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ABSTRACT

To deliver scalable performance to large-scale scientific and data an-
alytic applications, HPC cluster architectures adopt the distributed-
memory model. The performance and scalability of parallel applica-
tions on such systems are limited by the communication cost across
compute nodes. Therefore, projecting the minimum communica-
tion cost and maximum scalability of the user applications plays a
critical role in assessing the benefits of porting these applications
to HPC clusters as well as developing efficient distributed-memory
implementations. Unfortunately, this task is extremely challenging
for end users, as it requires comprehensive knowledge of the target
application and hardware architecture and demands significant
effort and time for manual system analysis.

To streamline the process of porting user applications to HPC
clusters, this paper presents CommAnalyzer, an automated frame-
work for estimating the communication cost on distributed-memory
models from sequential code. CommAnalyzer uses novel dynamic
program analyses and graph algorithms to capture the inherent flow
of program values (information) in sequential code to estimate the
communication when this code is ported to HPC clusters. Therefore,
CommAnalyzer makes it possible to project the efficiency/scalabil-
ity upper-bound (i.e., Roofline) of the effective distributed-memory
implementation before even developing one. The experiments with
real-world, regular and irregular HPC applications demonstrate the
utility of CommAnalyzer in estimating the minimum communica-
tion of sequential applications on HPC clusters. In addition, the
optimized MPI+X implementations achieve more than 92% of the
efficiency upper-bound across the different workloads.

1 INTRODUCTION

In order to scale to a large number of compute units, HPC cluster
architectures adopt the distributed-memory model. These architec-
tures are more difficult to program than shared-memory models
and require explicit decomposition and distribution of the program
data and computations, due to the lack of a single global address
space. The MPI programming model is the de facto standard for pro-
gramming applications on HPC clusters [6, 18]. MPI uses explicit
messaging to exchange data across processes that reside in sepa-
rate address spaces, and it is often combined with shared-memory
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programming models, such as OpenMP [43], to exploit the avail-
able compute resources seamlessly both within a node and across
nodes. Alternatively, the partitioned global address space (PGAS)
programming models (e.g., Chapel [17] and UPC [13]) abstract ex-
plicit communication using distributed memory objects; however,
the user still needs to manage the data distribution and locality
across compute nodes.

Current (and future) HPC cluster architectures suffer from an
increasing gap between the computation and communication costs,
i.e., the cost of data transfers can be orders of magnitude higher
than the cost of compute operations [8]. Therefore, the application
scaling on HPC clusters is limited by the communication cost across
compute nodes. In particular, the asymptotic scalability/efficiency
of a program on distributed-memory architectures is determined
by the growth of the communication as a function of the problem
size and the number of processes/nodes [21, 23].

Hence, fast and accurate prediction of the communication cost of
user applications would provide many benefits, including projecting
the potential speedup on HPC clusters, constructing bound-and-
bottleneck scaling models, and guiding the development and opti-
mization of distributed-memory implementations. Unfortunately,
estimating the communication and scalability of a given application
is a complex and time-consuming process that requires extensive
manual analysis and a wide array of expertise in the application
domain, HPC architecture, and programming model.

Researchers have created several scalability analyzers [5, 11, 14,
22, 58, 59] and communication pattern detectors [4, 36, 47] to study
the effect of the data transfers on the application performance and to
provide valuable insights on the optimization of the communication
bottlenecks. However, these tools are limited only to MPI implemen-
tations. That is, the estimated communication is specific to the given
MPI implementation and its workload decomposition/distribution
strategy rather than the inherent characteristics of the original ap-
plication. Moreover, due to the parallel programming effort and time
on distributed-memory systems, the MPI implementation is often
not available in the early stages of the development process. Thus,
there is a compelling need for automated tools, that can analyze
the sequential applications and predict the communication cost of
their parallel execution on HPC clusters, to estimate the scalabil-
ity and performance beforehand without needing comprehensive
knowledge of the applications and cluster architectures.

1.1 CommAnalyzer Framework

This paper presents CommAnalyzer, an automated framework for
communication cost estimation from sequential code, to figure
out the scaling characteristics of running the code in parallel on a
distributed system using the single program, multiple data (SPMD)
execution model. Figure 1 shows the proposed framework that
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Figure 1: Overview of CommAnalyzer framework

takes as inputs the sequential application code (written in any of
the languages supported by LLVM compiler [40]), representative
input data, and the number of compute nodes (e.g., 2-64 nodes).

The key idea is to reformulate the problem of estimating the
communication of a parallel program into that of analyzing the
inherent flow of program values (information) in the sequential
application. Hence, CommAnalyzer uses novel dynamic program
analyses that build a value communication graph (VCG) from se-
quential code taking into account the data-flow behavior of its
program values. Since parallel programs are typically optimized
to minimize the communication between compute nodes, their
data transfers are likely to serve as a cut for partitioning the VCG.
CommAnalyzer in turn leverages graph partitioning algorithms
over the VCG to automatically identify sender/receiver entities and
to estimate their communication. As a result, for a given sequential
application, CommAnalyzer allows the user to project the perfor-
mance upper-bound of its effective SPMD execution, regardless of
the target programming model (e.g., MPI and PGAS).

The communication cost estimation of CommAnalyzer can be
used by scalability analysis tools, such as Extra-P [11], to estimate
the strong and weak scaling of the communication. These tools per-
form regression analysis using the scaling functions (regression hy-
pothesis) that exist in HPC applications to estimate a user-specified
metric, e.g., FLOPs, communication, etc., at a large scale from a set
of small-scale measurements or predictions with different problem
sizes and/or number of nodes. Furthermore, CommAnalyzer makes
it possible to construct bound-and-bottleneck models of the parallel
efficiency and scalability on distributed-memory clusters.

Use Cases. CommAnalyzer accelerates the application and sys-
tem design in the early stages of the development process by allow-
ing end users to figure out the scaling behavior of their sequential
applications. As such, domain-scientists can quickly make informed
decisions about the need to explore other solutions/algorithms to
the problem at hand to attain better parallel performance. That way,
CommAnalyzer enables the system designers to evaluate the HPC
system design alternatives to achieve the required performance.

