
Surface Networks

Ilya Kostrikov1, Zhongshi Jiang1, Daniele Panozzo ∗1, Denis Zorin †1, and Joan Bruna‡1,2

1Courant Institute of Mathematical Sciences, New York University
2Center for Data Science, New York University

Abstract

We study data-driven representations for three-

dimensional triangle meshes, which are one of the

prevalent objects used to represent 3D geometry. Recent

works have developed models that exploit the intrinsic ge-

ometry of manifolds and graphs, namely the Graph Neural

Networks (GNNs) and its spectral variants, which learn

from the local metric tensor via the Laplacian operator.

Despite offering excellent sample complexity and built-

in invariances, intrinsic geometry alone is invariant to iso-

metric deformations, making it unsuitable for many appli-

cations. To overcome this limitation, we propose several

upgrades to GNNs to leverage extrinsic differential geome-

try properties of three-dimensional surfaces, increasing its

modeling power. In particular, we propose to exploit the

Dirac operator, whose spectrum detects principal curva-

ture directions — this is in stark contrast with the classical

Laplace operator, which directly measures mean curvature.

We coin the resulting models Surface Networks (SN).

We prove that these models define shape representa-

tions that are stable to deformation and to discretization,

and we demonstrate the efficiency and versatility of SNs on

two challenging tasks: temporal prediction of mesh defor-

mations under non-linear dynamics and generative mod-

els using a variational autoencoder framework with en-

coders/decoders given by SNs.

1. Introduction

3D geometry analysis, manipulation and synthesis plays

an important role in a variety of applications from engineer-

ing to computer animation to medical imaging. Despite the

∗DP was supported in part by the NSF CAREER award IIS-1652515, a

gift from Adobe, and a gift from nTopology.
†DZ was supported in part by the NSF awards DMS-1436591 and IIS-

1320635.
‡JB was partially supported by Samsung Electronics (Improving Deep

Learning using Latent Structure) and DOA W911NF-17-1-0438. Corre-

sponding author: bruna@cims.nyu.edu

vast amount of high-quality 3D geometric data available,

data-driven approaches to problems involving complex ge-

ometry have yet to become mainstream, in part due to the

lack of data representation regularity which is required for

traditional convolutional neural network approaches. While

in computer vision problems inputs are typically sampled

on regular two or three-dimensional grids, surface geome-

try is represented in a more complex form and, in general,

cannot be converted to an image-like format by parametriz-

ing the shape using a single planar chart. Most commonly

an irregular triangle mesh is used to represent shapes, cap-

turing its main topological and geometrical properties.

Similarly to the regular grid case (used for images or

videos), we are interested in data-driven representations that

strike the right balance between expressive power and sam-

ple complexity. In the case of CNNs, this is achieved by ex-

ploiting the inductive bias that most computer vision tasks

are locally stable to deformations, leading to localized, mul-

tiscale, stationary features. In the case of surfaces, we face

a fundamental modeling choice between extrinsic versus in-

trinsic representations. Extrinsic representations rely on the

specific embedding of surfaces within a three-dimensional

ambient space, whereas intrinsic representations only cap-

ture geometric properties specific to the surface, irrespec-

tive of its parametrization. Whereas the former offer arbi-

trary representation power, they are unable to easily exploit

inductive priors such as stability to local deformations and

invariance to global transformations.

A particularly simple and popular extrinsic method [30,

31] represents shapes as point clouds in R
3 of variable size,

and leverages recent deep learning models that operate on

input sets [38, 37]. Despite its advantages in terms of ease

of data acquisition (they no longer require a mesh triangu-

lation) and good empirical performance on shape classifica-

tion and segmentation tasks, one may wonder whether this

simplification comes at a loss of precision as one considers

more challenging prediction tasks.

In this paper, we develop an alternative pipeline that ap-

plies neural networks directly on triangle meshes, building

1

on geometric deep learning. These models provide data-

driven intrinsic graph and manifold representations with in-

ductive biases analogous to CNNs on natural images. Mod-

els based on Graph Neural Networks [34] and their spectral

variants [6, 9, 22] have been successfully applied to geom-

etry processing tasks such as shape correspondence [27]. In

their basic form, these models learn a deep representation

over the discretized surface by combining a latent represen-

tation at a given node with a local linear combination of its

neighbors’ latent representations, and a point-wise nonlin-

earity. Different models vary in their choice of linear opera-

tor and point-wise nonlinearity, which notably includes the

graph Laplacian, leading to spectral interpretations of those

models.

Our contributions are three-fold. First, we extend the

model to support extrinsic features. More specifically, we

exploit the fact that surfaces in R
3 admit a first-order dif-

ferential operator, the Dirac operator, that is stable to dis-

cretization, provides a direct generalization of Laplacian-

based propagation models, and is able to detect principal

curvature directions [8, 16]. Next, we prove that the models

resulting from either Laplace or Dirac operators are stable

to deformations and to discretization, two major sources of

variability in practical applications. Last, we introduce a

generative model for surfaces based on the variational au-

toencoder framework [21, 33], that is able to exploit non-

Euclidean geometric regularity.

By combining the Dirac operator with input coordinates,

we obtain a fully differentiable, end-to-end feature repre-

sentation that we apply to several challenging tasks. The

resulting Surface Networks – using either the Dirac or the

Laplacian, inherit the stability and invariance properties of

these operators, thus providing data-driven representations

with certified stability to deformations. We demonstrate the

model efficiency on a temporal prediction task of complex

dynamics, based on a physical simulation of elastic shells,

which confirms that whenever geometric information (in the

form of a mesh) is available, it can be leveraged to signifi-

cantly outperform point-cloud based models.

Our main contributions are summarized as follows:

• We demonstrate that Surface Networks provide accu-

rate temporal prediction of surfaces under complex

non-linear dynamics, motivating the use of geometric

shape information.

• We prove that Surface Networks define shape repre-

sentations that are stable to deformation and to dis-

cretization.

• We introduce a generative model for 3D surfaces based

on the variational autoencoder.

A reference implementation of our algorithm is avail-

able at https://github.com/jiangzhongshi/

SurfaceNetworks.

2. Related Work

Learning end-to-end representations on irregular and

non-Euclidean domains is an active and ongoing area of

research. [34] introduced graph neural networks as recur-

sive neural networks on graphs, whose stationary distri-

butions could be trained by backpropagation. Subsequent

works [23, 37] have relaxed the model by untying the re-

current layer weights and proposed several nonlinear up-

dates through gating mechanisms. Graph neural networks

are in fact natural generalizations of convolutional networks

to non-Euclidean graphs. [6, 15] proposed to learn smooth

spectral multipliers of the graph Laplacian, albeit with high

computational cost, and [9, 22] resolved the computational

bottleneck by learning polynomials of the graph Laplacian,

thus avoiding the computation of eigenvectors and complet-

ing the connection with GNNs. We refer the reader to [5]

for an exhaustive literature review on the topic. GNNs are

finding application in many different domains. [2, 7] de-

velop graph interaction networks that learn pairwise parti-

cle interactions and apply them to discrete particle physical

dynamics. [10, 19] study molecular fingerprints using vari-

ants of the GNN architecture, and [12] further develop the

model by combining it with set representations [38], show-

ing state-of-the-art results on molecular prediction. The

resulting models, so-called Message-Passing Neural Net-

works, also learn the diffusion operator, which can be seen

as generalizations of the Dirac model on general graphs.

In the context of computer graphics, [25] developed the

first CNN model on meshed surfaces using intrinsic patch

representations, and further generalized in [4] and [27].

This last work allows for flexible representations via the so-

called pseudo-coordinates and obtains state-of-the-art re-

sults on 3D shape correspondence, although it does not

easily encode first-order differential information. These

intrinsic models contrast with Euclidean models such as

[42, 40], that have higher sample complexity, since they

need to learn the underlying invariance of the surface em-

bedding. Point-cloud based models are increasingly popular

to model 3d objects due to their simplicity and versatility.

