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Abstract

We study data-driven representations for three-
dimensional triangle meshes, which are one of the
prevalent objects used to represent 3D geometry. Recent
works have developed models that exploit the intrinsic ge-
ometry of manifolds and graphs, namely the Graph Neural
Networks (GNNs) and its spectral variants, which learn
from the local metric tensor via the Laplacian operator.

Despite offering excellent sample complexity and built-
in invariances, intrinsic geometry alone is invariant to iso-
metric deformations, making it unsuitable for many appli-
cations. To overcome this limitation, we propose several
upgrades to GNNs to leverage extrinsic differential geome-
try properties of three-dimensional surfaces, increasing its
modeling power. In particular, we propose to exploit the
Dirac operator, whose spectrum detects principal curva-
ture directions — this is in stark contrast with the classical
Laplace operator, which directly measures mean curvature.
We coin the resulting models Surface Networks (SN).

We prove that these models define shape representa-
tions that are stable to deformation and to discretization,
and we demonstrate the efficiency and versatility of SNs on
two challenging tasks: temporal prediction of mesh defor-
mations under non-linear dynamics and generative mod-
els using a variational autoencoder framework with en-
coders/decoders given by SNs.

1. Introduction

3D geometry analysis, manipulation and synthesis plays
an important role in a variety of applications from engineer-
ing to computer animation to medical imaging. Despite the
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vast amount of high-quality 3D geometric data available,
data-driven approaches to problems involving complex ge-
ometry have yet to become mainstream, in part due to the
lack of data representation regularity which is required for
traditional convolutional neural network approaches. While
in computer vision problems inputs are typically sampled
on regular two or three-dimensional grids, surface geome-
try is represented in a more complex form and, in general,
cannot be converted to an image-like format by parametriz-
ing the shape using a single planar chart. Most commonly
an irregular triangle mesh is used to represent shapes, cap-
turing its main topological and geometrical properties.

Similarly to the regular grid case (used for images or
videos), we are interested in data-driven representations that
strike the right balance between expressive power and sam-
ple complexity. In the case of CNN:gs, this is achieved by ex-
ploiting the inductive bias that most computer vision tasks
are locally stable to deformations, leading to localized, mul-
tiscale, stationary features. In the case of surfaces, we face
a fundamental modeling choice between extrinsic versus in-
trinsic representations. Extrinsic representations rely on the
specific embedding of surfaces within a three-dimensional
ambient space, whereas intrinsic representations only cap-
ture geometric properties specific to the surface, irrespec-
tive of its parametrization. Whereas the former offer arbi-
trary representation power, they are unable to easily exploit
inductive priors such as stability to local deformations and
invariance to global transformations.

A particularly simple and popular extrinsic method [30,

] represents shapes as point clouds in R? of variable size,
and leverages recent deep learning models that operate on
input sets [38, 37]. Despite its advantages in terms of ease
of data acquisition (they no longer require a mesh triangu-
lation) and good empirical performance on shape classifica-
tion and segmentation tasks, one may wonder whether this
simplification comes at a loss of precision as one considers
more challenging prediction tasks.

In this paper, we develop an alternative pipeline that ap-
plies neural networks directly on triangle meshes, building



on geometric deep learning. These models provide data-
driven intrinsic graph and manifold representations with in-
ductive biases analogous to CNNs on natural images. Mod-
els based on Graph Neural Networks [34] and their spectral
variants [0, 9, 22] have been successfully applied to geom-
etry processing tasks such as shape correspondence [27]. In
their basic form, these models learn a deep representation
over the discretized surface by combining a latent represen-
tation at a given node with a local linear combination of its
neighbors’ latent representations, and a point-wise nonlin-
earity. Different models vary in their choice of linear opera-
tor and point-wise nonlinearity, which notably includes the
graph Laplacian, leading to spectral interpretations of those
models.

Our contributions are three-fold. First, we extend the
model to support extrinsic features. More specifically, we
exploit the fact that surfaces in R? admit a first-order dif-
ferential operator, the Dirac operator, that is stable to dis-
cretization, provides a direct generalization of Laplacian-
based propagation models, and is able to detect principal
curvature directions [8, 16]. Next, we prove that the models
resulting from either Laplace or Dirac operators are stable
to deformations and to discretization, two major sources of
variability in practical applications. Last, we introduce a
generative model for surfaces based on the variational au-
toencoder framework [21, 33], that is able to exploit non-
Euclidean geometric regularity.

By combining the Dirac operator with input coordinates,
we obtain a fully differentiable, end-to-end feature repre-
sentation that we apply to several challenging tasks. The
resulting Surface Networks — using either the Dirac or the
Laplacian, inherit the stability and invariance properties of
these operators, thus providing data-driven representations
with certified stability to deformations. We demonstrate the
model efficiency on a temporal prediction task of complex
dynamics, based on a physical simulation of elastic shells,
which confirms that whenever geometric information (in the
form of a mesh) is available, it can be leveraged to signifi-
cantly outperform point-cloud based models.

Our main contributions are summarized as follows:

e We demonstrate that Surface Networks provide accu-
rate temporal prediction of surfaces under complex
non-linear dynamics, motivating the use of geometric
shape information.

e We prove that Surface Networks define shape repre-
sentations that are stable to deformation and to dis-
cretization.

e We introduce a generative model for 3D surfaces based
on the variational autoencoder.

A reference implementation of our algorithm is avail-
able at https://github.com/jiangzhongshi/
SurfaceNetworks.

2. Related Work

Learning end-to-end representations on irregular and
non-Euclidean domains is an active and ongoing area of
research. [34] introduced graph neural networks as recur-
sive neural networks on graphs, whose stationary distri-
butions could be trained by backpropagation. Subsequent
works [23, 37] have relaxed the model by untying the re-
current layer weights and proposed several nonlinear up-
dates through gating mechanisms. Graph neural networks
are in fact natural generalizations of convolutional networks
to non-Euclidean graphs. [0, |5] proposed to learn smooth
spectral multipliers of the graph Laplacian, albeit with high
computational cost, and [9, 22] resolved the computational
bottleneck by learning polynomials of the graph Laplacian,
thus avoiding the computation of eigenvectors and complet-
ing the connection with GNNs. We refer the reader to [5]
for an exhaustive literature review on the topic. GNNs are
finding application in many different domains. [2, 7] de-
velop graph interaction networks that learn pairwise parti-
cle interactions and apply them to discrete particle physical
dynamics. [10, 19] study molecular fingerprints using vari-
ants of the GNN architecture, and [ 2] further develop the
model by combining it with set representations [38], show-
ing state-of-the-art results on molecular prediction. The
resulting models, so-called Message-Passing Neural Net-
works, also learn the diffusion operator, which can be seen
as generalizations of the Dirac model on general graphs.

