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ABSTRACT

Linear structural vector autoregressive models (SVARMs)
have well-documented merits for topology inference of di-
rectional graphs emerging in diverse applications, including
gene-regulatory, brain, and social networks. Although simple
and tractable, linear SVARMs cannot capture nonlinearities
that are inherent to complex systems, such as the human
brain, that can also vary over time. Given nodal measure-
ments, these considerations motivate the dynamic nonlinear
SVARM approach developed here to track the possibly di-
rected and dynamic nonlinear interactions among network
nodes. For slow-varying topologies, nonlinear model param-
eters are estimated via functional stochastic gradient descent.
Numerical tests showcase the effectiveness of the novel algo-
rithms in unveiling sparse dynamically-evolving topologies.

Index Terms— Network topology inference, structural
vector autoregressive models, nonlinear, dynamics

1. INTRODUCTION

Graph topology inference plays a crucial role in numerous
applications, such as financial networks, brain, social, and
gene-regulatory networks, to name a few. In these networks,
the edges may not be available, but observations can be col-
lected at nodes. For example, one may have access to time
series of stock prices for all stocks, yet the dependency struc-
ture between them is hidden. Granger causal models, vector
autoregressive (VAR) models, and structural equation models
(SEMs) are widely adopted to infer directed network topolo-
gies; see e.g., [5,7, 11], and references therein. VAR mod-
els postulate that causal relationships are captured through
time-lagged dependencies between nodal time series, while
SEMs are based on instantaneous interactions. On the other
hand, structural vector autoregressive models (SVARMs) [3]
offer a unifying approach, postulating that nodal time series
result from both instantaneous and time-lagged interactions,
thus adding generality relative to either VARs or SEMs.
Contemporary SVARMs rely on linear and static mod-
els, due to their simplicity and tractability. However, resort-
ing to linear and static SVARMs is limiting, since interac-
tions within complex systems (e.g., the human brain) are gen-
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erally nonlinear, and time-varying. Recently, several vari-
ants of nonlinear SEMs and VARs have been advocated by
e.g., [5,8,10,12,18,20] and references therein.

Besides nonlinearities, network connectivity can also vary
dynamically, while nodal measurements may also arrive se-
quentially. To cope with these challenges, online algorithms
capable of tracking dynamic network topologies have been
pursued. Dynamic SEMs for instance were advocated for
topology identification of time-varying directed networks
in [2, 19]; see also [1,5,6].

The present paper considerably broadens the scope of
prior art, putting forth a general online nonlinear SVARM for
identification of directed and dynamic network topologies.
The developed estimator leverages kernels as an encom-
passing framework for nonlinear topology learning, while a
stochastic gradient descent functional iteration is developed
for tracking the possibly dynamic network topology, and
estimating the underlying nonlinear interactions in real time.

2. PRELIMINARIES ON LINEAR SVARMS

Consider a directed graph with unknown topology, compris-
ing N nodes, each associated with an observable time series
{yit}£_, measured over T slots, per node i = 1,...,N. In
the context of brain networks, each node could represent a re-
gion of interest (Rol), while the per-Rol time course is formed
using standard imaging modalities, e.g., EEG or fMRI data.
The network topology or edge weights is captured by the
weighted adjacency matrix A € RV*N whose (4, j)-th entry
a;; is nonzero, only if a directed (causal) influence is effected
from region ¢ to region j.