[30, 31] use set-invariant representations from [38, 37] to

solve shape segmentation and classification tasks. More re-

cently, [24] proposes to learn surface convolutional network

from a canonical representation of planar flat-torus, with

excellent performance on shape segmentation and classifi-

cation, although such canonical representations may intro-

duce exponential scale changes that can introduce instabili-

ties. Finally, [11] proposes a point-cloud generative model

for 3D shapes, that incorporates invariance to point permu-

tations, but does not encode geometrical information as our

shape generative model. Learning variational deformations

is an important problem for graphics applications, since it

enables negligible and fixed per-frame cost [29], but it is

currently limited to 2D deformations using point handles.

In constrast, our method easily generalizes to 3D and learns

dynamic behaviours.

3. Surface Networks

This section presents our surface neural network model

and its basic properties. We start by introducing the problem

setup and notations using the Laplacian formalism (Section

3.1), and then introduce our model based on the Dirac oper-

ator (Section 3.2).

3.1. Laplacian Surface Networks

Our first goal is to define a trainable representation of

discrete surfaces. Let M = {V,E, F} be a triangular mesh,

where V = (vi ∈ R
3)i≤N contains the node coordinates,

E = (ei,j) corresponds to edges, and F is the set of triangu-

lar faces. We denote as ∆ the discrete Laplace-Beltrami op-

erator (we use the popular cotangent weights formulation,

see [5] for details).

This operator can be interpreted as a local, linear high-

pass filter in M that acts on signals x ∈ R
d×|V | defined

on the vertices as a simple matrix multiplication x̃ = ∆x.

By combining ∆ with an all-pass filter and learning generic

linear combinations followed by a point-wise nonlinearity,

we obtain a simple generalization of localized convolutional

operators in M that update a feature map from layer k to

layer k + 1 using trainable parameters Ak and Bk:

xk+1 = ρ
(
Ak∆x

k +Bkx
k
)
, Ak, Bk ∈ R

dk+1×dk . (1)

By observing that the Laplacian itself can be written in

terms of the graph weight similarity by diagonal renormal-

ization, this model is a specific instance of the graph neural

network [34, 5, 22] and a generalization of the spectrum-

free Laplacian networks from [9]. As shown in these pre-

vious works, convolutional-like layers (1) can be combined

with graph coarsening or pooling layers.

In contrast to general graphs, meshes contain a low-

dimensional Euclidean embedding that contains potentially

useful information in many practical tasks, despite being

extrinsic and thus not invariant to the global position of the

surface. A simple strategy to strike a good balance be-

tween expressivity and invariance is to include the node

canonical coordinates as input channels to the network:

x1 := V ∈ R
|V |×3. The mean curvature can be computed

by applying the Laplace operator to the coordinates of the

vertices:

∆x1 = −2Hn , (2)

where H is the mean curvature function and n(u) is the

normal vector of the surface at point u. As a result, the

Laplacian neural model (1) has access to mean curvature

and normal information. Feeding Euclidean embedding co-

ordinates into graph neural network models is related to the

use of generalized coordinates from [27]. By cascading K

layers of the form (1) we obtain a representation Φ∆(M)
that contains generic features at each node location. When

the number of layers K is of the order of diam(M), the

diameter of the graph determined by M, then the network

is able to propagate and aggregate information across the

whole surface.

Equation (2) illustrates that a Laplacian layer is only

able to extract isotropic high-frequency information, cor-

responding to the mean variations across all directions. Al-

though in general graphs there is no well-defined procedure

to recover anisotropic local variations, in the case of sur-

faces some authors ([4, 1, 27]) have considered anisotropic

extensions. We describe next a particularly simple proce-

dure to increase the expressive power of the network using a

related operator from quantum mechanics: the Dirac opera-

tor, that has been previously used successfully in the context

of surface deformation [8] and shape analysis [16].

3.2. Dirac Surface Networks

The Laplace-Beltrami operator ∆ is a second-order dif-

ferential operator, constructed as ∆ = −div∇ by combin-

ing the gradient (a first-order differential operator) with its

adjoint, the divergence operator. In an Euclidean space, one

has access to these first-order differential operators sepa-

rately, enabling oriented high-pass filters.

For convenience, we embed R
3 to the imaginary quater-

nion space Im(H) (see Appendix A in the Suppl. Material

for details). The Dirac operator is then defined as a matrix

D ∈ H
|F |×|V | that maps (quaternion) signals on the nodes

to signals on the faces. In coordinates,

Df,j =
−1

2|Af |
ej , f ∈ F, j ∈ V ,

where ej is the opposing edge vector of node j in the face

f , and Af is the area (see Appendix A) using counter-

clockwise orientations on all faces.

To apply the Dirac operator defined in quaternions to

signals in vertices and faces defined in real numbers, we

write the feature vectors as quaternions by splitting them

into chunks of 4 real numbers representing the real and

imaginary parts of a quaternion; see Appendix A. Thus,

we always work with feature vectors with dimensionalities

that are multiples of 4. The Dirac operator provides first-

order differential information and is sensitive to local orien-

tations. Moreover, one can verify [8] that

Re D∗D = ∆ ,

where D∗ is the adjoint operator of D in the quaternion

space (see Appendix A). The adjoint matrix can be com-

puted as D∗ = M−1
V DHMF where DH is a conjugate

transpose of D and MV , MF are diagonal mass matrices

with one third of areas of triangles incident to a vertex and

face areas respectively.

The Dirac operator can be used to define a new neural

surface representation that alternates layers with signals de-

fined over nodes with layers defined over faces. Given a

d-dimensional feature representation over the nodes xk ∈
R
d×|V |, and the faces of the mesh, yk ∈ R

d×|F |, we define

a d′-dimensional mapping to a face representation as

yk+1 = ρ
(
CkDx

k + Eky
k
)
, Ck, Ek ∈ R

dk+1×dk , (3)

whereCk, Ek are trainable parameters. Similarly, we define

the adjoint layer that maps back to a d̃-dimensional signal

over nodes as

xk+1 = ρ
(
AkD

∗yk+1 +Bkx
k
)
, Ak, Bk ∈ R

dk+1×dk ,

(4)

where Ak, Bk are trainable parameters. A surface

neural network layer is thus determined by parameters

{A,B,C,E} using equations (3) and (4) to define xk+1 ∈
R
dk+1×|V |. We denote by ΦD(M) the mesh representa-

tion resulting from applying K such layers (that we assume

fixed for the purpose of exposition).

The Dirac-based surface network is related to edge fea-

ture transforms proposed on general graphs in [12], al-

though these edge measurements cannot be associated with

derivatives due to lack of proper orientation. In general

graphs, there is no notion of square root of ∆ that recov-

ers oriented first-order derivatives.

4. Stability of Surface Networks

Here we describe how Surface Networks are geomet-

rically stable, because surface deformations become addi-

tive noise under the model. Given a continuous surface

S ⊂ R
3 or a discrete mesh M, and a smooth deformation

field τ : R3 → R
3, we are particularly interested in two

forms of stability:

• Given a discrete mesh M and a certain non-rigid de-

formation τ acting on M, we want to certify that

‖Φ(M) − Φ(τ(M))‖ is small if ‖∇τ(∇τ)∗ − I‖ is

small, i.e when the deformation is nearly rigid; see

Theorem 4.1.

• Given two discretizations M1 and M2 of the same

underlying surface S, we would like to control

‖Φ(M1) − Φ(M2)‖ in terms of the resolution of the

meshes; see Theorem 4.2.

These stability properties are important in applications,

since most tasks we are interested in are stable to deforma-

tion and to discretization. We shall see that the first property

is a simple consequence of the fact that the mesh Laplacian

and Dirac operators are themselves stable to deformations.

The second property will require us to specify under which

conditions the discrete mesh Laplacian ∆M converges to

the Laplace-Beltrami operator ∆S on S. Unless it is clear

from the context, in the following ∆ will denote the discrete

Laplacian.

Theorem 4.1 Let M be a N -node mesh and x, x′ ∈
R

|V |×d be input signals defined on the nodes. Assume

the nonlinearity ρ(·) is non-expansive (|ρ(z) − ρ(z′)| ≤
|z − z′|). Then

(a) ‖Φ∆(M;x) − Φ∆(M;x′)‖ ≤ α∆‖x − x′‖ , where

α∆ depends only on the trained weights and the mesh.

