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Identification of Overlapping Communities via
Constrained Egonet Tensor Decomposition

Fatemeh Sheikholeslami

Abstract—Detection of overlapping communities in real-world
networks is a generally challenging task. Upon recognizing that a
network is in fact the union of its egonets, a novel network rep-
resentation using multiway data structures is advocated in this
contribution. The introduced sparse tensor-based representation
exhibits richer structure compared to its matrix counterpart and,
thus, enables a more robust approach to community detection. To
leverage this structure, a constrained tensor approximation frame-
work is introduced using PARAFAC decomposition. The aris-
ing constrained trilinear optimization is handled via alternating
minimization, where intermediate subproblems are solved using
the alternating direction method of multipliers to ensure conver-
gence. The factors obtained provide soft community memberships,
which can further be exploited for crisp, and possibly-overlapping
community assignments. The framework is further broadened to
include time-varying graphs, where the edgeset as well as the un-
derlying communities evolve through time. The performance of
the proposed approach is assessed via tests on benchmark syn-
thetic graphs as well as real-world networks. As corroborated by
numerical tests, the proposed tensor-based representation captures
multihop nodal connections, that is, connectivity patterns within
single-hop neighbors, whose exploitation yields a more robust com-
munity identification in the presence of mixing as well as overlap-
ping communities.

Index Terms—Community detection, overlapping communities,
egonet subgraphs, tensor decomposition, constrained PARAFAC,
sparse tensors.

I. INTRODUCTION

RAPH representation of complex real-world networks
G provides an invaluable tool for analysis and discovery
of intrinsic attributes present in social, biological, and financial
networks. One such attribute is the presence of small subgraphs,
referred to as “communities” or “clusters,” whose dense intra-
connections and sparse inter-connections often represents a po-
tential “association” among the participating entities (nodes).
The task of community identification targets the discovery of
such highly-interwoven nodes, and is of paramount interest in
areas as diverse as unveiling functional modules in biological
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networks such as brain [1], trend analysis in social media [2],
[3], and clustering of costumers in recommender systems [4].

Past works on community detection include those based
on modularity-maximization [5], [6], generative and statisti-
cal models such as mixed membership stochastic block models
(MMSB) [7]-[12], local-metric optimization[13], spectral clus-
tering [14], and matrix factorization [15]-[19]; see e.g. [20],
[21] for a comprehensive overview. With recent exploratoty
studies over contemporary real-world networks, new challenges
have been raised in community identification, addressing the
presence of overlapping communities [22]-[24], multimodal
interaction of nodes over multiview networks [25], [26], ex-
ploitation of nodal and edge-related side-information [27], as
well as dynamic interactions [28], [29].

In handling such new challenges, reliance on the adjacency
matrix representation of networks limits their capabilities in
capturing higher-order interactions, which can potentially pro-
vide critical information via temporal, multi-modal, or even
multi-hop connectivity among nodes. To this end, fensors as
multi-way data structures provide a viable alternative, whose
increased representational capabilities can potentially lead to
a more informative community identification [25], [26], [28],
[30], [31]. For instance, [32] and [33] construct higher-order
tensors whose entries are non-zero if a tuple of nodes jointly
belongs to a cycle or a clique, while [28] captures temporal dy-
namics of communities via tensors. Under certain conditions,
tensor decompositions are unique [34]-[36], and can guarantee
identifiability of the community structure.

The present work develops a novel tensor-based network rep-
resentation by recognizing that a network is the union of its
egonets. An egonet is defined per node as the subgraph in-
duced by the node itself, its one-hope neighbors, and all their
connections, whose structure has been exploited in anomaly de-
tection [37], and user-specific community identification [38],
[39]. By concatenating egonet adjacency matrices along the 3-rd
dimension of a three-way tensor, the proposed network repre-
sentation, named egonet-tensor, captures information per node
beyond its one-hop connectivity patterns. In fact, in a number
of practical networks only adjacency matrix of the network is
given, rendering egonets a unique candidate for enhancing com-
munity identification performance when extra nodal features are
kept private, e.g., Amazon costumer graphs. By construction,
egonet-tensor exhibits richer structure compared to its matrix
counterpart, which is further exploited by casting the commu-
nity detection task in a constrained tensor decomposition frame-
work. Building on preliminary results in [31], solvers with con-
vergence guarantees are developed for the proposed constrained
non-convex optimization, whose solution yields the community-
revealing components, utilized for soft as well as crisp commu-
nity assignments unveiling possibly overlapping communities.
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(a)

Fig. 1. Construction of egonet-tensor with frontal slabs as egonet adjacencies.

The rest of the paper is organized as follows. Section II
introduces the novel tensor-based network representation, and
Section III presents the constrained tensor decomposition, and
its efficient solver for the task of community identification.
Section IV provides analytical results corroborating the
underlying intuition. Performance metrics for evaluating the
quality of detected communities in networks with and without
ground-truth communities is the subject of Section V, and
Section VI introduces identification of time-varying com-
munities using the proposed algorithm. Section VII provides
numerical tests, while Section VIII concludes the paper.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), and underlined upper-case boldface let-
ters stand for tensor structures. Calligraphic symbols are re-
served for sets, while T stands for transposition. Symbols o, ®
and © are reserved for outer-product, Kronecker-product and
Khatri-Rao-product, respectively, Tr{X} denotes the trace of
matrix X, and ;; denotes the (¢, j)-th entry of matrix X.

II. EGONET-TENSOR CONSTRUCTION

Consider a graph G = (V,&, W), where V, £, and W €
RN respectively denote the set of N nodes, i.e., |V| = N,
edges, and the adjacency matrix. In the case of binary net-
works, w;; :=11if (4,5) € &, and w;; := 0 otherwise. Fur-
thermore, the egonet of node n is defined as the subgraph in-
duced by node n, its single-hop neighbors, and all their edges.
Let G := (V,£M) W) C G be the subgraph with £(")
the egonet edgeset, and W) ¢ RN *¥ the corresponding ad-
jacency matrix whose non-zero support captures the edges in

£ that is,
(n) ._ Jwij
w0 = {0

where w;; denotes the nonzero edge between nodes ¢ and
g, and EM) = {(u,v)|¥(u,v) € &, (n,v) € &, (n,u) € E}.
Fig. 1(a) illustrates such subgraphs, where the black node cor-
responds to the central node of the egonet, and the single-hop
neighbors are colored green. Typically, the center node n is
excluded from G("), but it is included here for convenience.

As Fig. 1(b) depicts, graph G can now be fully described by a
three-way egonet-tensor W € RN *N>*N where frontal slabs
correspond to egonet adjacency matrices {W (™) }V_ | stacked
one after the other. In tensor parlance, that is tantamount to
setting the n-th frontal slab as W, ., := W), where : is a
free index that spans its range. '

The advantage of presenting a graph with its egonet-tensor
lies in the fact that tensors as higher-order structures are capable
of capturing “useful information” along their different dimen-
sions, a.k.a., “modes.” In a network with underlying community

if (i,7) € &™)
otherwise.
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Fig. 2. (a) A toy network with three fully connected non-overlapping com-
munities; (b) corresponding egonet-tensor; (c¢) its community-revealing fac-
torization via CPD; (d) overlapping communities; and (e) corresponding
egonet-tensor.

structure, the proposed egonet-tensor representation is indeed
capable of preserving the inherent “similarities” among egonet
adjacencies along the 3-rd mode, whose extraction is crucial
in tasks such as community detection. Such representation is
of particular interest for various settings where no nodal fea-
tures are provided (that is, only the adjacency matrix is given),
making egonets very appealing for an improved network repre-
sentation as well as the development of robust schemes for the
task of interest. The following toy example clarifies how such
similarities induce a structure over the egonet tensor, and intu-
itively discusses how its exploitation can lead to an improved
performance.