Even if a distributed-memory implementation of the target appli-
cation is available, CommAnalyzer still plays a critical role in the
optimization process by generating bound-and-bottleneck scaling
models that show how close the current parallel implementation is
to the scalability/efficiency Roofline. In addition, by estimating the
communication from the sequential code rather than the MPI par-
allel code, CommAnalyzer empowers existing scalability analysis
tools for MPI applications to serve a wide range of end users.
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1.2 Contributions

Unlike previous approaches that are limited by the imprecision of
compile-time analyses [24, 30, 56], CommAnalyzer proposes a novel
dynamic analysis approach that instruments the sequential code
to precisely capture the runtime information required to detect
not only static value-flow (communication) dependencies, but also
dynamic value-flow dependencies through multiple levels of access
indirection. Thus, CommAnalyzer is applicable for both regular
and irregular problems and works also for programs that cannot be
auto-parallelized. The following are the contributions of this work:

o A novel and automated approach for estimating the communica-
tion cost of sequential applications when ported to HPC clusters
based on value-flow analysis, value liveness analysis, dynamic
program slicing, and graph algorithms. This approach is appli-
cable for regular, irregular, and unstructured problems. Using
the estimated communication, we can successfully project the
efficiency upper-bound of the effective SPMD implementations
on distributed-memory HPC clusters (Sections 4 and 5).

Model validation and case studies using both regular and irreg-
ular workloads: matrix multiplication and sparse matrix vector
multiplication, as well as four structured and unstructured repre-
sentative applications: MiniGhost [7], Heat2D [44], LULESH [37],
and K-means [39]. The experiments demonstrate the utility of
CommAnalyzer in identifying the minimum communication cost
on HPC clusters with more than 95% accuracy on average and
show that the optimized MPI+OpenMP implementations can
attain more than 92% of the efficiency upper-bound (Section 6).

2 BACKGROUND
2.1 Distributed-Memory Execution Model

Process i Process j

Private address space Private address space

Inter-pr mm.
Local data | NeTpProcess comm. | Local data

Figure 2: The SPMD execution model

We assume that the applications running on the target HPC
clusters follow the single program, multiple data (SPMD) execution
model, which is the dominant approach on such architectures [6, 18].
Figure 2 shows the SPMD execution model, where the program
data is partitioned and mapped to different processes (compute
nodes) and all processes execute the same program to perform
computations on their data (i.e., owner-computes rule). The data
owned by each process is stored on its private (local) address space,
and when the local computations on a process involve non-local
data, this data is accessed using inter-process communication.

2.2 Simple Estimation of Communication Cost

In SPMD execution, the communication results from dependencies
between local and non-local data. Therefore, a simple approach for
estimating the communication cost is to partition the program data
and then identify the data dependencies across different partitions.

Figure 3 shows a simple communication estimation for matrix
multiplication on distributed-memory architectures. The sequen-
tial C code (a) is given to the compiler, and a traditional data-flow
analysis is used to identify the data dependence [41] (b) between
the data items. Next, a domain decomposition method such as
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Figure 4: Challenges for estimating the communication cost

block-cyclic (c) is used to partition and distribute the input matri-
ces over the compute nodes. Finally, the communication cost is
estimated as the number of data dependence edges between the
data items that exist in different nodes. This approach has been
used by the auto-parallelizing compilers for distributed-memory
architectures [30, 56] in the early days of HPC. While this simple
communication analysis is sufficient for regular and structured
problems such as matrix multiplication, real-world scientific ap-
plications with irregular computation and unstructured memory
access patterns are a lot more challenging and therefore require
sophisticated analysis techniques.

3 CHALLENGES

3.1 Indirect Memory Access

Irregular and unstructured problems arise in many important scien-
tific applications such as hydrodynamics [29, 35]. These problems
are characterized by an indirect memory access pattern via index
data structures, which cannot be determined at compile time. Figure
4(a) shows an example of such an indirect access. Here, a traditional
data-flow analysis fails to precisely capture the data dependence
between the x and y data arrays whose index is a value determined
at runtime. Thus, it is impossible to figure out which part of x (y)
is defined (used) due to the lack of runtime information.

3.2 Workspace Data Structures

In unstructured problems, it is common to gather data items from
the program-level (domain-level) data structures into workspace
(temporary) data structures. The actual computations are performed
in the workspace, and then the results are scattered to the program-
level data structures. Usually, there are multiple levels of workspace
data structures, i.e., the intermediate results in a workspace are used
to compute the values of another workspace. Figure 4(b) shows an
example of an unstructured application that uses such workspace
data structures to perform its computations. In this common design
pattern, workspace data structures mask the true data dependence
edges between the data items of the program-level data structures.
Hence, the data-flow analysis ends up generating a massive number
of local data dependence edges between the program-level data and
the workspace data, which results in inaccurate estimation of the
actual communication cost.
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3.3 Singleton Data Items

Most scientific applications have singleton data items, i.e., data
items that are used in almost all the computations (e.g., simulation
parameters) and data items that use the output of these computa-
tions (e.g., simulation error and time step). Hence, there is a massive
number of data dependence edges (communication edges) between
these singleton data items and the rest of the program data in the
original sequential implementation. However, typical MPI imple-
mentations create local copies of the singleton data items in each
process and use collective communication messages (e.g., broad-
cast and reduce) to update their values at the beginning and end
of the program and/or each time step, instead of accessing their
global copy via inter-process communication in every dependent
computation. Therefore, the detection of singleton patterns is very
important for an accurate estimation of the communication cost.

3.4 Redundant Communication

Computing the communication cost as the number of data depen-
dence edges between data items that exist in different processes
is subject to overestimation. Figure 4(c) shows an example of the
communication overestimation, where two items in process 0 use a
single data item in process 1 and its value did not change between
the two uses. If there is sufficient memory space at process 0 to store
the required data value, it can be read only once (instead of two
times) from process 1. While the exact data-flow analysis can detect
this case in regular applications and remove the redundant commu-
nication, it is not possible to do the same for irregular applications
due to the indirect memory access.

4 COMMANALYZER APPROACH

It is a daunting challenge to analyze sequential codes and predict the
communication cost of running them in parallel on HPC clusters
without the distributed-memory parallel codes. CommAnalyzer
relies on the following observation; HPC developers always opti-
mize (minimize) the communication of their distributed-memory
parallel programs across compute nodes. In particular, the com-
munication cost of the resulting SPMD implementation cannot be
smaller than the inherent data-flow (communication) cost of the
original sequential program, which would otherwise break the pro-
gram correctness. As a result, analyzing the data communication



in the sequential codes is able to serve as a basis for estimating the
communication cost of their distributed-memory implementations.
However, this presents another challenge, i.e., how to figure out the
inherent data communication of the sequential program regardless
of its underlying data structures.

