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ABSTRACT

One model for rhyolite generation in the upper crust is via extraction of interstitial melt from
crystal-rich magma reservoirs. Although silicic magma reservoirs may grow incrementally over c.
10*-10% yr timescales, they can be remobilized prior to eruption much more rapidly (c. 10"-10%yr).
This process implies the formation of cumulate residues with a composition complementary to the
extracted melt, but the predicted cumulates have so far eluded widespread identification. The 7-2—
6-2 Ma Risco Bayo-Huemul plutonic complex comprises ~150 km? that is subdivided into at least
seven gabbroic to granitic domains emplaced at <7 km depth. Distinct Ti, Zr, Nb, and rare earth
element variations in amphibole document pulsed emplacement of the gabbroic to granodioritic
Risco Bayo pluton ~800kyr prior to the adjacent quartz monzonite to high-silica granite of the
Huemul pluton. The quartz monzonite is inferred to be a silicic cumulate on the basis of whole-rock
mass balance and enrichments in Ba and Zr concentrations. Here, we combine fine-scale textural
analysis using energy-dispersive X-ray spectrometry (EDS) phase mapping with in situ mineral
compositions to explore the silicic cumulate hypothesis. Quartz monzonite textures are porphyritic
and comprise ~58-64 modal % of partially interlocking, 2-5mm long euhedral plagioclase, to-
gether with euhedral biotite, orthoclase, and amphibole. The finer-grained interstitial matrix is
composed of anhedral orthoclase, plagioclase, and quartz. Calculations using the compositions of
the interstitial phases suggest that the matrix represents a highly evolved melt similar in major and
trace element chemistry to coeval, high-silica granite inferred to be extracted and frozen rhyolite.
The high-silica granites are equigranular and contain dense concentrations of miarolitic cavities
implying, together with Al-in-Hbl barometry for the quartz monzonite, emplacement and volatile
saturation within the upper crust at the granite minimum. Plagioclase, orthoclase, and biotite in
high-silica granite are depleted in Ba, Sr, and Eu, similar to their bulk-rock compositions, and
support an origin as highly fractionated products of melt extraction. Miarolitic cavities within the
high-silica granite overlying the granite domain suggest that volatiles played an important role in
the upward percolation of melt. Our observations indicating transport of volatiles and melt through
an underlying crystal mush, including accumulation of vapor bubbles at the roof of the magma
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reservoir, are consistent with recent numerical simulations of multi-phase fluid dynamics within
compositionally zoned silicic reservoirs that feed large explosive eruptions.

Key words: silicic cumulate; granite; melt extraction; anti-rapakivi; Andes

INTRODUCTION

The relationship between plutonic and volcanic rocks
remains controversial, despite decades of study (e.g.
Johnson et al, 1989; Bachmann & Huber, 2016;
Lundstrom & Glazner, 2016, and references therein).
Part of the debate revolves around the depths and proc-
esses leading up to the generation of silicic (>74wt %
SiO,) rock compositions (i.e. high-silica granite and
rhyolite). The combination of observations from many
perspectives (e.g. petrology, geochemistry, geochron-
ology, geophysics, thermal modelling) has led to differ-
ent hypotheses regarding how and where magmas
differentiate within the crust, with lower crustal partial
melting and upper crustal in situ fractional crystalliza-
tion being two end-member models (e.g. Bowen, 1928;
Daly, 1933; Wager et al., 1960; Hildreth, 1981; Petford
et al., 2000; Miller & Miller, 2002; Coleman et al., 2004;
Glazner et al., 2004; Annen et al., 2006; Bachmann et al.,
2007; Michel et al., 2008; Singer et al., 2014).

Contamination, fractionation, and hybridization of
mantle melts within the lower crust has long been rec-
ognized as an important process in continental arc set-
tings [i.e. the MASH (melting-assimilation-storage—
homogenization) zone of Hildreth & Moorbath (1988)].
One perspective is that differentiation within these
lower crustal MASH zones is primarily responsible for
the geochemical diversity seen in the upper crust (e.g.
Coleman et al., 2004; Glazner et al., 2004; Annen et al.,
2006). These models suggest that magmas are trans-
ported from the lower crust by discrete dikes briefly
transiting the middle to upper crust, and thus large-
volume super-eruptions represent a snapshot of
magma emplaced or erupted quickly during periods of
high magma flux (e.g. Tappa et al., 2011; Schopa &
Annen, 2013). In this sense, a batholith that is heteroge-
neous in its composition or lithology is the amalgam-
ation of separate pulses of magma that did not interact
as liquids at the site of emplacement (e.g. Coleman
et al., 2004, 2012; Tappa et al., 2011). According to this
model, volcanic reservoirs do not leave behind residual
magma as plutons, precluding a genetic link between
plutonic and volcanic systems (e.g. Glazner et al., 2008;
Mills & Coleman, 2013).

Although acknowledging the fundamental role for
lower crustal processes, an alternative perspective is
that MASH zone signatures can be overprinted by in
situ crystal-liquid separation within the middle to upper
crust (<10km depth; e.g. Bachmann & Bergantz, 2004,
2008; Hildreth, 2004; Bachmann et al., 2005, 2007). This
view considers some plutonic rocks as representative of
the residual material left behind after volcanic eruptions
(e.g. Lipman, 2007; Gelman et al., 2014; Lipman &
Bachmann, 2015; Deering et al., 2016). The shallow

reservoirs that contain melt in the upper crust are
thought to comprise extensive crystal-rich mush zones
(~45-70% crystals) that may contain interconnected
melt and domains of crystal-poor melt that occasionally
erupt (e.g. Hildreth, 2004; Bachmann & Bergantz, 2008;
Miller et al., 2011). One version of the mush model pos-
its that upper crustal magma reservoirs can remain in
almost fully crystalline states for 10*-10%yr prior to
rapid reactivation and eruption (e.g. Cooper & Kent,
2014; Andersen et al., 2017; Rubin et al., 2017). Phase
equilibria constrain the low-pressure origin of high-
silica compositions (e.g. Gualda & Ghiorso, 2013) and
imply the presence of pluton-sized reservoirs that res-
ide and differentiate within the upper crust (e.g.
Hildreth, 2004).

Separation of rhyolitic melt from magma reservoirs
implies the concurrent formation of geochemically
complementary crystalline residues. However, the pre-
dicted geochemical signatures of such residues are not
readily identified in the global rock record (Glazner
et al., 2015; Keller et al., 2015), which has led some
researchers to search for them on the scale of individual
plutonic or batholithic systems (e.g. Bachl et al., 2001;
Claiborne et al., 2006; Deering & Bachmann, 2010; Lee
& Morton, 2015; Fiedrich et al.,, 2017; Schaen et al.,
2017). A challenge to identifying silicic cumulate’ com-
positions may be that melt extraction is inefficient with-
in high-viscosity or high-crystallinity magmas, such that
some trapped melt freezes within the cumulate (e.g.
Deering & Bachmann, 2010; Lee & Morton, 2015).
Another challenge confronting widespread identifica-
tion of rocks that reflect this process is the inherent vari-
ability of granitoid textures, which are less readily
recognized as cumulates compared with their mafic
counterparts.

Schaen et al. (2017) used bulk-rock geochemical
modelling along with temporal and chemical con-
straints provided by U-Pb zircon petrochronology to hy-
pothesize that high-silica granites unmixed from
complementary silicic cumulates to form the Huemul
pluton in Chile. Throughout our study, we use the term
‘unmixing’ sensu stricto in reference to the chemical
fractionation effect on a bulk starting composition
imparted by the mechanical extraction of high-silica
melt and concentration of residual crystals, as
described by Schaen et al. (2017). We examine the tex-
tures and mineral compositions of this system with a
specific focus on testing the unmixing hypothesis.
Although the Huemul rocks are spatially, temporally,
and geochemically closely associated (Schaen et al.,
2017), we argue here that they also share a textural rela-
tionship that records melt extraction and concomitant
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crystal accumulation. We leverage quantitative textural
analysis from energy-dispersive spectrometry (EDS)
phase mapping and in situ major and trace element
contents of minerals to test the hypothesis that the sili-
cic cumulate rocks contain remnants of trapped melt
left over from the extraction of the high-silica granite.

GEOLOGICAL SETTING

The Late Miocene Risco Bayo-Huemul (RBH) plutonic
complex is located within the Southern Volcanic Zone
of the Andean Cordillera at 36°S (Fig. 1). The main ex-
posure of the complex sits beneath the northern flank
of the Quaternary frontal arc Tatara—San Pedro volcanic
complex (Singer et al., 1997; Dungan et al., 2001). The
crust here is 40-50km thick and its surface is 130-
150km above the Wadati-Benioff zone (Hildreth &
Moorbath, 1988; Campos et al., 2002; Yuan et al., 2006;
Heit et al., 2008).

