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ABSTRACT

Linear structural vector autoregressive models (SVARMs)

have well-documented merits for topology inference of di-

rectional graphs emerging in diverse applications, including

gene-regulatory, brain, and social networks. Although simple

and tractable, linear SVARMs cannot capture nonlinearities

that are inherent to complex systems, such as the human

brain, that can also vary over time. Given nodal measure-

ments, these considerations motivate the dynamic nonlinear

SVARM approach developed here to track the possibly di-

rected and dynamic nonlinear interactions among network

nodes. For slow-varying topologies, nonlinear model param-

eters are estimated via functional stochastic gradient descent.

Numerical tests showcase the effectiveness of the novel algo-

rithms in unveiling sparse dynamically-evolving topologies.

Index Terms— Network topology inference, structural

vector autoregressive models, nonlinear, dynamics

1. INTRODUCTION

Graph topology inference plays a crucial role in numerous

applications, such as financial networks, brain, social, and

gene-regulatory networks, to name a few. In these networks,

the edges may not be available, but observations can be col-

lected at nodes. For example, one may have access to time

series of stock prices for all stocks, yet the dependency struc-

ture between them is hidden. Granger causal models, vector

autoregressive (VAR) models, and structural equation models

(SEMs) are widely adopted to infer directed network topolo-

gies; see e.g., [5, 7, 11], and references therein. VAR mod-

els postulate that causal relationships are captured through

time-lagged dependencies between nodal time series, while

SEMs are based on instantaneous interactions. On the other

hand, structural vector autoregressive models (SVARMs) [3]

offer a unifying approach, postulating that nodal time series

result from both instantaneous and time-lagged interactions,

thus adding generality relative to either VARs or SEMs.

Contemporary SVARMs rely on linear and static mod-

els, due to their simplicity and tractability. However, resort-

ing to linear and static SVARMs is limiting, since interac-

tions within complex systems (e.g., the human brain) are gen-
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erally nonlinear, and time-varying. Recently, several vari-

ants of nonlinear SEMs and VARs have been advocated by

e.g., [5, 8, 10, 12, 18, 20] and references therein.

Besides nonlinearities, network connectivity can also vary

dynamically, while nodal measurements may also arrive se-

quentially. To cope with these challenges, online algorithms

capable of tracking dynamic network topologies have been

pursued. Dynamic SEMs for instance were advocated for

topology identification of time-varying directed networks

in [2, 19]; see also [1, 5, 6].

The present paper considerably broadens the scope of

prior art, putting forth a general online nonlinear SVARM for

identification of directed and dynamic network topologies.

The developed estimator leverages kernels as an encom-

passing framework for nonlinear topology learning, while a

stochastic gradient descent functional iteration is developed

for tracking the possibly dynamic network topology, and

estimating the underlying nonlinear interactions in real time.

2. PRELIMINARIES ON LINEAR SVARMS

Consider a directed graph with unknown topology, compris-

ing N nodes, each associated with an observable time series

{yit}
T
t=1 measured over T slots, per node i = 1, . . . , N . In

the context of brain networks, each node could represent a re-

gion of interest (RoI), while the per-RoI time course is formed

using standard imaging modalities, e.g., EEG or fMRI data.

The network topology or edge weights is captured by the

weighted adjacency matrix A ∈ R
N×N , whose (i, j)-th entry

aij is nonzero, only if a directed (causal) influence is effected

from region i to region j.
In order to unveil the hidden causal network topology, tra-

ditional linear SVARMs postulate that yjt at node j is repre-

sented as a linear combination of instantaneous measurements

at nodes other than j, namely {yit}i 6=j , and their time-lagged

versions {{yi(t−`)}
N
i=1}

L
`=1 [3]. Specifically, yjt admits the

following linear instantaneous plus time-lagged model

yjt =
∑

i 6=j

a
(0)
ij yit +

N
∑

i=1

L
∑

`=1

a
(`)
ij yj(t−`) + ejt (1)

with a
(`)
ij capturing the causal influence of node i upon node
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j over a lag of ` time points, while a
(0)
ij encodes the cor-

responding instantaneous causal relationship between them.

The coefficients encode the causal structure of the network,

that is, a causal link is present between nodes i and j only

if a
(0)
ij 6= 0, or if there exists a

(`)
ij 6= 0 for ` = 1, . . . , L.