The main idea to tackle this challenge is to view the sequential
program as an entity that consumes input values, computes inter-
mediate values, and produces output values, as well as to analyze
their behaviors. In a sense, these values are small pieces of digital
information. Similar to genes (which are small pieces of heredity
information), the program values are not constrained by the un-
derlying data structures. Rather, such values can interact, replicate,
and flow from one data structure to another, as well as evolve to
new values. Actually, the program data structures are mere value
containers, i.e., placeholders of the program values. In this view, a
single value can exist in more than one memory location, and it
can even get killed in its original location (where it was generated)
while it remains alive in another location.

To this end, CommAnalyzer adopts a dynamic analysis tech-
nique, which is based on dynamic program slicing, to analyze the
generation of values, the flow of values, the lifetime of values, and
the interactions across values, thereby building the value communi-
cation graph (VCG).

Algorithm 1 CommAnalyzer algorithm

Input: PROGRAM, N
Output: COMM_COST
1: VAL_FC « VALFcDETECTION(PROGRAM)
: VAL_LIVE « VALLIVEANALYSIS(PROGRAM)
: VCG « CommGraPHFORMATION(VAL_FFC, VAL_LIVE)
: VAL_PMAP « VarLDecomposITION(VCG, N)
: COMM_COST « ComMmEsTimAaTION(VAL_FC, VAL_PMAP)

(S I NS )

Algorithm 1 shows the top-level CommAnalyzer approach which
takes the sequential program (along with representative input data)
and the number (or range) of compute nodes, and then computes
the communication cost across these nodes when the program
is ported to distributed-memory architectures. In the first place,
CommAnalyzer characterizes the inherent communication of the
sequential program by detecting the dynamic flow of the program
values which is encoded as value-flow chains defined as follows:

Definition 4.1 (Value-Flow Chain (VFC)). For a given program
value, v, its value-flow chain consists of v itself and all the other val-
ues on which v has data dependence, where the values are defined
as a set of unique data observed in the memory during program
execution.

CommAnalyzer also analyzes the live range [41] (interval) of the
program values. Together with VFCs, it is used to generate the value
communication graph (VCG) of the program. Then, CommAnalyzer
decomposes the VCG into multiple partitions to map the program
values that are tightly-connected, due to high-flow traffic between
them, to the same compute node/process. Once the program values
are mapped to the different compute nodes, CommAnalyzer uses
the owner-computes rule to estimate the communication cost by
analyzing the value-flow chains across the compute nodes.
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4.1 Communication Characterization

This section first defines the terminologies used in analyzing the
input sequential program and then describes how the inherent
communication is understood. CommAnalyzer defines program
values as a set of unique values observed at runtime, and they are
classified into three parts: input, output, and intermediate values.
The input values are the program arguments and any memory
location read for the first time at runtime, while the output values
are the returned data or those that are written to the memory and
last until the program termination. During program execution, the
program values existing in memory locations can be killed with
their updates, i.e., losing the original value. That way program
values can end up existing in memory locations only for a limited
interval, and CommAnalyzer considers them as intermediate values.
Note, if a value remains in at least one memory location, it is still
live thus not an intermediate value. In addition, any program value
that exists only in registers is treated as an intermediate value.

Algorithm 2 Value-flow chain detection algorithm

Input: PROGRAM
Output: VAL FC
1: Values = {}
2: MemVal = {}
3: for each: dynamic store (write) operation w do
4 DS « DynamicSLICING(w, PROGRAM)
5 v, s « VALUEFLOWANALYSIS(DS, MemVal)
6: if v ¢ Values then
7
8
9

> program values
> shadow memory-to-value map

> writing new value
Values = Values U v
VAL_FC = VAL _FC U (v, 5)

end if
10: MemVal[address(w)] = v
11: end for

Algorithm 2 shows the high-level algorithm for calculating the
value-flow chains (i.e., the inherent communication). CommAnalyzer
needs to identify the unique values observed at runtime and then
to investigate the flow across the values by figuring out the depen-
dence in between. It is therefore important to know what value is
currently stored in a given memory address during program exe-
cution. For this purpose, CommAnalyzer uses a shadow memory
(MemVal) to keep track of program values that exist in the memory
at the granularity of the memory word. Thus, each shadow memory
location tracks the latest value stored in the corresponding location
in the original memory. Since CommAnalyzer works on the static
single assignment (SSA) form [41] of the sequential code (e.g., the
LLVM IR [40]), there is no need to track (name) the intermediate
values that exist in the registers.

For each store (write) instruction during program execution,
CommAnalyzer generates a dynamic program slice from the ex-
ecution history using the Reduced Dynamic Dependence (RDD)
graph method [2]. This slice is the set of dynamic IR instructions
involved in the computation of the value (v) being stored in the
memory. To determine those values on which the value v depends,
CommAnalyzer traces it back inspecting the instructions and the
registers along the data dependence edge of dynamic slice !. Such a
dependence backtracking continues for each data dependence edge

The outgoing edges of circle nodes in Figure 5 correspond to data dependence edges.
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Figure 5: Value-flow chain detection example

until it encounters another value that has been recognized using
the shadow memory (MemVal); whenever a new value is found,
CommAnalyzer keeps it in the Values set (line 1 of Algorithm 2).
Here, the found value turns out to be used in the computation of
the value (v) being stored; it is said the former flows to the latter
while the former is called a source value. At Line 5 of Algorithm 2,
CommAnalyzer calculates s which is the set of all the source values
over the slice of v being stored.

If such a value (v) does not exist in the Values set (i.e., new value),
CommAnalyzer adds the value-flow chains between v and s to the
set of the program value-flow chains (VAL_FC) and updates the
Values set; otherwise, v is not unique and already exists in Values,
and the store instruction just replicates this value and writes it
to a new memory location. Usually, the value replication happens
when the dynamic slice does not contain any compute instructions
(e.g., direct load-store relation). Finally, CommAnalyzer updates
the shadow memory MemVal with the new value. Further, at the
end of the program execution, CommAnalyzer performs the same
value-flow chain detection for the return variables.