A. Toy Example

Let us consider a toy network with three fully-connected com-
munities, illustrated in Fig. 2(a). Since each node is a member
of a fully-connected community, the binary adjacency matrix of
its egonet is identical to that of any other node in its resident
community. Furthermore, after permutation, this egonet adja-
cency matrix consists of a single block of nonzero entries (with
zero diagonal entries if the network is free of self-loops), and
zeros elsewhere. This implies that the egonet-tensor can be per-
muted similarly into a block-diagonal tensor with three nonzero
blocks, as illustrated in Fig. 2(b).

Adopting the well-known canonical polyadic decomposition
(CPD) to decompose W into its constituent rank-one tensors,
the model naturally approximates the tensor with rank three,
thus revealing the number of underlying communities. In fact, if
the diagonal entries were all set to 1, i.e. considering self loops
for all the neighboring nodes in an egonet, this approximation
would be exact; see Fig. 2(c).

In practice, real-world networks often demonstrate overlap-
ping community structure, where some nodes are associated
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Visualization of an LFR network with N = 50, p = 0.2, and five “shared” nodes {4, 18, 23, 39, 47}, represented by a larger radius, with (a) hard

community association via Infomap; and (b) soft association via EgoTen. Pie-charts depict association ratios.

with multiple communities rather than a single one. To ad-
dress such cases, consider the augmented network in Fig. 2(d),
where a new node (or a super node corresponding to more than
one node) associated with two communities is added. Once
the corresponding egonet tensor is constructed, the presence of
overlapping communities manifests itself in overlapping diag-
onal blocks in the egonet tensor; see Fig. 2(e) in comparison
with disjoint blocks in Fig. 2(b). As it will become evident in
Section II, by exploiting a strutured CPD on the arising egonet-
tensor, it can be shown that the frontal slab corresponding to the
egonet adjacency of an overlapping node is approximated by
multiple summands, each corresponding to one of its resident
communities. The egonet-tensor representation naturally trades
off flexibility for increased redundancy and memory costs. Nev-
ertheless, resulting tensor is extremely sparse, and off-the-shelf
tools for sparse tensor computations can be readily utilized; see
e.g., [40]-[42].

Unfortunately, such idealistic assumptions where each com-
munity is fully-connected within and well-separated from other
communities, are not fulfilled in real-world networks. Neverthe-
less, the inherent similarities among egonet adjacencies induce a
potentially useful reinforced structure along the 3™ mode of the
proposed egonet-tensor representation. For instance, nodes in
a community often exhibit dense (rather than full) connections
among themselves, and fewer connections with other commu-
nities. This property is consequently reflected in the egonet-
tensor (as well as the traditional matrix adjacency) represen-
tation by dense diagonal blocks, whose clear separation fades
aways as out-of-community connections increase. However, the
presence of overlapping communities can further smear the
block-structure as overlapping nodes are “well-connected” with
multiple communities. The performance of traditional commu-
nity detection methods often dramatically degrades in networks
with such properties, whereas exploiting the structured redun-
dancy offered via the proposed egonet-tensor representation and
casting the problem in a community-revealing tensor decompo-
sition framework increases robustness against the aforemen-
tioned phenomena; see Fig. 3.

III. CONSTRAINED EGONET TENSOR CPD

Given W, this section leverages the canonical polyadic de-
composition (CPD) [40] in order to factorize the egonet tensor
into its constituent community-revealing factors. Assuming that

the number of communities is upperbounded by K, a rank-
K CPD model is sought by solving the following constrained
least-squares (LS) problem

2

{A,B,C} = arg min

K
W - E a,objocy
AB,C —

F
st. A>0,B>0,C>0 (1

where A :=J[a;,...,ax] € RV*X  B:=[by,...,bg]€
RV and C:=[cy,...,cx] € RY*E; while the term
(ay o by o c;) is the outer product of the three vectors, which
induces the k-th rank-one tensor component in the rank-K
decomposition; see [40] for further details on CPD. The con-
straint A > 0 denotes entry-wise nonnegativity constraints, i.e.,
apr > 0forn=1,...,Nand k =1,..., K; and similarly for
factors B and C. These constraints enforce the nonnegativity
of egonet adjacency matrices, thus inducing structure in the
sought CPD and providing interpretation of the decomposition
factors.
It is possible to re-write (1) as, see e.g., [40]

N
{A,B,C} =argmin ) _ [W") — Adiag(¢,)B" [},
A.B.,C

n=1
st A>0B>0C>0

where diag(¢,,) is a diagonal matrix holding the n-th row of C
on its diagonal. Focusing on the n-th frontal slab of the egonet-
tensor, CPD provides the approximation

.
W =3 "¢, (arb)) )
k=1

where ¢, denotes the (n,k)-th entry of factor C. Such de-
composition can be interpreted as a weighted sum over K
“basis”, {ayb] }1* |, where (a;b]) captures the “connectiv-
ity structure” within the k-th community. Consequently, ¢,
can be viewed as association level of node n to community k
fork =1,..., K. Furthermore, one can easily realize that since
(a;b]) is viewed as connectivity structure of community k, the
elements in ay, := [a1x,...,a,;]" and by = [byy, ..., bk "
can be consequently viewed as the contribution levels of
nodesn = 1,..., N to community k. This interpretation of the
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factors prompts us to further leverage the structure and introduce
additional constraints on the CPD factors.

A. Structured CPD

Real-world networks often involve nodes which are asso-
ciated with more than one community, resulting in multiple
nonzero entries in the association vector [c,1,¢n2,-- -, Cuk]
corresponding to a generic node n. To return a normalized as-
sociation vector, we augment the optimization in (1) by the
constraints Zle cnr = 1forn =1,2,..., N, which together
with C > 0 acts as a simplex constraint on the rows of C. Upon
imposing simplex constraints (1) is further regularized as

K

{K,f’;, 6} = arg miny |W — Zak obyocy%
AB.C Pt

+A(IAlE + IIBIIZF)}

st. A>0,B>0,C>0

Different from [43] and [44], the regularization term || A[% +
| B||3- does not play the role of rank-regularization for subspace
learning, instead it solves the scalar ambiguity in factors A
and B.

Note that the proposed algorithm requires an upperbound on
the number of communities K to solve for the optimization in
(3). In principle, one can readily regularize the objective func-
tion with a complexity term similar to that used by (Bayesian)
Akaike’s information-theoretic, see e.g. [45], or, minimum de-
scription length criteria [46]. At the expense of complexity, such
augmented criteria can also return estimates of the number of
communities.