If a
(`)
ij = 0 ∀i, j, ` 6= 0 reduces (1) to a linear SEM with

no exogenous inputs [11]. Defining yt := [y1t, . . . , yNt]
>

,

et := [e1t, . . . , eNt]
>

, and the time-lagged adjacency matrix

A(`) ∈ R
N×N with the (i, j)-th entry

[

A(`)
]

ij
:= a

(`)
ij , one

can write (1) in vector-matrix form as

yt = A(0)yt +

L
∑

`=1

A(`)yt−` + et (2)

where A(0) has zero diagonal entries {a
(0)
ii = 0}Ni=1.

Given the multivariate time series {yt}
T
t=1, the goal is

to estimate matrices {A(`)}L`=0, and consequently unveil

the hidden network topology. The memory length L is pre-

scribed, which can be determined by standard order selection

methods, e.g., the Bayesian information criterion [4]. It is

also worth noting that most real world networks exhibit edge

sparsity, the tendency for each node to link with only a few

other nodes compared to the maximal O(N) set of potential

connections per node. This means that per j, only a few coef-

ficients {a
(`)
ij } are nonzero. In fact, several recent approaches

exploiting edge sparsity have been advocated, leading to more

efficient topology identification schemes; see e.g., [1, 2].

3. FROM LINEAR TO NONLINEAR SVARMS

To enhance flexibility, we introduced a nonlinear generaliza-

tion of (1) in [17]. Specifically, we postulated that node j’s
observation at time t is a result of both instantaneous and

multi-lag effects; that is [cf. (1)]

yjt =
∑

i 6=j

a
(0)
ij f

(0)
ij (yit) +

N
∑

i=1

L
∑

`=1

a
(`)
ij f

(`)
ij (yi(t−`)) + ejt (3)

where similar to (1), {a
(`)
ij } define the matrices {A(`)}L`=0.

As before, a directed edge from node j to node i exists if

the corresponding a
(`)
ij 6= 0 for ` = 0, 1, . . . , L. Note that

conventional linear SVARMs in (1) assume that the functions

{f
(`)
ij } in (3) are linear, a limitation that we avoid by resorting

to a reproducing kernel Hilbert space (RKHS) formulation to

model {f
(`)
ij }.

Let each univariate f
(`)
ij (.) in (3) belong to the RKHS

H
(`)
i := {f

(`)
ij |f

(`)
ij (y) =

∞
∑

t=1

β
(`)
ijtκ

(`)
i (y, yi(t−`))} (4)

where κ
(`)
i (y, ψ) : R × R → R is a preselected basis (so-

termed kernel) function that measures the similarity between

y and ψ. Different choices of κ
(`)
i specify their own spaces,

and the linear functions can be regarded as a special case

associated with κ
(`)
i (y, ψ) = yψ. An alternative popular

kernel is the Gaussian one that is given by κ
(`)
i (y, ψ) :=

exp[−(y − ψ)2/(2σ2)]. Defining the inner product as

〈κ
(`)
i (y, ψ1), κ

(`)
i (y, ψ2)〉 :=

∑

τ κ
(`)
i (yτ , ψ1)κ

(`)
i (yτ , ψ2), a

kernel is reproducing if it satisfies 〈κ
(`)
i (y, ψ1), κ

(`)
i (y, ψ2)〉 =

κ
(`)
i (ψ1, ψ2), which induces the RKHS norm ‖f

(`)
ij ‖2

H
(`)
i

=
∑

τ

∑

τ ′ β
(`)
ijτβ

(`)
ijτ ′κ

(`)
i (yiτ , yiτ ′) [21].

Considering the measurements per node j, with functions

f
(`)
ij ∈ Hl

i, for i = 1, . . . , N and ` = 0, 1, . . . , L, we advocate

the following regularized least-squares (LS) estimates of the

aforementioned functions obtained as

{f̂
(`)
ij } = arg min

{f
(`)
ij

∈H
(`)
i

}

1

2

T
∑

t=1

[

yjt −
∑

i 6=j

a
(0)
ij f

(0)
ij (yit) (5)

−
N
∑

i=1

L
∑

`=1

a
(`)
ij f

(`)
ij (yi(t−`))

]2

+ λ

N
∑

i=1

L
∑

`=0

Ω(‖a
(`)
ij f

(`)
ij ‖H(`))

where typical choices for the regularization function are

Ω(z) = |z|, and Ω(z) = z2. The former is known to pro-

mote sparsity of edges, which is prevalent to most networks;

see e.g., [14]. In principle, leveraging such prior knowledge

naturally avoids overfitting in topology identification.

