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a b s t r a c t 

A novel multi-phase flow formulation using a level-set-based interface-capturing approach is proposed, 

focusing on addressing numerical challenges associated with the modeling of surface tension. The surface 

tension is handled through the continuum surface force model. The residual-based variational multiscale 

(RBVMS) formulation is employed to solve the coupled Navier–Stokes and level-set convection equations. 

The RBVMS formulation is discretized using either standard low-order finite elements, or Isogeometric 

Analysis (IGA) based on Non-Uniform Rational B-Splines (NURBS), which are higher-order accurate and 

smooth. The proposed method is applied to the simulation of 3D bubbles moving in viscous liquids with 

large density and viscosity ratios representative of common two-phase flow systems. The accuracy of the 

proposed method is assessed by comparing the results with analytical solutions, experimental data, and 

computational results, reported in the literature. In all cases IGA showed superior performance to stan- 

dard finite elements; this superiority is attributed to the higher-order accuracy of IGA and its ability to 

directly and accurately compute, using smooth NURBS functions, the curvature term, which is a key in- 

gredient the surface tension formulation. For single-bubble rising problems, the proposed approach pro- 

duced accurate predictions of the terminal bubble shape, velocity and Reynolds number. The advanced 

nature of the new multi-phase flow formulation is demonstrated with a simulation of merging of two 

bubbles in the presence of a deforming free-surface. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multi-phase flows occur in many natural and industrial pro- 

cesses such as chemical reactions, oil refining, and water boil- 

ing [1–3] . Although significant progress has been made in the sim- 

ulation of complex single-phase flows in recent years, accurate 

simulation of multi-phase flows still remain a challenge. The chal- 

lenges mostly stem from adding surface tension, which becomes 

important for small spatial scales and in the presence of (highly) 

curved interfaces, to the multi-phase flow model. These challenges 

are summarized as follows: (i) The interface separating the flu- 

ids must be accurately represented without introducing excessive 

smearing; (ii) Pressure discontinuity across the interface, induced 

by the surface tension effect, must be approximated in a way that 

does not introduce spurious flow near the interface; (iii) Surface 

normal and curvature must be approximated with sufficient accu- 

racy to compute the surface tension terms. 
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In recent decades, a number of techniques have been devel- 

oped to simulate complex multi-phase flow problems. These can 

be classified into two categories based on how the fluid interface 

motion is handled, and are referred to as the interface-tracking 

and interface-capturing methods [4,5] . The interface-tracking ap- 

proaches, including front-tracking methods [6] , boundary-integral 

methods [7] , arbitrary Lagrangian–Eulerian (ALE) methods [8] , and 

space–time finite-element methods [9] , use a deformable mesh 

that conforms to the moving interface. The main advantage of 

interface-tracking methods is their ability to achieve high per- 

degree-of-freedom accuracy near the interfaces. However, when 

the interfaces form a singularity or change topology, interface- 

tracking methods become challenging to apply in practice, and re- 

quire the development of special techniques (see, e.g., [10] ). Au- 

tomatic merging or break-up of interfaces are especially challeng- 

ing for interface-tracking techniques, which makes 3D multi-phase 

flow problems notoriously more difficult to solve using this class 

of methods. 

On the other hand, interface-capturing methods, such as the 

volume-of-fluid (VOF) method [11] , phase-field methods [12–19] , 

diffuse-interface methods [20,21] , front-capturing methods [22] , 
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and level-set methods [23–29] , utilize an auxiliary function de- 

fined on the problem domain to describe the interface, and present 

a practically simpler alternative to the interface-tracking meth- 

ods. Although interface-capturing methods typically require higher 

mesh resolution to compensate for lower interface accuracy, these 

methods are very robust and relatively simple to implement in 

practice. Because the changes in interface topology do not present 

a conceptual difficulty for these methods, they have been applied 

to a broad range of problems including bubble dynamics [30–

32] , jet atomization [33] , and free-surface flows [34–37] . Among 

these methods, the level-set technique is especially popular due 

to its ability to represent complex interfaces using a smooth im- 

plicit function. In principle, this function can be used not only 

to separate the two fluids at their interface, but also to compute 

the interface normal and curvature that are needed to incorporate 

the surface tension terms in the multi-phase flow model. Accurate 

calculation of the interface curvature in lower-order level-set ap- 

proaches is still a difficult task. Several methods have been de- 

veloped to address this issue, including approaches based on the 

Height function [38] or Laplace–Beltrami operator [39] . However, 

these methods are often hard to apply to unstructured-mesh dis- 

cretizations of geometrically-complex objects, or require interface- 

mesh generation, which is computationally expensive and defeats 

the purpose of using interface-capturing techniques in the first 

place. 

