44)

Defining P; (k, k') := Pr(L(z|k) < L(z|k')|Y = k), substi-
tuting (44) in (43) and grouping terms we have

K K
P <3S mP (b ) - mePr (W, R). (@5)
k=1k'>k

Consider now the binary hypothesis testing problem between
classes k and k' # k. The average probability of error of a MAP
detector for the binary problem is

Tk Tk

Po(k k) = — P (k k) + — P (K. k). (46
(k) = Py (k) + Py (KK (46
Then

WkPL(k,k/)—i-ﬂ'k/PE(k/,k?)

= (m + mp)Pe(k, k') < Pe(k, ) 47)

where the inequality is due to 7, + 7, < 1. Combining (47)
with (45) yields

(48)

Therefore, we have upper bounded the average probability of
error of our M -class hypothesis testing problem by the average
error probabilities of binary hypothesis testing problems. For
the binary hypothesis testing problem between classes & and
k" # k, collect all annotator responses in an M X 1 vector f
and define two complementary regions R and R¢ as

R ={f: L(z|k) < L(z|k)}
¢ ={f: L(z|k) < L(x|k)}.

(49a)
(49b)

Upon defining 7, jr =
rewritten as

Tt and using (49), (46) can be

T+

Pe(k, k')

=TI P

m=1

M
+ H Pr(|

where the second equality follows from As. 1 and R,,, RS
denote the subsets of R, R corresponding to the m-th entry of
f, respectively. Now let

=Pr(f € R|Y = k)pp + Pr(f€ REY = k)p s

]:]m S Rm |Y = k)ﬁ'k’,k’

Flm € RE)Y = KN7p s, (50)

m* = argmax Pr([f],, € R |Y = k)M 7 1

+Pr([flm € RE|Y = k)M 7y s (51)
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and define

Pe (k‘, k/) = Pr([}‘]m* € Rm* Y = k)Mﬁ'kﬁk’

+ Pr([}]m* - Rg* Y = k/)A[’frkr’k;.

(52)

Clearly P, (k, k') < P.(k, k). From standard results in detec-
tion theory (52) can be bounded as [50], [51]

P.(k, k") < exp(—Md(p|lq)) (53)

where p := Pr([flm: € Ru:|Y = k), q:= Pr([f]m- € RE.
Y = k), and d(p||q) denotes the Chernoff information between
pdfs p and q. Combining (53) with (48) yields the claim of the

theorem. [ |
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