According to the representer theorem [9, p. 169], the op-

timal solution for each f
(`)
ij in (5) is given by

f̂
(`)
ij (y) =

T
∑

t=1

β
(`)
ijtκ

(`)
i (y, yi(t−`)). (6)

Although the function spaces in (4) include infinite ba-

sis expansions, since the given data are finite, namely T
per node, the optimal solution in (6) entails a finite basis

expansion. Substituting (6) into (5), and letting β
(`)
ij :=

[β
(`)
ij1, . . . , β

(`)
ijT ]

>, and α
(`)
ij := a

(`)
ij β

(`)
ij , the functional mini-

mization in (5) boils down to optimizing over vectors {α
(`)
ij }.

Specifically, (5) can be equivalently written in vector form as

{α̂
(`)
ij } = arg min

{α(`)
ij

}

1

2

∥

∥

∥

∥

yj−
∑

i 6=j

K
(0)
i α

(0)
ij −

N
∑

i=1

L
∑

`=1

K
(`)
i α

(`)
ij

∥

∥

∥

∥

2

2

+ λ

N
∑

i=1

L
∑

`=0

Ω

(

√

(α
(`)
ij )>K

(`)
i α

(`)
ij

)

(7)

where yj := [yj1, . . . , yjT ]
>, and the T ×T matrices {K

(`)
i }

are formed to have entries [K
(`)
i ]t,τ = κ

(`)
i (yit, yi(τ−`)).

Let W
(`)
α ∈ R

NT×N denote the block matrix with α
(`)
ij

as its (i, j)th block. Clearly, W
(`)
α exhibits a structure ‘mod-

ulated’ by the entries of A(`). For instance, if a
(`)
ij = 0,
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then α
(`)
ij := a

(`)
ij β

(`)
ij is an all-zero block, irrespective of

β
(`)
ij . Therefore, topology identification amounts to finding

the nonzero blocks in W
(`)
α ∈ R

NT×N , for which our batch

algorithm [17] applies readily.

4. ONLINE TOPOLOGY TRACKING ALGORITHM

So far, {yt}
T
t=1 were processed in a batch format. However,

for settings these samples become available sequentially, the

present section develops a novel online algorithm capable of

tracking the network topologies in real time. To this end, con-

sider the cost at node j per slot t, namely

cjt({f̄
(`)
ij }) :=

1

2
[yjt −

∑

i 6=j

f̄
(0)
ij (yit)−

N
∑

i=1

L
∑

`=1

f̄
(`)
ij (yi(t−`))]

2

where f̄
(`)
ij := a

(`)
ij f

(`)
ij ∈ H

(`)
i , since the RKHS is closed

with respect to scaling. Therefore, the optimization problem

at time slot t can now be written as [cf. (5)]

{f̂
(`)
ij [t]}Ni=1 =arg min

{f̄
(`)
ij

∈H
(`)
i

}

t
∑

τ=1

cjτ ({f̄
(`)
ij })

+ λ

N
∑

i=1

L
∑

`=0

Ω(‖f̄
(`)
ij ‖H(`)) (8)

which can be solved in a batch form per slot t.
The batch solver however, faces two major limitations:

a) It needs to solve (7) per slot t for all nodes, which incurs

complexity O(NL3t3) per node that becomes prohibitive

with time [17]; and b) the kernel-based estimator combines

information from all past samples, which entails prohibitive

memory requirements. To alleviate these limitations, the

present section develops an online nonlinear SVARM-based

algorithm with scalable updates and finite memory complex-

ity to track the dynamic graph topology ’on the fly.’

Problem statement. Given {yτ ∈ R
N}tτ=1, the goal is to

estimate and track the nonlinear functions {f̄
(`)
ij }, as well as

the corresponding adjacency matrices {A(`)}L`=0.

Upon obtaining a new data sample, the nonlinear func-

tions will be updated by functional gradient descent. Given

{yit}
N
i=1, the chain rule yields the instantaneous functional

gradient of cjt({f̄
(`)
ij }) per i, j, `, as

∇
f̄
(`)
ij

ctj({f̄
(`)
ij }) =

∂ctj({f̄
(`)
ij })

∂f̄
(`)
ij (yi(t−`))

∂f̄
(`)
ij (yi(t−`))

∂f̄
(.). (9)

The first fraction in (9) is the gradient of cjt({f
(`)
ij }) with

respect to its scalar argument f̄
(`)
ij (yj(t−`)) , given by

c′jt(f̄
(`)
ij ) := ∂ctj({f̄

(`)
ij })/∂f̄

(`)
ij (yi(t−`))