In this paper, a level-set-based multi-phase flow formula- 

tion using Isogeometric Analysis (IGA) [40,41] and the residual- 

based variational multiscale (RBVMS) formulation [42] is proposed. 

Surface tension is included in the formulation, and is handled 

through the continuum surface force (CSF) model of Brackbill 

et al. [43] . IGA, which was originally developed for better integra- 

tion of Computer-Aided Design (CAD) and Finite Element Analysis 

(FEA) [40,41] , has been widely applied to simulate fluid flow [44] , 

solid and structural mechanics [45,45–48] , and fluid–structure in- 

teraction (FSI) [5,49–56] , in many cases showing superior perfor- 

mance and per-degree-of-freedom accuracy over the standard FEA. 

One of the advantages of IGA is the higher-order smoothness of 

the underlying basis functions, which makes IGA naturally suited 

for the discretization of models involving higher-order differential 

operators [46,57–61] . In this paper we take advantage of smooth- 

ness of the IGA basis functions to directly discretize the Brackbill 

CSF model, which involves second-order derivatives of the level-set 

function, and, as a result, requires the underlying discretization to 

be at least C 1 -continuous. 

RBVMS was proposed in [42] for the simulation of incom- 

pressible turbulent flows. Since then, several research contributions 

in [44,62–66] have shown that RBVMS yielded accurate solutions 

on meshes with large-eddy simulation (LES)-level resolution that 

converged rapidly to the direct numerical simulation (DNS) results. 

To fully take advantages of these techniques, in the present work, 

RBVMS and the IGA discretization based on C 1 -continuous non- 

Uniform Rational B-Splines (NURBS) are employed for computing 

the fluid velocity, pressure, and level-set unknowns in the pro- 

posed multi-phase flow framework. The proposed framework may 

be thought of as an extension of the work presented in [35–37] to 

include the surface tension model. 

The paper is outlined as follows. The governing equations, in- 

cluding level-set method and the Navier–Stokes equation aug- 

mented with the CSF model, are presented in Section 2 . 

Section 3 presents the numerical formulation, which includes RB- 

VMS, basics of IGA, time integration, and solution strategies for the 

coupled fluid and level-set equations. Additionally, we present two 

enhancements of the level-set methodology: level-set re-distancing 

and restoration of the mass balance. Numerical results and dis- 

cussions are presented in Section 4 . The performance of linear 

FEA and quadratic-NURBS-based IGA are thoroughly compared by 

simulating the problems of level-set convection, interface curva- 

ture evaluation, capillary pressure, and rising of a single bubble. 

Three cases of single-bubble rising are simulated using IGA, and 

the results are validated using experimental data. In Section 4.5 , 

the merging of two bubbles in the presence of a deforming free 

surface is simulated using IGA. Conclusions are drawn in Section 5 . 

2. Governing equations 

Let � denote the spatial domain occupied by two different flu- 

ids. The densities of the two fluids are denoted by ρ1 and ρ2 , and 

the dynamic viscosities are denoted by μ1 and μ2 , respectively. 

The interface between the two fluids is denoted by �t . In the level- 

set method, the interface �t is represented implicitly by introduc- 

ing a scalar level-set field φ( x , t ) and setting 

�t = { x ∈ � | φ(x , t) = 0 } . (1) 

That is, the two fluids are separated by the zero level-set of φ. 

The evolution of the level-set field is governed by the convection 

equation, 

∂φ

∂t 
+ u · ∇φ = 0 , (2) 

where u is the flow velocity. The fluid properties are distributed 

using the following interpolation, 

ρ = ρ1 H(φ) + ρ2 (1 − H(φ)) (3) 

μ = μ1 H(φ) + μ2 (1 − H(φ)) (4) 

where H ( φ) is the Heaviside function defined as 

H(φ) = 

{ 
0 if φ < 0 
1 / 2 if φ = 0 
1 if φ > 0 

. (5) 

This procedure results in a “one-fluid” approach to two-phase flow, 

without the need to explicitly track the interface or to enforce 

compatibility of the kinematics and tractions across the interface. 

With the above distribution of the fluid properties, the Navier–

Stokes equations of isothermal, viscous, incompressible flows are 

adopted for the two-phase fluid model: 

ρ
∂u 

∂t 
+ ρu · ∇u − ∇ · σ − ρg − f b = 0 , (6) 

∇ · u = 0 , (7) 

where p is the fluid pressure, g is the gravitational acceleration 

vector, σ(u , p) = −pI + 2 μ∇ s u is the Cauchy stress, ∇ s is the sym- 

metric gradient, and f b is the term accounting for the surface ten- 

sion effect, which will be described in later sections. 