The CPD problem formulated in (3) is a tri-linear constrained
LS problem, whose minimization can be tackled by alternating
optimization. In the ensuing subsection, the proposed solver
is developed using by alternating optimization with ADMM
intermediate steps; see e.g. [47] and [48].

B. Solving the Egonet Structured CPD

In the proposed alternating optimization scheme, each step
consists of fixing two factors and minimizing the arising sub-
problem with respect to the third factor. In this subsection, we
study the emerging sub-problems and propose efficient solvers
for tackling those.

1) Factor A Update: Consider first the update of factor A at
iteration %, obtained after fixing B = B*~1) and C = C(F~1)
and solving the corresponding minimization. The arising sub-
problem, after algebric manipulation can be re-written as

AW = arigl)inllwl - B o cATE + AAllR

) @
where Wy := [vec(W, . .),...,vec(Wy..)] € RV *Nisa
matricized reshaping of the tensor W. Also B(*~1) o C(k—1)
= [bgkfl) ® c§k71)7 e ,b(lffl) ® c([iffl)] is the Khatri-Rao
product of B~ and C*~1), where b{* ™" (c!* ) denotes
column i of B¢ —1) (resp. C*~1) and ® denotes the Kronecker
product operator; see also [40].
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Following the steps in [48], auxiliary variable A is introduced
to account for the nonnegativity constraint, and the augmented
Lagrangian of (4) is

LA AY)= W, —HPAT|2Z + A\Tr{AA"}

+r (A) + (p/2IIY + A=Al (5)
where A, Y € RV*K H') .= c-1) @ B-1 andr, (A)
is the regularizer corresponding to the nonnegativity constraint,
if A>0
0.W.

re@= {9

The ADMM solver then proceeds by iteratively updating
blocks of variables A, A,Y as

AM) = argming £F (A, A1 Y1)
A0 — P, (YD 4 A

Y = Y1) — p(A) — A1)
r=r-+1

6)

until a convergence criterion is met, namely whether the max-
imum number of iterations is exceeded, i.e., 7 = I ADMM;
or a prescribed e-accuracy is met, ie., ||[A") — AU 5/
A=V < e. Operator P, (.) in (6) denotes the element-
wise projection of the input matrix onto the positive orthant,
and its use enables the A(") update to be carried at a very low
cost. The Lagrange multiplier is set to p = ||H 4 ||% /K- a value
that is empirically shown to yield similar performance to that
of the optimal value [48]. The final A" jterate in the ADMM
solver will be used to update A (%)

2) Factor B update: Update of factor B can be similarly
carried out by solving the subproblem

B") = arg min||[W, - HY'BT|%2 + \|B|2 (D)
B>0
where Wy := [vec(ﬂ:’lﬁ),...,Vec(w:‘N_’:)], and Hg) =
C =1 o A yielding a similar optimization problem as in
(4). Algorithm 2 tabulates the explicit update rules for solving
(4) and similarly (7) using a general framework.
3) Factor C Update: Update of factor C is obtained by
fixing A and B at their most recent values, and solving the
subproblem

C" = argmin [W; — (A" © BW)CT|;
st, C>0
where W3 := [vec(W

[€.]i=1 Vn=1,...,N 8)

1)y, vec(W. . )] Utilizing an

ADMM approach, the aﬂgmented Lagrahéian is formed as

k = k =
LY(C,C.Y) = W3 — HE CT|2 + ryimp(C)
+ (p/2)Y +C - CJf )

where C,Y € RV*K, H(Ck> = (A("') ® B("')), and rsimp(C)
is the regularizer corresponding to the simplex constraint on the
rows of matrix C as

e A K .
Tsimp(c) = {0 if C>0,35 ¢k =1Vn

+00  o.w.
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Algorithm 1: Constrained Tensor Decomposition via Alter-
nating Least-Squares (ALS).

Input W, K, Inyax, A )
Initialize A, B, C € RY*X at random and set k = 0
Form Matrix reshapes W1, Wy, W3 of the tensor as

W, = [Vec(wl,:,:)ﬂ s 7V€C(wN,:,:)]
W2 = [Vec(w:,l.:)7 te ?Vec(w:,l\’,:)]
W3 = [Vec(w:.:,l)v s avec(w:,:,l\z")]

while & < I, do or not-convergenced
(k) _ - _

H), = Ct-1) o Bk-1) |

A) — Algorithm 2 with input {HX‘),VV1 LAY
H(;) = Ct-1 o A

B*) « Algorithm 2 with input {Hg)7w2, B(-1}
HY =B® o A®)

C™) « Algorithm 3 with input {H(C’f) W, C-Dy
kE—Fk+1

end while
Retrun A(F) B(%) C*)

Algorithm 2: ADMM Solver for 1st and 2nd Mode Sub-
problems.

Input H, W, Zj;

Goal is to solve

7 — mgnﬁﬂH{Z&FTI+AmeJZT—2VVTHZT}
Z>0

HZmuH

Setp = VZO) = Zii, ZO) = Oy i, YO =

Onxk,T = 0
while r» < Imax,ADMM do

ZU) = (HH+ (M p/2)Tx.x) "

% (WTH i g(Y(r—l) _ Z“"l)))

=P, (zm n Y(H))

Y =yl — p(Z) —Z))
r =r+1

end while

Retrun Z(")

ADMM solver then proceeds with iterative updates as

Cl") = argming E(k)(C Clr=1 y(r=1))

Cl) = Pump (Y1) + € _) (10)
Y(r) = yr-1) _ p(c( —_ QU ))

r=r+1

where Pimp (.) denotes the projection of rows of the input matrix
onto the simplex set. This projection has been widely studied
and can be efficiently accommodated by the algorithm discussed
in [49]. Explicit update steps of the ADMM solver for (8) are
tabulated under Algorithm 3.

Proposition 1: 1f the sequence generated by Algorithm 4 is
bounded, then the sequence { A %), B(¥) C(*)} converges to a
stationary point of (3).

Algorithm 3: ADMM Solver for 3rd Mode Subproblem.

Input H7 W> Zinit
Goal is to solve

Z =

arg min Tr{ZHTHZT _ 2wTHzT}
Z>0|z, |1 =1 Yn=1,....N

Setp _ HZH\HHF Z(()
Onxp,rm = 0
while r < Imax,ADMM do

Z) = (H H+p/21y.n)""

Zinit, ") = Oy e, YO =

x (WTH + 2yr=) — 70D
( ( )

2
zu»::¢hmp(zmu4_gdr—m)
Y = Y1) _ p(z() — 7))
r =r+1
end while
Retrun Z(")

Proof: The convergence follows from [48, Theorem 1]; also
c.f. [50], [51]. |

Proposition 1 provides convergence guarantees on the se-
quence {A(®) B(*) C(*)}, where the necessary assumption is
on boundedness of the generated iterates. This assumption is
easily guaranteed here due to Frobenius regularization on fac-
tors A and B, as well as the simplex constraint on factor C;
thus, the results readily carry over.