Figure 5 shows a simple example of the value-flow chain detec-
tion. For brevity, the example shows the thin dynamic slice [52]
instead of the actual dynamic slice, i.e., it excludes the instructions
that manipulate the memory pointers. After CommAnalyzer gen-
erates the dynamic slice of the target store instruction (a), it uses
the shadow memory (b) to track the program values in the memory
locations, and then it detects the value-flow in the dynamic slice.
Since the exact memory addresses are available in the dynamic
slice, CommAnalyzer inspects the shadow memory and records
that registers #4 and #11 have values V0 and V1, respectively. Next,
a new value is computed in register #12 using the values V0 and V1,
and the target store instruction writes this value to the memory.
Finally, CommAnalyzer adds the new value-flow chain (V2, {V0,
V1)) in the set of the value-flow chains VAL_FC.

4.2 Communication Cost Estimation

4.2.1  Value Communication Graph Formation. After the detec-
tion of the value-flow chains (VFCs) between program values,
CommAnalyzer creates the value communication graph VCG(V, E),
where V is a set of vertices that represents the program values and
E is a set of edges that represents the value-flow chains. This is
achieved by generating a communication edge between the values
in each value-flow chain. Specifically, at Line 5 of Algorithm 2, a
connection edge is made between v and every source value in s.
VCG(V,E) is a directed and weighted graph, where the weight w
of a communication edge represents the number of times the sink
(destination) value uses the source value.
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Value Graph Compression. CommAnalyzer utilizes the value
liveness [41] (VAL_LIVE), which is generated during the dynamic
value analysis, to reduce the communication graph size. An inter-
mediate value is killed when it does not exist in the registers or
the program memory. CommAnalyzer coalesces the vertices of the
intermediate values that share the same memory location at non-
overlapping liveness intervals into a single vertex. Such values are
multiple exclusive updates to a single memory location. This vertex
coalescing does not impose artificial constraints on the program
data partitioning according to the SPMD execution model, where
processes compute all the intermediate values for the data items
(memory locations) that they own. Finally, after the graph compres-
sion, CommAnalyzer updates the weights of the new vertex and
edge sets of the value communication graph VCG(V, E) to account
for the communication cost before graph compression.

Singleton Detection and Removal. The singleton values ap-
pear in most scientific applications and are characterized by extreme
connectivity, i.e., massive number of incoming and/or outgoing
communication edges. Example of these values are simulation co-
efficients, parameters, and time step. To reduce the communication
on distributed-memory architectures, the singleton values should
not be mapped to a specific compute node. Instead, each compute
node/process creates a local copy of the singleton items and uses
global communication to exchange their values once per the simu-
lation execution and/or the simulation time step. In fact, automated
singleton detection and removal is well known in large-scale circuit
simulations [25, 54]; it reduces the overall communication by auto-
matically detecting and duplicating the power/clock circuit nodes
in each process. Similarly, CommAnalyzer adopts a threshold-based
scoring approach for the singleton detection, which is a simplified
variant of the proximity-based outlier detection methods [31].

Algorithm 3 Singleton Detection Algorithm

Input: VCG
Output: S_VAL
1: S_VAL = {}
2: for each: vertex v € VCG do
3: score < MAX( DENSITYS(VCG, v), DisTANCES(VCG, v) )

4 if score > HIGH then > HIGH = 90%
5: S_VAL=S_VALUwv

6 end if

7: end for

Algorithm 3 shows the high-level singleton detection algorithm
where the following definitions are used:



Definition 4.2 (Value Degree Centroid). The centroid is the mini-
mum of the mean and the median value degree over the VCG, where
the value degree of v is defined as the number of value vertices
adjacent to v in the VCG.

Definition 4.3 (Value Degree Distance). The degree distance of a
value d(v) is the distance between its degree and the centroid of the
value degree cluster.

For each value vertex in VCG, CommAnalyzer computes the
singleton score, which is the maximum of the density-based score
and the distance-based score. When the singleton score is high, the
value vertex is identified as a singleton. The density score of a value
v is the density of its row and column in the value adjacency matrix,
while the distance score is computed by analyzing the value degree
distribution of the VCG. If the degree of v is larger than the degree
centroid, the distance score of v is computed as 1—(centroid/d(v));
otherwise, the distance score is zero. That is, the distance score
estimates how positively far v is from the centroid.

Once CommAnalyzer identifies the singleton vertices, it removes
them from the communication graph, and maps the remaining
values to the compute nodes using graph partitioning. Finally, it
creates a local copy of the singletons in each compute node, and
accounts for the singleton global communication to project the
total communication cost.

4.2.2  Value Decomposition. To predict the minimum communi-
cation across compute nodes, CommAnalyzer maps the values to
the nodes using a customized graph partitioning algorithm. The
value mapping problem has three different optimization objectives:
1) maximizing the load balance which is estimated as the weighted
sum of the vertices in each compute node, 2) minimizing the com-
munication across the compute nodes which is the weighted sum
of the edge cuts, and 3) generating connected value components
in each compute node. CommAnalyzer uses the multilevel parti-
tioning heuristics [38] to solve the value mapping problem in poly-
nomial time, and then generates VAL_PMAP which maps each
vertex in the value communication graph to a specific compute
node. Finally, CommAnalyzer maps local copies of the singleton
values to each compute node.

4.2.3 Communication Cost Estimation. Once the value commu-
nication graph (VCG) is decomposed, CommAnalyzer is ready to
estimate the overall communication cost and intensity across nodes
using the value-flow chains and the obtained value decomposition.

Algorithm 4 Communication Estimation Algorithm

Input: VAL FC, VAL_PMAP, S_VAL
Output: COMM_COST
1: commEdges «— CoMMDETECTION(VAL_FC, VAL_PMAP)
: commEdges <~ REDUNDANTCOMMPRUNING(commEdges)
: COMM_MAT « CoMMMATGENERATION(commEdges)
: COMM_MAT « SINGLETONCOMM(COMM_MAT, S_VAL)
: COMM_COST « TotarCosT(COMM_MAT)

(ST SO )

Algorithm 4 shows the high-level communication estimation
algorithm. Once the program values are mapped to the different
compute nodes, all the value-flow pairs with non-local values are
identified as communication edges. Then, CommAnalyzer removes
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the redundant communication, by pruning the communication
edges that carry the same value between the compute nodes, as
the destination (sink) node needs to read this value once and later
reuse the stored non-local values (see Figure 4(c)). The final set of
communication edges (after pruning) are used to update the corre-
sponding entries in the communication matrix COMM_MAT. An
entry (i, j) in the communication matrix represents the amount of
the data transferred from a compute node i to j during the program
execution. Next, CommAnalyzer accounts for the singleton com-
munication patterns to generate the final communication matrix.
While there are several options to synchronize the singleton values,
such as broadcast, reduce, allgather, and allreduce, the minimum
communication cost to synchronize a singleton value is O(p — 1),
where p is the number of compute nodes. In particular, source (in-
put), sink (output), and reduction (input/output) singleton values
require at least p — 1, p — 1, and 2(p — 1) communication words,
respectively. CommAnalyzer uses this lower bound to account for
the singleton communication cost.