In order to unveil the hidden causal network topology, tra-
ditional linear SVARMs postulate that y;; at node j is repre-
sented as a linear combination of instantaneous measurements
at nodes other than j, namely {y;: }:»;, and their time-lagged
versions {{y;s—e) }1q}£_, [3]. Specifically, y;; admits the
following linear instantaneous plus time-lagged model

N L
¢
Yjt = ag?)yit + Z Z az('j)yj(tff) +ep (D
i#j i=1 (=1
with ag) capturing the causal influence of node ¢ upon node
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j over a lag of ¢ time points, while ag?) encodes the cor-

responding instantaneous causal relationship between them.
The coefficients encode the causal structure of the network,
that is, a causal link is present between nodes ¢ and j only

if a(o) = 0, or if there exists a ;é 0for¢ =1,...,L.
If ag? =0 Vi, j,l #0 reduces (1) to a linear SEM with
no exogenous inputs [11]. [Yits - .-

Defining y; := , yNt]T,

e; == le1, ... eny] . and the time-lagged adjacency matrix
A® € RYXN with the (i, j)-th entry [AO)] = af}), one
can write (1) in vector-matrix form as
L
ye=AOy, +Y Ay, ,+e 2)

=1

where A (%) has zero diagonal entries {a( ) = 0N

Given the multivariate time series {y;}~ ;, the goal is
to estimate matrices {A()}} . and consequently unveil
the hidden network topology. The memory length L is pre-
scribed, which can be determined by standard order selection
methods, e.g., the Bayesian information criterion [4]. It is
also worth noting that most real world networks exhibit edge
sparsity, the tendency for each node to link with only a few
other nodes compared to the maximal O(N) set of potential
connections per node. This means that per j, only a few coef-
ficients {ag)} are nonzero. In fact, several recent approaches
exploiting edge sparsity have been advocated, leading to more
efficient topology identification schemes; see e.g., [1,2].

3. FROM LINEAR TO NONLINEAR SVARMS

To enhance flexibility, we introduced a nonlinear generaliza-
tion of (1) in [17]. Specifically, we postulated that node j’s
observation at time ¢ is a result of both instantaneous and
multi-lag effects; that is [cf. (1)]

r=> a1 (i +ZZ D1 wia-0) + e 3

iF£] i=1 (=1

where similar to (1), {ag)} define the matrices {A)}L
As before, a directed edge from node j to node ¢ exists if
the corresponding agf) # 0for ¢ = 0,1,...,L. Note that
conventional linear SVARMSs in (1) assume that the functions
{f g)} in (3) are linear, a limitation that we avoid by resorting
to a reproducing kernel Hilbert space (RKHS) formulation to
model {f, (Z)}

Let each univariate fg) (.) in (3) belong to the RKHS

14
S

t=1

HO = (101D ) = Wvie-n)} @

where nge) (y,¥) : R x R — R is a preselected basis (so-
termed kernel) function that measures the similarity between
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y and . Different choices of my) specify their own spaces,
and the linear functions can be regarded as a special case

associated with n( )( ,%) = yi. An alternative popular
kernel is the Gaussian one that is given by Hgf)(y,iﬂ) =
exp[—(y — ¢) /(20 )]. Defining the inner product as
(2 (0 0), (0 42)) = 2, w0 V) ().
kernel is reproducmg if it satrsﬁes( ( , 1 ,n (y a)) =

K\ )(1/)1, 1)2), which induces the RKHS norm || f” |2

> 5 BB (i yir) 1211,

Considering the measurements per node j, with functions
fi(jz) € Hl,fori=1,...,Nand¢ =0,1,..., L, we advocate
the following regularized least-squares (LS) estimates of the
aforementioned functions obtained as

7_[(14)

T
RO 1 O £0),,
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N
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where typical choices for the regularization function are
Q(z) (2) = 2%. The former is known to pro-
mote sparsity of edges, which is prevalent to most networks;
see e.g., [14]. In principle, leveraging such prior knowledge
naturally avoids overfitting in topology identification.
According to the representer theorem [9, p. 169], the op-

timal solution for each fi(f) in (5) is given by

¢
Z@SM
Although the function spaces in (4) include infinite ba-

sis expansions, since the given data are finite, namely 7'
per node, the optimal solution in (6) entails a finite basis

%(tfz))-

expansion. Substituting (6) into (5), and letting ﬁ(” =
[51(27 ﬁz(f)T] .= a(z)ﬁ( ), the functional mini-

mization in (5) boils down to optimizing over vectors {a(g)}
Specifically, (5) can be equivalently written in vector form as