Plutonic rocks of the Chilean Andes preserve an epi-
sodic and migratory record of Paleozoic, Mesozoic, and
Oligocene-Late Miocene magmatism distributed in
north-south-trending parallel linear belts (Fig. 1; Drake
et al., 1982; Parada, 1990). Miocene plutons of the
Andean Cordillera intruded a several kilometers thick
sequence of folded Mesozoic strata and are commonly
roofed by folded Oligocene to Miocene meta-volcanic
rocks (Drake, 1976; Drake et al., 1982; Munoz and
Niemeyer, 1984; Kay et al., 2005). Early mapping and K-
Ar dating (Drake, 1976; Munoz and Niemeyer, 1984), fol-
lowed by additional “°Ar/*®Ar dating (Nelson et al.
1999), revealed several Miocene plutons in the region
adjacent to Tatara-San Pedro volcano (35-36°S; Fig. 1).
Fifteen kilometers north of the RBH plutonic complex,
Drake (1976) K-Ar dated one sample from the
Invernada pluton at ~7 Ma (Fig. 1), and using “°Ar/°Ar
methods Nelson et al. (1999) re-dated a sample from
the 500km? Melado batholith (15km NW of the RBH
complex) at ~16Ma, making these four plutons the
youngest known intrusions in the region. Older plutonic
bodies in this area include the ~100km? El Indio pluton
4OAr/*9Ar dated at ~80 Ma (Nelson et al., 1999).

FIELD RELATIONS AND PETROGRAPHY

The RBH complex (~150 km?) is exposed along canyons
of the Rio Colorado, where rapid exhumation, and deep
Quaternary glaciation, have resulted in ~1200 m of ver-
tical exposure through the roof of the complex (Fig. 2;
Singer et al., 1997; Nelson et al., 1999). Both plutons in-
trude Oligocene to Miocene metavolcanic rocks of the
Trapa-Trapa and Cura-Mallin Formations (Munoz and
Niemeyer, 1984). The wall-rock is texturally variable,
dark green or gray, fine-grained to porphyritic andesite
lava and pyroclastic rock metamorphosed locally to
hornfels and incorporated into the plutons as angular
centimeter- to meter-sized xenoliths (Fig. 3d). The com-
plex comprises two plutons and can be subdivided into
distinct, mappable, magmatic domains (Fig. 2) defined
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Fig. 1. Schematic regional and tectonic map. Red areas,
Paleozoic (Pz) and Mesozoic (Mz) plutons of the Andean cordil-
lera; black triangles, Quaternary SVZ frontal arc; pink areas,
calderas or volcanic fields that have produced atypical
amounts of silicic eruptive units. Continental divide and
Cordilleran range crest is the border between Chile and
Argentina, shown by a blue line. TSP, Tatara-San Pedro
Volcano. Miocene plutonism age data are from Drake (1976),
Drake et al. (1982), Munoz and Niemeyer (1984), Parada (1990),
Stern & Skewes (1995), Cornejo & Mahood (1997), Kurtz et al.
(1997), and Deckart et al. (2010). Adapted from Hildreth &
Moorbath (1988) and Hildreth et al. (2010).

by a combination of lithology, bulk-rock composition,
U-Pb zircon age, and zircon trace element composition
(Schaen et al., 2017). These domains, which in detail
contain some lithological variation typical of granitoids,
are used for convenience and encompass observations
beyond just rock type (see Table 1 for details).

Risco Bayo pluton

The 7-2-6-4Ma Risco Bayo (RB) pluton (Schaen et al.,
2017) crops out over 25 km? and is mafic to intermediate
in composition, comprising domains of gabbro, fine-
grained diorite, porphyritic diorite and granodiorite,
each separated by sharp contacts in the northeastern
portion of the pluton (Figs 2 and 3). RB assemblages are
dominated by plagioclase, biotite, amphibole, zircon,
and apatite with interstitial orthopyroxene and clinopyr-
oxene found in the gabbro and orthoclase in the grano-
diorite. Quartz is interstitial in most domains apart from
the gabbro. Gabbro is observed in small (~0-07 km?)
exposures along the eastern edge of the complex where
irregular sharp magmatic contacts separate it from the
fine-grained diorite. At this contact, 20-60cm sub-
rounded blocks of gabbro and angular hornfels wall-
rock xenoliths are incorporated into the fine-grained
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Fig. 2. Map and cross-sections of the Risco Bayo—-Huemul plutonic complex, highlighting the compositional domains of this study
(modified from Singer et al., 1997; Nelson et al., 1999). Continuous lines indicate sharp contacts; dashed lines are gradational con-
tacts. Elevation in meters. Inset shows the southern extent of the Huemul pluton, the Tatara-San Pedro (TSP) and Pellado (VP) vol-
canoes, and cross-section lines.

diorite (Fig. 3d). In this same NE region, the fine-grained Along this irregular boundary and throughout, 5-20cm
diorite is in sharp contact with the granodiorite, where sub-rounded fine-grained enclaves of fine-grained dior-
both are glacially polished; this sinuous contact is also ite are incorporated into the granodiorite (Fig. 3c). Inter-
preserved across the Rio Colorado to the south (Fig. 2). fingered dikes, 1-2 m thick, of granodiorite cross-cut the
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Fig. 3. Field relationships within the Risco Bayo-Huemul plutonic complex. (a) Portion of an ~2000 m? zone of miarolitic cavities
(~10vol. % abundance) within the Huemul high-silica granite (Hhsg) domain. (b) Sharp magmatic contact (indicated by arrows) be-
tween the Risco Bayo porphyritic diorite (RBpd) and the Huemul quartz monzonite (Hgm) domains. (c) Sharp magmatic contact
within Risco Bayo between the fine-grained diorite (RBfd) and granodiorite domains (RBgd). Later felsic veins cross-cut both units.
(d) Sharp magmatic contact of the Risco Bayo gabbro (RBg) and metavolcanic wall-rock (MV) inclusions within the fine-grained di-

orite. Orange field book is 19 cm long.

Table 1: Risco Bayo-Huemul magmatic domains

Pluton Domain Abbreviation Lithologies SiO, (wt %) U-Pb zircon LA
age range (Ma)
Risco Bayo gabbro RBg gabbro 51 ~7-2-6-9
Risco Bayo porphyritic diorite RBpd quartz diorite-diorite 57-58 ~6:9-6-4
Risco Bayo fine-grained diorite RBfd quartz diorite—diorite 55 ~7-2-6-9
Risco Bayo granodiorite RBgd granodiorite-monzogranite 62-66 ~7-2-6-9
Huemul quartz monzonite Hgm quartz monzonite—quartz monzodiorite 62-63 ~6-4-6-2
Huemul granite Hg monzogranite 68-70 ~6-4-6-2
Huemul high-silica granite Hhsg alkali feldspar granite-syenogranite 75-77 ~6-4-6-2

gabbro and fine-grained diorite and extend into horn-
fels wall-rock to the west. These cross-cutting relation-
ships imply a relative sequence of emplacement (from
oldest to youngest) of gabbro — fine-grained diorite —
granodiorite, although all three record coeval U-Pb zir-
con crystallization dates of between 7-2 and 6-9 Ma at
the ~4% level of precision attainable by laser ablation
inductively coupled mass spectrometry (LA-ICP-MS;
Schaen et al, 2017). Miarolitic cavities (1-2vol. %)
infiled with tourmaline and epidote are present
throughout the granodiorite. Macroscopic field folia-
tions within RB domains are defined by faint to moder-
ate alignment of euhedral to subhedral amphibole (1-
3mm) and biotite (1-4 mm). Field observations paired
with thin section analyses, including undeformed euhe-
dral feldspars and lack of quartz recrystallization, reveal
that the fabrics are magmatic in origin. Foliation meas-
urements at the contacts between domains and the

wall-rock suggest sub-vertical (~70°) emplacement
(Fig. 2). The porphyritic diorite is the youngest domain
(c. 6:9-6-4 Ma) and is texturally (fine grained vs porphy-
ritic) and geochemically different from the fine-grained
diorite (Schaen et al.,, 2017). The porphyritic diorite
crops out in an isolated 0-15km? exposure within the
Huemul pluton (Fig. 2). A sharp contact separates it
from Huemul quartz monzonite where large blocks of
fine-grained hornfels wall-rock are included in the por-
phyritic diorite (Fig. 3b). At the contact with Huemul, fo-
liation in the porphyritic diorite is vertical. At its
southeastern contact, the porphyritic diorite is brecci-
ated, hosted in a Huemul granitic matrix, and inter-
mingled with hornfels clasts (10-200 cm).