In the context of computer graphics, [25] developed the
first CNN model on meshed surfaces using intrinsic patch
representations, and further generalized in [4] and [27].
This last work allows for flexible representations via the so-
called pseudo-coordinates and obtains state-of-the-art re-
sults on 3D shape correspondence, although it does not
easily encode first-order differential information. These
intrinsic models contrast with Euclidean models such as
[42, 40], that have higher sample complexity, since they
need to learn the underlying invariance of the surface em-
bedding. Point-cloud based models are increasingly popular
to model 3d objects due to their simplicity and versatility.
[30, 31] use set-invariant representations from [38, 37] to
solve shape segmentation and classification tasks. More re-
cently, [24] proposes to learn surface convolutional network
from a canonical representation of planar flat-torus, with
excellent performance on shape segmentation and classifi-
cation, although such canonical representations may intro-
duce exponential scale changes that can introduce instabili-
ties. Finally, [1 1] proposes a point-cloud generative model
for 3D shapes, that incorporates invariance to point permu-
tations, but does not encode geometrical information as our
shape generative model. Learning variational deformations
is an important problem for graphics applications, since it
enables negligible and fixed per-frame cost [29], but it is
currently limited to 2D deformations using point handles.



In constrast, our method easily generalizes to 3D and learns
dynamic behaviours.

3. Surface Networks

This section presents our surface neural network model
and its basic properties. We start by introducing the problem
setup and notations using the Laplacian formalism (Section
3.1), and then introduce our model based on the Dirac oper-
ator (Section 3.2).

3.1. Laplacian Surface Networks

Our first goal is to define a trainable representation of
discrete surfaces. Let M = {V, E, F'} be a triangular mesh,
where V = (v; € R3);<n contains the node coordinates,
E = (e; ;) corresponds to edges, and F'is the set of triangu-
lar faces. We denote as A the discrete Laplace-Beltrami op-
erator (we use the popular cotangent weights formulation,
see [5] for details).

This operator can be interpreted as a local, linear high-
pass filter in M that acts on signals 2 € R?*!V| defined
on the vertices as a simple matrix multiplication z = Ax.
By combining A with an all-pass filter and learning generic
linear combinations followed by a point-wise nonlinearity,
we obtain a simple generalization of localized convolutional
operators in M that update a feature map from layer k to
layer k + 1 using trainable parameters A;, and By:

" = p (ApAz” + Bpa®) | Ay, By, € R%+%% (1)

By observing that the Laplacian itself can be written in
terms of the graph weight similarity by diagonal renormal-
ization, this model is a specific instance of the graph neural
network [34, 5, 22] and a generalization of the spectrum-
free Laplacian networks from [9]. As shown in these pre-
vious works, convolutional-like layers (1) can be combined
with graph coarsening or pooling layers.

In contrast to general graphs, meshes contain a low-
dimensional Euclidean embedding that contains potentially
useful information in many practical tasks, despite being
extrinsic and thus not invariant to the global position of the
surface. A simple strategy to strike a good balance be-
tween expressivity and invariance is to include the node
canonical coordinates as input channels to the network:
z! :=V e RIVI*3, The mean curvature can be computed
by applying the Laplace operator to the coordinates of the
vertices:

Azl = —2Hn, )

where H is the mean curvature function and n(u) is the
normal vector of the surface at point u. As a result, the
Laplacian neural model (1) has access to mean curvature
and normal information. Feeding Euclidean embedding co-
ordinates into graph neural network models is related to the
use of generalized coordinates from [27]. By cascading K

layers of the form (1) we obtain a representation ® A (M)
that contains generic features at each node location. When
the number of layers K is of the order of diam(M), the
diameter of the graph determined by M, then the network
is able to propagate and aggregate information across the
whole surface.

Equation (2) illustrates that a Laplacian layer is only
able to extract isotropic high-frequency information, cor-
responding to the mean variations across all directions. Al-
though in general graphs there is no well-defined procedure
to recover anisotropic local variations, in the case of sur-
faces some authors ([4, 1, 27]) have considered anisotropic
extensions. We describe next a particularly simple proce-
dure to increase the expressive power of the network using a
related operator from quantum mechanics: the Dirac opera-
tor, that has been previously used successfully in the context
of surface deformation [8] and shape analysis [16].

3.2. Dirac Surface Networks

The Laplace-Beltrami operator A is a second-order dif-
ferential operator, constructed as A = —divV by combin-
ing the gradient (a first-order differential operator) with its
adjoint, the divergence operator. In an Euclidean space, one
has access to these first-order differential operators sepa-
rately, enabling oriented high-pass filters.

For convenience, we embed R? to the imaginary quater-
nion space Im(H) (see Appendix A in the Suppl. Material
for details). The Dirac operator is then defined as a matrix
D € HIFIXIVI that maps (quaternion) signals on the nodes
to signals on the faces. In coordinates,

-1

Dii=——©¢; feFjcV,
13 = gAY feh

where e; is the opposing edge vector of node j in the face
f, and Ay is the area (see Appendix A) using counter-
clockwise orientations on all faces.

To apply the Dirac operator defined in quaternions to
signals in vertices and faces defined in real numbers, we
write the feature vectors as quaternions by splitting them
into chunks of 4 real numbers representing the real and
imaginary parts of a quaternion; see Appendix A. Thus,
we always work with feature vectors with dimensionalities
that are multiples of 4. The Dirac operator provides first-
order differential information and is sensitive to local orien-
tations. Moreover, one can verify [8] that

Re D*D = A,

where D* is the adjoint operator of D in the quaternion
space (see Appendix A). The adjoint matrix can be com-
puted as D* = M ' D¥ Mp where D¥ is a conjugate
transpose of D and My, My are diagonal mass matrices
with one third of areas of triangles incident to a vertex and
face areas respectively.