H YKo ZZK(@) (o)

and a;;

{a(z)} = arg Hl(l(r)l =

i#£] i=1 (=1
i=1 =0
where y; := [y;1,...,y;7] ", and the T x T matrices {ng)}

are formed to have entries [K( )]t = /4;( )(ym Yi(r—0))-
Let W € RNT*N denote the block matrix with al(.f)

as its (7, j)th block. Clearly, W exhibits a structure ‘mod-
ulated” by the entries of A(). © 0,

For instance, if a;;



then al(f) = a%) ,85.5) is an all-zero block, irrespective of

,6%). Therefore, topology identification amounts to finding

the nonzero blocks in W< € RNT*N for which our batch
algorithm [17] applies readily.

4. ONLINE TOPOLOGY TRACKING ALGORITHM

So far, {y;}~_, were processed in a batch format. However,
for settings these samples become available sequentially, the
present section develops a novel online algorithm capable of
tracking the network topologies in real time. To this end, con-
sider the cost at node j per slot ¢, namely

N L
70 (¢
({7 = [ygt S = SR a0
i#j i=1 (=1
where fTi(f) = (e)fl(e) ’HEZ), since the RKHS is closed

with respect to scahng Therefore, the optimization problem
at time slot £ can now be written as [cf. (5)]

t
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{fij
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which can be solved in a batch form per slot ¢.

The batch solver however, faces two major limitations:
a) It needs to solve (7) per slot ¢ for all nodes, which incurs
complexity O(NL3t3) per node that becomes prohibitive
with time [17]; and b) the kernel-based estimator combines
information from all past samples, which entails prohibitive
memory requirements. To alleviate these limitations, the
present section develops an online nonlinear SVARM-based
algorithm with scalable updates and finite memory complex-
ity to track the dynamic graph topology ’on the fly.’
Problem statement. Given {y, € RV}._, the goal is to
estimate and track the nonlinear functions { fi(j)}, as well as
the corresponding adjacency matrices {A(9}£

Upon obtaining a new data sample, the nonlinear func-
tions will be updated by functional gradient descent. Given
{yi},, the chain rule yields the instantaneous functional

gradient of cjt({fg)}) peri,j, 4, as

dei (7)) OF (Wi

( i Z))
Of i-0)  OF

Vo5 = - ©

The first fraction in (9) is the gradient of c;;({ fg)}) with

respect to its scalar argument ﬁ(f) (Yj(t—r)) » given by

(T = 0y (LT D 105 (Wace-e))
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N L
= \Yit — Z ﬁ:(jo)(yit) - Z Z fTi(jé) (Yit—0)

(10)
i£j i=1 =1
while the second fraction in (9) can be written as
015 Wi—e) _ 5O Wiy, ) _
o 2 —r O (i) (1)

of of

Using (9), our stochastic function gradient descent iteration is

P+ = 1 -V joes (7). (2)
ij
Thanks to the representer theorem, our sought function can be

expressed as

t
M =3 alMs (i)
T=0+1
=g (ol t] (13)

wherey; ;¢ = [yi1, ..., Yiu—s) € R andky,, ,(y:) =
(O (y,yi1) ... 5O (ys, yie—e)] T Combining (12) with (13),
we deduce that the stochastic gradient descent algorithm in
the functional space can be realized via a parameter update in
the sample space as follows

(14a)
(14b)

= [¥i,t—0; Yi,t—e+1]
a1t — e (F)]

ij
where 7, > 0 is the step size at time slot . Note that (14)
only considers the loss function without the regularizer. In
case when regularizer is incorporated, and (z) = 22 in (8),
the update in functional space can be written as

Yit—0+1
4
o[t +1] =

1 = =N FP 1 =0V o s ({75} A5)

which results in corresponding updates in the feature space as

(16a)
(16b)

Vit—t+1 = [Yit—0; Yit—0+1)
Y4 (¢
D[t +1] = [(1 - neNal [t —nediy ()]

With the sparsity-promoting €2(z) = |z|1, the iterative soft
thresholding algorithm (ISTA) can be employed, to yield

Vit—t+1 = [Fit—0; Yit—0+1] (17a)
¢t + 1 = [(L=nNB 11 —mehu (T (17b)
D[t +1] = Sy (¢t + 1)) (17¢)

where Sy (z) := Tl max(]|z]|2 — A, 0) is the soft threshold-

ing operator. The overall real-time scheme is summarized as
in Algorithm 1. Several remarks are now in order.