(b) ‖ΦD(M;x) − ΦD(M;x′)‖ ≤ αD‖x − x′‖ , where

αD depends only on the trained weights and the mesh.

(c) Let |∇τ |∞ := supu ‖∇τ(u)(∇τ(u))
∗ − 1‖, where

∇τ(u) is the Jacobian matrix of u 7→ τ(u). Then

‖Φ∆(M;x) − Φ∆(τ(M);x)‖ ≤ β∆|∇τ |∞‖x‖ ,

where β∆ is independent of τ and x.

(d) Denote by ˜|∇τ |∞ := supu ‖∇τ(u) − 1‖. Then

‖ΦD(M;x) − ΦD(τ(M);x)‖ ≤ βD
˜|∇τ |∞‖x‖ ,

where βD is independent of τ and x.

Properties (a) and (b) are not specific to surface representa-

tions, and are a simple consequence of the non-expansive

property of our chosen nonlinearities. The constant α

is controlled by the product of ℓ2 norms of the network

weights at each layer and the norm of the discrete Lapla-

cian operator. Properties (c) and (d) are based on the fact

that the Laplacian and Dirac operators are themselves sta-

ble to deformations, a property that depends on two key as-

pects: first, the Laplacian/Dirac is localized in space, and

next, that it is a high-pass filter and therefore only depends

on relative changes in position.

One caveat of Theorem 4.1 is that the constants appear-

ing in the bounds depend upon a bandwidth parameter given

by the reciprocal of triangle areas, which increases as the

size of the mesh increases. This corresponds to the fact that

the spectral radius of ∆M diverges as the mesh size N in-

creases.

In order to overcome this problematic asymptotic behav-

ior, it is necessary to exploit the smoothness of the signals

incoming to the surface network. This can be measured with

Sobolev norms defined using the spectrum of the Laplacian

operator. Given a mesh M of N nodes approximating an

underlying surface S, and its associated cotangent Lapla-

cian ∆M, consider the spectral decomposition of ∆M (a

symmetric, positive definite operator):

∆M =
∑

k≤N

λkeke
T
k , ek ∈ R

N , 0 ≤ λ1 ≤ λ2 · · · ≤ λN .

Under normal uniform convergence 1 [39], the spectrum of

∆M converges to the spectrum of the Laplace-Beltrami op-

erator ∆S of S. If S is bounded, it is known from the Weyl

1which controls how the normals of the mesh align with the surface

normals; see [39].

law [41] that there exists γ > 0 such that k−γ(S) . λ−1
k , so

the eigenvalues λk do not grow too fast. The smoothness of

a signal x ∈ R
|V |×d defined in M is captured by how fast

its spectral decomposition x̂(k) = eTk x ∈ R
d decays [36].

We define ‖x‖2H :=
∑
k λ(k)

2‖x̂(k)‖2 is Sobolev norm,

and β(x, S) > 1 as the largest rate such that its spectral

decomposition coefficients satisfy

‖x̂(k)‖ . k−β , (k → ∞) . (5)

If x ∈ R
|V |×d is the input to the Laplace Surface Network

of R layers, we denote by (β0, β1, . . . , βR−1) the smooth-

ness rates of the feature maps x(r) defined at each layer

r ≤ R.

Theorem 4.2 Consider a surface S and a finite-mesh ap-

proximation MN of N points, and Φ∆ a Laplace Sur-

face Network with parameters {(Ar, Br)}r≤R. Denote by

d(S,MN) the uniform normal distance, and let x1, x2 be

piece-wise polyhedral approximations of x̄(t), t ∈ S in

MN , with ‖x̄‖H(S) < ∞. Assume ‖x̄(r)‖H(S) < ∞ for

r ≤ R.

(a) If x1, x2 are two functions such that theR feature maps

x
(r)
l have rates (β0, β1, . . . , βR−1), then

‖Φ∆(x1;MN)−Φ∆(x2;MN)‖2 ≤ C(β)‖x1−x2‖
h(β) ,

(6)

with h(β) =
∏R
r=1

βr−1
βr−1/2 , and where C(β) does not

depend upon N .

(b) If τ is a smooth deformation field, then

‖Φ∆(x;MN) − Φ∆(x; τ(MN))‖ ≤ C|∇τ |∞
h(β)

,

where C does not depend upon N .

(c) Let M and M′ be N -point discretizations of S, If

max(d(M, S), d(M′, S)) ≤ ǫ, then ‖Φ∆(M;x) −
Φ∆(M

′, x′)‖ ≤ Cǫh(β) , where C is independent of

N .

This result ensures that if we use as generator of the

SN an operator that is consistent as the mesh resolution in-

creases, the resulting surface representation is also consis-

tent. Although our present result only concerns the Lapla-

cian, the Dirac operator also has a well-defined continu-

ous counterpart [8] that generalizes the gradient operator in

quaternion space. Also, our current bounds depend explic-

itly upon the smoothness of feature maps across different

layers, which may be controlled in terms of the original sig-

nal if one considers nonlinearities that demodulate the sig-

nal, such as ρ(x) = |x| or ρ(x) = ReLU(x). These exten-

sions are left for future work. Finally, a specific setup that

we use in experiments is to use as input signal the canoni-

cal coordinates of the mesh M. In that case, an immediate

application of the previous theorem yields

Figure 1. Height-Field Representation of surfaces. A 3D mesh

M ⊂ R
3 (right) is expressed in terms of a “sampling” 2D irregular

mesh M̃ ⊂ R
2 (left) and a depth scalar field f : M̃ → R over

M̃ (center).

Corollary 4.3 Denote Φ(M) := ΦM(V), where V are the

node coordinates of M. Then, if A1 = 0,

‖Φ(M)−Φ(τ(M))‖ ≤ κmax(|∇τ |∞, ‖∇
2τ‖)h(β) . (7)

5. Generative Surface Models

State-of-the-art generative models for images, such as

generative adversarial networks [32], pixel autoregressive

networks [28], or variational autoencoders [21], exploit the

locality and stationarity of natural images in their proba-

bilistic models, in the sense that the model satisfies pθ(x) ≈
pθ(xτ) by construction, where xτ is a small deformation of

a given input x. This property is obtained via encoders and

decoders with a deep convolutional structure. We intend to

exploit similar geometric stability priors with SNs, owing

to their stability properties described in Section 4. A mesh

generative model contains two distinct sources of random-

ness: on the one hand, the randomness associated with the

underlying continuous surface, which corresponds to shape

variability; on the other hand, the randomness of the dis-

cretization of the surface. Whereas the former contains the

essential semantic information, the latter is not informative,

and to some extent independent of the shape identity. We

focus initially on meshes that can be represented as a depth

map over an (irregular) 2D mesh, referred as height-field

meshes in the literature. That is, a mesh M = (V,E, F)
is expressed as (M̃, f(M̃)), where M̃ = (Ṽ , Ẽ, F̃) is now

a 2D mesh and f : Ṽ → R is a depth-map encoding the

original node locations V , as shown in Figure 1.
In this work, we consider the variational autoencoder

framework [21, 33]. It considers a mixture model of the
form p(M) =

∫
pθ(M | h)p0(h)dh , where h ∈ R

|S| is a
vector of latent variables. We train this model by optimizing
the variational lower bound of the data log-likelihood:

min
θ,ψ

1

L

∑

l≤L

−Eh∼qψ(h | Ml) log pθ(Ml | h)+DKL(qψ(h |Ml) || p0(h)) .