3. Numerical formulation 

3.1. RBVMS 

To numerically approximate the coupled Navier–Stokes and 

level-set equations, RBVMS is employed. Let V h denote the set of 

discrete trial functions for the velocity, pressure, and level-set un- 

knowns { u h , p h , φh }, and let W h denote the set of discrete test 

functions for the linear momentum, continuity and level-set equa- 

tions { w h , q h , ηh }. The formulation for multi-phase flows with sur- 

face tension is stated as follows: Find { u h , p h , φh } ∈ V h , such that 

∀{ w h , q h , ηh } ∈ W h , 

∫ 

�

w 
h · ρ

(

∂u h 

∂t 
+ u 

h · ∇u 
h − g 

)

d� −

∫ 

�

w 
h · f b d�
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+ 

∫ 

�

∇w 
h : σ(u 

h , p h ) d� −

∫ 

�

w 
h · h d�

+ 

∫ 

�

q h ∇ · u 
h d�

+ 

∫ 

�

ηh 

(

∂ φh 

∂t 
+ u 

h · ∇φh 

)

d�

+ 

nel 
∑ 

e =1 

∫ 

�e 
τM 

(

u 
h · ∇ w 

h + 
∇ q h 

ρ

)

· r M (u 
h , p h ) d�

+ 

nel 
∑ 

e =1 

∫ 

�e 
ρτC ∇ · w 

h r C (u 
h ) d�

−

nel 
∑ 

e =1 

∫ 

�e 
τM w 

h ·
(

r M (u 
h , p h ) · ∇u 

h 
)

d�

−

nel 
∑ 

e =1 

∫ 

�e 

∇w h 

ρ
: 
(

τM r M (u 
h , p h ) 

)

�

(

τM r M (u 
h , p h ) 

)

d�

+ 

nel 
∑ 

e =1 

∫ 

�e 
τφu 

h · ∇ηh r φ(φh , u 
h ) d� = 0 . (8) 

In the above equation, the first three lines correspond to the stan- 

dard Galerkin formulation of Navier–Stokes and level-set equa- 

tions, while the rest corresponds to the fine scale terms. In the 

fine scale terms, nel denotes the number elements, h denotes the 

applied traction, and r M ( u 
h , p h ), r C ( u 

h ) and r φ( φ
h , u h ) are the 

element-interior residuals of the strong-form momentum, continu- 

ity and level-set equations. These are given by 

r M (u 
h , p h ) = ρ

∂u h 

∂t 
+ ρu 

h · ∇u 
h − ∇ · σ(u 

h , p h ) − ρg − f b , (9) 

r M (u 
h ) = ∇ · u 

h , (10) 

r φ(φh , u 
h ) = 

∂φh 

∂t 
+ u 

h · ∇φh , (11) 

where τM , τ C and τφ are the stabilization parameters [55,67–

72] given by 

τM = 

(

4 

	t 2 
+ u 

h · G u 
h + C I 

(

μ

ρ

)2 

G : G 

)−1 / 2 

, (12) 

τC = 
1 

tr(G ) τM 
, (13) 

τφ = 

(

4 

	t 2 
+ u 

h · G u 
h 
)−1 / 2 

, (14) 

where C I is a dimensionless positive constant derived from an 

element-wise inverse estimate [73] (set to 4 in the present work), 

G is the element metric tensor defined by G = 

(

∂ξ
∂x 

)T 
∂ξ
∂x 

, and ∂ξ
∂x 

is the inverse of the Jacobian of the transformation between the 

physical element and its parametric counterpart. Note the present 

formulation uses the same shape functions space for both veloc- 

ity and pressure. This is not an LBB stable choice, but our RBVMS 

method provides pressure stabilization in a form similar to that of 

a pressure stabilizing Petrov–Galerkin (PSPG) scheme. 

For a detailed presentation of the RBVMS methodology, readers 

are referred to the original development in [42] . It should be noted 

that while RBVMS was developed for LES of turbulent flows, it is 

also an accurate and robust methodology for stabilized simulations 

of laminar incompressible flows. 