The Dirac operator can be used to define a new neural
surface representation that alternates layers with signals de-
fined over nodes with layers defined over faces. Given a
d-dimensional feature representation over the nodes z* €
R4V and the faces of the mesh, y* e RIXIF| we define
a d’-dimensional mapping to a face representation as

Yt = P (CkDIk + Ekyk) ,C, Ej, € R¥er1xde (3

where C},, E, are trainable parameters. Similarly, we define
the adjoint layer that maps back to a d-dimensional signal
over nodes as

l‘k+1 =p (AkD*yk+1 + kak) ,Ak, Bk S deJrlek,

“)
where Ay, By are trainable parameters. A surface
neural network layer is thus determined by parameters
{A, B, C, E} using equations (3) and (4) to define z¥*1 €
Ré+1xIVI We denote by ®p (M) the mesh representa-
tion resulting from applying K such layers (that we assume
fixed for the purpose of exposition).

The Dirac-based surface network is related to edge fea-
ture transforms proposed on general graphs in [12], al-
though these edge measurements cannot be associated with
derivatives due to lack of proper orientation. In general
graphs, there is no notion of square root of A that recov-
ers oriented first-order derivatives.

4. Stability of Surface Networks

Here we describe how Surface Networks are geomet-
rically stable, because surface deformations become addi-
tive noise under the model. Given a continuous surface
S C R3 or a discrete mesh M, and a smooth deformation
field 7 : R® — R3, we are particularly interested in two
forms of stability:

e Given a discrete mesh M and a certain non-rigid de-
formation 7 acting on M, we want to certify that
[2(M) — &(T(M))] is small if |V7(VT)* — I is
small, i.e when the deformation is nearly rigid; see
Theorem 4.1.

e Given two discretizations M7 and My of the same
underlying surface S, we would like to control
[|®(M;) — ®(M3)]| in terms of the resolution of the
meshes; see Theorem 4.2.

These stability properties are important in applications,
since most tasks we are interested in are stable to deforma-
tion and to discretization. We shall see that the first property
is a simple consequence of the fact that the mesh Laplacian
and Dirac operators are themselves stable to deformations.
The second property will require us to specify under which
conditions the discrete mesh Laplacian A4 converges to
the Laplace-Beltrami operator Ag on S. Unless it is clear

from the context, in the following A will denote the discrete
Laplacian.

Theorem 4.1 Let M be a N-node mesh and x, v’ €

RIVI*X4 be input signals defined on the nodes. Assume

the nonlinearity p(-) is non-expansive (|p(z) — p(z')] <

|z — 2'|). Then

(a) |Pa(M;z) — Da(M;2)|| < aallx — 2| , where
aa depends only on the trained weights and the mesh.

(b) || 2p(M;z) — Pp(M;2")|| < apllz — 2|, where
ap depends only on the trained weights and the mesh.

(c) Let |VT|oo = sup, ||V7(u)(V7(w))* — 1|, where
V1 (u) is the Jacobian matrix of u — 7(u). Then
[Pa(M;z) — PA(T(M); )| < BalVTleoll]|
where B is independent of T and x.

(d) Denote by \ﬁ\oo = sup, |V7(u) — 1||. Then

[®p(M;z) — @p(r(M);z)l| < Bp|Vr| ]l ,
where Bp is independent of T and x.

Properties (a) and (b) are not specific to surface representa-
tions, and are a simple consequence of the non-expansive
property of our chosen nonlinearities. The constant «
is controlled by the product of ¢ norms of the network
weights at each layer and the norm of the discrete Lapla-
cian operator. Properties (c) and (d) are based on the fact
that the Laplacian and Dirac operators are themselves sta-
ble to deformations, a property that depends on two key as-
pects: first, the Laplacian/Dirac is localized in space, and
next, that it is a high-pass filter and therefore only depends
on relative changes in position.

One caveat of Theorem 4.1 is that the constants appear-
ing in the bounds depend upon a bandwidth parameter given
by the reciprocal of triangle areas, which increases as the
size of the mesh increases. This corresponds to the fact that
the spectral radius of A, diverges as the mesh size N in-
creases.

In order to overcome this problematic asymptotic behav-
ior, it is necessary to exploit the smoothness of the signals
incoming to the surface network. This can be measured with
Sobolev norms defined using the spectrum of the Laplacian
operator. Given a mesh M of N nodes approximating an
underlying surface S, and its associated cotangent Lapla-
cian A4, consider the spectral decomposition of A (a
symmetric, positive definite operator):

Ap=> Meref , ex €RN 0< A <X < Ay
E<N

Under normal uniform convergence ' [39], the spectrum of
A converges to the spectrum of the Laplace-Beltrami op-
erator Ag of S. If S is bounded, it is known from the Weyl

'which controls how the normals of the mesh align with the surface
normals; see [39].



law [4 1] that there exists v > 0 such that k—(S) < )\;1, SO
the eigenvalues A\ do not grow too fast. The smoothness of
a signal z € RIVI*? defined in M is captured by how fast
its spectral decomposition &(k) = e{z € R decays [36].
We define ||z[|3, := >, A(k)?||Z(k)||?* is Sobolev norm,
and (x,S) > 1 as the largest rate such that its spectral
decomposition coefficients satisfy

12k S &, (k= o0). ©)

If z € RIVI*? is the input to the Laplace Surface Network
of R layers, we denote by (Bo, 51, ..., Sr—1) the smooth-
ness rates of the feature maps (") defined at each layer
r < R.

Theorem 4.2 Consider a surface S and a finite-mesh ap-
proximation My of N points, and ®a a Laplace Sur-
face Network with parameters {(A,, B,)}r<gr. Denote by
d(S, M) the uniform normal distance, and let x1,xo be
piece-wise polyhedral approximations of T(t), t € S in
My, with ||Z||3(s) < oo. Assume || ||3ys) < oo for
r < R.

(a) If x1,xo are two functions such that the R feature maps

xl(r) have rates (8o, B1, - - -, Br—1), then

1©a (21; Mn)=@a(2; M)|* < C(B)l|lz1—2| ",

(6)
with h(5) = Hle 5?17_1}2, and where C(0) does not
depend upon N.

(b) If T is a smooth deformation field, then
|@a(2; M) = Bae;7(My))]| < OIVT]""
where C' does not depend upon N.

(c) Let M and M’ be N-point discretizations of S, If
max(d(M, S),d(M',S)) < ¢ then ||Pa(M;z) —
PA(M',2")|| < CMP) | where C is independent of
N.