IV. LOW-RANK EGONET TENSOR ANALYSIS

In this section, the intuitive low-rank property of the egonet
adjacency matrix and tensor are justified analytically. To this
end, and similar to the analysis of spectral clustering methods in
community detection, consider modeling a network of N nodes
and two communities by a stochastic blockmodel (SBM) [52],
[53]. That is, consider an undirected network with two com-
munities of equal size N/2, assuming N is even for simplicity,
where the intra-community edge probability is p and the inter-
community edge probability is ¢, denoted as SBM(N'; 2; p; q),
with p > q. Define also the expected egonet-adjacency of com-
munity Cj, as

] Jk=1,2

W), as in Section II, denotes the egonet-adjacency matrix
of node v;, and the expectation is taken with respect to the
randomness of the graph.

Proposition 2: In an SBM(N; 2; p; ¢) network with commu-
nities of equal size and ¢ < p , the expected egonet-adjacency
matrix W of community C; can be approximated by a rank-2

RA

v; €Ck

|Ck|

matrix W, where the approximation error is bounded as
- = . 4
W1 — W2 <p® + ~Pt V2q.

Furthermore, for networks with large N and p > \@q, se-
lecting the IN/2 largest-amplitude entries of the eigenvector
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corresponding to the largest eigenvalue unravels the members
of community C;.
Proof: See Appendix A for detailed proof. |
Building on this and upon proper permutation, similar result
can be provided for the expected egonet-adjacency matrix W
of community Cy. That is, W in an SBM(V; 2; p; ¢) network
with communities of equal size can be approximated by a rank-2

matrix W, and the approximation error is bounded as

[Ws ~ Walls < 5+ o+ Vg

As the exact number of nodes in a community is unknown in
practice, hard community detection is performed by threshold-
ing the association coefficients. This is common in non-negative
matrix and tensor factorization approaches to community detec-
tion [9], [14], [18], [24], [27], and has been empirically demon-
strated to yield high-quality results. For this reason, it has been
adopted here too.

Definition: In an SBM(N;2;p; q) network, the expected
egonet-ad]acency tensor W of size N x N x 2 is defined as
W( Wl and W 2) = W2

Proposmon 3: Tensor W in an SBM(N;2;p;q) network
with equally-sized communities can be approximated by a rank-
3 tensor, where the approximation error is upper-bounded as

_ min

W, rank(W)=3
_ \/(p3 +4p/N)? + p2qt  q(1— pq)
= N N

which diminishes with the network size as O(1/+v/N). Further-
more, such approximation can be achieved by

1 —— =
—||W - W
~ W~ W

(1)

o~

WNwa = PBvgovgo {ﬂ +(a—=pP)viovyo {(ﬂ

+ (a—=pP)vaovgo {ﬂ (12)
where  vo =1y, Vi =[Llixny2,01xn/2]", and vy =
[01n/2, Lixn /Q]T and o denotes the outer product.

Proof: See Appendix B for proof. |

Remark: The first term in decomposition (12) captures the
inter-community edges, while the other two terms correspond to
intra-community connections, and v; and vs reflect community
structures. The following Corollary studies the asymptotic case
where the probability of inter-community edges ¢q approaches 0.

Corollary 2: The expected adjacency tensor of an SBM
(N; 2; p; q) network approaches a rank-2 tensor as ¢ — 0; that is

hm—HW pPviovy o 1 +pivaovyo 0 H =
0 1F

and the approximation error for sufficiency large N can be

approximated by
1l = = 3
_ min W W~y
W rank(W)—2 N N

Proof: The proof readily follows from the fact that the ap-
proximation term corresponsing to v in (12) has Frobenius-
norm /23N and its normalized (by V') Frobenius-norm goes to
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zero as ¢ — 0. Furthermore, the right-hand-side of the inequal-
ity in Prop. 3 for sufficiently large N and ¢ — 0 is dominated by
the first term, and thus it can be approximated by \/p3/N. W

So far, in Propositions 2 and 3 we have justified the intu-
ition behind the rank-revealing decomposition of the expected
egonet-adjacency tensor W. In practice however, we never have
access to W and W. Instead, the egonet adjacency tensor in
Section II provides N/2 samples of the egonet adjacency for
each of the two communities. Thus, one is motivated to approx-
imate the expected egonet-tensor W with its sample mean.

Specifically, were the community membership of the vertices
provided, one could approximate W, and W as

2 2:% Z W(l>

v; €Cy

Wl’iwl = =

and define the N x N x 2 sample mean egonet-adjacency ten-

sor W with two slabs W< W1 and W( 2) = Wg
Without community membershlps available, we only have
access to the egonet adjacency W. The following proposition
proves that the CPD of W (without the oracle knowledge) pro-
vides an upperbound on the CPD of W.
Proposition 4: The rank-r CPD objective of W ;| v .5 iS Up-
per bounded by the rank-r CPD objective of W ., vy ; that is,

arg min — Z W}, — Adiag(¢,)BT|%
{A,B,C}>0% =]

< argmin — Y |[W") —
a.B.cpz0 N Z

Adiag(¢,)B" %

where A, B, C :=[¢4,... are of size N x r, and C :=
[€1,€5] " is of size 2 x 7.
Proof: For detailed proof, see Appendix C. |

According to Proposition 4, rank-r CPD of W provides an

upper-bound on the rank-r CPD of the oracle-given W. The
analysis can be generalized to networks with K communities,
and further regularization and simplex constraints can help bet-
ter utilize the intrinsic properties of the community detection
task as well as resolve scalar ambiguities among CPD factors.
The merits of our novel tensor decomposition with respect to
the conventional adjacency matrix factorization will be corrobo-
rated by test results on synthetic as well as real-world networks.
To this end, common metrics for quality evaluation of the de-
tected communities are discussed next.
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V. COMMUNITY ASSIGNMENT AND EVALUATION

Once the proposed solver returns the solution of (3), the rows
of factor C provide a “soft” or “fuzzy” community membership
for the nodes in the network. In the special case of networks
with non-overlapping communities, using the n-th row of matrix
C, node n will be assigned to the community k* where k* =
argmaxp—1,.. K Cok-

In order to provide a “crisp” community association in net-
works with overlapping communities, where a node can be as-
sociated with more than one community, the entries ¢, are
compared with a threshold 7 and node n is associated with
community k if ¢, > 7. Thus, crisp community membership
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matrix ' € RY*K {5 obtained as
1 if éup
[Tk = { BOEET O k(3
0 0.W.

There are a number of metrics available for evaluating the
quality of a detected cover, that is, a set of communities, in
networks with underlying community structure. Depending on
whether the ground-truth communities are available or not, two
categories of metrics are considered.

A. Networks With Ground-Truth Communities

Normalized mutual information and F1-score are the most
commonly-used metrics for performance evaluation over net-
works with ground truth communities. Let cover S := {Cy, .. .,
C‘ 3‘} denote the set of detected communities, where C; is the

set of nodes associated with community i fori = 1,2,...,|S],
and let the ground truth communities be denoted by S* :=
{CT,...,C"‘S*‘}.