(8)

We thus need to specify a conditional generative model

pθ(M | h), a prior distribution p0(h) and a variational

approximation to the posterior qψ(h | M), where θ and

ψ denote respectively generative and variational train-

able parameters. Based on the height-field representation,

Figure 2. A single ResNet-v2 block used for Laplace, Average

Pooling (top) and Dirac models (bottom). The green boxes cor-

respond to the linear operators replacing convolutions in regular

domains. We consider Exponential Linear Units (ELU) activa-

tions (orange), Batch Normalization (blue) and ‘1 × 1’ convolu-

tions (red) containing the trainable parameters; see Eqs (1, 3 and

4). We slightly abuse language and denote by xk+1 the output of

this 2-layer block.

we choose for simplicity a separable model of the form

pθ(M| h) = pθ(f | h,M̃) ·p(M̃) , where M̃ ∼ p(M̃) is a

homogeneous Poisson point process, and f ∼ pθ(f | h,M̃)
is a normal distribution with mean and isotropic covariance

parameters given by a SN:

pθ(f | h,M̃) = N (µ(h,M̃), σ2(h,M̃)1) ,

with [µ(h,M̃), σ2(h,M̃)] = ΦD(M̃ ;h) . The generation

step thus proceeds as follows. We first sample a 2D mesh

M̃ independent of the latent variable h, and then sample a

depth field over M̃ conditioned on h from the output of a

decoder network ΦD(M̃ ;h). Finally, the variational family

qψ is also a Normal distribution whose parameters are ob-

tained from an encoder Surface Neural Network whose last

layer is a global pooling that removes the spatial localiza-

tion: qψ(h | M) = N (µ̄, σ̄2
1) , with [µ̄, σ̄] = Φ̄D(M) .

6. Experiments

For experimental evaluation, we compare models built

using ResNet-v2 blocks [14], where convolutions are re-

placed with the appropriate operators (see Fig. 2): (i) a

point cloud based model from [37] that aggregates global

information by averaging features in the intermediate lay-

ers and distributing them to all nodes; (ii) a Laplacian Sur-

face network with input canonical coordinates; (iii) a Dirac

Surface Network model. We report experiments on genera-

tive models using an unstructured variant of MNIST digits

(Section 6.1), and on temporal prediction under non-rigid

deformation models (Section 6.2).

6.1. MeshMNIST

For this task, we construct a MeshMNIST database with

only height-field meshes (Sec. 5). First, we sample points

on a 2D plane ([0, 27] × [0, 27]) with Poisson disk sam-

pling with r = 1.0, which roughly generates 500 points,

and apply a Delaunay triangulation to these points. We then

overlay the triangulation with the original MNIST images

and assign to each point a z coordinate bilinearly interpo-

lating the grey-scale value. Thus, the procedure allows us

to define a sampling process over 3D height-field meshes.

We used VAE models with decoders and encoders built

using 10 ResNet-v2 blocks with 128 features. The encoder

converts a mesh into a latent vector by averaging output of

the last ResNet-v2 block and applying linear transforma-

tions to obtain mean and variance, while the decoder takes

a latent vector and a 2D mesh as input (corresponding to a

specific 3D mesh) and predicts offsets for the corresponding

locations. We keep variance of the decoder as a trainable pa-

rameter that does not depend on input data. We trained the

model for 75 epochs using Adam optimizer [20] with learn-

ing rate 10−3, weight decay 10−5 and batch size 32. Fig-

ures 3,4 illustrate samples from the model. The geometric

encoder is able to leverage the local translation invariance

of the data despite the irregular sampling, whereas the geo-

metric decoder automatically adapts to the specific sampled

grid, as opposed to set-based generative models.

Figure 3. Samples generated for the same latent variable and dif-

ferent triangulations. The learned representation is independent of

discretization/triangulation (Poisson disk sampling with p=1.5).

Figure 4. Meshes from the dataset (first five). And meshes gener-

ated by our model (last five).

6.2. Spatio­Temporal Predictions

One specific task we consider is temporal predictions of

non-linear dynamics. Given a sequence of frames X =
X1, X2, . . . , Xn, the task is to predict the following frames

Y = Y 1 = Xn+1, Y 2, . . . , Y m = Xn+m. As in [26], we

use a simple non-recurrent model that takes a concatenation

of input frames X and predicts a concatenation of frames

Y . We condition on n = 2 frames and predict the next

Model Receptive field Number of parameters Smooth L1-loss (mean per sequence (std))

MLP 1 519672 64.56 (0.62)

PointCloud - 1018872 23.64 (0.21)

Laplace 16 1018872 17.34 (0.52)

Dirac 8 1018872 16.84 (0.16)
Table 1. Evaluation of different models on the temporal task

Ground Truth MLP PointCloud Laplace Dirac

Figure 5. Qualitative comparison of different models. We plot 30th predicted frames correspondingly for two sequences in the test set.

Boxes indicate distinctive features. For larger crops, see Figure 6

.

m = 40 frames. In order to generate data, we first ex-

tracted 10k patches from the MPI-Faust dataset[3], by se-

lecting a random point and growing a topological sphere of

radius 15 edges (i.e. the 15-ring of the point). For each

patch, we generate a sequence of 50 frames by randomly

rotating it and letting it fall to the ground. We consider

the mesh a thin elastic shell, and we simulate it using the

As-Rigid-As-Possible technique [35], with additional grav-

itational forces [17]. Libigl [18] has been used for the mesh

processing tasks. Sequences with patches from the first 80

subjects were used in training, while the 20 last subjects

were used for testing. The dataset and the code are avail-

able on request. We restrict our experiments to temporal

prediction tasks that are deterministic when conditioned on

several initial frames. Thus, we can train models by mini-

mizing smooth-L1 loss [13] between target frames and out-

put of our models.

We used models with 15 ResNet-v2 blocks with 128 out-

put features each. In order to cover larger context for Dirac

and Laplace based models, we alternate these blocks with

Average Pooling blocks. We predict offsets to the last con-

ditioned frame and use the corresponding Laplace and Dirac

operators. Thus, the models take 6-dimensional inputs and

produce 120-dimensional outputs. We trained all models

using the Adam optimizer [20] with learning rate 10−3,

weight decay 10−5, and batch size 32. After 60k steps we

decreased the learning rate by a factor of 2 every 10k steps.

The models were trained for 110k steps in overall.

Table 1 reports quantitative prediction performance of

different models, and Figure 5 displays samples from the

Ground Truth Laplace Dirac

Figure 6. Dirac-based model visually outperforms Laplace-based

models in the regions of high mean curvature.

prediction models at specific frames. The set-to-set model

[38, 37], corresponding to a point-cloud representation used

also in [30], already performs reasonably well on the task,

even if the visual difference is noticeable. Nevertheless,

the gap between this model and Laplace-/Dirac-based mod-

els is significant, both visually and quantitatively. Dirac-

based model outperforms Laplace-based model despite the

smaller receptive field. Videos comparing the performance

of different models are available in the additional material.

Figure 6 illustrates the effect of replacing Laplace by

Dirac in the formulation of the SN. Laplacian-based mod-

els, since they propagate information using an isotropic op-

erator, have more difficulties at resolving corners and pointy

Figure 7. From left to right: PointCloud (set2set), ground truth

and Dirac based model. Color corresponds to mean squared error

between ground truth and prediction: green - smaller error, red -

larger error.

Figure 8. From left to right: Laplace, ground truth and Dirac based

model. Color corresponds to mean squared error between ground

truth and prediction: green - smaller error, red - larger error.

structures than the Dirac operator, that is sensitive to princi-

pal curvature directions. However, the capacity of Laplace

models to exploit the extrinsic information only via the in-

put coordinates is remarkable and more computationally ef-

ficient than the Dirac counterpart. Figures 7 and 8 overlay

the prediction error and compare Laplace against Dirac and

PointCloud against Dirac respectively. They confirm first

that SNs outperform the point-cloud based model, which

often produce excessive flattening and large deformations,

and next that first-order Dirac operators help resolve areas

with high directional curvature. We refer to the supplemen-

tary material for additional qualitative results.

7. Conclusions

We have introduced Surface Networks, a deep neu-

ral network that is designed to naturally exploit the non-

Euclidean geometry of surfaces. We have shown how a

first-order differential operator (the Dirac operator) can de-

tect and adapt to geometric features beyond the local mean

curvature, the limit of what Laplacian-based methods can

exploit. This distinction is important in practice, since areas

with high directional curvature are perceptually important,

as shown in the experiments. That said, the Dirac operator

comes at increased computational cost due to the quater-

nion calculus, and it would be interesting to instead learn

the operator, akin to recent Message-Passing NNs [12] and

explore whether Dirac is recovered.