This result ensures that if we use as generator of the
SN an operator that is consistent as the mesh resolution in-
creases, the resulting surface representation is also consis-
tent. Although our present result only concerns the Lapla-
cian, the Dirac operator also has a well-defined continu-
ous counterpart [8] that generalizes the gradient operator in
quaternion space. Also, our current bounds depend explic-
itly upon the smoothness of feature maps across different
layers, which may be controlled in terms of the original sig-
nal if one considers nonlinearities that demodulate the sig-
nal, such as p(z) = |z| or p(z) = ReLU(x). These exten-
sions are left for future work. Finally, a specific setup that
we use in experiments is to use as input signal the canoni-
cal coordinates of the mesh M. In that case, an immediate
application of the previous theorem yields

2D mesh height-field 3D mesh

Figure 1. Height-Field Representation of surfaces. A 3D mesh
M C R3 (right) is expressed in terms of a “sampling” 2D irregular
mesh M C R? (left) and a depth scalar field f : M — R over
M (center).

Corollary 4.3 Denote ®(M) := ®(V'), where V are the
node coordinates of M. Then, if Ay =0,

[ @®(M)—B(T(M))| < kmax(|V7|so, [[V27])*P) . (7)

5. Generative Surface Models

State-of-the-art generative models for images, such as
generative adversarial networks [32], pixel autoregressive
networks [28], or variational autoencoders [21], exploit the
locality and stationarity of natural images in their proba-
bilistic models, in the sense that the model satisfies pg () =
po(x,) by construction, where x, is a small deformation of
a given input x. This property is obtained via encoders and
decoders with a deep convolutional structure. We intend to
exploit similar geometric stability priors with SNs, owing
to their stability properties described in Section 4. A mesh
generative model contains two distinct sources of random-
ness: on the one hand, the randomness associated with the
underlying continuous surface, which corresponds to shape
variability; on the other hand, the randomness of the dis-
cretization of the surface. Whereas the former contains the
essential semantic information, the latter is not informative,
and to some extent independent of the shape identity. We
focus initially on meshes that can be represented as a depth
map over an (irregular) 2D mesh, referred as height-field
meshes in the literature. That is, a mesh M = (V, E | F)
is expressed as (M, f(N/\;l)), where M = (V, E, F) is now
a2D mesh and f : V — R is a depth-map encoding the
original node locations V', as shown in Figure 1.

In this work, we consider the variational autoencoder
framework [21, 33]. It considers a mixture model of the
form p(M) = [ pg(M | h)po(h)dh , where h € RIS|is a
vector of latent variables. We train this model by optimizing
the variational lower bound of the data log-likelihood:

1
min = >~ ~Epg, (h | M) 0820 (M| h)+Dicr(qy (b | M) || po(h)) .

6w L I<L

()
We thus need to specify a conditional generative model
po(M | h), a prior distribution po(h) and a variational
approximation to the posterior ¢y (h | M), where 6 and
1 denote respectively generative and variational train-
able parameters. Based on the height-field representation,
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Figure 2. A single ResNet-v2 block used for Laplace, Average
Pooling (top) and Dirac models (bottom). The green boxes cor-
respond to the linear operators replacing convolutions in regular
domains. We consider Exponential Linear Units (ELU) activa-
tions (orange), Batch Normalization (blue) and ‘1 x 1’ convolu-
tions (red) containing the trainable parameters; see Eqs (1, 3 and
4). We slightly abuse language and denote by 2**! the output of
this 2-layer block.

we choose for simplicity a separable model of the form
po(M | h) = po(f|h, M) p(M), where M ~ p(M)isa
homogeneous Poisson point process, and f ~ pg(f | h, M)
is a normal distribution with mean and isotropic covariance
parameters given by a SN:

p@(f | th) = N(M(th)’UQ(th)l) )

with [u(h, M), 02(h, M)] = ®p(M;h) . The generation
step thus proceeds as follows. We first sample a 2D mesh
M independent of the latent variable %, and then sample a
depth field over M conditioned on / from the output of a
decoder network ® (M h). Finally, the variational family
¢y is also a Normal distribution whose parameters are ob-
tained from an encoder Surface Neural Network whose last
layer is a global pooling that removes the spatial localiza-
tion: gy (h | M) = N(ji,5°1) , with [i,5] = ®p(M).

6. Experiments

For experimental evaluation, we compare models built
using ResNet-v2 blocks [14], where convolutions are re-
placed with the appropriate operators (see Fig. 2): (i) a
point cloud based model from [37] that aggregates global
information by averaging features in the intermediate lay-
ers and distributing them to all nodes; (i) a Laplacian Sur-
face network with input canonical coordinates; (iii) a Dirac
Surface Network model. We report experiments on genera-
tive models using an unstructured variant of MNIST digits
(Section 6.1), and on temporal prediction under non-rigid
deformation models (Section 6.2).

6.1. MeshMNIST

For this task, we construct a MeshMNIST database with
only height-field meshes (Sec. 5). First, we sample points
on a 2D plane ([0,27] x [0,27]) with Poisson disk sam-
pling with » = 1.0, which roughly generates 500 points,

and apply a Delaunay triangulation to these points. We then
overlay the triangulation with the original MNIST images
and assign to each point a z coordinate bilinearly interpo-
lating the grey-scale value. Thus, the procedure allows us
to define a sampling process over 3D height-field meshes.

We used VAE models with decoders and encoders built
using 10 ResNet-v2 blocks with 128 features. The encoder
converts a mesh into a latent vector by averaging output of
the last ResNet-v2 block and applying linear transforma-
tions to obtain mean and variance, while the decoder takes
a latent vector and a 2D mesh as input (corresponding to a
specific 3D mesh) and predicts offsets for the corresponding
locations. We keep variance of the decoder as a trainable pa-
rameter that does not depend on input data. We trained the
model for 75 epochs using Adam optimizer [20] with learn-
ing rate 1073, weight decay 10~° and batch size 32. Fig-
ures 3,4 illustrate samples from the model. The geometric
encoder is able to leverage the local translation invariance
of the data despite the irregular sampling, whereas the geo-
metric decoder automatically adapts to the specific sampled
grid, as opposed to set-based generative models.
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Figure 3. Samples generated for the same latent variable and dif-
ferent triangulations. The learned representation is independent of
discretization/triangulation (Poisson disk sampling with p=1.5).
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Figure 4. Meshes from the dataset (first five). And meshes gener-
ated by our model (last five).