Huemul pluton
The ~6-4-6-2 Ma Huemul pluton (Schaen et al., 2017) is
a north-south elongate body that spans a 5km x 16 km
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region south of the Risco Bayo pluton (Fig. 2). It is felsic
and distinguished by three compositional domains
including quartz monzonite, granite, and high-silica
granite (Fig. 2). Huemul rocks comprise plagioclase,
orthoclase, quartz, biotite, amphibole, magnetite, apa-
tite, zircon and titanite (Fig. 4). Amphibole is present in
both the quartz monzonite and granite (5-15 modal %),
but not in the high-silica granite; biotite is present in
each Huemul domain. Titanite occurs in the quartz mon-
zonite and granite and is typically a late-formed phase,
but is not seen in the high-silica granite. Roof exposures
of the high-silica granite are observed throughout Cajon
Huemul, with the granite underlying the high-silica
granite at gradational contacts (Fig. 2). This field con-
straint, along with identical bulk-rock composition and
zircon petrochronological signatures, led Schaen et al.
(2017) to suggest that the high-silica granite is a lateral-
ly continuous body spanning ~60km? (including the
southernmost outcrops) and sits above the granite do-
main (Fig. 2). Within an ~2000 m? zone the high-silica
granite contains ~10vol. % miarolitic cavities (1-4cm)
infilled with euhedral quartz, orthoclase, tourmaline,
and fluorite (Fig. 3a). Aplitic dikes (50-100 cm) cross-cut
the high-silica granite and hornfels at contacts with the
wall-rock. Mafic enclaves (5-20cm) are common in the
quartz monzonite and granite but not the high-silica
granite.

RESULTS

Textures

EDS was used to create phase maps of rocks from each
of the Huemul domains to highlight textural relation-
ships and to quantify modal abundances (Fig 5). These
were generated by mapping EDS spectra (Si, K, Ca, Na,
Al, Ti, Mg, Fe, Zr, P, etc.) over an entire thin section and
using the clustering ‘AutoPhaseMap’ method within the
Aztec 3.3 software package (Oxford Instruments;
Statham et al., 2013).

All rocks from the quartz monzonite domain share
similar porphyritic textures, including 58-64% zoned eu-
hedral plagioclase (2-5mm) partially interlocking with
euhedral biotite (1-3mm), amphibole (1-3mm) and
orthoclase (3-4 mm; Figs 4 and 5). Plagioclase occurs
commonly in apparent synneusis clusters (Vance, 1969)
and the euhedral orthoclase exhibits bright back-scat-
tered electron (BSE) cores along with microperthite
(Fig. 6). There is a second finer-grained (<1mm) anhe-
dral population of plagioclase (unzoned) and orthoclase
(no cores) in these rocks, which, along with anhedral
quartz (<1 mm), is interstitial to the euhedral network of
crystals (Fig. 5a and c). The interstitial matrix forms 36—
42 area % in the quartz monzonite. The proportion of eu-
hedral plagioclase varies somewhat throughout the do-
main, but this porphyritic texture and clustering of
haplogranite mineralogy in the interstices is always pre-
served. Also found only in the quartz monzonite domain
are anti-rapakivi textures: euhedral plagioclase mantled
with orthoclase. The anti-rapakivi occurs in two forms, a

Fig. 4. Crossed-polarized (XPL) full thin section photomicro-
graphs of three domains from the Huemul pluton. These thin
sections of quartz monzonite HC1305 (Hgm), granite HC1301
(Hg), and high-silica granite BOTA92 (Hhsg) correlate with the
phase maps in Fig. 5. pl, plagioclase; or, orthoclase; qz, quartz;
bio, biotite; amph, amphibole.

single plagioclase core mantled by an orthoclase rim or
a euhedral plagioclase core with alternating mantles of
orthoclase and plagioclase (Fig. 6¢, d, and e). Less com-
mon sieve textures in plagioclase are also present.

The textures of the high-silica granite domain are
considerably different from those of the quartz monzon-
ite in that all rocks from the high-silica granite are equi-
granular (Fig. 5e). Orthoclase is euhedral to subhedral,
with variable macroperthite textures that take the form
of nodular albite lamellae. Plagioclase (oligoclase-alb-
ite) is finer (<4mm) than in the quartz monzonite.
Quartz is coarser (1-3mm) and more abundant, with
myrmekitic to micrographic textures found within zones
of miarolitic cavities (not shown). The textures found
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Huemul Pluton (a)
Quartz Monzonite Domain

HC1305
Phase Area %
Il plagioclase 53.3
[] orthoclase 24.1
I quartz 12.9
Il biotite 6.1
[] hornblende 2.6
Il magnetite/iimenite  0.80
[ apatite 0.15
B titanite 0.05
[ zircon 0.03
[ intercumulus 416
[1 cumulus 584

c)
Huemul Pluton
Quartz Monzonite Domain
RB1507

Phase Area %
Il plagioclase 53.8
[ orthoclase 17.9
B quartz 153
Il viotite 8.9
[ hornblende 2.5
Il magnetite/ilmenite  0.77
- apatite 0.22
[ titanite 0.54
[ zircon 0.05

Fig. 5. (a-c) Full thin section energy-dispersive spectrometry (EDS) phase maps from quartz monzonite hand samples: (a)
HC1305; (b) distinction between cumulus framework and intercumulus matrix (discussed in the text) in HC1305; (c) RB1507.
Highlighted regions (a)-(f) of feldspar textures appear in Fig. 6. Gray regions are unassigned. (d, e) Full thin section energy-disper-
sive spectrometry (EDS) phase maps of (d) granite and (e) high-silica granite domains within the Huemul pluton. Gray regions are
unassigned.
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Huemul Pluton (d)
Granite Domain

HC1301
Phase Area% |
[ plagioclase 46.4
[ orthoclase 27.7
B quartz 16.7
Il biotite 5.9
[] hornblende 20
Il magnetite/ilmenite  0.60
[ apatite 0.08
[ titanite 0.67
[ zircon 0.02

(e)
Huemul Pluton
High-silica granite Domain

BOTA92
Phase Area %
B quartz 36.0
[ orthoclase 35.7
[ plagioclase 27.5
I biotite 035
Il magnetite/ilmenite  0.37
[ apatite 0.01

Fig. 5. Continued

within rocks of the granite domain are transitional be-
tween those of the quartz monzonite and high-silica
granite in that they are variably porphyritic, with euhe-
dral poikilitic plagioclase (1-5mm) and interstices that
contain coarser quartz and orthoclase than in the quartz
monzonite domain (Fig. 5d).

Whole-rock geochemistry

The lithological variation of the RBH plutonic complex
is manifest in a wide compositional range from the RB
gabbro (51wt % SiO,) to the high-silica granite (76 wt %
SiO,) of Huemul (Schaen et al., 2017). Many major and
trace elements (e.g. K;O, Sr) vary monotonically with
evolving SiO, content (Fig. 7). Yet some display distinct
inflections; between 62 and 66 wt % SiO, marks the fur-
thest extent in differentiation of RB compositions and
the appearance of the least evolved Huemul rocks. At
66 wt % SiO, in variation diagrams of Ba, Zr, Hf and Eu,

15 20 25 30

Huemul compositions bifurcate from the monotonic
compositional variation of RB, with high-silica granite
displaying strong depletions and quartz monzonite
showing distinct enrichments in these elements along a
tie-line of three tight clusters (Fig. 7). The granite is al-
ways halfway between the other two Huemul domains
on variation diagrams. Huemul domains maintain this
tie-line of tight clusters along all compositional arrays
except for the rare earth elements (REE; excluding Eu).
Apart from Eu, the Huemul high-silica granite domain
evolves along highly scattered REE paths, decoupled
from other trace elements (Fig. 7).

Mineral chemistry

In situ major, trace and rare earth element compositions
were measured in minerals within eight hand samples,
one from each domain of the RBH complex (Table 1)
and two samples from the high-silica granite domain.
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1999

Fig. 6. Back-scattered electron (BSE) images of feldspar textures from the quartz monzonite domain of the Huemul pluton. (a, b)
Synneusis clusters of zoned plagioclase. (c-e) Anti-rapakivi textures. (f) Euhedral orthoclase with bright BSE core. Scale bar repre-

sents 1Tmm in all images.