Normalized mutual information (NMI) [20]: NMI is an

information-theoretic metric defined as (cf. [20])
R 20(S*, S

NMI(S%, S) := (87’8%

H(S*) + H(S)

where H(S) denotes the entropy of set S defined as

.
5h LG, L
N N

i=1

||

Zp

and similarly for H(S*). Furthermore, I(S*, S) denotes the mu-
tual information between the detected and ground-truth com-
munities, and is defined as

) log p( é)

Is*] 1] £~
ZZp C*ﬂC ) log p(C CA') (14)
P p(C)p(C))
Sl |c*mC| N\C;‘ﬂ@|

B3 061 g
i=1j=1 |CiHC]|

Intuitively, mutual information 1(S*,S) reflects a measure of
similarity between the two community sets, while entropy H(S‘ )
(H(S™)) denotes the level of uncertainty in community affilia-
tion of a random node in cover S (resp. §*). Thus, high values
of NMI, namely its maximum at 1, reflect predictability of S
based on &* which readily translates into correct community
identification in the detected cover S , whereas low values of
NMI, namely its minimum at 0, reflects poor discovery of the
true underlying communities. This measure has been general-
ized for overlapping communities in [54], and will be utilized
for performance assessment in such networks.

Average F1-score [9]: F1-score is a measure of binary classi-
fication accuracy, specifically, the harmonic mean of precision
and recall, taking its highest value at 1 and lowest value at 0.
To obtain the average Fl-score for S, one needs to find which
detected commumty G eS corresponds to a given true com-
munity C; € &7, i.e., maximizes the corresponding Fl-score.
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The average F1-score is then given by

|S"]

ZFl

IS |
where

I(i) = argmaXFl(C;,éj)
j

in which F1(C;,C;) := %
i J

B. Networks without ground-truth communities

A general metric for evaluating the “quality” of detected com-
munities, regardless of whether the ground-truth memberships
are available or not, is to measure conductance [55]. .

Conductance: Conductance of a detected community Cj. in
graph G is defined as

sy e ec Wi
(Cr) := min{vol(Cy), vol(V \ Ci.)}

where

vol Ck

=2 Wy

i€ Ck R

and (V' \ Cp,) is the complement of Cy.. According to this mea-
sure, high-quality communities yield small conductance scores
as they exhibit dense connections among the nodes within the
community and sparse connections with the rest.

Furthermore, the weighted-average d_)((;‘) is defined as the
average conductance of the detected communities weighted by
their (normalized) community size, that is,

8l 4
C
ZW

VI. COMMUNITY DETECTION ON TIME-VARYING GRAPHS

(16)

In this section, we extend the introduced overlapping com-
munity identification approach over networks for which the
connectivity evolves over time [56]. For instance, consider
the emergence of a new sports club giving rise to a new
community of individuals whose newly-formed interactions
in the club will be reflected in their connections over the so-
cial media, or, the network of brain regions where the activa-
tion/deactivation of different regions during a certain task can be
captured by a time-varying graph. The goal is to utilize the pro-
posed EgoTen approach for identification of dynamic commu-
nities, as well as the corresponding time-varying association of
nodes.

To this end, consider graph G, := (V, &, W,), where the
subscript ¢ denotes time index ¢ = 1, ..., 7. The set of nodes V
is assumed fixed across time, while the edgeset &; as well as the
corresponding adjacency matrix W, are allowed to vary. The
introduced EgoTen community identification algorithm can be
readily applied to time-varying graphs as follows.

For any slot ¢, the procedure of egonet tensor construc-
tion can be carried out, giving rise to a 3-dimensional egonet-
tensor denoted by W,. Subsequently, the overall 4-dimensional
egonet-tensor is constructed by stacking W, V¢ along the fourth
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dimension of W € RNVXNXNXT. that ig, according to the ten-
sor parlance we have W.. ., = W, for ¢t =1,...,7T". Having
formed the overall egonet'-tensor W, dynamic community de-
tection is now cast as

K

{K,ﬁ,é,ﬁ} = argmin{”W— Zak oby ocy, od;|%
A.B,C,D Pt

+A(IAlE + IIBII%)}

st A>0B>0,C>0D>0

lén]i =1 VYn=1,2,...,N

Id.|l: =1 vn=12,...,N 17)
where A,B,C € R¥*K and D :=[d],...,d}]T € RT*K,
The LS cost in (17) is the generalization of that for the 3-
dimensional tensor decomposition to a higher dimension, while
nonnegativity and simplex constrains are similarly carried over
for D. To clarify the simplex constraints on the rows of D,

consider the decomposition

K

W, :Zdtk(ak o by, OCk)~

k=1

(18)

For a fixed slot ¢, the rank-one tensors of (ay o by o ¢ ) can
be perceived as building blocks of the 3-dimensional egonet-
tensors, and the “degree of presence” of community k at time ¢
is captured by dj;, while the constraint ||d;||; = 1 V¢ resolves
the scalar ambiguity by normalization. Indeed, stationary graphs
with T'=1 can be subsumed by this model, for which the
additional constraints on D reduce to the trivial solution for
the fourth factor as D = 1, k. Focusing on the n-th slab of
W,, the egonet adjacency of node n at time ¢ is decomposed as

K
Wi =3 ducar (a0 by ) 19)
k=1

where the product dyj ¢, ;. provides the association of node n to
community k at time ¢.

Similar to (3), the decomposition in (17) is solved by alter-
nating least-squares for updating the factors. The overall solver
is provided in Algorithm 4, within which we have utilized Algo-
rithm 2 and Algorithm 3 for handling the emerging subproblems.

Note the proposed decomposition is in fact unraveling the
evolution of detected communities across time via columns of
factor D. That is, rather than explicit discovery of temporal
community association of node n, the k-th column of factor D
is utilized to modulate the association of node n to community
k across time, with d;j. * ¢, for time ¢. Thus, association of dif-
ferent nodes will be modulated in the same way at time ¢, while
the final product is influenced by both d;;. and ¢, ;.. Furthermore,
one could jointly utilize factors A, B, and C for discovering
node-community association, where similar constraints such as
simplex should be imposed on (at least one of) the other two
factors. For faster convergence however, we have not imposed
such additional structure, and have solely utilized factor C for
this purpose. Thus, joint utilization of the three factors remains
an open direction.

5737

Algorithm 4: Constrained ALS for Time-Varying Graphs.
Input W, K, I ax, A i
Initialize A, B,C € RV*X and D € R"*X and set k = 0
Form matrix reshapes W1, Wo, W3, W, of the tensor as
W, = [vec(wl_’w)7 o 7vec(ﬂN’.’.;)]

W = [vec(W ;. ),...,vec(W. y..)

N N

while & < I,,x do or not-convergence

H(Ak) — D*-1) o k1) o B

A — Algorithm 2 with input {Hff) Wi, A=D1
HY) = D1 o c-1) o AR

B(¥) « Algorithm 2 with input {H'}), W, B(:-1)}
HY = DD o BH® @ AK)

C¥) — Algorithm 3 with input {H/}), W5, G- =)}
HY = ¢k o B o A®)

D*)  Algorithm 3 with input {H'") W, D(:-1)}
k—k+1
end while
Retrun A%) B(#) C) DK

VII. SIMULATED TESTS

In this section, the performance of the proposed EgoTen
community detection algorithm is assessed via benchmark syn-
thetic networks, as well as real-world datasets. Experiments over
Lancicchinetti-Fortunatoand-Radicci (LFR) synthetic bench-
marks enables us to simulate networks with different levels
of community mixing, as well as number of overlapping nodes.
This proves helpful in highlighting the enhanced capacity of
community detection achieved by exploiting the “higher-order”
properties of vertices captured in the proposed egonet-tensor.