6.2. Spatio-Temporal Predictions

One specific task we consider is temporal predictions of
non-linear dynamics. Given a sequence of frames X =
X1, X2 ..., X", the task is to predict the following frames
Y =Yl=X"tLy2 Y™ = X"t Agin [26], we
use a simple non-recurrent model that takes a concatenation
of input frames X and predicts a concatenation of frames
Y. We condition on n = 2 frames and predict the next



Model Receptive field Number of parameters || Smooth L1-loss (mean per sequence (std))
MLP 1 519672 64.56 (0.62)
PointCloud - 1018872 23.64 (0.21)
Laplace 16 1018872 17.34 (0.52)
Dirac 8 1018872 16.84 (0.16)
Table 1. Evaluation of different models on the temporal task
Ground Truth MLP Laplace Dirac

PointCloud

4 -

F
-

s/

Figure 5. Qualitative comparison of different models. We plot 30th predicted frames correspondingly for two sequences in the test set.

Boxes indicate distinctive features. For larger crops, see Figure 6

m = 40 frames. In order to generate data, we first ex-
tracted 10k patches from the MPI-Faust dataset[3], by se-
lecting a random point and growing a topological sphere of
radius 15 edges (i.e. the 15-ring of the point). For each
patch, we generate a sequence of 50 frames by randomly
rotating it and letting it fall to the ground. We consider
the mesh a thin elastic shell, and we simulate it using the
As-Rigid-As-Possible technique [35], with additional grav-
itational forces [17]. Libigl [ 8] has been used for the mesh
processing tasks. Sequences with patches from the first 80
subjects were used in training, while the 20 last subjects
were used for testing. The dataset and the code are avail-
able on request. We restrict our experiments to temporal
prediction tasks that are deterministic when conditioned on
several initial frames. Thus, we can train models by mini-
mizing smooth-L1 loss [13] between target frames and out-
put of our models.

We used models with 15 ResNet-v2 blocks with 128 out-
put features each. In order to cover larger context for Dirac
and Laplace based models, we alternate these blocks with
Average Pooling blocks. We predict offsets to the last con-
ditioned frame and use the corresponding Laplace and Dirac
operators. Thus, the models take 6-dimensional inputs and
produce 120-dimensional outputs. We trained all models
using the Adam optimizer [20] with learning rate 1073,
weight decay 107>, and batch size 32. After 60k steps we
decreased the learning rate by a factor of 2 every 10k steps.
The models were trained for 110k steps in overall.

Table 1 reports quantitative prediction performance of
different models, and Figure 5 displays samples from the

Ground Truth

v L .

Figure 6. Dirac-based model visually outperforms Laplace-based
models in the regions of high mean curvature.

Laplace Dirac

prediction models at specific frames. The set-to-set model
[38, 37], corresponding to a point-cloud representation used
also in [30], already performs reasonably well on the task,
even if the visual difference is noticeable. Nevertheless,
the gap between this model and Laplace-/Dirac-based mod-
els is significant, both visually and quantitatively. Dirac-
based model outperforms Laplace-based model despite the
smaller receptive field. Videos comparing the performance
of different models are available in the additional material.

Figure 6 illustrates the effect of replacing Laplace by
Dirac in the formulation of the SN. Laplacian-based mod-
els, since they propagate information using an isotropic op-
erator, have more difficulties at resolving corners and pointy
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Figure 7. From left to right: PointCloud (set2set), ground truth
and Dirac based model. Color corresponds to mean squared error
between ground truth and prediction: green - smaller error, red -
larger error.
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Figure 8. From left to right: Laplace, ground truth and Dirac based
model. Color corresponds to mean squared error between ground
truth and prediction: green - smaller error, red - larger error.

structures than the Dirac operator, that is sensitive to princi-
pal curvature directions. However, the capacity of Laplace
models to exploit the extrinsic information only via the in-
put coordinates is remarkable and more computationally ef-
ficient than the Dirac counterpart. Figures 7 and 8 overlay
the prediction error and compare Laplace against Dirac and
PointCloud against Dirac respectively. They confirm first
that SNs outperform the point-cloud based model, which
often produce excessive flattening and large deformations,
and next that first-order Dirac operators help resolve areas
with high directional curvature. We refer to the supplemen-
tary material for additional qualitative results.

7. Conclusions

We have introduced Surface Networks, a deep neu-
ral network that is designed to naturally exploit the non-
Euclidean geometry of surfaces. We have shown how a
first-order differential operator (the Dirac operator) can de-
tect and adapt to geometric features beyond the local mean
curvature, the limit of what Laplacian-based methods can
exploit. This distinction is important in practice, since areas
with high directional curvature are perceptually important,
as shown in the experiments. That said, the Dirac operator
comes at increased computational cost due to the quater-
nion calculus, and it would be interesting to instead learn
the operator, akin to recent Message-Passing NNs [12] and
explore whether Dirac is recovered.

Whenever the data contains good-quality meshes, our
experiments demonstrate that using intrinsic geometry of-
fers vastly superior performance to point-cloud based mod-
els. While there are not many such datasets currently avail-
able, we expect them to become common in the next years,
as scanning and reconstruction technology advances and 3D
sensors are integrated in consumer devices. SNs provide
efficient inference, with predictable runtime, which makes
them appealing across many areas of computer graphics,
where a fixed, per-frame cost is required to ensure a stable
framerate, especially in VR applications. Our future plans
include applying Surface Networks precisely to having au-
tomated, data-driven mesh processing, and generalizing the
generative model to arbitrary meshes, which will require an
appropriate multi-resolution pipeline.
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Abstract
This note contains the appendices of the paper Surface Networks.

A  The Dirac Operator

The quaternions H is an extension of complex numbers. A quaternion ¢ € H can be represented in
a form ¢ = a + bi + ¢j + dk where a, b, ¢, d are real numbers and ¢, j, k are quaternion units that
satisfy the relationship i? = j2 = k2 = ijk = —1.