= −



yjt −
∑

i 6=j

f̄
(0)
ij (yit)−

N
∑

i=1

L
∑

`=1

f̄
(`)
ij (yi(t−`))



 (10)

while the second fraction in (9) can be written as

∂f
(`)
ij (yi(t−`))

∂f
=
∂〈f, κ(`)(yi(t−`), .)〉

∂f
=κ(`)(yi(t−`), .). (11)

Using (9), our stochastic function gradient descent iteration is

f̄
(`)
ij [t+ 1] = f̄

(`)
ij [t]− ηt∇f̄

(`)
ij

ctj({f̄
(`)
ij }). (12)

Thanks to the representer theorem, our sought function can be

expressed as

ˆ̄f
(`)
ij [t](y) =

t
∑

τ=`+1

α
(`)
ij [t]κ

(`)
i (y, yi(τ−`))

:=κ>
ȳi,τ−`

(yt)α
(`)
ij [t] (13)

where ȳi,t−` := [yi1, . . . , yi,t−`]
> ∈ R

t−`, and κȳi,t−`
(yt) :=

[κ(`)(y, yi1) . . . κ
(`)(yt, yi,t−`)]

>. Combining (12) with (13),

we deduce that the stochastic gradient descent algorithm in

the functional space can be realized via a parameter update in

the sample space as follows

ȳi,t−`+1 = [ȳi,t−`; yi,t−`+1] (14a)

α
(`)
ij [t+ 1] = [α

(`)
ij [t]; − ηtc

′
jt(f̄

(`)
ij )] (14b)

where ηt > 0 is the step size at time slot t. Note that (14)

only considers the loss function without the regularizer. In

case when regularizer is incorporated, and Ω(z) = z2 in (8),

the update in functional space can be written as

f̄
(`)
ij [t+ 1] = (1− ηtλ)f̄

(`)
ij [t]− ηt∇f̄

(`)
ij

ctj({f̄
(`)
ij }) (15)

which results in corresponding updates in the feature space as

ȳi,t−`+1 = [ȳi,t−`; yi,t−`+1] (16a)

α
(`)
ij [t+ 1] = [(1− ηtλ)α

(`)
ij [t]; − ηtc

′
jt(f̄

(`)
ij )]. (16b)

With the sparsity-promoting Ω(z) = |z|1, the iterative soft

thresholding algorithm (ISTA) can be employed, to yield

ȳi,t−`+1 = [ȳi,t−`; yi,t−`+1] (17a)

ζ
(`)
ij [t+ 1] = [(1− ηtλ)β

(`)
ij [t]; − ηtc

′
jt(f̄

(`)
ij )] (17b)

α
(`)
ij [t+ 1] = Sηtλ(ζ

(`)
ij [t+ 1]) (17c)

where Sλ(z) :=
z

‖z‖2
max(‖z‖2 − λ, 0) is the soft threshold-

ing operator. The overall real-time scheme is summarized as

in Algorithm 1. Several remarks are now in order.

Remark 1. (Memory complexity) Notice that (16) and

(17) require storing all {yτ}
t
τ=1, which results in prohibitive
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Algorithm 1 Online nonlinear SVARMs

Input: Y, κ, η, λ, L.

Initialize: {ȳi,0 = [yi1, . . . , yiL ]}
N
i=1, {α

(`)
ij [t]}L`=1 = 0.

for t = `, . . . do

for j = 1, . . . , N (in parallel) do

for i = 1, . . . , N do

ȳi,t−`+1 = [ȳi,t−`; yi,t−`+1]

Update {α
(`)
ij [t]}L`=1 via (16b), or (17c).

end for

end for

end for
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Fig. 1: Tracking MSE over time for slow-varying networks.

memory requirements as t grows. Similar to e.g., [15], this

can be resolved by setting a budget B on the number of

samples stored. One could possibly store the B most re-

cent samples, along with their corresponding coefficients,

while discarding all previous ones. Random feature-based

alternatives can also be employed to approximate the kernel

functions by inner products of a fixed number of random

vectors drawn from a kernel-induced distribution [13, 16].

Remark 2. (Computational complexity) The updates in

(16) and (17) incur complexity O(t) per (i, j, `) triplet, which

is markedly lower than O(t3) of the batch algorithm. This

complexity can be further reduced by setting a budget, or, by

applying the aforementioned random-feature based approach.

Remark 3. (Choice of the kernel function) So far, the ker-

nel κ is assumed prescribed. Instead, κ can be learned online

from a preselected kernel dictionary, see e.g., [16, 17].

