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ABSTRACT

In modeling necking in steel bars subjected to uniaxial tension using a classical one-dimensional elastoplastic
continuum, numerical results exhibit strong mesh dependency without convergence upon mesh refinement. The
strain localization and softening with respect to necking in structural steels is induced by hybrid material and
geometric nonlinearities rather than material damage. A one-dimensional nonlocal model is proposed to address
these numerical difficulties and to provide an enhanced numerical representation of necking-induced localiza-
tion in structural steels for the potential implementation in fiber-based formulations. By introducing a char-
acteristic length and a nonlocal parameter to the standard constitutive model, the enhanced nonlocal continuum
provides a well-posed governing equation for the necking problem. The finite element calculations based on this
one-dimensional nonlocal model give rise to objective solutions, i.e., numerical results converge under mesh
refinement. In addition, the size of the necking region also exhibits mesh-independence. The characteristic
length and nonlocal parameter significantly influence the post-necking response and the dimension of the necked
region. Comparison of the local and global response of necking between one-dimensional analysis and 3D si-
mulations demonstrates that the proposed model is capable of accurately characterizing the post-necking be-
havior. Relationships between characteristic length for the nonlocal model and the diameter of a cylindrical bar
are examined. The novel contributions of the paper are: (1) providing a transparent link between the nonlocal
formulation and the physics of the necking phenomenon, and (2) providing a mathematical basis for the ne-
cessity of the “over-nonlocal” formulation.

1. Introduction

uniaxial tension testing. At a certain point in the loading history, there
is a change from a uniform distribution of strain along the tensile

Strain localization is a common phenomenon in a wide range of
materials from soil and rock to concrete and metal alloys [1-4]. The key
feature of this phenomenon is a rapid transition in either the dis-
placement field or the strain field from a homogenous to a dis-
continuous pattern, followed by intense straining within a narrow re-
gion [5]. Another consequence of strain localization is reflected in the
mechanical behavior, wherein the global stress increases with strain
until localization occurs and decreases with increasing strain subse-
quently. The behavior after localization is commonly associated with
strain softening, which results in a negative tangent modulus. Such a
drop in loading carrying capacity is often regarded as a precursor to
final material failure. Therefore, strain localization plays an important
role in the mechanical behavior and engineering applications of many
materials, including structural steels.

Strain localization is commonly observed in structural steels during
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specimen to a localized concentration of strain in a small region asso-
ciated with the physical appearance of a neck. Necking instability is
essentially the consequence of the competition between the deforma-
tion of the material (resulting in a reduction of cross-sectional area) and
the level of the applied stress (due to hardening). At a continuum scale,
structural steels generally show continuous strain hardening in which
the rate of stress decreases with increasing strain. Due to this reduced
rate of strain hardening, the incremental increase in the applied stress
and an incremental decrease of cross-sectional area achieve balance at a
point during the deformation history. This type of softening occurs even
as the material continues to strain harden at every continuum location,
and may be considered an “effective” softening when the stress-strain
response is examined at the coupon scale (i.e., using engineering stress-
strain measurements). More specifically, this softening arises because a
uniaxial representation of material response fails to capture three
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dimensional geometric nonlinear processes that result in the loss of
cross-sectional area. Beyond this balance point, an arbitrarily small
imperfection may trigger localized deformation. Subsequent deforma-
tion is concentrated into the necked region until fracture ultimately
occurs.

The study of strain localization in structural steels is motivated by
its important effects on the strain softening behavior (which affects
global component or structural response) as well as accumulated strains
that are responsible for ductile fracture and damage processes [6]. In
addition to its role as a precursor to fracture, necking (and more
broadly, other types of localization such as local buckling) often trigger
extreme limit states, such as collapse at the component or structure
scale. Moreover, the state-of-the-art in structural frame simulations
[7,8] typically forgo continuum finite element simulations, and rely on
uniaxial representation of materials (e.g., through fiber elements [9]),
even when localization-induced softening is present. These uniformly
suffer from the issues of mesh-dependency, with the implication that
results are dependent on numerical discretization. Thus, a rigorous
analysis and mitigation of the non-objective response of localized
necking-induced softening represented in a uniaxial stress-strain con-
struct is of academic as well as professional interest. The mathematical
interpretation of the non-objective outcomes is that the material stiff-
ness matrix is no longer positive definite, and the governing equation
becomes ill-posed if classical (local) uniaxial constitutive laws are used
[2]. This leads to infinitely many solutions of the strain localization
distribution and energy dissipation for a single case. The solution does
not converge with increasing mesh refinement, resulting in the size of
localization zone becoming arbitrarily small, and the load-displacement
response beyond the peak point dropping very rapidly upon mesh re-
finement [2,10].

Maintaining a well-posed boundary value problem after the onset of
necking in a tensile test for the fiber element-based model is not pos-
sible using local continuum approaches. This mesh sensitivity problem
is also discussed by Mikkelsen [11]. The problems of non-objectivity
and ill-posedness may be mitigated through regularization, i.e., by in-
corporating a length scale into the constitutive law. This length scale
may be interpreted as an extrinsic parameter that reintroduces physical
phenomena (three-dimensional necking), for which the uniaxial for-
mulation cannot otherwise simulate physically. Regularization methods
are generally divided into four categories: rate-dependent constitutive
models [12,13], micropolar continuum models that introduce supple-
mentary rotational degrees of freedom into the framework of the con-
tinuum mechanics [14,15], higher order strain gradient models [16],
and nonlocal models [17].