Uj

—_—
€j

As mentioned in Section 3.1, the Dirac operator used in the model can be conveniently repre-
sented as a quaternion matrix:

-1
P09 = 5141
where e; is the opposing edge vector of node j in the face f, and Ay is the area, as illustrated in Fig.
A, using counter-clockwise orientations on all faces.
The Deep Learning library PyTorch that we used to implement the models does not support

quaternions. Nevertheless, quaternion-valued matrix multiplication can be replaced with real-valued
matrix multiplication where each entry ¢ = a + bi + ¢j + dk is represented as a 4 x 4 block

ej, feFjeV,

a —-b —c —d
b a —d c
c d a —b

d —c b a
and the conjugate ¢* = a — bi — ¢j — dk is a transpose of this real-valued matrix:

a b c d
—b a d —c
—c —d a b
—d c —b a



B Theorem 4.1
B.1 Proof of (a)

We first show the result for the mapping = — p (Axz + BAx), corresponding to one layer of .
By definition, the Laplacian A of M is

A = diag(A)"H (U - W),

where A; is one third of the total area of triangles incident to node j, and W = (w;_ ;) contains the
cotangent weights [9], and U = diag(W1) contains the node aggregated weights in its diagonal.
From [4] we verify that

IU-W| < V2max{ [U2+U;Y Ujw;; )
1 ’LNJ
< 2V2supw; jsupd,
i j
S 2\/§C0t(amin)dmax B

where d; denotes the degree (number of neighbors) of node j, amin is the smallest angle in the
triangulation of M and Sp,y the largest number of incident triangles. It results that

cot ( Qmin ) Shax
inf j ./Zl j

which depends uniquely on the mesh M and is finite for non-degenerate meshes. Moreover, since
p(+) is non-expansive, we have

llp(Az + BAx) — p (Az' + BAZ')||

A <C =L,

|A(z —2") + BA(z — 2)|| )

<
< (1Al + Bl L)z — 2| -

By cascading (2) across the K layers of the network, we obtain

le(M;2) = (M;a)|| < | T (ARl + 1BxlIZae) | llz — 2],

k<K

which proves (a). O

B.2 Proof of (b)
The proof is analogous, by observing that || D|| = /||A|| and therefore

ID|| <vLam. O

B.3 Proof of (¢)

To establish (c) we first observe that given three points p, ¢, € R3 forming any of the triangles of
M?

Ip—all’ (1= |V7lw)?  <lr®)—r@I° < lp—all’(1 +|V7|w)? 3)
A(p, q,7)*(1 — |V7]ecClm — 0(|VT|s?) < A(T(D),7(q), 7(r)? < AP, a0, 7)*(1 + | V7| Cop + 0o(| V7|02 Y3



Figure 1: Triangular mesh and Cotangent Laplacian (figure reproduced from [2])

Indeed, (3) is a direct consequence of the lower and upper Lipschitz constants of 7(u), which are
bounded respectively by 1 — |V 7| and 1 + | V7| . As for (4), we use the Heron formula

A(p,a,7)* = s(s = llp = all)(s = llp = 7[l)(s = [Ir — al}),

with s = £(|lp—q| +|[p—7|| + |7 — q||) being the half-perimeter. By denoting s the corresponding
half-perimeter determined by the deformed points 7(p), 7(¢), 7(r), we have that

sr=[IT7(P) =7(@) < s(1+[V7loo) = lp—all(1=|V7|oc) = s = [[P—qll+ V7o (s + [p—ql]) and

sr—[I7(p) = T(@I = s(1 = |[VT|oo) = [[p—qll(1+|VT|ee) = s = lp—qll = [VT|oc(s +lp—4ll)

and similarly for the |7 — ¢|| and ||r — p|| terms. It results in

A ) (@) > A 7’rg[l_VTOO(1+S+IIP—QII+8+|Ip—rll+8+IT—qH)_O vaz}
(r(p), (@), 7(r) (20,702 1= 19 (14 2= TP T ) — (|97 )
> Ap,qr)? 1= CV7|wag? = o(|VT17)]

= min

and similarly

A(r(p),7(@), 7(r)? < A(p,q.7)? [1+ CIVT s = o(IV7c?) | -

By noting that the cotangent Laplacian weights can be written (see Fig. 1) as

v G+ G+ G G, 6,
1, T

A(i, j, k) A(i, g h)

we have from the previous Bilipschitz bounds that

min min

_ R A A S Y - R N
T(w; ;) < wij [1— C|VT|sop] 1+2|VT\DO [1-C|VT|sani] 1( J__gk ik J__gh ik

min min

_ 1 (2 02 42 02 4+ 02, + 02
T(wij) = wij [1+ C|VT|capms] L2V (14 C|VT|sapi] ' ( Mgkt 4 W _dh _h |

which proves that, up to second order terms, the cotangent weights are Lipschitz continuous to
deformations.



Finally, since the mesh Laplacian operator is constructed as diag(A)~1(U — W), with A; ; =
3 > ki kyer Al k), and U = diag(W1), let us show how to bound [|A — 7(A)]| from
Aii(1 = am|V7loo = 0(| V7)) < 7(Ais) < Ais(1+ am|V7loo +0(|VT]?) ()
and
wij (1= Bu|VT]oe = 0(V7]oe”)) < T(wij) < wii(1+ Bt V7l + 0(|V75%)) . (6)

Using the fact that A, 7(.A) are diagonal, and using the spectral bound for k x m sparse matrices

from [3], Lemma 5.12,
l
Y <max Y iy (ZIYW-I) ,
33 Yi, ;70 r=1
the bounds (5) and (6) yield respectively
7(A) = A +e;), with |le;]| = o(|VT|s) , and
T(U-W) = U-=W+n,, with ||n;]| = o(|]VT|) -
It results that, up to second order terms,
A=rA)] = |[r(A) " (FU) =17(W)) - AU - W)

- [ w0

H (1 I o(|v7|oo2)) A YU =W +n,) - AU - W)H
= JlexA+ A .| + o(|V7|”)
= o(|7|s0)

which shows that the Laplacian is stable to deformations in operator norm. Finally, by denoting z.,
a layer of the deformed Laplacian network

Z, = p(Az + Br(A)x)

it follows that

|2 —2-| < [B(A-7(A)z| Q)
< ClB|[IVTloolla]l - (8)
Also,
12 =3-ll < Al —y) + B(Az —7(A)y)|
< ([A+[IBIIADIz = yll + 1A = 7(A) |||
< A+ IBIIAI lz =yl + CIV 7o [l 9
— T

and therefore, by plugging (9) with y = 2, K layers of the Laplacian network satisfy

[@(z; A) = @(z; (A < II s lz=a i+ > II6GN80) | VTl

JSK-1 J<K—-135"<j

< |c II e B+ { > TI60"%06) || I1Vrl<ll. O.