Whenever the data contains good-quality meshes, our

experiments demonstrate that using intrinsic geometry of-

fers vastly superior performance to point-cloud based mod-

els. While there are not many such datasets currently avail-

able, we expect them to become common in the next years,

as scanning and reconstruction technology advances and 3D

sensors are integrated in consumer devices. SNs provide

efficient inference, with predictable runtime, which makes

them appealing across many areas of computer graphics,

where a fixed, per-frame cost is required to ensure a stable

framerate, especially in VR applications. Our future plans

include applying Surface Networks precisely to having au-

tomated, data-driven mesh processing, and generalizing the

generative model to arbitrary meshes, which will require an

appropriate multi-resolution pipeline.

References

[1] M. Andreux, E. Rodolà, M. Aubry, and D. Cremers.

Anisotropic Laplace-Beltrami operators for shape analysis.

In Proc. NORDIA, 2014. 3

[2] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. In-

teraction networks for learning about objects, relations and

physics. In Advances in Neural Information Processing Sys-

tems, pages 4502–4510, 2016. 2

[3] F. Bogo, J. Romero, M. Loper, and M. J. Black. Faust:

Dataset and evaluation for 3d mesh registration. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3794–3801, 2014. 7

[4] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-

ing shape correspondence with anisotropic convolutional

neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 3189–3197, 2016. 2, 3

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. arXiv preprint arXiv:1611.08097, 2016. 2,

3

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. Proc.

ICLR, 2013. 2

[7] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum.

A compositional object-based approach to learning physical

dynamics. ICLR, 2016. 2

[8] K. Crane, U. Pinkall, and P. Schröder. Spin transforma-

tions of discrete surfaces. In ACM Transactions on Graphics

(TOG). ACM, 2011. 2, 3, 5

[9] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sys-

tems, pages 3837–3845, 2016. 2, 3

[10] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre,

R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P.

Adams. Convolutional networks on graphs for learning

molecular fingerprints. In Neural Information Processing

Systems, 2015. 2

[11] H. Fan, H. Su, and L. Guibas. A point set generation net-

work for 3d object reconstruction from a single image. arXiv

preprint arXiv:1612.00603, 2016. 2

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.

Dahl. Neural message passing for quantum chemistry. arXiv

preprint arXiv:1704.01212, 2017. 2, 4, 8

[13] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015. 7

[14] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European Conference on Com-

puter Vision, pages 630–645. Springer, 2016. 6

[15] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional net-

works on graph-structured data. arXiv:1506.05163, 2015. 2

[16] K. C. Hsueh-Ti Derek Liu, Alec Jacobson. A dirac opera-

tor for extrinsic shape analysis. Computer Graphics Forum,

2017. 2, 3

[17] A. Jacobson. Algorithms and Interfaces for Real-Time De-

formation of 2D and 3D Shapes. PhD thesis, ETH, Zürich,

2013. 7

[18] A. Jacobson, D. Panozzo, et al. libigl: A simple C++ geom-

etry processing library, 2016. http://libigl.github.io/libigl/. 7

[19] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley.

Molecular graph convolutions: moving beyond fingerprints.

Journal of computer-aided molecular design, 2016. 2

[20] D. Kingma and J. Ba. Adam: A method for stochastic op-

timization. In International Conference on Learning Repre-

sentation, 2015. 6, 7

[21] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013. 2, 5

[22] T. N. Kipf and M. Welling. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016. 2, 3

[23] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.

Gated graph sequence neural networks. arXiv preprint

arXiv:1511.05493, 2015. 2

[24] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym,

E. Yumer, V. Kim, and Y. Lipman. Convolutional neural net-

works on surfaces via seamless toric covers. In SIGGRAPH,

2017. 2

[25] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian man-

ifolds. In Proceedings of the IEEE international conference

on computer vision workshops, pages 37–45, 2015. 2

[26] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. arXiv preprint

arXiv:1511.05440, 2015. 6

[27] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda,

and M. M. Bronstein. Geometric deep learning on graphs

and manifolds using mixture model cnns. arXiv preprint

arXiv:1611.08402, 2016. 2, 3

[28] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. arXiv preprint arXiv:1601.06759,

2016. 5

[29] R. Poranne and Y. Lipman. Simple approximations of planar

deformation operators. Technical report, ETHZ, 2015. 2

[30] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

arXiv preprint arXiv:1612.00593, 2016. 1, 2, 7

[31] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

arXiv preprint arXiv:1706.02413, 2017. 1, 2

[32] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015. 5

[33] D. J. Rezende and S. Mohamed. Variational inference with

normalizing flows. arXiv preprint arXiv:1505.05770, 2015.

2, 5

[34] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. IEEE

Transactions on Neural Networks, 20(1):61–80, 2009. 2, 3

[35] O. Sorkine and M. Alexa. As-rigid-as-possible surface mod-

eling. In Symposium on Geometry processing, volume 4,

2007. 7

[36] D. A. Spielman. Spectral graph theory and its applications.

In Foundations of Computer Science, 2007. FOCS’07. 48th

Annual IEEE Symposium on, pages 29–38. IEEE, 2007. 5

[37] S. Sukhbaatar, R. Fergus, et al. Learning multiagent com-

munication with backpropagation. In Advances in Neural

Information Processing Systems, pages 2244–2252, 2016. 1,

2, 6, 7

[38] O. Vinyals, S. Bengio, and M. Kudlur. Order mat-

ters: Sequence to sequence for sets. arXiv preprint

arXiv:1511.06391, 2015. 1, 2, 7

[39] M. Wardetzky. Convergence of the cotangent formula: An

overview. In Discrete Differential Geometry, pages 275–286.

2008. 4

[40] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense

human body correspondences using convolutional networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1544–1553, 2016. 2

[41] H. Weyl. Über die asymptotische verteilung der eigenwerte.

Nachrichten von der Gesellschaft der Wissenschaften zu

Göttingen, Mathematisch-Physikalische Klasse, 1911:110–

117, 1911. 5

[42] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015. 2

Supplementary Material for Surface Networks

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, Joan Bruna

New York University

March 29, 2018

Abstract

This note contains the appendices of the paper Surface Networks.

A The Dirac Operator

The quaternions H is an extension of complex numbers. A quaternion q 2 H can be represented in

a form q = a + bi + cj + dk where a, b, c, d are real numbers and i, j, k are quaternion units that

satisfy the relationship i2 = j2 = k2 = ijk = �1.

vj

ej

f

As mentioned in Section 3.1, the Dirac operator used in the model can be conveniently repre-

sented as a quaternion matrix:

Df,j =
�1

2|Af |
ej , f 2 F, j 2 V ,

where ej is the opposing edge vector of node j in the face f , and Af is the area, as illustrated in Fig.

A, using counter-clockwise orientations on all faces.

The Deep Learning library PyTorch that we used to implement the models does not support

quaternions. Nevertheless, quaternion-valued matrix multiplication can be replaced with real-valued

matrix multiplication where each entry q = a+ bi+ cj + dk is represented as a 4⇥ 4 block

2
664

a �b �c �d
b a �d c
c d a �b
d �c b a

3
775

and the conjugate q⇤ = a� bi� cj � dk is a transpose of this real-valued matrix:

2
664

a b c d
�b a d �c
�c �d a b
�d c �b a

3
775 .

1

B Theorem 4.1

B.1 Proof of (a)

We first show the result for the mapping x 7! ⇢ (Ax+B∆x), corresponding to one layer of Φ∆.

By definition, the Laplacian ∆ of M is

∆ = diag(Ā)�1(U �W) ,

where Āj is one third of the total area of triangles incident to node j, and W = (wi,j) contains the

cotangent weights [9], and U = diag(W1) contains the node aggregated weights in its diagonal.

From [4] we verify that

kU �Wk 
p
2max

i

8
<
:

s
U2
i + Ui

X

i⇠j

Ujwi,j

9
=
; (1)

 2
p
2 sup

i,j
wi,j sup

j
dj

 2
p
2 cot(↵min)dmax ,

where dj denotes the degree (number of neighbors) of node j, ↵min is the smallest angle in the

triangulation of M and Smax the largest number of incident triangles. It results that

k∆k  C
cot(↵min)Smax

infj Āj
:= LM ,

which depends uniquely on the mesh M and is finite for non-degenerate meshes. Moreover, since

⇢(·) is non-expansive, we have

k⇢ (Ax+B∆x)� ⇢ (Ax0 +B∆x0)k  kA(x� x0) +B∆(x� x0)k (2)

 (kAk+ kBkLM)kx� x0k .