Nonlocal regularization approaches are now widely used to capture
strain softening as well as ductile fracture behavior in metals, and nu-
merous nonlocal models have been proposed [17]. As discussed earlier,
even though the basic mechanical behavior of ductile solids exhibits
strain hardening up to ductile fracture, effective strain softening (in the
uniaxial sense) may be induced by loss of cross-sectional area due to
geometric nonlinearity or by the accumulation of damage (in addition
to other effects such as temperature, creep). Distinct from damage-
triggered strain softening, which usually occurs as a part of the con-
stitutive response itself [18-22], necking-induced strain localization
(and softening at the global/uniaxial level) occurs simultaneously with
strain hardening at the continuum constitutive level. Previous devel-
opments in one-dimensional formulations for representing necking,
including nonlocal [23] and strain gradient [11] approaches, as well as
their finite element solutions, rely on a modification of material con-
stitutive laws along with an associated length scale. While these ap-
proaches expediently mitigate mesh dependency, they are also phe-
nomenological, such that the effects of necking (e.g., load-deformation
response) are replicated in an observational sense without an explicit
representation of the underlying physics. While this empiricism is un-
satisfying in itself, it hinders generalization of the methodology (e.g., to
tension components of different sizes/thicknesses — e.g., see Kolwankar
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et al. [23]) and interpretation of results, especially post-localized
strains in the necked region, since they are not directly associated with
physical response such as the transverse geometry change. These issues
are additionally problematic when the goal is to estimate point-wise
continuum strains that are responsible for fracture. Motivated by this,
this paper develops a one-dimensional model with a nonlocal for-
mulation for the analysis of necking. This model provides refined un-
derstanding of the numerical problems encountered in the uniaxial si-
mulation of necking and a methodology to mitigate these problems.
From a practical standpoint, this understanding may be used to inform
simulation of localization-induced softening in steel members through a
uniaxial fiber construct, since current approaches for such simulation
(e.g., Kolwankar et al. [23]) are based on empirical modification of
effective stress-strain laws, rather than incorporation of the geometric
nonlinear phenomena that result in this effective response. From a
mathematical standpoint, this model is similar to previous approaches
developed for damage-plasticity — e.g., see [19,20].

The paper begins by formulating the problem of necking-induced
effective softening. Subsequently, a one-dimensional nonlocal for-
mulation is presented. This is followed by spectral analysis that rigor-
ously examines the effect of regularization on the localization problem.
To demonstrate the efficacy of the proposed approach, numerical ex-
amples are presented, these confirm the mitigation of mesh-depen-
dence. Results from the nonlocal uniaxial model are then compared to
their counterparts from three-dimensional continuum finite element
models of cylindrical bars, to examine the ability of the model to re-
produce post-peak physical response. The paper concludes by sum-
marizing the work and discussing its implications and limitations.

2. problem formulation

Necking in ductile metals is a widely studied phenomenon, and has
been examined under various constitutive laws, material properties,
boundary conditions, geometric configurations, and numerical methods
[24-26]. It has been well recognized that necking is a case of locali-
zation and instability [27] and different types of necking have been
identified, namely diffuse necking, localized deformation, and propa-
gating neck [28]. In contrast to localized necking, in which necking
localizes into an infinitesimal band, diffuse necking occurs in both di-
rections perpendicular to uniaxial loading [29]. The width of the
necking region along the length of a specimen is usually on the order of
the-bar radius. Fig. 1 presents an illustrative example of mechanical
response and deformation pattern in a cylindrical bar subjected to
uniaxial tension to demonstrate the features of diffuse necking, which is
the focus of the present study. Fig. 1(a) shows the deformation patterns
in the pre- and post-localization phases, whereas Fig. 1(b) shows the
load-elongation curve. Fig. 1(c) shows the effective longitudinal strain
distribution during the pre- and post-localization phases. Referring to
Fig. 1(b), the axial force P increases with elongation until a peak force
point is reached. Until this stage of loading history, the strain field in
the entire bar is homogeneous - see Fig. 1(a) and (c). Subsequent to
this, the deformation (strain) field transitions from homogeneous to
non-homogenous; specifically, the localized plastic strain concentrates
at diffuse necking region, and the strain decreases due to elastic un-
loading at the remainder of the tensile specimen to maintain equili-
brium with the dropping load. The representative criterion to predict
diffuse necking is due to Considére [24], which states that necking of a
tensile round bar coincides with the attainment of the maximum tensile
loading, and can be expressed as:

P

— =0
de

(€9
where P is the uniaxial tension load (see Fig. 1(a)) and ¢ is the loga-
rithmic (true) strain. Swift [30] extended Considére’s criterion to
biaxial stress states. In the current paper, the basis of the Considére
model will be followed to analyze post-necking behavior of
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Fig. 1. Illustration of diffuse necking in a cylindrical bar: (a) deformation of the cylindrical bar; (b) load-displacement curve; (c) evolution of strain field.

homogeneous steels. The assumption of homogeneous materials ex-
cludes the possibility of microstructural heterogeneity induced necking.
Let Ly and L be the original and current length of the specimen under
uniaxial tension, respectively. The incremental true strain may be ex-
pressed in terms of the change of length AL as:

_AL
L

Ae @
By integrating the above expression, the current deformed length
may be determined from the true strain and expressed as L = Lge’,
where L, is the undeformed length. Invoking the notion of isochoric
(constant volume) plastic flow along with the approximation that vo-
lume change under elastic strains is negligible (a realistic observation
for many polycrystalline metals, including structural steels) leads to the
zero-volume change criterion, which may be expressed as follows:

A= Aje 3

where A and Ag refer to the current and original area of the cross
section, respectively. The relationship in Eq. (3) is exact for the regime
prior to necking where the cross-sectional area remains uniform along
the gauge length. In the post-necking regime, the distribution of strain
is non-uniform both longitudinally and transversely. Herein, a simpli-
fication is made that the current area is related to the average long-
itudinal strain, which is the tensile strain at the corresponding co-
ordinate in the one-dimensional model. This is equivalent to the
assumption that the cross-sections remain planar and are perpendicular
to the centerline, which is also the starting point of analysis of necking
by Bridgman [25]. The uniaxial tensile load P may be expressed using
the initial area of the cross section, true stress ¢ and true strain ¢ as:

P = Ao = Ayoe™* “)

On the other hand, material response obtained from a tensile test is
often expressed in terms of the nominal (engineering) stress s = P/A.
Assuming a true stress-strain response o = g(¢), the rate of true stress
may be expressed as ¢ = (dg/de)é. The rate of change of nominal stress
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with respect to true strain, i.e., the tangent modulus, E,, may then be
derived as:

()

The tangent modulus is initially positive and becomes negative
when dg/de < g. Herein, an exponential relationship of true stress-
strain [31], which is also a common approximation for the strain
hardening properties of structural steels, is employed:

o = g(e) = Ke® (6)

where K is the strength coefficient and n is the strain hardening ex-
ponent. To combine the two effects (i.e., strain hardening combined
with geometry change) that lead to the necking type of localization, the
one-dimension model represents the material coupon as a one-dimen-
sional bar with constant area, and constitutive response representing
nominal (rather than true) stress-strain behavior. Such a dimensional
reduction from three dimensions to one dimension does not ensure
completely consistent, physically and mathematically equivalent con-
versions. However, it is highly popular in engineering application since
one dimensional response is recovered from standard ASTM E8 [32]
coupon tests, and also used in “fiber” simulations of structural members
[10]. Given the constant-area formulation, the strain hardening fol-
lowed by strain softening behavior may be expressed as an effective
material property:

g =gee—

()

In this case, the uniaxial tensile load may be expressed as P = AyG.
In addition, to characterize the geometry effect during the deformation,
a geometry parameter is introduced as:
ke=1-e*

(8

The geometry parameter k, = 1 — A/A, varies from O to 1, where
the lower and upper bounds represent the area of the cross-section
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equal to its initial value and equal to zero, respectively.

3. nonlocal approach

The nonlocal approach has been shown to effectively regularize the
boundary value problem [2]. The fundamental operation of the ap-
proach is to replace the local material internal variables (e.g., equiva-
lent plastic strain, damage variable) by their nonlocal counterparts. In
contrast to the standard constitutive theories that assume that the
mechanical behavior of a material point is only related to the point
itself, the nonlocal approach allows the state of each material point to
be related to variables in the vicinity of the material at the location of
interest. From a physical standpoint, this type of nonlocality (and the
associated regularization) may be interpreted as arising from processes
that otherwise cannot be accommodated within classical continuum
theory. For example, in the context of material damage induced soft-
ening, the nonlocality is attributed to microstructural features such as
voids or secondary phase inclusions. In the context of necking, non-
locality arises due to the 3D geometric nonlinear process of neck for-
mation that is cannot be simulated within uniaxial strain construct.
From a mathematical standpoint, both strong and weak discontinuities
associated with singularity and negative definiteness of the tangent
stiffness matrix result in numerical instabilities that require an addi-
tional characteristic length for regularization. As mentioned above, the
fundamental operation of nonlocality (in the context of the present
study) is to calculate the spatial average of the quantity of interest,
which may be interpreted as the localization limiter:

1

1= e

S G nf )y
©

where f is the local variable and f is its nonlocal counterpart. The
material at x is the host point that will interact with its surrounding (or
receiver) points at y. The term Q represents the volume of the structure.
The term a(x,y) is the nonlocal weight operator, which is a function of
characteristic length and the distance from the host to the receiver
point. A popular form of the weight function (adopted in this study) is
the Gauss error function:

Ix —yP
12

where [ is the characteristic length. The nonlocal operator gradually
diminishes from the host point to the remote point, and the weight at its
center x has the greatest value a(x, x) = 1. The normalization by the
term ‘/;1 a(x, y)dy ensures that a homogenous field is not altered by the
nonlocal formulation. One of the most important features of the non-
local approach is its ability to introduce a length scale, or characteristic
length — denoted as [ in Eq. (10). In this study, the characteristic length
is determined through 3D continuum FE simulations (with large de-
formations and von Mises plasticity) that directly simulate necking.
More specifically, continuum FE simulations are conducted com-
plementary to the one-dimensional nonlocal simulation, and char-
acteristic length is then estimated by trial and error until the one-di-
mensional simulation can replicate both the global (load-deformation
response) and the local (strain distribution) behavior in a satisfactory
manner. As such, [ is a considered a model parameter, which may
subsequently be correlated with physical quantities (e.g., bar diameter).
Using both local and global indicators in this manner results in more
general and accurate calibration of the length scale [33].

a(x,y) = exp(—ﬂ 10)

3.1. Nonlocal model for post-necking analysis

The longitudinal strain is an indicator of both the strain field and
the geometry change (or the geometry parameter). Consequently, it is
selected as the nonlocal variable. Some facilitating assumptions are
necessary to develop the nonlocal formulation. First, the change rate of
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longitudinal strain is decomposed into an elastic and a plastic part, i.e.,
de = de, + dep. In the context of this study (which focuses on large post-
necking plastic deformations), the elastic part is negligible in compar-
ison to the plastic strain. This leads to the following simplification:

o= g(e) ~ gleen + &) (11)

where ¢, is the elastic strain at initial yield. Although this mod-
ification results in a minor deviation from true behavior at early stages
of plasticity, the effect is modest in the post-necking phase, during
which plastic strains greatly exceed the yield strain. The cross-sectional
area reduction is irreversible, and arises due to the plastic deformation.
For the material that undergoes elastic unloading, it is reasonable to
assume that the cross-sectional geometry remains unchanged.
Combining Egs. (6), (7) and (11), the local material behavior for the
one-dimensional model may be re-organized in terms of accumulated
plastic strain and the yield stress:

E n
(1 + —Ep) e~
%o

where g, = Key is the initial yield stress. The above conversion is ad-
vantageous for two reasons. First, it facilitates the elastic predictor-
plastic corrector algorithm in the numerical implementation, thereby
aiding numerical convergence. Second, and perhaps more important,
the total strain formulated by the nonlocal approach cannot be an ef-
fective localization limiter, since it is not guaranteed to increase
monotonically while the accumulated plastic strain does. Preventing
instability modes requires that the nonlocal treatment is applied to
variables that increase monotonically e.g., accumulated plastic strain
[2]. Following Jirdsek and Rolshoven [34], a complete avoidance of
mesh dependency for the localization problem induced by plastic strain
softening requires a slight modification to the standard nonlocal for-
mation. Known as the over-nonlocal formulation, this modification
defines the “over-nonlocal” cumulative plastic strain using a linear
combination of its local variable and nonlocal averaging counterpart:

g, = o
e 12)

& =01 - m), + mg, 13)
where g, is the over-nonlocal equivalent plastic strain, g, is the nonlocal
average of ¢, calculated by Eq. (13), and m is the over-nonlocal para-
meter that is non-negative. The values of m = 0 and 1 reduce the over-
nonlocal model to the local plasticity model and standard nonlocal
formulation, respectively. Previous research has not explicitly ad-
dressed the physical interpretations or the mathematical necessity of
this parameter, other than empirically noting that a purely nonlocal
model (without this adjustment) cannot completely overcome mesh
dependence. To this point, the current study (in a subsequent section)
provides mathematical derivations to examine this parameter, with
respect to its mathematical necessity and limits.

3.2. Spectral analysis of localization

This subsection presents spectral analysis of the nonlocal formula-
tion to examine its key features as they pertain to mathematical reg-
ularization of the problem. These include the tangent modulus of the
nonlocal formulation (important from the standpoint of numerical
convergence), as well as a discussion of the effects of the parameters [
and m. The one-dimensional elastic constitutive equation may be ex-
pressed as:
G=E(—¢g) 14
where G is the current axial true stress. Based on the strain hardening/
softening law in Eq. (12) and its nonlocality in Eq. (9), the local plastic
variable in the plasticity model is replaced by its nonlocal counterpart,
and the corresponding yield function is expressed as:
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E n
FGﬁp=3—%b+—@)f%
O

0 (15)

Given a plastic multiplier y = ¢,, the plastic flow is required to sa-
tisfy the Kuhn-Tucker loading-unloading condition and the plastic
consistency condition:

F=0
(16)

An approach proposed by Di Luzio and Bazant [35] is used to de-
termine the exact solution of the propagation speed of stress accelera-
tion waves. The one-dimensional bar is considered again, the length of
which is assumed infinite to eliminate boundary effects. Considering
the bar initially in a homogenous state of strain, i.e., £ (x) = e(x) = ¢
and £, (x) = g, (x) = g, the stress-strain relationship may be expressed
in rate form:

y =0, F<O, yF=0 and

=E(-¢) a7

Accordingly, the rate form of the yield function in Eq. (17) in its
initially uniform state must also satisfy:

. E.\'"'(nE E.) :x
F=E(E—-¢)—o0y|l+ —¢ — —1—- —g, e %, =0
=g -a(1+25] (1o Zgleng,

(18)

Let &, be the flow stress in the yield function and the associated rate
éy = I:J\,p?p, where Etp is the tangent modulus of the flow stress with
respect to the plastic strain rate. Simplifying Eq. (18), the tangent
modulus E\tp may be derived as:

A E.\"'(nE E.\ .
Ey = cro(l + —sp) (n_ -1- —Ep)e’fp
Qo Qo 0]

19)

and the uniform property leads to E[p (x) = E;p(x) = Ejpo. The har-
monic wave solutions with respect to the angular frequency w and the
wave number k may be expressed as:

u(x, t) = uoei(kx—cut)’ E'p (x, 1) = époei(kx—cut)
(20)

Noting that (x, t) = du(x, t)/0x, and recalling the equation of mo-
tion 95/9x = pd*u/dt?, a system of linear equations is obtained by
substituting the harmonic solutions into Eqgs. (17) and (18):

{(Ek? — pw?)ilg + Eiképple!=eD = 0

{Eikuo - [E + Epo (1 -m+ %A(k))]épo}ei(kx—cuz) =0 1)
where A(k) = [ ;m a(z)e*2dz=21/(1 + k*?) is the Fourier transform of
the weight function in Eq. (10). To ensure non-zero solutions of 1, and
€0, the determinant of the coefficient matrix for the linear system in Eq.
(21) must equal zero, which leads to:

— (Ek? — pco2)[E + Etpo(l -m+ %A(k))] + E%k2=0

(22)
Consequently, the angular frequency w may be expressed as:
| Epo(1-m+ 2AK)
w = kC, -
\/ E+ Epo(1—m + 2AK)) 23)

where C, = /E/p is the elastic propagation velocity. The corresponding
phase velocity is thus determined:

o _, | Epo(1-m+ 2AK))

k- \E+ E,P0(1 —m+ gA(k))

vy =
24)

A special case of | = 0 eliminates the dependency of the phase ve-
locity on the nonlocal parameter m, which reduces the model to the
local type and the phase velocity becomes imaginary. Otherwise, the
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following condition needs to be maintained to ensure the velocity never
becomes imaginary when the tangent modulus becomes negative:

K2 +1

7]{212 >1

EN

=z

m
1-—m+ EA(k) <0 25)
The basic requirement to obtain a real phase velocity is that m be
greater than 1. For m < 1, the term within the square root of Eq. (24) is
negative, which implies the non-dispersion of the phase velocity. Next,
considering the critical condition (v, = @ = 0) that leading to a static
bifurcation, the corresponding critical wave number is obtained:

kcrzl\/ 1
INm-1

(26)
The critical wavelength is:
2
Ao == =27nldm -1
ke 27)

The critical value in Eq. (27) is the upper limit of wavelength, such
that wave propagation is possible only below this value. The implica-
tion is that if . > A, even a small disturbance of & will result in an
unbounded response, which is not a stable state. It is clearly seen that
the critical wave length is a function of the nonlocal parameter and the
characteristic length. Furthermore, m < 1 gives an imaginary value of
wave length as well as the wave number; this implies that the nonlocal
model regularizes the localization problem only when m > 1. The
critical wavelength, which gives an approximation of the length of the
localization region [35], is proportional to the length parameter for a
given m.

4. Nnumerical implementations

Starting with the weak form of the equilibrium equation within a
standard finite element framework, which is given as:

‘/(’2 oSwdQ = _/('l fwdQ + jr’ hwdl® (28)

where o is the stress, w is a trial function, I is the boundary to the
domain Q, f is the body force, and h the force applied to the boundary I'.
The body force is neglected in this paper. Subjected to pseudo time
discretization, the function in Eq. (28) may also be expressed in the
incremental form as:

+1 _ +1 +1 _
S aomiawd = [ friwdr + ff kwdl - o"wd@ 29)
where Ag™*! = g"*! — ¢" is the stress increment at the nth time step.
The stress increment is related to the strain increment and displacement
field through the tangent modulus D*:
dAu
Ac = DPAs = DP——
dx (30)
The displacement field Au is discretized to nodal displacements Auy
as:

Au = NAuy 31

where N is the shape function for displacement. Consequently, the
strain increment may be expressed in terms of the nodal displacement
field as:

_ dAu

Ae = BAuy

(32)
where B = dN/dx is the strain- displacement matrix. Assuming the trial
function w is related to the nodal displacement variation, the equation
in Eq. (29) is re-organized as follows:
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Auit! f B'DLT'BAQ = [ f*'NdQ + f h**'NdT — [ B'D,BujdQ
- L'IBTU"dQ

= K" Augt! = fift — fr = AR™!

(33)

where K is the global stiffness matrix, AR is the residual force vector,
n+1

and e = Jo BTo"dQ and ol = FTINdQ +
Ji W tINdT — [ B'D},Buj;dQ are the internal and external force
vector, respectively. By applying the standard Gaussian quadrature, the

internal force vector may be expressed as:

np
Foe = 2, wiBT (x))ai

i=1 (€D)]
where w; is the integration weight at Gauss point i, x; is the coordinate
of the Gauss point, and np is the total number of the Gauss integration
points. The consistent tangent operator Ky is obtained by the derivative
of the internal force with respect to the displacement vector, which is
given as:

_
ou

do;

K -_—
T ou

np
= z WiBT (xl-
i=1 (35)

The derivative of the stress with respect to the displacement may be
expressed as:
991 _ 9919
ou Og Ou

doi 3,
O, Ou

01 8
Oenp Ou

(36)

In contrast to the local case, the stress at an arbitrary integration
point i is the function of strains over the entire finite element mesh,
which implies that the term da;/J¢; is generally non-zero. Moreover, the
derivative of strain with respect to the displacement at integration point
j may be obtained as:

Ogj

ou = B(x)

37)
Combining Eq. (30), (35), (36) and (37) results in the consistent
tangent operator as a function of the derivative do;/de;:

np np
Kr = Z w;BT (x;) z DB (x;)
i=1 ] (38)

where D;? = 00;/3¢; is the component of tangent stiffness matrix.
Assuming the increment of the internal variable Ay equal to the in-
cremental plastic strain (Ay = Ag,), the incremental form of stress may
be obtained as:

Ag; = E(Ag; — Ay) (39)

From the above equation, the incremental internal variable may be
obtained as:
Ag;

Ay = bg — —

E (40)

Additionally, the consistent linearization of the yield function in Eq.
(15) may be expressed as:

where h; is the hardening modulus. In terms of the nonlocal internal
variable, the integral form of the expression in Eq. (9) is discretized as:

np
Ay =m Z wyAy; + (1 — m)Ay,
j=1

(42)

where wy; is the integration weight of point j for the host point i, and
is the function of the distance between point i and j and the char-
acteristic length. Combining Egs. (40), (41) and (42), the derivative
do/de is then obtained as:
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ep
Dy

E2
E + (1 = m)h; + majjhi
if
E2
E+ (1 — m)hj + mawjjh;

E —

i=j

i#j
(43)

The tangent operator derived as above is consistent with the tangent
matrix developed by Andrade et al. [36]. Compared to the local case,
the tangent operator for the integral type of nonlocal formulation has
more non-zero components due to the nonlocal interaction. Conse-
quently, the bandwidth of the tangent matrix as well as the global
stiffness matrix increase significantly, implying additional computa-
tional expense for the nonlocal case, as noted previously by Andrade
et al. [36] and Jirdsek and Patzdk [37].