Major elements were measured by electron probe
microanalysis (EPMA) at the University of Wisconsin-
Madison using either a CAMECA SX51 or SXFive field
emission electron probe. This included analysis of 65
amphibole (348 spots), 133 plagioclase and orthoclase
feldspar (1560 spots) and 32 biotite (200 spots) crystals.
Major element compositions of minerals were obtained
using a 1-5um diameter beam with an accelerating
voltage of 15keV. Trace elements were measured in
situ by LA-ICP-MS at the University of California-Santa
Barbara using an Agilent 7700S quadrupole ICP system
following the methods of McKinney et al. (2015). LA
spots (20 um) were placed as close to or on top of EPMA
spots whenever possible, calibrated using basaltic glass
BHVO-2g as an external standard, and CaO or SiO, as
an internal standard (obtained by EPMA). EPMA and
LA-ICP-MS data were reduced respectively using the
software ‘probe for EPMA’ (Donovan et al., 2018) and
IGOR Pro by WaveMetrics, Inc.

Amphibole

Amphibole from the RBH complex ranges from magne-
siohornblende to pargasite, with local alteration to ac-
tinolite. Amphibole formulae based on 23 O atoms were
calculated using the classification scheme of
Hawthorne et al. (2012). Actinolite, inferred to be sec-
ondary, was filtered from the data and omitted from dis-
cussion or use in barometric calculations. Amphibole
from the RB pluton has a range of Mg# (Mg/[Mg + Fel)
from 0-60 to 0-75, with each domain displaying distinct
trends versus Si (Supplementary Data Table 1; supple-
mentary data are available for downloading at http://
www.petrology.oxfordjournals.org). In contrast, the
majority of Huemul amphibole have lower Mg# from
0-46 to 0-59 and higher K contents. Mg# generally
increases with Si content, whereas Al, K, and Ti de-
crease. Hornblende crystallization pressures of 0-9-
2.2 + 0-34 kbar were calculated for 91 analyses of RBH
amphibole (with Fe# <0-65 and T <800°C; Anderson &
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Fig. 7. Whole-rock major and trace element variation diagrams for rocks from the RBH plutonic complex. Small gray circles are
RBH whole-rock data from Nelson et al. (1999). Domain abbreviations as in Table 1.

Smith, 1995) using the Al-in-Hbl barometric calibration
of Mutch et al. (2016). This calibration is restricted to
granitic rocks with amphibole + plagioclase + biotite +
quartz + alkali feldspar + ilmenite/titanite + magnetite
+ apatite at the haplogranite solidus, conditions that
are met by the quartz monzonite, granite, and granodi-
orite rocks. Amphibole from the granite and quartz
monzonite domains varies over a wide compositional
range, overlapping in Nb (~100ppm) and Ce
(~350 ppm) and generally increasing against Ti content
(Fig. 8; Supplementary Data Table 2). Huemul amphib-
oles contain higher total REE abundances and lower Eu/
Eu* than those from RB. Amphiboles from the granite
and quartz monzonite display similar total REE abun-
dances and Eu anomalies (Fig. 8). In contrast, the mag-
nitude of the Eu anomaly varies by a factor of five in RB

amphibole, with each hand sample forming its own
field. Hand samples from each RB domain form distinct
compositional arrays in their amphibole chemistry with
contrasting and/or subparallel slopes in Nb, Zr, Ti, and
REE (Fig. 8).

Biotite

Biotite from the three Huemul domains spans Mg#
0-40-0-62, generally inversely correlated to Al (~2-6-2-0
atoms per formula unit). TiO, and SiO, vary monotonic-
ally with Mg#; otherwise all biotites span the same
range in K;O (7-10wt %) and NaO (0-04-0-35wt %;
Supplementary Data Table 3). Major element intracrys-
tal zonation is absent, but the three Huemul domains
preserve limited ranges in MnO such that quartz mon-
zonite (0-05-0-30wt %), granite (0-35-0-70wt %) and
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Fig. 8. Laser ablation trace element data for amphibole from the Risco Bayo-Huemul plutonic complex (Supplementary Data Table
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high-silica granite (0-20-0-30 wt %) form distinct fields
versus Mg#. Biotite from the granite and quartz mon-
zonite spans the same range in V (145-270 ppm), com-
pared with the strong depletions in high-silica granite
biotite (V=7-18 ppm). A compositional gap in V sepa-
rates the granite and quartz monzonite biotite from the
high-silica granite (Fig. 9). The high-silica granite biotite
is enriched in Rb, Nb, and Sc, but depleted in Cr, Co and
Ba relative to the two other Huemul domains
(Supplementary Data Table 4). Of all trace elements
within Huemul biotite, Ba displays the widest range of
compositions, from 7500 ppm in quartz monzonite to
<100 ppm in the high-silica granite (Fig. 9).

Plagioclase

Coarse (3-5mm) euhedral plagioclase from the quartz
monzonite and granite is normally zoned, trending from
Angg s interiors to more sodic rims (Ans_og;
Supplementary Data Table 5). Anhedral fine-grained

(<1mm) plagioclase in the matrix of both domains is
more albite-rich (Ang_»;), similar to the rim composi-
tions of the larger euhedral crystals (Fig. 10). All plagio-
clase in the high-silica granite is albite (Anz_q5). Risco
Bayo plagioclase is more calcic with normally zoned eu-
hedral crystals from the gabbro and granodiorite vary-
ing from Angs_gg interiors to ~Anzy rims. Plagioclase
from the granodiorite and porphyritic diorite is slightly
more evolved, with Ansg_go interiors zoning to Anqs_o
rims. A small percentage of plagioclase within the
granodiorite and porphyritic diorite contains bright BSE
cores as calcic as Anss_gs (Fig. 10). Contrasting trace
element variation is observed in plagioclase from the
two plutons (Fig. 11; Supplementary Data Table 6). As a
whole, plagioclase from RB proceeds from high to low
Eu and Ba with decreasing An %, whereas Huemul
plagioclase variation is positively correlated with these
elements versus An content. RB plagioclases are gener-
ally more enriched in Sr compared with those in
Huemul (<1300 ppm; Fig. 11). Ba, Eu, and Sr all vary
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Fig. 9. Laser ablation trace element compositions of biotite from the Risco Bayo—-Huemul plutonic complex (Supplementary Data
Table 4). One hand sample from each domain was analyzed. Average 2c uncertainties are smaller than symbol size. Domain abbre-

viations as in Table 1.

monotonically versus Ti in RB plagioclase, whereas
hand samples from each domain display distinct trends
and fields (Fig. 11). Plagioclase from the quartz monzon-
ite and granite display similar ranges in Eu, Ba, and Sr
concentrations, with the anhedral and interstitial popu-
lations in these domains approaching the highly
depleted trace element compositions of the high-silica
granite (Fig. 11).

Orthoclase

Alkali feldspar is present in all three Huemul domains,
whereas in the Risco Bayo pluton it occurs only in the
granodiorite. Euhedral alkali feldspar in the quartz mon-
zonite has bright BSE cores (Oryg_gg) that are generally
zoned from low Orug interiors to high Orys_g¢ rims
(Fig. 12). Euhedral orthoclase has the highest Ba
(>6000 ppm) and Eu (>1-5ppm) contents of all ortho-
clase, which display slight positive correlation with Ti

and Sr (Fig. 13). Finer grained anhedral alkali feldspar in
the matrix of the quartz monzonite domain is end-
member orthoclase (Orgg_go; Fig. 12). Orthoclase in the
granite is also anhedral and end-member (Orgg_gg) in
composition. Exsolved euhedral to subhedral alkali feld-
spar in the high-silica granite domain contains Abgg_gs
lamellae within unmixed Orgg_g9. High-silica granite
orthoclase is highly depleted in Sr, Ba, and Eu and dis-
plays the highest Rb (up to ~1000 ppm) among all other
orthoclase (Fig. 13; Supplementary Data Table 7).
Subhedral to anhedral orthoclase in the granodiorite is
also end-member Orgg_go and displays trace element
trends with distinct fields in Sr, Eu, and Rb compared
with Huemul (Fig. 13).