Finally, CommAnalyzer estimates the communication cost as the
overall cost of the communication matrix and computes the com-
munication intensity of the program. The communication intensity
of an application is I; = C/W, where C is the communication cost
in bytes and W is the work in FLOPs. CommAnalyzer computes W
by counting the number of floating-point IR instructions during
the program instrumentation.

4.3 Implementation and Complexity

We implemented the proposed approach for communication cost
estimation on HPC clusters (explained above) using the LLVM com-
piler infrastructure [40]. CommAnalyzer uses the LLVM front-ends
to parse the sequential code and to transform it to the LLVM Inter-
mediate Representation (IR). The main dynamic analysis algorithm
is implemented using the dynamic compiler LLI and works on the
static single assignment (SSA) form of the LLVM IR. CommAnalyzer
instruments the sequential IR and runs it with the provided input
data set on top of LLI, to estimate its communication cost.

The time complexity of the instrumentation (Section 4.1) is linear,
as generating the dynamic program slice using the Reduced Dy-
namic Dependence (RDD) graph method requires a fixed number of
operations for each dynamic instruction. The memory complexity
of the instrumentation depends on the inherent communication
of the sequential code. For embarrassingly-parallel code, the mem-
ory complexity is linear (shadow memory), and if the code is fully
connected (each value depends on all other values), the memory
complexity is quadratic in the worst case (shadow memory and
adjacent values). However, in practice, each value depends on a
limited number of neighboring values, i.e., the adjacency matrix
representation of VCG (Value Communication Graph) is sparse
even for structured and dense code (see Section 6). Note that the
number of vertices of VCG is bounded by the number of memory
words as the intermediate values in a single memory location are
stored as one vertex in VCG.

The offline analysis (Section 4.2) has a time complexity of O((|V |+
|E|) log p) and a memory complexity of O(|V| + |E|), where V and
E are the sets of vertices and edges of VCG, and p is the number of
distributed-memory compute nodes.



Table 1: Target HPC benchmarks and applications

[ Application [ Description [ Input data
MatMul Traditional matrix multiplication Three matrices of size 4KX4K
SPMV Sparse matrix vector multiplication with Compressed Sparse Row (CSR) format Dense square matrix of order 32K
MiniGhost [7] | Representative application of hydrodynamics simulation of solid materials in a Cartesian 3D grid | 3D Grid of size 1IKX1KX1K

Heat2D [44] Canonical heat diffusion simulation in a homogeneous 2D space

2D Grid of size 32KX32K

LULESH [37]
unstructured hexa-hedral mesh

The DARPA UHPC hydrodynamics challenge problem for Lagrangian shock simulation on an

Strong Scaling Problem: Mesh of size 240, Weak Scaling
Problem: Mesh of size 120°

K-means [39] | Unsupervised machine-learning application for data clustering

10M data objects in 34D features space clustered into 5 groups

5 EFFICIENCY ROOFLINE MODEL

To show the importance of estimating the communication cost
and intensity (I;) of a given sequential application, this section
proposes a high-level model to project the efficiency upper-bound
on distributed-memory architectures. Our analysis is inspired by
the Roofline model [55] which shows that the performance on
shared-memory systems is bounded by the computation intensity
of the application, the memory bandwidth, and the floating-point
throughput, and ignores several overheads such as the memory ac-
cess latency, parallel/scheduling overhead, and resource contention.
Such simple bound and bottleneck analysis is useful for projecting
the performance in the early stages of the development process and
for optimizing the actual parallel implementation to minimize the
gap between the upper-bound and the achieved performance. Sec-
tion 6 shows the effectiveness of the proposed models for projecting
the performance upper-bound of real-world HPC workloads.
In the analysis, we use the following notations:

o n, p: the problem size and the number of compute nodes.
o Ti(n): the single-node execution time.

e Ty(n,p): the parallel overhead function.

o E(n,p): the parallel efficiency, i.e. speedup/p.

According to the classical isoefficiency analysis [21, 23], the as-
ymptotic efficiency of a given application on distributed-memory
architectures is determined by the growth of the total work per-
formed and the amount of data exchanged as a function of the
problem size and the number of nodes. In particular, the parallel
efficiency function is given by 2:

To(n, p)
Ti(n)

To project the efficiency upper-bound E, (n, p), we estimate the
lower-bound on the overhead function as follows:
Cx (; Oc) @)

c

where C is the communication in bytes, B is the network bisection
bandwidth, and O¢ is the maximum communication overlap.
The single-node execution time can be formulated as:

Ti(n) = W/R ®)

Where W is the work in FLOPs, and R is the single-node throughput.

By substituting equations 2 and 3 for T,(n, p) and Ti(n) in equa-

tion 1, and using the communication intensity definition (i.e., I =

C/W), the efficiency upper-bound is computed as:

RxI.x(1-0¢)
B

E(n.p) =1/ + ) ¢Y)

To,1(n.p) =

Eu(n,p) =1/(1+ ) 4

2 The readers can refer to [21] for understanding how equation 1 is derived from the
ratio of the speedup to the number of nodes.
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As such, this equation binds the efficiency upper-bound, the
single-node throughput, the communication intensity, and the net-
work bandwidth. The communication intensity I. is obtained by
CommAnalyzer, while the single-node throughput can be estimated
by analytical modeling [15, 51], simulation [9, 12], or simply run-
ning the single-node implementation on one node of the target
cluster. To figure out the effective bisection bandwidth (B,) and the
maximum communication overlap (O.), we use Netgauge [32, 33]
and Sandia MPI Micro-Benchmark Suite (SMB) [19] respectively.
Netgauge measures the bisection bandwidth across a randomly-
generated ring process topology to stress the different paths across
the network. SMB measures the ability of the MPI library, run-time
system, and network hardware to support independent progress of
the non-blocking send-recv operations for different communication
volumes (8-1M Bytes). This metric is platform-specific and repre-
sents the maximum overlap that can be achieved by the application
using non-blocking communication.