5. NUMERICAL TESTS

Data generation An initial 16-node graph was generated

with adjacency matrices {A(`)[0]}`=1,2 drawn from the

Erdos-Renyi simulator with probability 0.3. Edge weights
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l
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Fig. 2: Tracking MSE over time for switching networks.

in the initial non-zero support of W
(`)
α [0] varied over time

windows following two patterns: p1) α
(`)
ij [0] = α

(`)
ij [t] +

0.01sin(t/200), for t = 1, . . . ; and p2) new edges appear

with probability 0.1 at the 800th slot, and edges disappear

with probability 0.1 at 1500th slot. Vectors {yt} were gener-

ated according to a nonlinear model using Gaussian kernels

with σ = 1, and {eit} drawn independently from N (0, 0.01).

Results. Edge weights were estimated using Algorithm 1,

with updates (16) (named “l2-based approach”), or (17) (“l1-

based approach”); and also using the nonlinear batch algo-

rithm [17]. Parameters were set at λ = 0.01, and ηt = 0.01.

The performance was evaluated using the mean-square error,

MSE :=
∑

ij` ‖α
(`)
ij [t]− α̂

(`)
ij [t]‖22/(LN(N − 1)).

Figures 1 and 2 demonstrate that the novel algorithm is

capable of tracking the evolving network, while the batch al-

gorithm fails to react fast enough, due to the fact that sam-

ples from possibly different models are utilized to estimate

the topology at per time slot. At the time slot that the edge

support changes, the MSE of the proposed methods increases,

but gracefully returns to lower values.

6. CONCLUSIONS

This paper put forth a novel online nonlinear SVARM ap-

proach to identifying directed time-varying network topolo-

gies. Adopting a regularized LS estimator, and leveraging

kernels, stochastic gradient descent iterations were developed

to track the sought network topology. Tests on synthetic

datasets demonstrated that the novel approach is capable of

tracking also dynamic networks. Future directions include a

multi-kernel learning generalization, distributed implementa-

tions suitable for large-scale networks, as well as identifiabil-

ity analysis, and testing on real datasets.
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[12] N. Lim, F. d’Alché Buc, C. Auliac, and G. Michai-

lidis, “Operator-valued kernel-based vector autoregres-

sive models for network inference,” Machine Learning,

vol. 99, no. 3, pp. 489–513, Jun. 2015.

[13] A. Rahimi and B. Recht, “Random features for large-

scale kernel machines,” in Proc. Advances in Neural

Info. Process. Syst., Vancouver, Canada, Dec. 2007, pp.

1177–1184.

[14] M. Rubinov and O. Sporns, “Complex network mea-

sures of brain connectivity: Uses and interpretations,”

Neuroimage, vol. 52, no. 3, pp. 1059–1069, Sep. 2010.

[15] F. Sheikholeslami, D. Berberidis, and G. B. Giannakis,

“Large-scale kernel-based feature extraction via low-

rank subspace tracking on a budget,” IEEE Transactions

on Signal Processing, 2018.

[16] Y. Shen, T. Chen, and G. B. Giannakis, “Online ensem-

ble multi-kernel learning adaptive to non-stationary and

adversarial environments,” in Proc. of Intl. Conf. on Ar-

tificial Intelligence and Statistics, Lanzarote, Canary Is-

lands, Apr. 2018.

[17] Y. Shen, B. Baingana, and G. B. Giannakis, “Nonlinear

structural vector autoregressive models for inferring

effective brain network connectivity,” 2016. [Online].

Available: https://arxiv.org/abs/1610.06551

[18] ——, “Kernel-based structural equation models for

topology identification of directed networks,” IEEE

Trans. Sig. Proc., vol. 65, no. 10, pp. 2503–2516, May

2017.

[19] ——, “Tensor decompositions for identifying directed

graph topologies and tracking dynamic networks,” IEEE

Trans. Signal Processing, vol. 65, no. 14, pp. 3675–

3687, July 2017.

[20] X. Sun, “Assessing nonlinear Granger causality from

multivariate time series,” in Proc. Eur. Conf. Mach.

Learn. Knowl. Disc. Databases, Antwerp, Belgium,

Sep. 2008, pp. 440–455.

[21] G. Wahba, Spline Models for Observational Data

(CBMS-NSF Regional Conference Series in Applied

Mathematics). Philadelphia, PA: Society for Industrial

and Applied Mathematics, 1990.

199