5. verification and validation against continuum finite element
simulations

This section investigates the capability of the nonlocal formulation
to mitigate mesh sensitivity and to simulate physics of diffuse necking
by: (1) examining mitigation of mesh dependence of numerical FE so-
lutions by using the proposed model, (2) examining strain and stress
fields within the necked region predicted by the one-dimensional model
and comparing with the full continuum finite element solutions, and (3)
calibrating the characteristic length for the application of the proposed
nonlocal model to the post-necking problem. Three-dimensional finite
element simulations of the post-necking behavior of the cylindrical bars
are used as numerical experiments to provide benchmark data for the
verification of the proposed model. This is because the 3D continuum
simulations directly simulate necking, and the associated effects of ef-
fective softening and localization. Moreover (unlike experiments), 3D
continuum simulations provide access to the full strain field of the
specimen.

As shown in Fig. 2, a one-dimensional Finite Element (FE) model is
developed to represent the tension necking bar. The model consists of
one-dimensional (truss) elements arranged in series. Each element uses
a linear interpolation function with a single Gauss integration point at
its center. To trigger the localization, an imperfection is introduced by
reducing the cross-sectional area of the element at the center of the bar
by 0.1%. Following Kolwankar et al. [23], the magnitude of the im-
perfection was selected to provide a perturbation without significantly
affecting the pre-necking and post-necking response of the bar. The
boundary conditions are also presented in Fig. 2, wherein one end is
restrained with respect to axial displacement while the other end is
subjected to the displacement A.

The (3D) continuum finite element model takes advantage of sym-
metry of the cylindrical bar, and half of a three-dimensional axisym-
metric model was employed by using the solid element CAX4 (bi-linear
axisymmetric element) to simulate the bar under uniaxial tension. The

ne/em
¥ —~a
oL~
0¢$——X
L |

Fig. 2. Finite element representation of cylindrical bar with one-dimensional,
constant area linear finite elements. (1, is the total number of the elements; L
is the length of the localization region. Each element has an identical initial
length of Lo/2n.em.)
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Fig. 3. Geometry and boundary conditions of the axisymmetric model for the
cylindrical bars.

dimensions of the axisymmetric model are shown in Fig. 3. An im-
perfection is introduced to trigger necking. As shown in Fig. 3, the
right-hand side end of the axisymmetric model is subjected to a uniform
axial displacement and both ends are shear free. The axis of symmetry is
restricted at radial deformation and is free with respect to axial dis-
placement. The mesh was refined to obtain converged solutions for
post-necking response. Note that unlike the uniaxial construct, the
problem is well-posed because necking is directly simulated in 3D
continuum models.

5.1. Mesh sensitivity of uniaxial models

The mesh sensitivity of the numerical solutions determined from the
proposed model is examined in this subsection considering two aspects
including: (1) the dependency of the numerical solutions on numerical
discretization; (2) the agreement of the response predicted by the
proposed model with the physical response as determined through
continuum FE simulations, in terms of both the global (load-displace-
ment) and the local (strain field) response. The comparison of the global
response between the 3D and one-dimensional nonlocal analysis is
straightforward. The examination of the local response focuses on
geometric aspects of the necking profiles, specifically:

1. For a bar with a given geometry configuration and material prop-
erty, the full (3D) continuum finite element analysis is conducted to
characterize pre- and post-necking response of the cylindrical bar.
The load-displacement response as well as the strain field of the bar,
particularly at post-necking stage, are used as benchmark quantities
for model evaluation.

. The combination of the characteristic length [ and the nonlocal
parameter m influences the post-necking response of the truss
model; these need to be determined. According to Jirdsek and
Rolshoven [34] and previous spectral analysis, any selection of
m > 1 is acceptable. On the other hand, this parameter significantly
influences the computational cost. The reason is that a smaller
nonlocal parameter m requires a larger characteristic length 1 to
ensure that the computed size of necked region comparable to that
determined through continuum FE simulations. Following the sug-
gestion by Jirdsek and Rolshoven [34], m is chosen as 4 in this
paper. Based on the one-dimensional line model, the characteristic
length is then calibrated by performing parametric studies to
achieve a good match of the load—-displacement response with the
solutions obtained by the full FE analysis at pre- and post-necking
stages. The number of elements (n..n,) of the line model is selected
to ensure that the smallest characteristic length for parametric stu-
dies is larger than the initial size of each element L§ = Lo/Nejem-

. Once the characteristic length has been calibrated as above, loca-
lized deformation fields resulting from the uniaxial nonlocal and 3D
continuum models are compared. For this purpose, the quantity k,
given in Eq. (8) is particularly useful because it is an indicator of
necked geometry that may be recovered from both the uniaxial and
3D models. Following the assumption that the radial strain is uni-
form at the necked region, the longitudinal strain in a 3D cylindrical
bar may be determined as:
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/ Undeformed shape

Fig. 4. Illustration of the deformed and undeformed cylindrical bar (x denotes
the normalized coordinate of the cylindrical bar).

R(x)

Eavg (X) = —In(1 — kg) = —21In Ry (44)

where Ry and R(x) are the initial and current radius of the cross section,
respectively (see Fig. 4). Note that the current radius R(x), the long-
itudinal strain calculated by both the full continuum FE model and the
one-dimensional model are all the function of the longitudinal co-
ordinate. All the three quantities are uniform in the longitudinal di-
rection before the onset of necking and vary with the longitudinal co-
ordinate after necking.

The above process is applied to numerical example of a cylindrical
bar with the radius Rp = 0.5mm and the length L, = 20 mm under
uniaxial tension. For the full continuum finite element model, the size
of the axisymmetric elements was selected as 0.025 mm based on mesh
sensitivity studies. For the one-dimensional model, all the elements
except the one at the center (which is perturbed) of the bar have a
constant unit area, i.e., A = 1 mm? The material properties in terms of
the initial yield stress, modulus of elasticity and hardening exponent are
given as 0y = 400 MPa, E = 210 GPa and n = 0.15 (these are realistic
values for low-carbon structural steel — Kolwankar et al. [23]). Four
different characteristic lengths (I = 0.05mm, 0.10mm, 0.15mm,
0.2mm) are used in the nonlocal formulation. Six different mesh re-
finements (101, 201, 301, 401, 501, 601 elements) are considered for
the numerical discretization of the one-dimensional model.