Finally, the lower-bound on the parallel execution time is:

T1(n)

P X Ey(n,p) ©)

Tp,l(”aP) =

6 CASE STUDIES

We illustrate the capabilities of CommAnalyzer using two bench-
marks and four real-world HPC applications. Table 1 presents the
workloads considered in the case studies and the input data sets.
We use strong scaling, where the total work is fixed on the different
number of nodes, as it is the most challenging problem for the
parallel efficiency prediction; in particular, at higher node counts,
the average parallelism decreases, and the parallel/scheduling over-
head and resource contention become the dominant efficiency bot-
tlenecks. In addition, we explore the weak scaling problem for
unstructured hydrodynamics code, which is the standard configu-
ration for LULESH on HPC clusters [37]. The estimated communi-
cation and performance is evaluated in comparison with the actual
MPI+OpenMP implementations. The MPI implementations utilize
non-blocking communication to hide the communication latency,
and use MPI_ THREAD FUNNELED, where the main thread calls the
MPI communication APIs. The applications use double-precision
floating point data types; however, the analysis works with any
data type supported by LLVM.

6.1 Experimental Setup

As depicted in Figure 1, to estimate the communication at a large-
scale input size n, the experiments leverage CommAnalyzer to an-
alyze the sequential code of the target workloads with different
problem sizes, where the largest problem size is at most n/64. Using
CommAnalyzer’s communication cost, scalability analysis tools
can project the strong and weak scaling of the communication.
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Figure 6: Communication cost and performance of MatMul and SPMV benchmarks

Specifically, the experiments use Extra-P [11], a scalability analysis
tool from Scalasca toolset [20], with the typical settings. Additional
experiments with small-scale input data sets are available at [27].

Using the estimated communication cost, we project the effi-
ciency and performance Roofline (Section 5) on the target HPC
cluster. The performance is presented as the grind time, i.e., the
execution time/iteration/data element, and it has the same esti-
mation accuracy as the efficiency (see equation 5). The reported
communication and performance is for the core application kernels
and ignores the initialization, setup, and profiling code. The appli-
cations run for 100 iterations, and the experiments are repeated 5
times. The error bars show the 95% Confidence Interval.

6.1.1 Test Platform. The test platform is a Linux cluster consists
of 196 nodes, and each node contains Intel Xeon processor E5-
2683v4 (Broadwell) running at 2.10 GHz. The nodes are connected
with an Intel OPA interconnect. The platform uses a batch queuing
system that limits the number of nodes per user to 64 nodes. The
test system runs CentOS Linux 7 distribution, and the applications
are built using gec 5.2 and OpenMPI 2.0. In the experiments, we
launch one MPI process per node and limit the number of cores
per process to 16, as using more cores increases the chance of high
variance and reduced performance [5, 45].

To evaluate the efficiency Roofline model on the target clus-
ter, we estimate the hardware parameters using the benchmarking
approach detailed in Section 5. In particular, we use Netgauge-
2.4.6 [32, 33] and SMB-1.0 [19]. Figure 7 shows the effective bisec-
tion bandwidth per node on the cluster. The average value of the
communication overlap factor O, on the test platform is 0.57, i.e.,
with enough computations to hide the data transfer, the application
developer can overlap around 60% of the communication time on
average. The application throughput per node R(n) is estimated by
running the single-node implementation on one node of the cluster.

6E+3
4E+3§\._-\P—.*.

2E+3

MB/sec

0E+Q
2

32 64

No%es (p)16
Figure 7: Effective bisection bandwidth per node

6.1.2  Analysis Overhead. As explained in Section 4.3, the time
and memory overheads of CommAnalyzer are bounded by the VCG
(Value Communication Graph) size, which depends on the inherent
flow of information (communication) in the sequential code and can
be quadratic in the worst case (if the code is fully connected). Table
2 shows the growth of the VCG size as a function of the problem
size for the test applications and the size of the largest VCGs used in
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Table 2: Value communication graph (VCG) size

[ Application | Problem sizen [ VCG size (n) [ Largest VCG size
MatMul Matrix size 0(4 n'?) 8.01 GBs
SPMV Sparse matrix size | O(2 n) 0.5 GBs
MiniGhost Grid size O(16 n) 4.1 GBs
Heat2D Grid size 0O(12 n) 3 GBs
LULESH Mesh size 0(1568.2 n) 5.05 GBs
K-means Data objects size O(2 n) 0.16 GBs

the experiments>. The results show that the VCG size grows much
slower than the worst case even for dense linear algebra (MatMul).
In most applications, the VCG size grows linearly with the problem
size (i.e., each program value is connected to a limited number of
neighboring values), while the VCG size of MatMul is ~ O(n!-?).

6.2 Benchmarks

First, we evaluate the accuracy of CommAnalyzer using two canon-
ical regular and irregular workloads: MatMul and SPMV. MatMul
is a traditional matrix multiplication. The MPI implementation of
MatMul uses block-cyclic domain decomposition to distribute the
matrices over the processes using 2D (square) process topology.
SPMV is a sparse matrix vector multiplication using compressed
sparse row (CSR) format. SPMV is an irregular application with
indirect memory accesses through index arrays. To minimize the
communication, the MPI implementation of SPMV uses 1D decom-
position to distribute row blocks of the sparse matrix and chunks of
the RHS (input) and LHS (output) vectors. Each process computes a
part of the LHS vector using its row block and the required elements
of the RHS vector, which could exist in other processes. Therefore,
the communication cost depends on the density of the input matrix.
When the matrix is dense or semi-dense, each process requires
(p — 1) remote chunks of the RHS vector. Finally, the processes
exchange the LHS vector using collective communication.

Figure 6 shows the estimated communication and performance
in comparison with the actual MPI+OpenMP implementations for
MatMul and SPMV. For the two benchmarks, the actual communi-
cation intensity is bounded by 98% of the estimated value. In SPMV,
CommAnalyzer detected n output singleton values, where n is the
vector size, corresponding to LHS. In addition, due to the density of
the input matrix, CommAnalyzer identified n input singleton values
which constitutes RHS. The actual MPI+OpenMP implementations
achieves 99% and 96% of the efficiency upper-bound on average for
MatMul and SPMV, respectively, and the maximum efficiency gap
is 12%. At 64 nodes, SPMV attains 88% of the projected efficiency, as
the execution time per iteration drops to few milliseconds and fixed
overheads, such as the parallelization/scheduling overhead and
communication setup, become the dominant efficiency bottlenecks.