A. Benchmark Networks

LFR benchmark networks provide synthetic graphs with
ground-truth communities, in which certain properties of real-
world networks, namely power-law distribution for nodal de-
grees as well as community sizes are preserved. LFR networks
are configured to have a total number of N nodes (vertices),
nodal average degree d, exponent of degree distribution v, and
exponent of community-size distribution 7,. Furthermore, mix-
ing parameter |1 controls the community cohesion, where larger
1 induces more connections among nodes in different commu-
nities, thus generating less cohesive communities. Moreover,
parameters {o,,, 0, } set the number of overlapping nodes, that
is, nodes belonging to more than one community, and the num-
ber of communities with which these nodes are associated, re-
spectively. We have compared the performance of the proposed
EgoTen with (similarly-constrained) nonnegative matrix factor-
ization (NMF) schemes over the adjacency matrix, as well as
other state-of-the-art community detection schemes.

1) Matrix Versus Tensor Factorization: The experiments
here focus on comparison between EgoTen and its matrix coun-
terpart. In particular, we will demonstrate how the higher-
order connectivity patterns as well as structured redundancy
offered through EgoTen can increase the robustness of com-
munity detection in the case of overlapping, and highly-mixed
communities.
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Fig. 4. Performance of constrained NMF and EgoTen in terms of (a) NMI;
and (b) average Fl-score, versus p for LFR networks of N = 1,000, with
o, = 200.

To this end, the corresponding NMF approach aims at factor-
izing matrix W by solving

min |[W — UV |4
U,V

s.t. lu, |1 =1Vn=1,...,N, U>0,V>0 (20
where U,V € RV*Xand U' := [uy,uy,...,uy]. Thus,
similar to the nonnegative tensor decomposition in (3), the n-th
row of matrix U contains community association coefficients of
node n, and is subject to a simplex constraint. This minimization
is solved via the AO-ADMM toolbox in [48]. Hard community
assignments resulting from the factor U can be achieved similar

to the procedure over the C factor in EgoTen, as discussed in
Section IV.

In our experiments, we have generated LFR networks with
N =1,000,v; = 2,7, = 1, average degree d = 100, and 0,, =
{2, 3,5}. To demonstrate the robustness of EgoTen, Fig. 4 shows
the performance of EgoTen in comparison with constrained
NMF over the adjacency matrix versus different values of p,
in terms of the NMI, and the F1-score. The experiments have
been carried out for o, = 200 (20%) number of overlapping
nodes, upperbound on the number of communities is set as
K = 3|C|, and 7 is chosen so that the highest NMI is achieved
for both methods. Furthermore, Fig. 5 depicts the performance
of NMF and EgoTen across different levels of overlap, con-
trolled through the number of overlapping nodes o,,, while fixing
1 = 0.2. In addition, since a common practical concern is the
lack of knowledge over the number of communities, Fig. 6 stud-
ies the robustness of NMF and EgoTen to this factor, by setting
K = k|C|, and varying x € [1.2,5]. As the plots in Figs. 4-6
corroborate, capturing the higher-order connectivity patterns
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Fig. 5. Performance of constrained NMF and EgoTen in terms of (a) NMI;

and (b) average Fl-score, versus o,, for LFR networks with N = 1,000, and
n=0.2.
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Fig. 6. Performance of constrained NMF and EgoTen in terms of (a) NMI;

and, (b) average F1-score, versus upperbound on community number K = £|C|
parametrized by ~ for LFR networks with N = 1,000, 0,, = 300,and px = 0.2.
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Fig. 7. Performance of EgoTen and state-of-the-art algorithms in terms of
(a) NMI; and (b) average F-1 score, for LFR networks of N = 1,000,
o, = 300, and 0,,, = 5 versus /.

of the vertices and the structured decomposition of reinforced
egonet-tensor improve robustness of nonnegative factorization
methods against community coherence, presence of overlapping
nodes, as well as rough estimates of the number of communities.

2) EgoTen vs. State-of-the-Art Methods: In this subsection,
we compare the performance of EgoTen with state-of-the-art
competitors, namely Oslom [57], Bigclam [9], Infomap [58],
and Louvain [5], and MMSB [10]. Similar to the previous sub-
section, we have generated LFR networks with N = 1,000,
M =2, %2 =1 and o, ={2,3,5}. Number of overlapping
nodes o,, as well as mixing parameter p are varied in the range
[10,600] and [0.1,0.7], respectively. Unless otherwise stated,
threshold parameter for assigning hard community member-
ships of EgoTen is chosen as! 7 = 1/K.

Performance is reported in terms of NMI, and Fl1-score. As
Figs. 7 and 8 corroborate, EgoTen offers the highest robustness
for a wide range of p, as well as o,,, thanks to the reinforced
structure of the egonet-tensor.

Furthermore, to investigate the influence of parameters K
(and 7) on the performance of Bigclam, MMSB, and Egoten,
Fig. 9 depicts NMI and F1-score for three choices of threshold-
ing while x in K = &|C| is varied in [1, 3]. The three choices of
thresholding are as follows: (a) 7 = 1/K, (b) Teona is selected
by exhaustive search over [0.01,0.5] with a discretization of
0.01, and the value corresponding to the minimum conductance

!'Since we have imposed a simplex constraint over the K association indices
forany given node, 7 = 1/ K could be interpreted as having an association index
higher than an equal association with all detected communities. Other selection
schemes for 7, for instance setting to the value providing the community cover
with the smallest average conductance, are also viable.
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varying graphs.

is finally selected, and (c) Toracle corresponds to the selection
of 7 giving the highest NMI. The last choice is assumed to be
given by an oracle who knows the ground truth, and is provided
to benchmark performance. As the plot suggests, while MMSB-
based approaches provide interesting modeling of the problem
and have attracted a lot of attention in the past years, their per-
formance is highly influenced by how good of an estimate one
has on the number of communities K. Thus, MMSB-modeling
provides high accuracy when K =~ |C|, while its performance
degrades dramatically as the mismatch increases. In contrast,
EgoTen, followed by Bigclam, provide higher level of robust-
ness, which we attribute to the enhanced structure of the egonet
tensor inherent to its construction. To illustrate the effect of
initialization, variance of the algorithm in terms of NMI is pro-
vided by the error-bar plot in Fig. 10, versus different values of
wand K.

Regarding the scalability of the proposed EgoTen algorithm,
Fig. 11 depicts run-time versus network size /N while average
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Fig. 13.  Time-varying community association of nodes with transition times
drawn from N(10, 1). Communities are color-coded; thus, for a given ¢ on the
x-axis, nodes in acommunity have the same color in (a) ground truth; and results
via (b) EgoTen; (c) NMF; and (d) 3D-tensor decomposition.