J<K-1 J<K—-14'<j



B.4 Proof of (d)

The proof is also analogous to the proof of (c), with the difference that now the Dirac operator is no
longer invariant to orthogonal transformations, only to translations. Given two points p, g, we verify
that

lp—q—7p) — 1@l < |7l llp—dll

which, following the previous argument, leads to

1D — r(D)|| = o(|7]...) - (10)

C Theorem 4.2
C.1 Proof of part (a)

The proof is based on the following lemma:

Lemma C.1 Let xy,yn € H(Mpy) such thatV N, |lzn||n < ¢|lyn|n < ¢ Let 'y = En(an),
where En is the eigendecomposition of the Laplacian operator Ay on My, , with associated
eigenvalues A1 ... \n in increasing order. Let v > 0 and (3 be defined as in (??) for x and yn. If
B> 1land|lxny —yn|| < eforall N,

AN (zn —yn)|? < CE 772 (11)

where C'is a constant independent of € and N.

One layer of the network will transform the difference x; — x5 into p(Ax1 + BAz1) — p(Azs +
BAzy). We verify that

lp(Azy + BAz1) — p(Azy + BAzs)|| < [|Allflz1 — 22l + [ B[ Az — 22)]| -

We now apply Lemma C.1 to obtain

B—1
lp(Awy + BAw) — plAzs + BAz)| < [[Allles -z + C|Bler - w77
B—1 —1
< a2l 5 (1Al — 22507 + 0 BY)
B—1
< C(IAl+ Bl — a7

where we redefine C' to account for the fact that |21 —2||2*~1) " is bounded. We have just showed
that
o™ = V) < frllat” — 287 (12)

with f,. = C(||A|| + || B,||) and g, = [5_771}2 By cascading (12) for each of the R layers we thus
obtain

[@a(z1) = Palz2)]| <

R
HfT 7‘/>7‘g7'/‘| Hxl 71.2HH71:{:191' , (13)

r=1

which proves (??) [J.



Proof of (11): Let {ey,...,en} be the eigendecomposition of A . For simplicity, we drop the
subindex NV in the signals from now on. Let (k) = (x, ex) and (k) = Az&(k); and analogously
for y. From the Parseval identity we have that ||z||? = ||2]|%. We express [|A(x — y)]| as

1A —y)[* =D A(E(k) — §(k))> . (14)
k<N

The basic principle of the proof is to cut the spectral sum (14) in two parts, chosen to exploit the
decay of Z(k). Let

Zk’Zk Z(k)? _ Zk’zk Z(k)? _ Zk’>k i (k)? <1
I3, >p T(k)? Sw (k)2 T

and analogously for y. For any cutoff k£, < N we have

F(x)(k) =

IA@=yI> = D A@E) —9(k) + Y A (@) — §(k)?
k<k. k>k.y
< A2 L+ 2(F () (k) |z, + F(y) (k) lyll3,)
< ALEF2F (kD) (23 + lvllE,)
< M. +4F(k)D?, (15)

where we denote for simplicity F'(k.) = max(F(x)(k«), F(y)(ks)). By assumption, we have
A2 < k* and
k) < Z E20=P) ~ p120v-0)
k' >k

By denoting § = 8 — y — 1/2, it follows that
|A@ =) S @R + 4D (16)
Optimizing for k, yields

22vk21 =1 — 984 D%k ~2P~1 = 0, thus

275725
ki = |:4ﬁD:| " . a7

€
By plugging (17) back into (16) and dropping all constants independent of /V and e, this leads to

. 1
HA(Q: - y)|l2 ,S 62 VB = 52_ 5711/2 ,

which proves part (a) L.

C.2 Proof of part (b)

We will use the following lemma:

Lemma C.2 Let M = (V, E, F) is a non-degenerate mesh, and define

A, 024 0%+ 02
m(M) = sup , n2(M) = sup I L k

—————, \M) = pin - (18)
(i,5)eE A (i,j,k)EF A(i, j, k) M)



Then, given a smooth deformation T and x defined in M, we have
[(A = 7(A))z[| < C|VT|o[[Az] (19)
where C' depends only upon 11, 12 and 13.

In that case, we need to control the difference p(Ax + BAz) — p(Ax + B7(A)xz). We verify
that
lp(Az + BAz) — p(Az + Br(A)z)|| < || B[|[[(A = 7(A))z| .
By Lemma C.2 it follows that ||(A — 7(A))z|| < C|VT|w||Az|| and therefore, by denoting xil) =
p(Ax + BAx) and :rél) = p(Az + B1(A)x), we have
1 1
ot = 27 < IV |scl|Az] = C|Vrloollalln - (20)
By applying again Lemma C.1, we also have that
|az) —r(@)z | = Az — (A +r(a) - M)
|A@S —a3?) + (r(a) = A)ag”|
B1—1
Cllat) — 2”577 4 [Vl |25 [l

B1—1

C|VT|oPr-172 |

IN

A

which, by combining it with (20) and repeating through the R layers yields

R

1B (2, M) — a2, 7(M)]| < C|Vr| Il 577 @1

which concludes the proof [.
Proof of (19): The proof follows closely the proof of Theorem ??, part (c). From (5) and (6) we
have that

7(A) = A(I+G,), with |G| < C(12,73)|VT|eo ,and
TU-W) = A+ H;)(U-W), with |H;|ec < C(n2,13)|VT|s -
It follows that, up to second order o(| V7o) terms,
T(A) - A T(A) T (U) = 7(W)) = AN (U = W)
= (A +G) A+ H)U = W) - AU - W)
~ A'H.(U-W)+G.A. (22)

By writing A7 H, = I?T/I*l, and since A is diagonal, we verify that

7 Ai,i

HTi':HTi' ,.th
(i = ()i 5 v

Aii < 1, and hence that

AT H (U = W) = Hy A, with [Hr|oo < C 1, 72,73) V7o - (23)
We conclude by combining (22) and (23) into
[(A—=7(A)zll = G-+ Hr)Az]
Cl(n177727773)‘VT‘00||Ax” )

IN

which proves (19) [



C.3 Proof of part (c)

This result is a consequence of the consistency of the cotangent Laplacian to the Laplace-Beltrami
operator on S [9]:

Theorem C.3 ([V], Thm 3.4) Let M be a compact polyhedral surface which is a normal graph
over a smooth surface S with distortion tensor T, and let T = (det TY2T =1, If the normal field
uniform distance d(T,1) = || T — 1| oo satisfies d(T,1) < ¢, then