3Detailed examples are available at https://github.com/vtsynergy/CommAnalyzer.
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Figure 9: Communication cost and performance of LULESH

6.3 MiniGhost and Heat2D

MiniGhost [6, 7] and Heat2D [44] are two regular HPC applications
that use the structured grids design pattern, where a physical space
is mapped to a Cartesian grid of points. Typically, the value of the
grid points represents a material state such as the temperature,
energy, and momentum. MiniGhost is a representative application
for 3D hydrodynamics simulation that models the flow and dy-
namic deformation of solid materials. Heat2D is a canonical heat
transfer simulation that solves the Poisson partial differential equa-
tions (PDEs) of heat diffusion in a homogeneous 2D space. The
two applications use the iterative finite-difference method with
explicit time-stepping scheme to solve the simulation equations. In
particular, MiniGhost and Heat2D use 3D 7-point and 2D 5-point
finite-difference stencils, respectively.

Typically, the distributed-memory implementation of structured
grids applications uses domain decomposition to partition the
global grid into multiple sub-grids, and to map each sub-grid to a
specific process. To compute the values of the sub-grids in each time
step, the processes exchange boundary elements (2D faces and/or
1D lines) with neighbors, which is known as halo exchange. There-
fore, the communication volume depends on the surface area of the
sub-grid boundaries and the total number of sub-grids (processes).

Figures 8 shows the communication intensity and performance
of MiniGhost and Heat2D. The two applications use 1D domain
decomposition/process topology by default to reduce the message
packing/unpacking overhead, and to reduce the programming/de-
bugging effort. However, the results show that the projected ef-
ficiency Roofline is only attainable using 3D and 2D domain de-
composition/process topologies for MiniGhost and Heat2D, respec-
tively. In particular, when 1D domain decomposition is used, the
efficiency gap can be as large as 20% with one order-of-magnitude
higher communication intensity. When the MPT applications use
multi-dimensional domain decomposition, the actual communica-
tion intensity reaches 97% of the estimated value on average. In
some cases, the optimized MPI applications slightly exceed the pro-
jected parallel efficiency, due to the improved cache performance
in comparison with the single-node implementations.
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6.4 LULESH

LULESH [37] is a Lagrangian shock hydrodynamics simulation that
represents more than 30% of the DoD and DoE workloads [42], and
one of the five DARPA UHPC challenge problems. LULESH solves
the Sedov blast wave problem [48] in 3D space using an unstruc-
tured, hexa-hedral mesh. Each point in the mesh is a hexahedron
with a center element that represents the thermodynamic variables
(e.g., pressure and energy) and corner nodes that track the kinematic
variables (e.g., velocity and position). In the Lagrangian hydrody-
namics simulation, the mesh follows the motion of the elements in
the space and time. LULESH uses an explicit time stepping scheme
(Lagrange leapfrog algorithm); in each time step, it advances the
nodal variables, then updates the element variables using the new
values of the nodal variables. To maintain the numerical stability,
the next time step is computed using the physical constrains on the
time step increment of all the mesh elements.

LULESH is a relatively large code with more than 40 computa-
tional kernels. It uses indirect memory access pattern via node and
element lists and multiple-levels of workspace data structures. The
MPI implementation of LULESH uses 3D cube process topology/do-
main decomposition to distribute the mesh over the available pro-
cesses, where each process can communicate with up to twenty-six
neighbors. In each time step, there are three main communication
operations. First, the processes exchange the node-centered bound-
aries for the positions, acceleration, and force values. Second, they
communicate the element-centered boundaries for the velocity gra-
dients. Third, a global collective communication is used to compute
the next time step based on the physical constraints of all the mesh
elements. In particular, the MPI implementation of LULESH has
three different communication patterns: 3D nearest neighbor, 3D
sweep, and collective broadcast and reduction [47].

Typically, LULESH uses weak-scaling on HPC clusters [37] be-
cause the single-node throughput significantly drops as the problem
size decreases due to the parallelization overhead, e.g., additional
data motion to handle race conditions. In addition, the message
setup time is relatively large due to the packing/unpacking of 12
data fields with different memory-access strides. However, in the



experiment, we use both strong and weak scaling to show the effi-
ciency gap in the presence of these overheads. Figures 9 describes
the estimated and actual communication intensity and performance
for LULESH. The communication intensity of the distributed mem-
ory implementation is within 95% of CommAnalyzer’s prediction
on average. In the weak-scaling problem, the actual implemen-
tation achieves 95% of the projected efficiency on average, and
the maximum efficiency gap is 6%. The strong-scaling problem has
lower efficiency (as discussed above), achieving 92% of the efficiency
Roofline on average with a maximum gap of 11%.

6.5 K-means

K-means [39], one of the top 10 algorithms in data mining [57], is an
unsupervised machine-learning application for data clustering that
has been used in many fields, e.g., pattern recognition, bioinformat-
ics, and statistics (outlier detection). For a given set of data objects
in multi-dimensional features space, K-means iteratively finds k
groups (clusters) of data objects based on feature similarities and
generates a cluster membership label for every data object. A data
object is considered to be in a cluster c, if it is closer to the centroid
(mean) of ¢ than that of any other clusters. In each iteration, K-mean
computes the centroids (mean values) of the clusters based on their
current data objects, and then generates a new membership label
for each data object using similarity distance calculation.

The MPI implementation of K-means distributes the data objects
evenly among the processes and uses global communication (re-
duction) to update the centroids of the clusters in every iteration.
In particular, the computation cost of K-means is O(n m k i), while
its communication cost is O(m k i), where n is the number of data
objects, m is the feature vector size, k is the number of data clusters,
and i is the number of iterations. Since n is generally much larger
than m and k, the execution time of K-means is bounded by the com-
putation time and achieves linear scaling on distributed-memory
architectures.
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Figure 10 shows the estimated communication and performance
of K-means in comparison with the actual distributed-memory im-
plementation. CommAnalyzer accurately detected the input/output
singleton program values corresponding to the global (collective)
communication required to update the centroids of the clusters.
Overall, the actual communication intensity is bounded by 97% of
the predicted value on average. Further, the distributed-memory
implementation of K-means attains 99% of the projected efficiency
Roofline on average, and the maximum efficiency gap is 3%.