Whole-rock Sr isotopes
87Sr/88Sr ratios were measured on 18 whole-rock pow-
ders from the RBH complex by thermal ionization mass
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spectrometry (TIMS) at the University of Wisconsin-
Madison (Table 2; Fig. 14) Samples were dissolved in a
5:1 solution of 29M HF + 14M HNOs. Chemical separ-
ation of Rb and Sr followed the methods of Beard et al.
(2013). Fifteen unspiked analyses were performed in
2015 and seven analyses were spiked using an enriched
87Rb-8*Sr tracer in 2017 on samples with whole-rock
Rb/Sr concentrations >1. The ®Sr/®Sr ratios of
unspiked samples have been corrected for post-
crystallization decay of Rb using their whole-rock Rb
and Sr concentrations measured by ICP-MS, whereas
the spiked samples were corrected using the isotope di-
lution concentrations. Mass spectrometry followed the
method of Satkoski et al. (2017). The 8Sr/%®Sr for stand-
ard NIST SRM-987 run concurrently with the unknowns
had an average of 0-71028 = 0-00001 (2SE; n=24) over
both analytical periods; Sr blanks averaged 23pg.
8’Rb/®°Rb for standard NIST SRM-984 had an average
of 2.594 +0-001 (n=5) during 2017, accounting for a
beta factor of 0.-051845; Rb blanks averaged 51 pg.
Whole-rock &’Sr/28Sr; ranges from 0-70379 to 0-70413
for 17 samples when corrected to 6-2-7-0 Myr of in situ
8Rb decay, based on 2*®U/?°Pb zircon ages (Fig. 14;
Schaen et al., 2017). An aplitic dike sample (RB1518B)
from the Huemul pluton resulted in a geologically un-
reasonable Sr isotopic ratio (8’Sr/%®Sr; < 0.701) when
age corrected using similar durations of in situ decay to
other Huemul rocks. This suggests either diking
occurred as late as 5:0Ma or, more likely, post-
emplacement mobilization of Rb or Sr affected this
rock. Given the extreme elevation of Rb/Sr (435) in this
dike we favor the latter scenario and do not discuss this
sample further.

DISCUSSION

Schaen et al. (2017) used bulk-rock compositions and
zircon petrochronology to argue that the rocks of the
quartz monzonite domain are not representative of crys-
tallized melt compositions, but rather the products of re-
sidual crystal concentration (silicic cumulates). Highly
evolved rocks (76 wt % SiO,) of the high-silica granite
domain are hypothesized to be the solidified equiva-
lents of rhyolitic melt that, as it was extracted from the
mush, triggered passive concentration of crystals and
formation of the quartz monzonite silicic cumulates
(Schaen et al., 2017). This model is based on comple-
mentary whole-rock enrichments (in quartz monzonite)
and depletions (in high-silica granite) of Ba and Zr,
along with mass balance of the Eu anomaly within
these two domains at crystallinities (~50-70%) where
melt extraction remains possible (e.g. Dufek &
Bachmann, 2010). The narrow range of U-Pb zircon
dates (spanning <300kyr) and zircon trace element
chemistry also support this unmixing model (Schaen
et al., 2017). The granite domain is hypothesized to be
an intermediate composition possibly representative of
the initial parental mush composition prior to unmixing.
Here we use textures and mineral compositions to
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Some models for the formation and sustainability of si-
licic magma reservoirs within the upper crust involve
injection of mafic magma (e.g. Hildreth, 1981, 2004;
Hildreth & Wilson, 2007). Mafic magma flux may play a
key role in priming the crust for subsequent differenti-
ation of high-silica compositions (e.g. Hildreth, 2004)
and reactivating magma reservoirs held in cold storage
in a largely sub-solidus, crystalline state (e.g. Wark
et al., 2007; Cooper & Kent, 2014; Andersen et al., 2017;
Rubin et al., 2017). Mafic enclaves within rhyolitic lavas
are typically viewed as a clear indication that mafic and

Fig. 13. Trace element concentrations in orthoclase from the
Risco Bayo-Huemul plutonic complex (Supplementary Data
Table 7). One hand sample from each domain was analyzed,
apart from the Hhsg domain, which represents data from two
hand samples 12km apart. IC, intercumulus feldspar. Average
2o uncertainties are smaller than symbol size. Domain abbrevi-
ations as in Table 1.

silicic magmas have interacted with one another (e.g.
Bacon, 1986). We propose that the RB pluton represents
the frozen remnants of discrete mafic injections (‘mafic
forerunners’ of Hildreth, 2004) suggesting that a deeper
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Table 2: Risco Bayo-Huemul whole rock Sr Isotopes

Sample Pluton Rb (ppm) Sr (ppm) Rb/Sr 87S1/28S I heasured %SE 87Sr/8gr, 8"Rb/®®Sr
Unspiked analyses
RB-15-02A RB 113.77 481-41 0-24 0-70418 0-0007 0-70412 0-68
RB-15-09 RB 17375 345.81 0-50 0-70421 0-0007 0-70406 1-45
RB-15-03B RB 53-93 577-26 0-09 0-70406 0-0007 0-70404 0-27
RB-15-05 RB 87-37 491.54 0-18 0-70417 0-0008 0-70412 0-51
RB-15-05 RB 87-37 491.54 0-18 0-70417 0-0007 0-70413 0-51
RB-15-06 RB 153-37 405-39 0-38 0-70415 0-0008 0-70404 1-09
HC-13-05 H 120-00 409-00 0-29 0-70418 0-0007 0-70411 0-85
HC-13-01 H 239.00 193-00 1-24 0-70439 0-0007 0-70408 3:58
HU-15-01A H 182.67 24318 0-75 0-70427 0-0007 0-70408 217
RB-15-01 H 131-03 411-06 0-32 0-70420 0-0007 0-70412 0-92
RB-15-07 H 135.23 41958 0-32 0-70419 0-0006 0-70411 0-93
RB-15-11 H 131-24 425.22 0-31 0-70420 0-0009 0-70412 0-89
RB-15-11 H 131-24 425.22 0-31 0-70419 0-0007 0-70411 0-89
RB-15-13 H 228-64 215-90 1-06 0-70438 0-0008 0-70412 3:06
RB-15-03A H 11217 455.68 0-25 0-70419 0-0008 0-70412 0-71
ID-spiked analyses
RB-15-15 H 284-88 25-16 11-32 0-70687 0-0007 0-70399 32.75
HU-15-03 H 252.12 17-42 1448 0-70768 0-0010 0-70400 41.88
BOTA92 H 270-66 15-91 17-01 0-70822 0-0007 0-70389 49-21
HU-15-04 H 266-59 9-98 26-70 0-71064 0-0007 0-70384 77-27
HU-15-04 H 263-04 9-83 26-75 0-71064 0-0006 0-70382 77-42
RB-15-18B H 41212 1-00 412.58 0-78939 0-0015 0-70396 1203-17
07081 — - evolved along different fractionation trends, indicative
ethod of inital Sr correction K ) . L. ) R .
This study of episodic mafic injection prior to mush formation.
0,707_/\:/'52-,1'\:‘2/.(‘195;_MS | Moreover, amphibole crystallization probably occurs
° INAA post-emplacement as indicated by the shallow barom-
etry. Additionally, RB amphibole encompasses several
& 07067 I discrete fields in Eu/Eu* vs Dy/Yb space (Fig. 8), very
= ®e similar to fields seen in the same trace element ratios
5 0705 L within zircon from the same RB hand samples (Schaen
et al., 2017). A similar trend is also evident in RB plagio-
. clase (Fig. 11), wherein hand sample data form contrast-
0.704- o - @ @ ¢ o0 L . . .
Frontal Arc ing arrays, albeit with more scatter than for the
amphibole. Abundant mafic enclaves within RB and
0.703 ‘ Huemul suggest mingling and interaction of mafic and
0 = “ o (ff;t %) & & 8 silicic magmas. However, the distinct fields and unique

Fig. 14. Whole-rock 8Sr/25Sr; vs wt % SiO, for the Risco Bayo-
Huemul plutonic complex (Table 2). Red symbols are from this
study; gray circles are from Nelson et al. (1999). Brown field
shows range of 8’Sr/%Sr; of lavas from the adjacent frontal arc
volcano Tatara-San Pedro (Davidson et al., 1987, 1988). The 2
error bars represent uncertainty in the Rb/Sr ratio propagated
during age correction.

source region was actively producing partial melts for
~700kyr prior to the formation and unmixing of the
Huemul parental magma (Schaen et al., 2017). This
scenario is supported by field observations of sharp
magmatic contacts in RB (Fig. 3), implying injection of
discrete pulses of magma (Fig. 2). Additional support
for this hypothesis is observed in RB amphibole trace
element chemistry, where there are notable contrasts in
Ti, Nb, Ce, and Y REE (Fig. 8) such that subparallel
arrays reflect discrete intrusions of successive magma
batches as has been suggested for other plutons by
Barnes et al. (2016b). If the amphibole chemistry is
taken as a proxy for melt evolution, then RB magmas

variation in mineral compositions defined by each hand
sample (Figs 8 and 11) imply that successively intruded
RB magmas evolved separately. We take these relation-
ships in RB to signify that pulses of mafic to intermedi-
ate magma were emplaced adjacent to one another,
episodically, prior to crystal-liquid segregation proc-
esses in the younger Huemul pluton.