The nominal (engineering) stress-strain response recovered from the
FE simulations by using the local formulation are shown in Fig. 5(a),
where the horizontal axis indicates the engineering strain A/L, calcu-
lated as the ratio of elongation to the initial length. The solid line in
Fig. 5(a) refers to the response where no strain localization occurs,
which means softening occurs uniformly over the entire bar beyond the
instability point. After the instability point, the material undergoes ef-
fective strain softening within the localization zone with elastic un-
loading outside the localization region. Referring to the figure, in-
creasing the mesh refinement leads to an earlier and sharper (i.e.,
steeper negative slope) drop in the stress-strain curve. The strain dis-
tributions along the length of the bar obtained by using four different
discretizations are shown in Fig. 5(b). For each discretization, the strain
localizes into the perturbed element of the bar model. As the mesh
becomes finer, the magnitude of the localized strain increases. The
length of localization zone and the internal strain are dependent on the
size of the single element of the bar. As the element size becomes in-
finitesimal, the length of localization region also becomes infinitesimal.
The numerical analysis shows difficulties in replicating the post-
necking response accurately within the framework of classical con-
tinuum model. The implication is that the uniaxial material (being
unable to directly simulate necking and the associated loss of area)
requires an extraneous localization limiter to ensure the strain localizes
into a finite and determined region at an arbitrary mesh refinement.

For the nonlocal formulation, the initial element size is chosen as
0.05mm (equal to the smallest characteristic length) that the line
model is discretized by 401 elements. The corresponding load-dis-
placement curves computed by using various characteristic lengths as
well as by the full continuum FE model is shown in Fig. 6. Referring to
Fig. 6, the characteristic length [ = 0.15 mm results in the best match of
the post-necking load-displacement curve with the 3D continuum FE
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Fig. 5. The mechanical response for several mesh refinements using conventional (local) formulation (I = 0): (a) nominal stress vs. engineering strain; (b) strain

distribution for several mesh refinements.
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solution. Subsequently, the calibrated characteristic length [ = 0.15 mm
is used to study the mesh sensitivity with respect to the load-displace-
ment response. The load-displacement responses calculated by using
the different numerical discretizations are plotted in Fig. 7. This figure
indicates that the nonlocal formulation successfully mitigates mesh-
dependence, such that the various mesh refinements have similar post-
necking response. An exception is noted for the coarsest mesh (101
elements) — this may be interpreted as a mesh convergence issue, in
which not enough resolution is provided over the length scale to re-
present the variation of strain accurately. The mitigation of mesh-de-
pendency is achieved with the element size L* < L

Fig. 8 depicts the local strain field calculated by using different
mesh refinements. Fig. 8(a) compares the strain distribution along the
length of the bar between 1D modeling and 3D simulation. The im-
portant observation is that as the mesh size is refined (after con-
vergence is achieved), the localization zone does not vanish. The figure
also indicates that both the length of the localization region and the
shape of plastic strain profile are largely independent of the mesh. This
is in sharp contrast to the results obtained by the standard constitutive
law, in which the localization length is highly sensitive to mesh size
(see Fig. 5(b) introduced previously). Moreover, the finite element so-
lution exhibits behavior comparable to the continuum FE solution with
respect to the length of localization region. In contrast to the sudden
change in strain distribution at localization region predicted by the
local formulation, a gradual (temporal) increase in plastic strain region
is observed from Fig. 8(a) as loading enters the post-necking phase.
Fig. 8b illustrates the peak strain at the necked region obtained by using
different mesh refinements and local as well as nonlocal formulations.
Referring to the results from the nonlocal formulation, the peak strain
converges to the value 3D simulation when element size L° is refined to
the order of 0.05 mm (I/L® = 3). For the local formulation, a decreasing
size of element gives rise to an increasing peak strain (recall Fig. 5b),
and no convergence is observed upon mesh refinement. The mesh in-
dependence of the strain field may be leveraged, for example in
downstream damage mechanics or ductile fracture models (e.g., Besson
et al. [38]).

5.2. Dependency of characteristic length on geometry

From the standpoint of application, it is useful to examine re-
lationships between the nonlocal parameters and the geometric of the
tension bar. To this end, three-dimensional models with identical
lengths Lo = 20mm and four different radiuses (Ro = 0.5mm,
0.67 mm, 1 mm, 2 mm) are studied. As discussed above, the procedure
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Fig. 9. Effective stress-strain curves determined through 1D (nonlocal) and 3D
simulations for the cylindrical bars with different radiuses.

for the evaluation of the proposed model consists of two steps including
the calibration of the model parameters and the validation. The 3D
simulations again provide the basis for the evaluation. The nominal
stress-strain curves for the cylindrical bars with different radiuses from
3D simulations are depicted in Fig. 9. As expected, the pre-necking
response is independent on the transverse geometry (radius). At post-
necking stage, the response for the cylindrical bar with a lower radius
exhibits an earlier and more dramatically sudden drop in nominal
stress. The results obtained from 1D analysis with various characteristic