Remark 1. (Memory complexity) Notice that (16) and
(17) require storing all {y, }._,, which results in prohibitive



Algorithm 1 Online nonlinear SVARMs
Input: Y, s, n, A\, L.
Initialize: {y, 0 = [vi1,- - -
fort=2¢,... do

for j =1,..., N (in parallel) do
fori=1,...,Ndo
Vit—t41 = [Yit—t; Yit—o+1]
Update {al(f) [t]}L_, via (16b), or (17¢).
end for
end for
end for
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Fig. 1: Tracking MSE over time for slow-varying networks.

memory requirements as ¢ grows. Similar to e.g., [15], this
can be resolved by setting a budget B on the number of
samples stored. One could possibly store the B most re-
cent samples, along with their corresponding coefficients,
while discarding all previous ones. Random feature-based
alternatives can also be employed to approximate the kernel
functions by inner products of a fixed number of random
vectors drawn from a kernel-induced distribution [13, 16].
Remark 2. (Computational complexity) The updates in
(16) and (17) incur complexity O(t) per (4, j, £) triplet, which
is markedly lower than O(3) of the batch algorithm. This
complexity can be further reduced by setting a budget, or, by
applying the aforementioned random-feature based approach.
Remark 3. (Choice of the kernel function) So far, the ker-
nel x is assumed prescribed. Instead, x can be learned online
from a preselected kernel dictionary, see e.g., [16,17].

5. NUMERICAL TESTS

Data generation An initial 16-node graph was generated
with adjacency matrices {A()[0]},—, > drawn from the
Erdos-Renyi simulator with probability 0.3. Edge weights
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Fig. 2: Tracking MSE over time for switching networks.

in the initial non-zero support of w [0] varied over time
windows following two patterns: pl) ag) [0] = al(f) [t] +
0.01sin(¢/200), for ¢ = 1,...; and p2) new edges appear
with probability 0.1 at the 800th slot, and edges disappear
with probability 0.1 at 1500th slot. Vectors {y;} were gener-
ated according to a nonlinear model using Gaussian kernels
with ¢ = 1, and {e;; } drawn independently from N'(0,0.01).
Results. Edge weights were estimated using Algorithm 1,
with updates (16) (named “I»-based approach™), or (17) (“I;-
based approach”); and also using the nonlinear batch algo-
rithm [17]. Parameters were set at A = 0.01, and n; = 0.01.
The performance was evaluated using the mean-square error,
MSE = 32y, [l 1] — &3 []]3/ (LN (N — 1).

Figures 1 and 2 demonstrate that the novel algorithm is
capable of tracking the evolving network, while the batch al-
gorithm fails to react fast enough, due to the fact that sam-
ples from possibly different models are utilized to estimate
the topology at per time slot. At the time slot that the edge
support changes, the MSE of the proposed methods increases,
but gracefully returns to lower values.

6. CONCLUSIONS

This paper put forth a novel online nonlinear SVARM ap-
proach to identifying directed time-varying network topolo-
gies. Adopting a regularized LS estimator, and leveraging
kernels, stochastic gradient descent iterations were developed
to track the sought network topology. Tests on synthetic
datasets demonstrated that the novel approach is capable of
tracking also dynamic networks. Future directions include a
multi-kernel learning generalization, distributed implementa-
tions suitable for large-scale networks, as well as identifiabil-
ity analysis, and testing on real datasets.
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