By cascading (2) across the K layers of the network, we obtain

kΦ(M;x)� Φ(M;x0)k 

0
@Y

kK

(kAkk+ kBkkLM)

1
A kx� x0k ,

which proves (a). ⇤

B.2 Proof of (b)

The proof is analogous, by observing that kDk =
p
k∆k and therefore

kDk 
p
LM . ⇤

B.3 Proof of (c)

To establish (c) we first observe that given three points p, q, r 2 R
3 forming any of the triangles of

M,

kp� qk2(1� |r⌧ |∞)2  k⌧(p)� ⌧(q)k2  kp� qk2(1 + |r⌧ |∞)2 (3)

A(p, q, r)2(1� |r⌧ |∞C↵
−2

min � o(|r⌧ |∞
2)  A(⌧(p), ⌧(q), ⌧(r))2  A(p, q, r)2(1 + |r⌧ |∞C↵

−2

min + o(|r⌧ |∞
2)) .(4)

2

j

i

k

h

↵ij

�ij

ai

aijk

`ij

Figure 1: Triangular mesh and Cotangent Laplacian (figure reproduced from [2])

Indeed, (3) is a direct consequence of the lower and upper Lipschitz constants of ⌧(u), which are

bounded respectively by 1� |r⌧ |1 and 1 + |r⌧ |1. As for (4), we use the Heron formula

A(p, q, r)2 = s(s� kp� qk)(s� kp� rk)(s� kr � qk) ,

with s = 1
2 (kp�qk+kp�rk+kr�qk) being the half-perimeter. By denoting sτ the corresponding

half-perimeter determined by the deformed points ⌧(p), ⌧(q), ⌧(r), we have that

sτ �k⌧(p)�⌧(q)k  s(1+ |r⌧ |1)�kp�qk(1� |r⌧ |1) = s�kp�qk+ |r⌧ |1(s+kp�qk) and

sτ �k⌧(p)� ⌧(q)k � s(1� |r⌧ |1)�kp� qk(1+ |r⌧ |1) = s�kp� qk� |r⌧ |1(s+ kp� qk) ,
and similarly for the kr � qk and kr � pk terms. It results in

A(⌧(p), ⌧(q), ⌧(r))2 � A(p, q, r)2

1� |r⌧ |1

✓
1 +

s+ kp� qk
s� kp� qk +

s+ kp� rk
s� kp� rk +

s+ kr � qk
s� kr � qk

◆
� o(|r⌧ |1

2
)

�

� A(p, q, r)2
h
1� C|r⌧ |1↵�2

min � o(|r⌧ |1
2
)
i
,

and similarly

A(⌧(p), ⌧(q), ⌧(r))2  A(p, q, r)2
h
1 + C|r⌧ |1↵�2

min � o(|r⌧ |1
2
)
i
.

By noting that the cotangent Laplacian weights can be written (see Fig. 1) as

wi,j =
�`2ij + `2jk + `2ik

A(i, j, k)
+

�`2ij + `2jh + `2ih

A(i, j, h)
,

we have from the previous Bilipschitz bounds that

⌧(wi,j)  wi,j

⇥
1� C|r⌧ |1↵�2

min

⇤�1
+2|r⌧ |1

⇥
1� C|r⌧ |1↵�2

min

⇤�1

`2ij + `2jk + `2ik

A(i, j, k)
+

`2ij + `2jh + `2ih

A(i, j, h)

!
,

⌧(wi,j) � wi,j

⇥
1 + C|r⌧ |1↵�2

min

⇤�1�2|r⌧ |1
⇥
1 + C|r⌧ |1↵�2

min

⇤�1

`2ij + `2jk + `2ik

A(i, j, k)
+

`2ij + `2jh + `2ih

A(i, j, h)

!
,

which proves that, up to second order terms, the cotangent weights are Lipschitz continuous to

deformations.

3

Finally, since the mesh Laplacian operator is constructed as diag(Ā)�1(U � W), with Āi,i =
1
3

P
j,k;(i,j,k)2F A(i, j, k), and U = diag(W1), let us show how to bound k∆� ⌧(∆)k from

Āi,i(1� ↵M|r⌧ |1 � o(|r⌧ |1
2
))  ⌧(Āi,i)  Āi,i(1 + ↵M|r⌧ |1 + o(|r⌧ |1

2
)) (5)

and

wi,j(1� �M|r⌧ |1 � o(|r⌧ |1
2
))  ⌧(wi,j)  wi,j(1 + �M|r⌧ |1 + o(|r⌧ |1

2
)) . (6)

Using the fact that Ā, ⌧(Ā) are diagonal, and using the spectral bound for k ⇥ m sparse matrices

from [3], Lemma 5.12,

kY k2  max
i

X

j;Yi,j 6=0

|Yi,j |

lX

r=1

|Yr,j |

!
,

the bounds (5) and (6) yield respectively

⌧(Ā) = Ā(1+ ✏τ) , with k✏τk = o(|r⌧ |1) , and

⌧(U �W) = U �W + ⌘τ , with k⌘τk = o(|r⌧ |1) .

It results that, up to second order terms,

k∆� ⌧(∆)k =
��⌧(Ā)�1(⌧(U)� ⌧(W))� Ā�1(U �W)

��

=
���
�
Ā[1+ ✏τ]

��1
[U �W + ⌘τ]� Ā�1(U �W)

���

=
���
⇣
1� ✏τ + o(|r⌧ |1

2
)
⌘
Ā�1(U �W + ⌘τ)� Ā�1(U �W)

���

=
��✏τ∆+ Ā�1⌘τ

��+ o(|r⌧ |1
2
)

= o(|⌧ |1) ,

which shows that the Laplacian is stable to deformations in operator norm. Finally, by denoting x̃τ

a layer of the deformed Laplacian network

x̃τ = ⇢(Ax+B⌧(∆)x) ,

it follows that

kx̃� x̃τk  kB(∆� ⌧(∆)xk (7)

 CkBk|r⌧ |1kxk . (8)

Also,

kx̃� ỹτk  kA(x� y) +B(∆x� ⌧(∆)y)k
 (kAk+ kBkk∆k)kx� yk+ k∆� ⌧(∆)kkxk
 (kAk+ kBkk∆k)| {z }

δ1

kx� yk+ C|r⌧ |1| {z }
δ2

kxk , (9)

and therefore, by plugging (9) with y = x̃τ , K layers of the Laplacian network satisfy

kΦ(x;∆)� Φ(x; ⌧(∆)k 

0
@ Y

jK�1

�1(j)

1
A kx̃� x̃τk+

0
@ X

j<K�1

Y

j0j

�1(j
0)�2(j)

1
A |r⌧ |1kxk



2
4C

0
@ Y

jK�1

�1(j)

1
A kBk+

0
@ X

j<K�1

Y

j0j

�1(j
0)�2(j)

1
A
3
5 |r⌧ |1kxk . ⇤ .

4

B.4 Proof of (d)

The proof is also analogous to the proof of (c), with the difference that now the Dirac operator is no

longer invariant to orthogonal transformations, only to translations. Given two points p, q, we verify

that

kp� q � ⌧(p)� ⌧(q)k  f|⌧ |1kp� qk ,
which, following the previous argument, leads to

kD � ⌧(D)k = o(f|⌧ |1) . (10)

C Theorem 4.2

C.1 Proof of part (a)

The proof is based on the following lemma:

Lemma C.1 Let xN , yN 2 H(MN) such that 8 N , kxNkH  c,kyNkH  c. Let x̂N = EN (xN),
where EN is the eigendecomposition of the Laplacian operator ∆N on MN , , with associated

eigenvalues �1 . . .�N in increasing order. Let � > 0 and � be defined as in (??) for xN and yN . If

� > 1 and kxN � yNk  ✏ for all N ,

k∆N (xN � yN)k2  C✏
2� 1

β�1/2 , (11)

where C is a constant independent of ✏ and N .

One layer of the network will transform the difference x1�x2 into ⇢(Ax1+B∆x1)�⇢(Ax2+
B∆x2). We verify that

k⇢(Ax1 +B∆x1)� ⇢(Ax2 +B∆x2)k  kAkkx1 � x2k+ kBkk∆(x1 � x2)k .