7 DISCUSSION AND EXTENSIONS

CommAnalyzer estimates the communication of the distributed-
memory parallel code that performs the same work (operations)
as the given sequential code. Applying code optimizations that do
not change how the output values are computed from the input
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values, such as loop tiling and data-layout transformations, does
not affect the estimated communication cost. While the original
sequential algorithm may not be the best one for parallel execution,
the end user can still use CommAnalyzer to estimate the parallel
communication cost of the algorithmic alternatives. Furthermore,
CommAnalyzer assumes that the distributed-memory code adopts
the SPMD execution model which is the dominant approach on
HPC clusters [6, 18]. Other parallel execution models with data
migration [10], i.e., the data moves according to the computations
distribution, require a different communication estimation. One
possible extension is to use a computation-centric analysis and to
estimate the communication as the value-flow edges across compute
instructions in different nodes.

Since CommAnalyzer instruments the sequential code to esti-
mate its parallel communication, the problem size is limited by the
available memory on a single node of the target cluster. Thanks
to scalability analysis tools [11], the user can perform small-scale
analysis experiments, which can be dealt with by CommAnalyzer,
and project the strong and weak scaling of the communication.
Even though we did not encounter any case where the scaling func-
tion could not be modeled by the existing scalability analysis tools,
more sophisticated modeling techniques, such as machine learning,
might be needed.

While CommAnalyzer adopts the sequential multilevel graph
partitioning heuristic [38], other parallel and/or approximate graph
partitioning heuristics can be used to reduce the analysis overhead.
However, this might affect the quality of the VCG decomposition
and the resulting accuracy of the communication estimation.

8 RELATED WORK
8.1 Communication Cost Estimation

Several approaches have been proposed for communication cost
estimation from sequential code to enable the code generation
for distributed-memory platforms [24, 30, 56]. The FORTRAN-D
compiler [30] uses static data dependence analysis to detect the
communication between the different sections of the data array,
which is partitioned according to a user-specified decomposition
technique. However, this approach suffers from communication
overestimation, and it is limited to regular applications. Similarly
Gupta et al. [24] adopt a compile-time, data-dependence analysis
for estimating the communication of sequential code, which is only
applicable for regular problems with array-based data structures.
The SUIF compiler [56] solves the communication overestimation
problem using the exact static data-flow analysis, but it is only
applicable to affine loop nests with regular memory access pattern.
In contrast, CommAnalyzer predicts the communication between
the program values regardless of the underlying data structures
and without any user-specified decomposition techniques using
a combination of novel dynamic analysis techniques and graph
algorithms. Thus, CommAnalyzer is applicable to a wide range of
regular and irregular applications.

While the above approaches estimate the communication cost us-
ing the SPMD execution model (owner-computes), Bondhugula [10]
presents a polyhedral framework to estimate the communication
when there is no fixed data ownership, i.e. the data moves between
compute nodes according to the distribution of the computations



and the data dependencies. However, this approach is limited to
regular applications with affine loop nests as well. Although the
SPMD execution model is by far the dominant approach on HPC
clusters, it would be interesting to extend our novel techniques to
other parallel execution models.

8.2 Performance Prediction on HPC Clusters

Analytical Modeling. Analytical performance modeling provides
useful insights into the application performance by modeling the
interactions between the HPC platform and the application; how-
ever, it requires tedious manual analysis of the target applications
and architectures. The LogP model family [3, 16] contains several
high-level analytical models that predict the communication time
and performance of MPI applications using a few parameters which
abstract the application and hardware characteristics. ASPEN [51]
is a modeling language for describing formal application/machine
models to explore the algorithm and architecture design options.
PALM [53] simplifies the performance modeling process by provid-
ing a modeling language to support the generation of analytical
models from the annotated MPI code. Snavely et al. [50] provide a
performance prediction framework that automatically generates
and evaluates analytical models for the application performance.
These models are generated using the communication and memory
traces of the MPI application and the abstract machine profiles.
Simulation. Distributed-memory simulators, such as LogGOP-
Sim [34] and DIMEMAS [46], incorporate detailed network and
architecture models to estimate the communication time and perfor-
mance. However, they require the MPI parallel implementation to
profile the communication operations and generate the application
traces. MUSA [22] adopts a multi-level simulation approach with
different levels of hardware details, simulation cost, and simulation
accuracy. In addition, it identifies and simulates the representative
application phases to reduce the overall simulation time.
Scalability Analysis. The scalability analysis tools [5, 11, 14,
59] project the performance of a given MPI implementation at mas-
sive scale based on small-scale experiments. Typically, these tools
extract the communication, computation, and/or memory traces of
the MPI application using dynamic instrumentation and profiling.
Therefore, they require the distributed parallel implementations
and at least a single node of the target cluster to predict the per-
formance on multiple nodes. TAU [49] and HPC toolkit [1] are
integrated frameworks for portable performance analysis, profiling,
and visualization. Similar to scalability analysis tools, their main
goal is to simplify the performance analysis and diagnosis of the
existing MPI code, rather than estimating the potential performance
at large scale before investing effort and time in developing the
distributed-memory implementation of the original applications.

9 CONCLUSION

This work presents CommAnalyzer, a novel approach to predict
the communication cost and scalability of the sequential code when
executed on multiple compute nodes using the SPMD execution
model. We implemented CommAnalyzer in the LLVM compiler
framework and used novel dynamic program analyses and graph
partitioning algorithms to estimate the minimum communication
and maximum efficiency/performance on HPC clusters. The case
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studies, with two benchmarks and four real-world applications,
demonstrate that CommAnalyzer predicts the communication in-
tensity of sequential applications with more than 95% prediction
accuracy on average. Moreover, the optimized MPI+X implemen-
tations achieve more than 92% of the projected efficiency upper-
bound, while the maximum efficiency gap is 12%. The experiments
represent the efficacy of CommAnalyzer for regular, irregular, and
unstructured problems that have different communication patterns
such as 2D/3D nearest neighbor, 3D sweep/wavefront, 2D broadcast,
and collective broadcast/reduction communication.

There remain many opportunities to expand on the proposed
tool. Integrating CommAnalyzer with existing scalability analysis
tools enables the estimation of the optimal number of the required
compute nodes for each application to achieve high HPC system
utilization. Furthermore, CommAnalyzer is a perfect candidate to
drive a communication-aware workload distribution scheme to effi-
ciently utilize the available compute resources across multiple HPC
nodes [26, 28], laying the foundation for addressing the communi-
cation challenges of Exascale computing.
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