Fig. 14. Visualization of the American College Football Network with
N = 115 and K = 12. Different colors correspond to different detected com-
munities, and the pie-charts reveal soft community association of the nodes.

nodal degree is d = 20. The experiment was run on an Intel (R)
Core (TM) 17 4.00 GHz CPU with 8 cores and 32 GB of RAM.
EgoTen, Bigclam, Louvain, and MMSB take effective use of
parallelization in their implementation. As the plot corroborates,
the introduced redundancy in EgoTen can be fairly alleviated via
exploitation of sparsity as well as parallelization, thus endowing
it with scalability, while the same cannot be claimed for all other
competitors.
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B. Time-Varying Graphs

In this subsection, the performance of the proposed EgoTen
in Algorithm 4 for community identification over time-varying
networks is assessed. To this end, we have generated a syn-
thetic network with N = 1,000 nodes for a span of 7" = 20
slots. Initially at ¢ = 1, the networks is generated with two dis-
tinct communities, each containing of 500 nodes. For ¢ > 1,
the community association of 600 randomly selected nodes re-
mains unchanged, whereas the other 400 nodes migrate from
their original community to a third newly-formed community.
Transition slot 7,, for each of these nodes is identically drawn
from a normal distribution (10, 2). For any time slot ¢, the
network edges are drawn according to a block stochastic model,
where nodes within the same community are connected with
probability 0.3, and out-of-community edges are drawn with
probability 0.1. EgoTen’s performance is compared with that of
constrained NMF, for which U and V per ¢ is used as initial-
ization for ¢ + 1 to provide NMF with consistency across time.
We also provide the results of NMF when no initialization is
utilized. Furthermore, performance is compared with the result
of community detection via rank-K tensor decomposition of a
3D-tensor; the ¢-th slab of the tensor is the adjacency matrix of
the network at time ¢. In addition to the nonegativity constraints,
first and second factors are regularized with Frobenius norm to
resolve scalar ambiguity, and the rows of the third term is sub-
ject to simplex constraints. This comparison is to highlight the
advantage of the proposed enhanced network representation via
the tensor of egonets.

Performance is measured in terms of NMI, and it is averaged
over 100 realizations of the network in Fig. 12. Furthermore,
Fig. 13 illustrates the identified communities for different nodes
across time for a realization. That is, for any ¢ on the x-axis,
nodes associated with the same community are shown with the
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Maximum-conductance versus coverage for real-world networks with underlying community structure. Lower curves correspond to better performance.

TABLE I
REAL-WORLD NETWORKS

I | Size N Edges ||
Dolphins 62 159
Les miserable 77 254
Football 115 613
Facebook 4039 88,234

same color. The plot depicts ground truth as well as 3D-tensor,
EgoTen and NMF results, where we have perturbed ordering of
nodes for a better visualization. Clearly, EgoTen successfully
identifies the two initial communities, as well as three commu-
nities after the migration of a subset of nodes, presenting solid
blocks similar to those in the ground truth, while communities
detected via constrained NMF and 3D-tensor decomposition are
of lower quality.

C. Real World Networks

In this section EgoTen is utilized for performing commu-
nity detection on a number of real-world networks, tabulated in
Table I. To study the quality of detected communities for real-
world networks -whose ground truth community association is
often unavailable- we examine the conductance of detected com-
munities. In particular, given a cover C = {Ci, ...,Cx }, let us
compute the conductance ¢(C;) fori = 1,..., K. Correspond-
ing to a value v € [0 1], let us define the set of communities
whose conductance is less than v, i.e., S, := {C;|¢(C;) < v}.
Then, coverage(v) is defined as

‘Ucl es, Ci

coverage(v) : ~ 21
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TABLE II
QUALITY OF DETECTED COVER ON REAL-WORLD NETWORKS IN TERMS OF AUC AND AVERAGE CONDUCTANCE

EgoTen Bigclam Louvain Infomap Oslom
lc|  AUC  $(0) lc|  AUC  $(0) IC| _AUC (or 4(C)) || [C] AUC _ ¢(C) || [c| AUC _ $(C)
Dolphins 10 02984 0.4584 5 0.6176  0.6176 11 0.3902 10 03201 0.4012 2 0.1034  0.1034
Les miserable 5 0.2803  0.2803 10 0.6042  0.4666 15 0.3343 12 03534  0.4052 3 0.2127 0.2182
Football 15 04085  0.3480 15 04989 04101 15 0.3752 12 03974  0.3468 11 03430 0.3037
Facebook 100 0.3768  0.4931 100 0.3798  0.4973 100 0.1329 5 0.0370 0.0360 110 0.4998  0.4955

Consequently, conductance-coverage curve is plotted by vary-
ing the value v from O to 1 on the y-axis and reporting the
corresponding coverage value on the x-axis. As low values of
conductance correspond to more cohesive communities, smaller
area under curve (AUC) implies better performance. Fig. 15
plots the coverage-conductance curve and Table II tabulates
AUC as well as average conductance defined in (16). Since
Louvain does not allow for overlapping nodes, the two met-
rics coincide, hence the corresponding one column in Tabel II.
As the results corroborate, the quality of detected communi-
ties via EgoTen is closely competing or outperforming the ones
provided by other methods, while it remains robust to “resolu-
tion limit” [59] observed in Oslom in Fig. 15(a) and Infomap in
Fig. 15(d) whose performance are limited to detecting only large
communities.

VIII. CONCLUSION AND REMARKS

By viewing networks as the union of nodal egonets, a novel
tensor-based representation for capturing high-order nodal con-
nectivities has been introduced. The induced redundancy in the
constructed egonet-tensor bestows the novel representation with
rich structure, and is utilized for community detection by casting
the problem as a constrained tensor decomposition task. Utiliza-
tion of tensor sparsity as well as parallel computation endow the
algorithm with scalability, while the structured redundancy en-
hances the performance against overlapping and highly-mixed
communities. The proposed framework is broadened to accom-
modate time-varying graphs, where a four-dimensional tensor
enables simultaneous community identification over the entire
horizon yielding an improved performance.

As a natural extension, one can generalize the tensor-based
representation to account for adjacency matrices capturing the
connectivity of 2, 3, . . ., dyax-hop neighbors. This approach in-
deed highlights the tradeoff between flexibility and redundancy,
as memory and computational intensity of the corresponding
CPD as well as proper tuning of parameters will influence the
quality of the detected communities. One could analyze this
tradeoff to further characterize how the quality of detected com-
munities evolves as the coverage of extended-egonets increases;
however, this goes beyond the scope of this work, and is left for
future investigation.

APPENDIX A

Before proving Proposition 2, we will establish the following
Lemma.
Lemma: For the N x N matrix

al xN/25 1y
N/2xN/2s BINj2x N2 22)

B BLnjaxny2, BLnj2xn /2

with 0 < 3 < a, it holds that rank(M) = 2. Furthermore, for
the two eigenvectors A; (M) > Ao (M) > 0, we have:

DA (M) > Na/2;

if) Ao (M) < Nj3/2;

iii) the eigen-gap is at least A; (M) — Xy (M) > N(a—3)/2.

Proof of Lemma: The claim on the rank is due to the decom-
position

M = (a - B)[L1xn/2, leN/Q]T[]-lxN/Qa 01 /2]
+ 61 1w,

Furthermore, due to the symmetry of M, the two eigenvectors
take the form

v = [yLixn/2, MLixny2] -

Solving Mv = Av for A yields
2 N
2

A 0

(5 + )+ 2~ )

from which the two eigenvalues are

Ma(M) = F(a+9)+ L@t B 45— 5) > 0,
Thus,

MOM) = St 5)+ TV BE I 2 S
Mo(M) = (a+§) - 7 VTa = OF + 4 < 56

where we have used the inequality /(o — 5)? + 462 > a —

for a > (3. Clearly, their difference satisfies
N
> R

> (o= 0).