We now apply Lemma C.1 to obtain

k⇢(Ax1 +B∆x1)� ⇢(Ax2 +B∆x2)k  kAkkx1 � x2k+ CkBkkx1 � x2k
β�1

β�1/2

 kx1 � x2k
β�1

β�1/2

⇣
kAkkx1 � x2k(2β�1)�1

+ CkBk
⌘

 C(kAk+ kBk)kx1 � x2k
β�1

β�1/2 ,

where we redefine C to account for the fact that kx1�x2k(2β�1)�1

is bounded. We have just showed

that

kx(r+1)
1 � x

(r+1)
2 k  frkx(r)

1 � x
(r)
2 kgr (12)

with fr = C(kArk+ kBrk) and gr = βr�1
βr�1/2 . By cascading (12) for each of the R layers we thus

obtain

kΦ∆(x1)� Φ∆(x2)k 
"

RY

r=1

f
Q

r0>r gr0
r

#
kx1 � x2k

QR
r=1

gr , (13)

which proves (??) ⇤.

5

Proof of (11): Let {e1, . . . , eN} be the eigendecomposition of ∆N . For simplicity, we drop the

subindex N in the signals from now on. Let x̂(k) = hx, eki and x̃(k) = �kx̂(k); and analogously

for y. From the Parseval identity we have that kxk2 = kx̂k2. We express k∆(x� y)k as

k∆(x� y)k2 =
X

kN

�2
k(x̂(k)� ŷ(k))2 . (14)

The basic principle of the proof is to cut the spectral sum (14) in two parts, chosen to exploit the

decay of x̃(k). Let

F (x)(k) =

P
k0�k x̃(k)

2

kxk2
H

=

P
k0�k x̃(k)

2

P
k0 x̃(k)2

=

P
k0�k �

2
kx̂(k)

2

P
k0 �2

kx̂(k)
2

 1 ,

and analogously for y. For any cutoff k⇤  N we have

k∆(x� y)k2 =
X

kk⇤

�2
k(x̂(k)� ŷ(k))2 +

X

k>k⇤

�2
k(x̂(k)� ŷ(k))2

 �2
k⇤
✏2 + 2(F (x)(k⇤)kxk2H + F (y)(k⇤)kyk2H)

 �2
k⇤
✏2 + 2F (k⇤)(kxk2H + kyk2H)

 �2
k⇤
✏2 + 4F (k⇤)D

2 , (15)

where we denote for simplicity F (k⇤) = max(F (x)(k⇤), F (y)(k⇤)). By assumption, we have

�2
k . k2γ and

F (k) .
X

k0�k

k2(γ�β) ' k1+2(γ�β) .

By denoting �̃ = � � � � 1/2, it follows that

k∆(x� y)k2 . ✏2k2γ⇤ + 4D2k�2β̃
⇤ (16)

Optimizing for k⇤ yields

✏22�k2γ�1 � 2�̃4D2k�2β̃�1 = 0, thus

k⇤ =


4�D2

�✏2

� 1

2γ+2β̃

. (17)

By plugging (17) back into (16) and dropping all constants independent of N and ✏, this leads to

k∆(x� y)k2 . ✏
2� 1

γ+β̃ = ✏
2� 1

β�1/2 ,

which proves part (a) ⇤.

C.2 Proof of part (b)

We will use the following lemma:

Lemma C.2 Let M = (V,E, F) is a non-degenerate mesh, and define

⌘1(M) = sup
(i,j)2E

Āi

Āj
, ⌘2(M) = sup

(i,j,k)2F

`2ij + `2jk + `2ik

A(i, j, k)
, ⌘3(M) = ↵min . (18)

6

Then, given a smooth deformation ⌧ and x defined in M, we have

k(∆� ⌧(∆))xk  C|r⌧ |1k∆xk , (19)

where C depends only upon ⌘1, ⌘2 and ⌘3.

In that case, we need to control the difference ⇢(Ax + B∆x) � ⇢(Ax + B⌧(∆)x). We verify

that

k⇢(Ax+B∆x)� ⇢(Ax+B⌧(∆)x)k  kBkk(∆� ⌧(∆))xk .
By Lemma C.2 it follows that k(∆� ⌧(∆))xk  C|r⌧ |1k∆xk and therefore, by denoting x

(1)
1 =

⇢(Ax+B∆x) and x
(1)
2 = ⇢(Ax+B⌧(∆)x), we have

kx(1)
1 � x

(1)
2 k  C|r⌧ |1k∆xk = C|r⌧ |1kxkH . (20)

By applying again Lemma C.1, we also have that

k∆x
(1)
1 � ⌧(∆)x

(1)
2 k = k∆x

(1)
1 � (∆+ ⌧(∆)�∆)x

(1)
2 k

= k∆(x
(1)
1 � x

(1)
2) + (⌧(∆)�∆)x

(1)
2 k

 Ckx(1)
1 � x

(1)
2 k

β1�1

β1�1/2 + |r⌧ |1kx(1)
2 kH

. C|r⌧ |1
β1�1

β1�1/2 ,

which, by combining it with (20) and repeating through the R layers yields

kΦ∆(x,M)� Φ∆(x, ⌧(M)k  C|r⌧ |1
QR

r=1

βr�1

βr�1/2 , (21)

which concludes the proof ⇤.

Proof of (19): The proof follows closely the proof of Theorem ??, part (c). From (5) and (6) we

have that

⌧(Ā) = Ā(I+Gτ) , with |Gτ |1  C(⌘2, ⌘3)|r⌧ |1 , and

⌧(U �W) = (I+Hτ)(U �W) , with |Hτ |1  C(⌘2, ⌘3)|r⌧ |1 .

It follows that, up to second order o(|r⌧ |1
2
) terms,

⌧(∆)�∆ = ⌧(Ā)�1(⌧(U)� ⌧(W))� Ā�1(U �W)

=
�
Ā[1+Gτ]

��1
[(I+Hτ)(U �W)]� Ā�1(U �W)

' Ā�1Hτ (U �W) +Gτ∆ . (22)

By writing Ā�1Hτ = fHτ Ā
�1, and since Ā is diagonal, we verify that

(fHτ)i,j = (Hτ)i,j
Ai,i

Aj,j
,with

Ai,i

Aj,j
 ⌘1, and hence that

Ā�1Hτ (U �W) = fHτ∆ , with |fHτ |1  C(⌘1, ⌘2, ⌘3)|r⌧ |1 . (23)

We conclude by combining (22) and (23) into

k(∆� ⌧(∆))xk = k(Gτ + fHτ)∆xk
 C 0(⌘1, ⌘2, ⌘3)|r⌧ |1k∆xk ,

which proves (19) ⇤

7

C.3 Proof of part (c)

This result is a consequence of the consistency of the cotangent Laplacian to the Laplace-Beltrami

operator on S [9]:

Theorem C.3 ([9], Thm 3.4) Let M be a compact polyhedral surface which is a normal graph

over a smooth surface S with distortion tensor T , and let T̄ = (det T)1/2T �1. If the normal field

uniform distance d(T ,1) = kT̄ � 1k1 satisfies d(T ,1)  ✏, then

k∆M �∆Sk  ✏ . (24)

If ∆M converges uniformly to ∆S , in particular we verify that

kxkH(M) ! kxkH(S) .

Thus, given two meshes M, M0 approximating a smooth surface S in terms of uniform normal

distance, and the corresponding irregular sampling x and x0 of an underlying function x̄ : S ! R,

we have

k⇢(Ax+B∆Mx)� ⇢(Ax0 +B∆M0x0)k  kAkkx� x0k+ kBkk∆Mx�∆M0x0k . (25)

Since M and M0 both converge uniformly normally to S and x̄ is Lipschitz on S, it results that

kx� x̄k  L✏ , and kx0 � x̄k  L✏ ,

thus kx � x0k  2L✏. Also, thanks to the uniform normal convergence, we also have convergence

in the Sobolev sense:

kx� x̄kH . ✏ , kx0 � x̄kH . ✏ ,

which implies in particular that

kx� x0kH . ✏ . (26)

From (25) and (26) it follows that

k⇢(Ax+B∆Mx)� ⇢(Ax0 +B∆M0x0)k  2kAkL✏+ (27)

+kBkk∆Mx�∆S x̄+∆S x̄�∆M0x0k
 2✏ (kAkL+ kBk) .