Compositional evidence of melt extraction

Huemul whole-rock unmixing trends (Schaen et al.,
2017) are denoted by linear arrays defined by the three
domains, with trace element enrichments in quartz
monzonite complemented by depletions in the high-
silica granite (Fig. 7). These whole-rock unmixing trends
are mimicked in their mineral chemistries, providing
additional evidence of unmixing. For example, quartz
monzonite plagioclase is enriched in compatible ele-
ments (e.g. Ba, Sr, Eu) relative to depletions in high-
silica granite plagioclase (Fig. 11). A similar relationship
is seen in Huemul orthoclase in Ba, Eu, and Sc (Fig. 13).
Huemul biotite displays similar variation with a
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compositional gap in V mimicking the gap in whole-
rock compositions between the granite and high-silica
granite domains (Figs 7 and 9). In volcanic rocks, com-
positional gaps at these silica concentrations have been
interpreted to reflect rhyolite melt extraction from inter-
mediate residues (Brophy, 1991; Dufek & Bachmann,
2010). The presence of such a gap in Huemul biotite
compositions may also record melt extraction (Fig. 9).
Enrichments of Sc in high-silica granite biotite suggest
that amphibole (Kds. amph = 14; Bacon & Druitt, 1988)
was removed from the liquidus at shallow depths, con-
current with the hypothesized melt extraction (Fig. 9),
probably at the expense of biotite stabilization. The tight
range in feldspar compositions from two samples of the
high-silica granite separated by 14km (Figs 11 and 13)
along with identical bulk-rock compositions and zircon
petrochronology (Schaen et al., 2017), signifies that the
high-silica granite domain is at least 14km long and
interconnected at depth (Fig. 2). The extreme depletions
in Ba, Eu, and Sr within high-silica granite minerals sup-
port their crystallization from a large volume (~70km?
or more) of highly fractionated melt resembling rhyolite
(e.g. Hildreth, 2004).

The ®’Sr/®®Sr; ratios (0-70379-7-0413) in RBH rocks,
including those where the 8’Rb/®®Sr was determined by
isotope dilution (ID)-TIMS, fall within the narrow range
of the active frontal arc volcano Tatara-San Pedro and
other volcanic centers within this sector of the Andes
(Fig. 14; Andersen et al.,, 2017). The narrow range of
87Sr/88Sr, within RBH rocks is consistent with the unmix-
ing hypothesis, rather than an origin via assimilation or
mixing within highly radiogenic Paleozoic to Mesozoic
lower crust (Lucassen et al., 2004), as suggested by
Nelson et al. (1999).

Tracking mineral populations of crystal
accumulation

Chemically and temporally identical zircon (within the
uncertainty of laser ablation U-Pb geochronology of
~4%) from the three Huemul domains was taken as evi-
dence of crystal accumulation in rocks with contrasting
bulk-rock compositions (Schaen et al., 2017). It is sug-
gested that this zircon population crystallized from an
initially granitic parent magma prior to the unmixing
and subsequent crystallization of more evolved zircon.
Here we observe an analogous relationship in amphi-
bole, feldspar, and biotite within domains of the
Huemul pluton. Amphibole from the quartz monzonite
and granite spans similar ranges in Nb, Ti, Zr, and REE
within overlapping fields (Fig. 8). Additionally, many
biotite analyses from the quartz monzonite and granite
are compositionally similar in Ba, Rb, V, and Sc content
(Fig. 9). This is also true in quartz monzonite and granite
plagioclase, which overlap in Ba and Eu contents
(Fig. 11). These findings imply, as in zircon, that a chem-
ically similar mineral population was present in the
granite and quartz monzonite magma prior to when
stark contrasts in whole-rock compositions were

generated. We suggest that the similar mineral popula-
tions in the granite and quartz monzonite crystallized
from the same parental magma prior to melt extraction
and concurrent unmixing. Their presence in domains
with contrasting bulk major and trace element composi-
tions is additional support of crystal accumulation with-
in the quartz monzonite.

Huemul rocks also comprise chemically distinct min-
eral populations of textural significance. For example,
euhedral orthoclase within the quartz monzonite con-
tains bright BSE cores (Figs 5a and 6) that are enriched
in Ba, Eu, and Sc compared with the anhedral interstitial
matrix orthoclase population from the same rock
(Fig. 13). Accumulation of this early formed population
of orthoclase may in part be responsible for this
domain’s enriched Ba whole-rock signatures (Fig. 7;
Schaen et al., 2017). Compositions of plagioclase and
orthoclase from the anhedral interstitial matrix popula-
tions within the quartz monzonite and granite approach
the Ba, Ti, Eu, and Sc contents of coarse-grained euhe-
dral orthoclase from the high-silica granite. If high-silica
granite rocks formed via melt extraction, preservation
of feldspar compositions with similar trace element
contents in the interstices of the quartz monzonite and
granite rocks suggests that the interstitial matrix within
these domains shares a common origin with this
extracted melt.

Textural indicators of crystal accumulation

It is well accepted that crystal accumulation in mafic
and ultramafic plutons can result in widespread com-
positional and textural layering (e.g. Wager et al., 1960;
Wager, 1963; Wager & Brown, 1968; O’Driscoll &
VanTongeren, 2017, and references therein). Wager
et al. (1960) defined the term ‘cumulate’ as related to a
specific process, gravitational crystal settling, in the for-
mation of rocks with foreign accumulated crystals (cu-
mulus minerals) cemented together by a finer-grained
interstitial assemblage inferred to represent trapped li-
quid (intercumulus minerals). Irvine (1982) redefined
this terminology so that ‘A cumulate is defined as an ig-
neous rock characterized by a framework of touching
mineral crystals and grains that evidently were concen-
trated through fractional crystallization of their parental
magmatic liquids’, importantly unrestrictive of the
physical process by which crystals accumulated. This
definition accounts for known discrepancies associated
with gravitational settling in mafic cumulates (e.g. cu-
mulus plagioclase should float, not sink in dense mafic
liquids) and is amenable for use within granitic systems
(i.e. silicic cumulates) whereby crystal accumulation—
melt segregation probably occurs via a combination of
different processes (see Holness, 2018, for a recent re-
view) such as (1) volatile-induced filter pressing (e.g.
Anderson et al., 1984; Sisson & Bacon, 1999; Boudreau,
2016; Parmigiani et al., 2016), (2) magma recharge (e.qg.
Bachmann et al., 2007; Charlier et al., 2007; Bergantz
et al.,, 2015), and (3) segregation driven by external
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tectonic stress (e.g. Sawyer, 2000; Rosenberg, 2001;
Garibaldi et al., 2018).

Following the definition of Irvine (1982), we suggest
that the porphyritic textures preserved in rocks of the
quartz monzonite are cumulate in origin (Fig. 5a and c).
This is based upon the following observations in quartz
monzonite rocks.

(1) These rocks comprise a framework of touching
euhedral minerals dominated by plagioclase along with
biotite, orthoclase, and hornblende (Fig. 5a and c). It is
this touching framework that suggests that the network
of earlier-formed euhedral minerals are cumulus
(Irvine, 1982; Miller & Miller, 2002; Wiebe et al., 2002;
Harper et al., 2004; Collins et al., 2006).

(2) The fine-grained interstitial assemblage is remin-
iscent of frozen pore fluid (Morse, 1982; Sparks et al.,
1985) similar in appearance to micro- and mesoscopic
textures thought to represent trapped melt in granitic
systems (Wiebe & Collins, 1998; Wiebe et al., 2002;
Vernon & Paterson, 2008; Vernon & Collins, 2011). This
interstitial assemblage is composed of an anhedral and
unzoned haplogranite mineralogy (quartz, Ab-rich
plagioclase and orthoclase) resembling quenched felsic
melt.

(3) Synneusis (‘swimming together’) of quartz and
plagioclase is interpreted to result from crystal accumu-
lation (Vance, 1969; Beane & Wiebe, 2012; Graeter
et al., 2015). Here we suggest the synneusis of zoned
euhedral cumulus plagioclase (Fig. 6a and b) reflects
the concentration of crystals owing to segregation of
interstitial melt.