Furthermore, the eigenvector v corresponding to the top eigen-
value A\ is

A1 (M) — A2 (M)

Vi = [’Yllg/mhnllx/znf
where using Mv; = A\jvy, A\ > Na/2, and given > 203

w__ NG _ B
N 2M—=pBN  a-p

Thus selecting the N/2 largest-amplitude entries of v, unravels
the member nodes in community C; . |
Proof of Proposition 2: To start, consider the structure of the
egonet adjacency of nodes in community C;. Without loss of
generality, suppose that the vertices are indexed such that C; =
{vi,v2,...,0n/2}, C2 = {vn)241, .-, vn }, and partition the
adjacency W into four submatrices each of size N/2x N/2, as

9117912
9217922 '

T

< 1.

W, = [ (23)
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Next, focus on the block €2y, that captures the edges among
the within-community neighbors of ‘ego node’ v, € (i, i.e.,
central nodes in an egonet in expectation. For 1 < i,j < N/2
and 7 # j we have

N/2

N/2 Zl 1)

n=1

N/2

N/2 ZPr{w =

n=1

W, (i,

N/2
1
- ]\]/2( Z Pr{wi‘n - ].,’lUj,n = 1,'11.)7',7]' — 1}

n=1,n#i,j

+ Pr{wm = 1} + Pr{wi,j = 1})

3, 4 4 3

=p° + Np - Np
where we have split the summation over three parts (i) n =
1,...,N/2,n # 1,7, (i) n = 4, and (iii) n = j; and have also
used the fact that since nodes i, j,n < N/2 are in commu-
nity C;, their pair-wise edge probability is equal to p, and
independent. However, the diagonal entries of €2;; are zero,
due to lack of self loops in the graph. Thus, with a :=
p> +4p/N — 4p3 /N, the £, submatrix can be briefly rewrit-
ten as 11 = alN/Qxllj-\r,/Qxl —alys.

Similarly, the submatrix €25 capturing the W (4, j) entries
fori,j > N/2 and i # j yields

N/2

N/2Zl =1

N/2

—ZPr{wl n=1w;,

N/2

W (i, 5) N/QZPr{w” =1}

=1,w;; =1} = pg’

where we have used 7,7 € Co and n € C;. Furthermore, the
diagonal entries of 295 are zero due to the absence of self
loops. Thus, with 3 := pq?, Q99 can be rewritten as 9y =
61N/2><11Xf/2><1 = Blyyz-

Finally, regarding entries of §21,, the (i, j) entry of W for
1 <i< N/2and N/2 < j is by definition

N/2

N/2 2 Lty

n=1

N/2

N/2 ZPr{w =

n=1

Wl(%])

9 N/2
= N( Z PI‘{’U}Z'JL = ].,’U)j,n = ].,’LUZ‘_J‘ = ].}

n=1,n#i

2 2
Priw; : =1} | = pg®> + —qg — —pg®
+ Priw; }> PE + w54 — 7P
where we have used thati,n € C; and j € Co, as well as the
edge independence. Similar argument holds for the submatrix
9 due to symmetry, which can be rewritten as

QZI = 912 = (6 + AB)]-N/2><1]']-(/'/2><1

with A = %q — %qu.
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Putting together the unraveled structure of matrix W, we

obtain W; = M + AM + T, where
AM — 0 - |Aﬁ1N/2X11X’ 2x1
AﬁlN/lelN/Qxl 0
—OéIN/Q 0 :|
I:.= .
[ 0 Pl

It can be easily shown that ||T'||s = « due to 8 < «, and
|[AM]|s < [|[AM||r < v2(q — pg?). Thus, using the Cauchy-
Schwarz inequality, while substituting o and omitting the neg-
ative terms, we arrive at

I 3 4
W1 = M|l < [[AM]2 +[[Fllz < p” + 5p + V2q.

Furthermore, following the proof of Lemma 1, in networks
with large N and given p > \/2q, the N /2 largest-amplitude
entries of the eigenvector corresponding to the largest eigenvalue
reveal the members of community C;. |

Intuitively, the ¢o-norm of matrices AM and D are to be
compared with the largest eigenvalue of A\; (M) > «N/2. These
two terms can be interpreted as small perturbations on the main
M matrix. Hence, for sufficiently large network, the eigenvalues
and vector pairs are slightly perturbed due to these terms, but
the overall structure of community C; can be inferred from the
eigenvector corresponding to the largest eigenvalue.

APPENDIX B

Proof of Proposition 3: Under arguments similar to those as
in the proof of Prop. 2, it can be shown that the expected egonet-
adjacency for community Cy is

!/ !/
Q1,8 5
! !
Q51, Q9

where €}, = ﬁlN/Qxllzz'/zn — BIny2, Q= = (B+

Aﬁ)lN/Qxll;;/le, 9/22 = OK]-N/2><11}/2><1 — CV,IN/Q, and «
and [3 are defined in Appendix A. Thus using the Lemma with
appropriate permutation matrix, W can be effectively approx-
imated by a rank-2 matrix

M = Bvyovy+ (a—B)veovy
while matrix W can be approximated by a rank-2 matrix
M= fBvgovy+ (a—)vyovy

Building on the common term in M and M/, and utilizing a
rank-3 CPD triplet of factors
1,1,0
1,0,1’

\/>V07 \/O[ 6"17 \/Oé BVQ
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the Forbenius cost of rank-3 approximation of tensor W can be
bounded as

min

1 — =
_ W - W
W .rank(W )=3
1 J—
< < (I — Adiag(1,1,0)B7 |}

_ 1/2
+ W, — Adiag(1,0, 1)BT||%)

< /I~ M3+ W, - M)
< 2, M

< Y2 () + AM]l)

<2 (N s )+ XNag

o VO /NP +pqt (1= p)
< JN N .
APPENDIX C

Proof of Proposition 4: One can readily rewrite the CPD ob-
jective corresponding to W as

N
1 n .
N E HW( )_Adlag(cn)BT”%
1

n=

1 1
== — (W) — Adiag(¢,)B'|?

2\ (N/2) zejc £

1
+— W) — Adiag(¢, )B'||?
(N/2) 26:6 "

1 1 ?
> =Y Wi A~ diag(¢, ))B "
23\ o 2 o7y 2 (ise(en)

v; €Cy vy €C F
2

> (diag(&,))B'

v, €Cy F

1 i) _ AL
Ham 2 W - Aw

v; €Cy

1 < o < o
=5 IWy - Adiag(€1)B' || + [[W2 — Adiag(e2)B' |7

> arg min
{A,B.¢;.¢2}>0

2
1 -~ . .
3 2 IWi — Adiag(¢,)B [} (24)

k=1

where the first inequality follows from Jenson’s inequality over

the (convex) Frobenius norm square, and in the last line, ¢; =

(NIW Zl‘n el dlag(é”) and 62 - (Nlﬁ Zvn S dlag(én)

Minimizing the left hand side with respect to {A,B,C} >0
completes the proof. |
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