By applying again Lemma C.1 to x̃ = ⇢(Ax+B∆Mx), x̃0 = ⇢(Ax0 +B∆M0x0), we have

kx̃� x̃0kH  Ckx̃� x̃0k
β1�1

β1�1/2 . ✏
β1�1

β1�1/2 .

We conclude by retracing the same argument as before, reapplying Lemma C.1 at each layer to

obtain

kΦM(x)� ΦM0(x0)k  C✏
QR

r=1

βr�1

βr�1/2 . ⇤ .

8

D Proof of Corollary 4.3

We verify that

k⇢(B∆x)� ⇢(B⌧(∆)⌧(x))k  kBkk∆x� ⌧(∆)⌧(x)k
 kBkk∆(x� ⌧(x)) + (∆� ⌧(∆))(⌧(x))k
 kBk(k∆(x� ⌧(x))k+ k(∆� ⌧(∆))(⌧(x))k .

The second term is o(|r⌧ |1) from Lemma C.2. The first term is

kx� ⌧(x)kH  k∆(I� ⌧)kkxk  kr2⌧kkxk ,

where kr2⌧k is the uniform Hessian norm of ⌧ . The result follows from applying the cascading

argument from last section. ⇤

9

E Preliminary Study: Metric Learning for Dense Correspon-

dence

As an interesting extension, we apply the architecture we built in Experiments 6.2 directly to a dense

shape correspondence problem.

Similarly as the graph correspondence model from [8], we consider a Siamese Surface Network,

consisting of two identical models with the same architecture and sharing parameters. For a pair

of input surfaces M1,M2 of N1, N2 points respectively, the network produces embeddings E1 2
R

N1⇥d and E2 2 R
N2⇥d. These embeddings define a trainable similarity between points given by

si,j =
ehE1,i,E2,ji

P
j0 e

hE1,i,E2,j0 i
, (28)

which can be trained by minimizing the cross-entropy relative to ground truth pairs. A diagram

of the architecture is provided in Figure 2.

In general, dense shape correspondence is a task that requires a blend of intrinsic and extrinsic

information, motivating the use of data-driven models that can obtain such tradeoffs automatically.

Following the setup in Experiment 6.2, we use models with 15 ResNet-v2 blocks with 128 output

features each, and alternate Laplace and Dirac based models with Average Pooling blocks to cover

a larger context: The input to our network consists of vertex positions only.

We tested our architecture on a reconstructed (i.e. changing the mesh connectivity) version of the

real scan of FAUST dataset[1]. The FAUST dataset contains 100 real scans and their corresponding

ground truth registrations. The ground truth is based on a deformable template mesh with the same

ordering and connectivity, which is fitted to the scans. In order to eliminate the bias of using the

same template connectivity, as well as the need of a single connected component, the scans are

reconstructed again with [5]. To foster replicability, we release the processed dataset in the additional

material. In our experiment, we use 80 models for training and 20 models for testing.

Since the ground truth correspondence is implied only through the common template mesh, we

compute the correspondence between our meshes with a nearest neighbor search between the point

cloud and the reconstructed mesh. Consequently, due to the drastic change in vertex replacement

after the remeshing, only 60-70 percent of labeled matches are used. Although making it more chal-

lenging, we believe this setup is close to a real case scenario, where acquisition noise and occlusions

are unavoidable.

Our preliminary results are reported in Figure 3. For simplicity, we generate predicted cor-

respondences by simply taking the mode of the softmax distribution for each reference node i:
ĵ(i) = argmaxj si,j , thus avoiding a refinement step that is standard in other shape correspondence

pipelines. The MLP model uses no context whatsoever and provides a baseline that captures the

prior information from input coordinates alone. Using contextual information (even extrinsically

as in point-cloud model) brings significative improvments, but these results may be substantially

improved by encoding further prior knowledge. An example of the current failure of our model is

depitcted in Figure 5, illustrating that our current architecture does not have sufficiently large spatial

context to disambiguate between locally similar (but globally inconsistent) parts.

We postulate that the FAUST dataset [1] is not an ideal fit for our contribution for two reasons:

(1) it is small (100 models), and (2) it contains only near-isometric deformations, which do not

require the generality offered by our network. As demonstrated in [7], the correspondence perfor-

mances can be dramatically improved by constructing basis that are invariant to the deformations.

We look forward to the emergence of new geometric datasets, and we are currently developing a

capture setup that will allow us to acquire a more challenging dataset for this task.

10

Surface Networks

Surface Networks

Figure 2: Siamese network pipeline: the two networks take vertex coordinates of the input models

and generate a high dimensional feature vector, which are then used to define a map from M1 to

M2. Here, the map is visualized by taking a color map on M2, and transferring it on M1

MLPGround Truth LaplaceReference

Figure 3: Additional results from our setup. Plot in the middle shows rate of correct correspondence

with respect to geodesic error [6]. We observe that Laplace is performing similarly to Dirac in this

scenario. We believe that the reason is that the FAUST dataset contains only isometric deformations,

and thus the two operators have access to the same information. We also provide visual comparison,

with the transfer of a higher frequency colormap from the reference shape to another pose.

11

Point CloudMLP Dirac Laplace

Figure 4: Heat map illustrating the point-wise geodesic difference between predicted correspon-

dence point and the ground truth. The unit is proportional to the geodesic diameter, and saturated at

10%.

Figure 5: A failure case of applying the Laplace network to a new pose in the FAUST benchmark

dataset. The network confuses between left and right arms. We show the correspondence visualiza-

tion for front and back of this pair.

12

F Further Numerical Experiments

Ground Truth MLP AvgPool Laplace Dirac

Figure 6: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-

dicted frame correspondingly.

13

Ground Truth MLP AvgPool Laplace Dirac

Figure 7: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-

dicted frame correspondingly.

14

Ground Truth MLP AvgPool Laplace Dirac

Figure 8: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-

dicted frame correspondingly.

15

Ground Truth MLP AvgPool Laplace Dirac

Figure 9: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-

dicted frame correspondingly.

16

Ground Truth Laplace Dirac

Figure 10: Dirac-based model visually outperforms Laplace-based models in the regions of high

mean curvature.

17

Figure 11: From left to right: Laplace, ground truth and Dirac based model. Color corresponds to

mean squared error between ground truth and prediction: green - smaller error, red - larger error.

18

Figure 12: From left to right: set-to-set, ground truth and Dirac based model. Color corresponds to

mean squared error between ground truth and prediction: green - smaller error, red - larger error.

19

References

[1] F. Bogo, J. Romero, M. Loper, and M. J. Black. Faust: Dataset and evaluation for 3d mesh registration.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3794–3801,

2014. 10

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning: going

beyond euclidean data. arXiv preprint arXiv:1611.08097, 2016. 3

[3] D. Chen and J. R. Gilbert. Obtaining bounds on the two norm of a matrix from the splitting lemma.

Electronic Transactions on Numerical Analysis, 21:28–46, 2005. 4

[4] K. C. Das. Extremal graph characterization from the upper bound of the laplacian spectral radius of

weighted graphs. Linear Algebra and Its Applications, 427(1):55–69, 2007. 2

[5] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. Tetrahedral meshing in the wild. Submitted

to ACM Transaction on Graphics, 2018. 10

[6] V. G. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic maps. In ACM Transactions on Graphics

(TOG), volume 30, page 79. ACM, 2011. 11

[7] O. Litany, T. Remez, E. Rodolà, A. M. Bronstein, and M. M. Bronstein. Deep functional maps: Structured

prediction for dense shape correspondence. 2017 IEEE International Conference on Computer Vision

(ICCV), pages 5660–5668, 2017. 10

[8] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna. A note on learning algorithms for quadratic assignment

with graph neural networks. arXiv preprint arXiv:1706.07450, 2017. 10

[9] M. Wardetzky. Convergence of the cotangent formula: An overview. In Discrete Differential Geometry,

pages 275–286. 2008. 2, 8

20