lengths (I = 0.15mm, 0.2 mm, 0.3 mm, 0.6 mm) were found to match
the response of the cylindrical bars with four different radiuses
(Rp = 0.5mm, 0.67 mm, 1 mm, 2mm), respectively. Validation was
also performed by comparing the longitudinal strain at post-necking
stage between 1D and 3D modeling, and the results shown in Fig. 10
demonstrate good matches of 1D analyses with 3D simulations. This
suggests that the length parameter is strongly related (through a linear
relationship) to the initial radius of the cylindrical bar, such the length
parameter may be approximately correlated with the radius as [ = 0.3
Ro. Combining Eq. (27) and the relation I = 0.3 Ry and applying the
value of the nonlocal parameter m = 4 gives rise to the estimated size of
necked region as a function of the radius of the bar that L; = 3.3 R. It is
relevant to note that the analytical solution of the size of the necked
region was derived based on the Gauss-error weight function. Other
type of weight functions may result in different relationships between
the length parameter and the radius. In addition, it is noted that the
discussion presented in this section disregards the effect of the long-
itudinal geometry of the cylindrical bar (e.g., transverse edge boundary
conditions). This is a fair assumption, because the bar considered in this
section is of large slenderness (Lo / 2Ry = 5), which has applications in
structural components such are reinforcement bars, tension rods, and
other slender elements subject to necking.

6. conclusions

Significant attention has been drawn to the mesh dependency pro-
blem when modeling the post-necking material behavior for structural
steels through one-dimensional (fiber) elements. This problem is con-
firmed to be inevitable within the framework of conventional ap-
proaches that use an effective softening constitutive law to simulate
post-peak response. This paper examines this mesh dependence from a
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Fig. 10. Comparison of longitudinal strain between 1D and 3D modeling: (a) l = 0.15mm, Ry, = 0.5 mm; (b) Il = 0.2mm, Rp = 0.67 mm; (¢) l = 0.3 mm, Ry = 1 mm;

(d) I = 0.6 mm, Ry = 2mm.
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mathematical perspective, and outlines a nonlocal one-dimensional
model (and its numerical implementation) to simulate post-peak re-
sponse. The approach differs from prior formulations in two significant
ways: (1) it explicitly represents cross-sectional geometry change in the
formulation, rather than just modifying the stress-strain laws in a
phenomenological manner, and (2) it provides a rigorous explanation,
based on spectral analysis of localization for the empirically observed
limit on the nonlocal parameter m.

Necking, which is a strain localization phenomenon in uniaxial
tension specimens, is the consequence of geometric nonlinearity, in
which longitudinal strain and volume conservation result in the loss of
transverse area, coupling the longitudinal and transverse response. This
geometry effect manifests itself as material softening, when coupon
response is considered in a one-dimensional sense. This results in ef-
fective strain-softening accompanied by diffused necking. A nonlocal
strain formulation is shown to regularize this problem. This approach
substitutes the local plastic strain (as it is used within a softening
constitutive response) by its nonlocal counterpart. This approach ex-
plicitly introduces a length scale into the problem; this length scale may
be interpreted mathematically as a localization limiter, and physically,
as an indicator of 3D processes that control necking, which cannot
otherwise be simulated in the one-dimensional model. The main fea-
tures of the model and its validation are now summarized:

1. The analytical solutions for the nonlocal model are well-posed, re-
sulting in a constant length of the localization region. An important
theoretical finding is that an over-nonlocal approach is necessary
from the standpoint of regularizing this problem completely. This
theoretical finding validates empirical observations of previous
studies.

. Numerical validation studies are conducted to examine mesh-de-
pendency of finite element solutions once the well-posedness of the
problem (with the nonlocal formulation) is demonstrated. The re-
sults indicate that the size, the plastic strain distribution of the
necked region as well as the load-displacement response are de-
pendent on the nonlocal parameter and the characteristic length
rather than numerical discretizations. Consequently, the identifica-
tion procedure for both parameters (m, ) requires consideration of
both the global material response, and also the local measurement,
i.e., the details of the localization region. Subsequently, 3D simu-
lations of post-necking behavior in a cylindrical bar are carried out
to compare with the analysis by the proposed one-dimensional
model. The numerical results from 1D analysis are in good agree-
ment with those from the full 3D continuum finite element models.

. The influence of the radius of cylindrical bar (i.e. slenderness) on the
post-necking response is investigated. With the calibrated nonlocal
parameters (m, I), the proposed model is shown to represent the
global mechanical behavior and the local geometry as well as the
strain field at the necked region with good accuracy for steel round
bars for various values of slenderness (Lo/2Ry = 5). The relationship
between the slenderness and the characteristic length is also esti-
mated.

. Potential applications of the proposed model include the following:
(1) the concept and framework of the proposed may be conveniently
generalized to regularize constitutive response for local buckling in
a cross section or rebar buckling, wherein local-buckling driven
strain localization is represented as a mixed material and geometry
induced localization; (2) the proposed model can be incorporated
into a fiber-type framework for the enhancement of beam-column
elements to represent the post-necking response of a single-fiber
within a cross section — similar work has been carried out by
Kolwankar et al., [39].

. Shortcomings of this one-dimensional model restrict its applications
to the diffuse type of necking in the uniaxial tension case. Analysis
of geometry induced localization in other situations (e.g., localized
necking occurring inclined to the longitudinal direction) than in
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diffuse necking cannot be addressed in this model. Likewise, the
model (being based on an average strain at a given cross-section)
does not contain information regarding the transverse strain or
stress field. If such level of detail is required, then 2D or 3D con-
tinuum simulations must be conducted.

In summary, the proposed one-dimensional model provides good
representation of post-necking response in structural steels, while mi-
tigating spurious mesh dependency that is otherwise problematic when
modeling post-necking behavior through conventional one-dimensional
elements. While the formulation, in theory, admits prismatic members
of any cross-section, it has been examined only against round bars.
Further development is needed for its extension to members of arbitrary
cross-section. An extension of the present model (and its attributes) to
fiber-based beam- column elements is also desirable, since this has the
potential of directly enhancing structural performance assessment in
which necking (and more generally, localization) controls response.
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