[Am —As|l <e. 24)
If A pq converges uniformly to Ag, in particular we verify that

lzll 7m0y = Nzll3cs) -

Thus, given two meshes M, M’ approximating a smooth surface .S in terms of uniform normal
distance, and the corresponding irregular sampling 2 and 2’ of an underlying function Z : S — R,
we have

lp(Az + BApz) — p(Az’ + BApea')|| < |JAllllz — 'l + [ Bl Apa — Anea’]| . (25)
Since M and M’ both converge uniformly normally to S and Z is Lipschitz on S, it results that
|z — || < Le, and 2" — z|| < Le,

thus ||z — 2’| < 2Le. Also, thanks to the uniform normal convergence, we also have convergence
in the Sobolev sense:
lz = Zlls S e, 2" = Zlln Se,

which implies in particular that

o —a'lly Se. (26)
From (25) and (26) it follows that
|p(Az + BAmz) — p(Az’ + BAsex')|| < 2||A|Le + (27)
+||BH||AM$—Asf—i—Asf—AM/fElH
< 2e( AL+ IB]) -

By applying again Lemma C.1 to & = p(Ax + BAyx), ' = p(Ax’ + BA '), we have
_ -y _ JUPC et _B1—=1
I - &l < Cll& - # |5 S e

We conclude by retracing the same argument as before, reapplying Lemma C.1 at each layer to
obtain

1 pi(z) — Pap ()| < Ccdl=m=m . O,



D Proof of Corollary 4.3

We verify that
lp(BAz) — p(Br(A)r ()| < [IB[l|Az —7(A)7(z)|
< IBllflA(z = 7(x)) + (A = 7(A))(7(2))]]
< [IBl([A(z = 7(@)] + (A = 7(A)) (7 ()] -

The second term is o(| V7| ) from Lemma C.2. The first term is
Iz = 7(@)ll < AT =)zl < V27|l

where || V27| is the uniform Hessian norm of 7. The result follows from applying the cascading
argument from last section. [J



E Preliminary Study: Metric Learning for Dense Correspon-
dence

As an interesting extension, we apply the architecture we built in Experiments 6.2 directly to a dense
shape correspondence problem.

Similarly as the graph correspondence model from [8], we consider a Siamese Surface Network,
consisting of two identical models with the same architecture and sharing parameters. For a pair
of input surfaces M7, M5 of Ny, N points respectively, the network produces embeddings F; €
RN1xd and Fy € RN2X4, These embeddings define a trainable similarity between points given by

e<E1,i7E2,j>

> Eay @8)

Sij =

which can be trained by minimizing the cross-entropy relative to ground truth pairs. A diagram
of the architecture is provided in Figure 2.

In general, dense shape correspondence is a task that requires a blend of intrinsic and extrinsic
information, motivating the use of data-driven models that can obtain such tradeoffs automatically.
Following the setup in Experiment 6.2, we use models with 15 ResNet-v2 blocks with 128 output
features each, and alternate Laplace and Dirac based models with Average Pooling blocks to cover
a larger context: The input to our network consists of vertex positions only.

We tested our architecture on a reconstructed (i.e. changing the mesh connectivity) version of the
real scan of FAUST dataset[|]. The FAUST dataset contains 100 real scans and their corresponding
ground truth registrations. The ground truth is based on a deformable template mesh with the same
ordering and connectivity, which is fitted to the scans. In order to eliminate the bias of using the
same template connectivity, as well as the need of a single connected component, the scans are
reconstructed again with [5]. To foster replicability, we release the processed dataset in the additional
material. In our experiment, we use 80 models for training and 20 models for testing.

Since the ground truth correspondence is implied only through the common template mesh, we
compute the correspondence between our meshes with a nearest neighbor search between the point
cloud and the reconstructed mesh. Consequently, due to the drastic change in vertex replacement
after the remeshing, only 60-70 percent of labeled matches are used. Although making it more chal-
lenging, we believe this setup is close to a real case scenario, where acquisition noise and occlusions
are unavoidable.

Our preliminary results are reported in Figure 3. For simplicity, we generate predicted cor-
respondences by simply taking the mode of the softmax distribution for each reference node ¢:
j(z) = argmax; s; ;, thus avoiding a refinement step that is standard in other shape correspondence
pipelines. The MLP model uses no context whatsoever and provides a baseline that captures the
prior information from input coordinates alone. Using contextual information (even extrinsically
as in point-cloud model) brings significative improvments, but these results may be substantially
improved by encoding further prior knowledge. An example of the current failure of our model is
depitcted in Figure 5, illustrating that our current architecture does not have sufficiently large spatial
context to disambiguate between locally similar (but globally inconsistent) parts.

We postulate that the FAUST dataset [ 1] is not an ideal fit for our contribution for two reasons:
(1) it is small (100 models), and (2) it contains only near-isometric deformations, which do not
require the generality offered by our network. As demonstrated in [7], the correspondence perfor-
mances can be dramatically improved by constructing basis that are invariant to the deformations.
We look forward to the emergence of new geometric datasets, and we are currently developing a
capture setup that will allow us to acquire a more challenging dataset for this task.
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Figure 2: Siamese network pipeline: the two networks take vertex coordinates of the input models
and generate a high dimensional feature vector, which are then used to define a map from M; to
M. Here, the map is visualized by taking a color map on M, and transferring it on My

% Correspondence
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Figure 3: Additional results from our setup. Plot in the middle shows rate of correct correspondence
with respect to geodesic error [6]. We observe that Laplace is performing similarly to Dirac in this
scenario. We believe that the reason is that the FAUST dataset contains only isometric deformations,
and thus the two operators have access to the same information. We also provide visual comparison,
with the transfer of a higher frequency colormap from the reference shape to another pose.
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Figure 4: Heat map illustrating the point-wise geodesic difference between predicted correspon-
dence point and the ground truth. The unit is proportional to the geodesic diameter, and saturated at

A AR

Figure 5: A failure case of applying the Laplace network to a new pose in the FAUST benchmark
dataset. The network confuses between left and right arms. We show the correspondence visualiza-
tion for front and back of this pair.
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F Further Numerical Experiments
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Figure 6: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Ground Truth AvgPool Laplace Dirac
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Figure 7: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Figure 8: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Figure 9: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Figure 10: Dirac-based model visually outperforms Laplace-based models in the regions of high
mean curvature.
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Figure 11: From left to right: Laplace, ground truth and Dirac based model. Color corresponds to
mean squared error between ground truth and prediction: green - smaller error, red - larger error.
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Figure 12: From left to right: set-to-set, ground truth and Dirac based model. Color corresponds to
mean squared error between ground truth and prediction: green - smaller error, red - larger error.
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