(4) Anti-rapakivi textures in feldspars (Fig. 6¢c—e) have
been interpreted as the product of isobaric in situ frac-
tional crystallization (Tuttle & Bowen, 1958; Stewart &
Roseboom, 1962; Abbott, 1978). The presence of some
quartz monzonite cumulus feldspars with anti-rapakivi
textures supports a role for crystal-liquid fractionation
concurrent with melt extraction.

(5) Imbrication of undeformed cumulus plagioclase
(Fig. bc) is consistent with concurrent crystal accumula-
tion and interstitial melt removal (Shelley, 1985;
Philpotts & Asher, 1994; Vernon, 2000). This imbrication
of plagioclase is similar to observations of accumu-
lated, compressed K-feldspar megacrysts, which, in
some cases, have been interpreted to result from com-
paction (Paterson et al., 2005; Vernon & Paterson, 2008;
Vernon & Collins, 2011).

Importantly, all rocks from the quartz monzonite that
display the above textural characteristics of crystal ac-
cumulation also have cumulate bulk-rock geochemical
signatures (Schaen et al., 2017).

Intercumulus matrix composition

The composition and proportion of trapped melt within
plutonic rocks has previously been estimated via major
and trace element modelling of whole-rock composi-
tions (e.g. Bédard, 1994; Leuthold et al., 2014; Lee &
Morton, 2015; Barnes et al.,, 2016a), quantification of

textural relationships using various imaging techniques
[e.g. EDS, BSE, cathodoluminescence (CL); e.g. Wiebe
et al., 2007; Graeter et al., 2015; Fiedrich et al., 2017],
along with terminal porosity constraints within stratified
mafic intrusions (e.g. Morse, 1979). Here we are inter-
ested in texturally significant portions of the quartz
monzonite silicic cumulate rocks. We leverage our
phase maps and mineral compositional data from a
porphyritic hand sample of the quartz monzonite to per-
form a high spatial resolution calculation with the goal
of estimating the composition of the interstitial matrix
from this domain (Fig. 5b). The interstitial matrix (anhe-
dral orthoclase, quartz, and plagioclase) of quartz mon-
zonite hand sample HC1305 forms 41-6 =8 area % of
the thin section, whereas the euhedral ‘cumulus’ net-
work (euhedral plagioclase, biotite, orthoclase, and
amphibole) is 58-4 = 12 area % (Fig. 5b). This distinction
is determined on a textural basis such that all fine-
grained (<1mm) and anhedral minerals within the
interstitial matrix are considered ‘intercumulus’ and
coarse (2-5mm) euhedral minerals are considered
‘cumulus’ (Supplementary Data Table 8). We have
added conservative 20% uncertainties on these esti-
mates to account for the Ab-rich rims of euhedral cumu-
lus plagioclase crystals, which may be considered
intercumulus (e.g. Graeter et al., 2015).

For our calculations, we assume that area fraction is
equal to volume fraction, then use mineral densities to
convert to mass fraction for each phase in HC1305
(Fig. 5b; Supplementary Data Table 8). Using EPMA
data, we assign representative major element oxide
(SiO,, Al,O3, etc.) compositions to each phase within
HC1305, separating cumulus minerals from those in the
matrix. The quantitative mass fractions from EDS phase
maps (Fig. 5) are then used to estimate a bulk compos-
ition of the intercumulus matrix via sum product calcu-
lation (Supplementary Data Table 8). As proof of
concept, we first use the above approach to calculate
whole-rock compositions for a hand sample from each
Huemul domain with an EDS phase map (Fig. 5). CIPW
normative mineral assemblages were calculated using
these modelled bulk-rock compositions and normalized
Qz-Ab-Or assemblages and are plotted on the water-
saturated haplogranite ternary (Fig. 15). Abundant miar-
olitic cavities in the high-silica granite (Fig. 3a) imply the
presence of a volatile phase, justifying the use of the
water-saturated system. That the modelled bulk compo-
sitions from EPMA results are consistent with whole-
rock XRF analyses indicates that estimating bulk com-
positions using mineral data is a practical approach
(Fig. 15). Rocks of the high-silica granite plot at the
water-saturated granite minimum between 1 and 2 kbar,
pressures consistent with Al-in-Hbl barometry of the
other Huemul domains that imply solidification at about
3.7-7-2km depth. Notably, rocks of the quartz monzon-
ite and granite domains do not plot near cotectic mini-
ma, and hence are non-liquid bulk compositions that
form a mixing line with high-silica granite. These obser-
vations, coupled with whole-rock compositions, are
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Fig. 15. Qz-Ab-Or H,0O-saturated haplogranitic ternary. Lines are cotectics and black squares are locations of minimum melts at a
given pressure (kbar). Modified from Blundy & Cashman (2001) using the data of Tuttle & Bowen (1958), Luth et al. (1964) and Ebadi &
Johannes (1991). Circles are XRF whole-rock analyses from the Huemul pluton that have been converted to CIPW normative assemb-
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mulus matrix of sample HC1305 from the Hgm (Fig. 16) with 10% uncertainties. Domain abbreviations as in Table 1.

consistent with unmixing of a single parental magma
(Fig. 7; Schaen et al., 2017).

Deviation from these tightly clustered linear unmix-
ing trends in Huemul domains is evident in REE whole-
rock variation diagrams (Fig. 7). That the REE are
decoupled from other trace elements (Fig. 7), with high-
silica granite samples forming a scattered field, sug-
gests that melt extraction occurred at the granite min-
imum, where small variations in temperature can result
in large changes in crystallinity (Tuttle & Bowen, 1958).
The variable REE compositions of the high-silica granite
rocks most probably result from slight differences in the
modal proportions of zircon and apatite crystallization
concurrent with melt extraction.

Separating the euhedral cumulus framework in the
quartz monzonite, we performed the above major elem-
ent calculation for just the interstitial matrix of HC1305
(Fig. 15). The modelled bulk composition of the quartz
monzonite intercumulus matrix has a SiO, content of
75wt % and plots on top of the high-silica granite clus-
ter at the granite minimum, within a conservative 10%
uncertainty in this estimate. Thus, the matrix preserved
in the porphyritic quartz monzonite sample HC1305 is
representative of a high-silica granite melt similar in
major element composition to the rocks of the high-
silica granite, which cooled to the granite minimum.

To estimate the bulk trace-element content of the
quartz monzonite intercumulus matrix we rely on
the compositions of anhedral interstitial feldspars.

Plagioclase compositions can be used to calculate the
equilibrium melt from which they crystallized via tem-
perature-An-dependent partitioning of trace elements
(Blundy & Wood, 1991; Bindeman et al., 1998). We use
the thermodynamic model rhyolite-MELTS (Gualda
et al., 2012) to produce An versus temperature curves
for the RBH system and then determine partition coeffi-
cients for Ba and Sr following the calibration of
Bindeman et al. (1998). We use these An-dependent
partition coefficients to calculate the Ba and Sr content
of equilibrium melts from our measured LA-ICP-MS
plagioclase compositions (Fig. 11). Equilibrium melt
compositions determined from the majority of intercu-
mulus plagioclase from quartz monzonite (HC1305)
and granite (HC1301) have <75ppm Ba and <50 ppm
Sr, which overlap with the whole-rock content of the
high-silica granite hand samples (Fig. 7) and those cal-
culated using high-silica granite plagioclase (BOTA92;
Fig. 16a).

Without the coupled solid solution that makes
plagioclase partitioning a function of An content
(Blundy & Wood, 1991), calculating the trace element
content of the equilibrium liquid (C.) using orthoclase
compositions (Cs) is more straightforward and can be
estimated with a simple distribution coefficient (Kp) re-
lationship (C_. = Cs/Kp). Melt compositions determined
from orthoclase within the quartz monzonite intercumu-
lus matrix have average Ba and Sr contents of 102 ppm
and 25 ppm, respectively (Fig. 16b). Like the estimates
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using plagioclase, the melt determined from orthoclase
compositions within the quartz monzonite intercumulus
matrix overlaps in Ba content with estimates made
from high-silica granite orthoclase (<100ppm Ba;
Fig. 16b) and high-silica granite whole-rock composi-
tions (Fig. 7). The Sr content determined from quartz
monzonite orthoclase (<50 ppm) also approaches high-
silica granite estimates (<10 ppm Sr) and whole-rock
compositions (<26 ppm Sr). Slight discrepancies be-
tween the Sr melt composition estimated using plagio-
clase and orthoclase (Fig. 16) probably reflect minor
variations in the choice of partition coefficients when
using two different techniques for these calculations.
Nevertheless, the melt compositions estimated from
fine-grained, anhedral, interstitial feldspar within the
porphyritic quartz monzonite and semi-porphyritic
granite (Fig. 5d) suggest that both domains contain ma-
trix material that crystallized from a high-silica granite
melt highly depleted in Ba and Sr. We interpret the
major and trace element estimates for the quartz mon-
zonite intercumulus matrix (75wt % SiO, and depleted
Ba and Sr) to be a record of trapped melt that was
extracted upon formation of the high-silica granite do-
main over the 100-300kyr crystallization duration of
this domain (Schaen et al., 2017). Euhedral quartz mon-
zonite orthoclase and plagioclase that preserve 550-
700 ppm Ba melt compositions (Fig. 16) imply that these
feldspars crystallized from a parental magma compar-
able in bulk composition with the granite, whose whole-
rock Ba content is identical (Fig. 7). The granite domain
was used as a starting composition in a bulk-rock melt-
extraction model (Schaen et al., 2017) and is our best
estimate of a Huemul parental magma from which all
three domains formed via unmixing. That this starting
composition is preserved in the quartz monzonite feld-
spars with the appropriate euhedral textures is taken as
strong support of crystal accumulation of the predicted
parental mineral population.

Locally abundant miarolitic cavities within the high-
silica granite (Fig. 3a) reflect saturation of melt with a
magmatic vapor phase at low pressure. We envision an
essential role for H,O in the evolution of the high-silica
granite domain in two ways. First, H,O dissolved in the
high-silica intercumulus melt dramatically lowers its
viscosity, thereby enhancing its ability to flow through
the crystalline mush framework. Second, numerical
simulations of multi-phase fluid dynamics reveal that
the buoyant flux of an exsolved magmatic vapor phase,
and probably some of the coexisting melt, through the
confined pore space in a rigid crystal-rich mush is greatly
enhanced (Parmigiani et al., 2016). Moreover, the mag-
matic vapor phase will accumulate in bubbles that concen-
trate in the overlying crystal-poor melt, thereby increasing
magma viscosity and enhancing cooling and solidification
(Parmigiani et al., 2016; Edmonds & Wallace, 2017).

CONCLUSIONS

The RBH complex records textural and mineral compos-
itional evidence that supports previous findings of
upper crustal differentiation within a plutonic system,
from precursory flux of mafic to intermediate magma
pulses to near end-members of rhyolite melt extraction
(Fig. 17). All rocks from the quartz monzonite domain
that display non-liquid geochemical signatures also
have porphyritic textures defined by a euhedral cumu-
lus framework and evolved interstitial matrix of haplo-
granite mineralogy. We propose that this relationship,
along with other textural features of crystal accumula-
tion including synneusis, imbrication of euhedral
plagioclase, and anti-rapakivi textures, further implies
that the quartz monzonite rocks are inherently cumulate
and have lost interstitial liquid. That these rocks contain
62wt % SiO, makes them silicic cumulates and requires
their formation via extraction of high-silica melt com-
parable in major and trace element chemistry with the
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Fig. 17. Conceptual petrogenetic model (not to scale) of Huemul pluton formation via filter pressing, driven by volatile exsolution
and horizontal crustal shortening (Garibaldi et al., 2018). Crystal orientation is consistent with the fabric work of Garibaldi et al.
(2018) showing feldspar alignment parallel to melt transport direction, in this case, upwards. Colors in all panels reflect bulk com-
position. (a—c) Melt extraction-cumulate formation manifest in complementary whole-rock compositions (SiO, in wt %, Ba in ppm;
Fig. 7) and crystal-liquid textural relationships (Fig. 5) between the three domains of the Huemul pluton; (d) textural evidence for
crystal concentration and melt extraction, including a touching framework of euhedral minerals, clustering of earlier-formed plagio-
clase crystals, and anti-rapakivi feldspars (Fig. 6); (e) finer-grained anhedral to subhedral haplogranite depleted in Ba (Fig. 16); (f)
euhedral orthoclase (6000-12 000 ppm Ba; Fig. 13) crystallized from ~600 ppm Ba parent magma (Fig. 16); (g) clustering of euhedral
plagioclase (Fig. 6) crystallized from ~600 ppm Ba parent magma (Fig. 16); (h) volatile saturation aids melt extraction by gas fractur-
ing in crystal-rich layers and buoyant bubble rise in crystal-poor regions; when cooled these bubbles form dense zones of miarolitic
cavities (Fig. 3a). Domain abbreviations as in Table 1.

high-silica granite domain. Remnants of this extracted
high-silica granite melt are preserved as 75wt % SiO,
intercumulus matrix within these porphyritic rocks
(Fig. 17). Model calculations suggest that the intercumu-
lus matrix of quartz monzonite rocks records Ba- and
Sr-depleted rhyolitic melt that reached the granite min-
imum at epizonal depths, comparable in composition
and mineralogy with the high-silica granite domain.
Importantly, the euhedral cumulus framework of quartz
monzonite rocks also records the predicted Huemul par-
ent magma prior to unmixing.

The common geochemical signatures of feldspar in
high-silica granite samples located 14 km apart are bol-
stered by zircon petrochronology and imply that this
domain formed a large ~70km? (if scale-invariant and
1-2km thick; McCaffrey & Petford, 1997) body of water-
saturated, high-silica granite melt in the roof zone of the
complex at depths of <7 km. Depleted Ba, Eu, and Sr
within plagioclase, orthoclase, and biotite support this
domain’s role as fractionated and extracted rhyolitic
melt. Projections into the haplogranite ternary imply
that rocks of the high-silica granite are minimum melts.
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The mineral compositional data from the three Huemul
domains mimics their whole-rock trends of unmixing
from a common granitic parent. The restricted range of
whole-rock &Sr/8Sr; data reinforces that this upper
crustal magma reservoir had minimal interaction with
highly radiogenic crust and supports the unmixing
hypothesis.

Distinct compositional arrays of amphibole from
older RB domains suggest that these magmas did not
interact chemically but rather represent discrete pulses.
The amphibole chemistry and sharp magmatic contacts
imply a role for RB-type magma flux in the form of in-
cremental emplaced mafic to intermediate magma
batches prior to the initiation of crystal-liquid separ-
ation processes in Huemul (Fig. 17). Abundant mafic
enclaves within the quartz monzonite and granite reflect
this type of interaction. The RBH plutonic complex
embodies evidence in the form of compositional vari-
ation of whole-rocks and minerals, barometry, and rock
textures that requires differentiation of magmas within
the upper crust by crystal-liquid fractionation.

We envision the following petrogenetic scenario.

1. Mafic to intermediate melts are incrementally
injected into the middle crust where they differenti-
ate via fractional crystallization to form a mid-crustal
magma mush. Some of these pulses reach the upper
crust, continue to crystallize at the level of emplace-
ment, and solidify to form intermingled magmatic
domains forming the Risco Bayo pluton.

2. Through continued injection of mafic to intermediate
magma pulses and further differentiation, the mid-
crustal magma reservoir produces felsic melt resem-
bling the parental Huemul granite prior to unmixing.

3. Upon emplacement within the upper crust, the par-
ental granite cools and partially crystallizes, and the
interstitial melt reaches the granite minimum.

4. As the parental granitic mush crystallizes, second
boiling occurs.

5. The volatile phase streams upward along with melt
through confined channels within the crystalline
framework of the mush.

6. The volatiles accumulate in bubbles within the over-
lying crystal-poor melt, which solidifies in situ, local-
ly preserving miarolitic cavities in the roof zone of
the magma reservoir (e.g. Parmigiani et al., 2016).

Thus, volatile-induced filter pressing and melt extrac-
tion generates the three complementary domains of the
Huemul pluton, and results in a chemical unmixing ef-
fect (Fig. 17; Schaen et al., 2017). This process probably
operates in conjunction with horizontal crustal shorten-
ing (Garibaldi et al., 2018), which would increase melt
extraction efficiency.

The discovery of silicic cumulates with the predicted
geochemical and textural signatures of crystal concen-
tration provides a new perspective on the mush model
of rhyolite generation within the plutonic realm. Our
findings suggest that late Miocene plutonic rocks in the

Andes preserve crystal-melt dynamics that heretofore
have been inferred nearly universally from volcanic sys-
tems and rhyolitic tuffs. The visual identity of rock tex-
tures and compositional characterization presented
here may help to identify silicic cumulates in other
plutons.
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