3.2. Surface tension 

At the discrete level, in place of its sharp counterpart given by 

Eq. (5) , a regularized version of the Heaviside function H ε is em- 

ployed: 

H ε (φ) = 

{ 
0 if φ < −ε
1 
2 

(

1 + 
φ
ε + 

1 
π sin 

(

φπ
ε

))

if | φ| ≤ ε

1 if φ > ε

, (15) 

where ε ∼O ( h ) defines the local width of the interface between the 

two fluids. As the mesh is refined, ε → 0. We also define a regular- 

ized Dirac delta function δε as 

δε (φ) = 
dH ε (φ) 

dφ
. (16) 

The continuum surface force (CSF) model of Brackbill et al. [43] is 

used to incorporate surface tension into the multi-phase flow for- 

mulation. For this, f b in Eq. (6) is given by 

f b = σs κδε (φ) n , (17) 

where δε localizes the surface tension force to the interface. The 

surface tension coefficient is given by σ s , which is assumed con- 

stant in the present work, and tangential stress (e.g., Marangoni 

force) is not considered. n is the unit normal vector to the inter- 

face given by 

n = 
∇φ

| ∇φ| 
, (18) 

In addition, in Eq. (17) , κ is the mean curvature, which can be 

computed from the level-set field as 

κ = ∇ · n = 
| ∇φ| 2 Tr (ψ(φ)) − ∇ φT ψ(φ) ∇ φ

| ∇φ| 3 
, (19) 

where ψ( φ) is the matrix of second derivatives, or the Hessian, of 

φ. 

Remark . Regularization of the Heaviside function puts a re- 

quirement on the level-set function to satisfy a so-called signed- 

distance property. Convecting level-set field may violate mass bal- 

ance. To enforce the signed-distance property and restore the mass 

conservation during the simulation, the re-distancing and mass 

restoring schemes proposed in [36] are utilized in the present 

work, respectively. 

3.3. Basics of Isogeometric Analysis 

Some basics of IGA are presented in this section (for a more de- 

tailed development, see for example Cottrell et al. [40] ). IGA shape 

functions are typically B-splines and NURBS, motivated by CAD 

descriptions of geometric models. B-splines are piecewise polyno- 

mial curves, constructed by a linear combination of n basis func- 

tions of order p and the associated n control points. NURBS are 

constructed from B-splines. A univariate B-spline is a piecewise 

polynomial function built upon a knot vector. A knot vector is a 

non-decreasing sequence of coordinates in the parametric domain 

denoted by � = { ξ1 , ξ2 , . . . , ξn + p+1 } , where ξ i is the i th knot, n 

is the number of B-spline basis functions defined on �, and p 

is the polynomial order. If knots are repeated p + 1 times at the 

ends of the parametric space, the knots vectors are called open 

knots vectors . Open knots vectors are employed in this work. The 

interval [ ξi , ξi + p+1 ] is called a knot span. A B-spline basis func- 

tion is C ∞ -continuous inside a knot span, and C p−m -continuous 

at knots with multiplicity m ≤p . Given �, B-spline basis functions 

N i, p are defined recursively, starting with piecewise-constant func- 

tions ( p = 0 ) on each knot span, 

N i, 0 (ξ ) = 

{

1 if ξi < ξ ≤ ξi +1 

0 otherwise 
(20) 

Please cite this article as: J. Yan et al., Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics 

of rising bubbles, Computers and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.04.017 



4 J. Yan et al. / Computers and Fluids 0 0 0 (2018) 1–13 

ARTICLE IN PRESS 
JID: CAF [m5G; April 26, 2018;23:43 ] 

and for p > 0, Cox-de Boor recursion is performed, namely, 

N i,p (ξ ) = 
ξ − ξi 

ξi + p − ξi 
N i,p−1 (ξ ) + 

ξi + p+1 − ξ

ξi + p+1 − ξi +1 
N i +1 ,p−1 (ξ ) (21) 

In order to achieve exact geometric descriptions for objects such 

as ellipses, circles, and other conic sections, projective transforma- 

tions of B-splines can be introduced. NURBS are projections of B- 

splines in R d+1 onto R d , resulting in a piece-wise rational func- 

tion. For each B-spline basis function, its NURBS counterpart R i, p 
is given as 

R i,p (ξ ) = 
N i,p (ξ ) w i 

∑ n 
ˆ i =1 

N ̂ i ,p 
(ξ ) w ̂ i 

(22) 

where w i is a positive weight. NURBS basis functions in higher di- 

mension, such as 3D, are defined by introducing additional knot 

vectors, � and ϒ, employing a tensor-product construction on the 

B-spline part of the basis as 

R p,q,r 
i, j,k 

(ξ , η, ζ ) = 
N i,p (ξ ) M j,q (η) L k,r (ζ ) w i jk 

∑ n 
ˆ i =1 

∑ m 
ˆ j =1 

∑ l 
ˆ k =1 

N ̂ i ,p 
(ξ ) M ̂ j ,q 

(η) L ̂ k ,r (ζ ) w ̂ i ̂ j ̂ k 

(23) 

where q and r are the polynomial degrees, m and l are the number 

of univariate B-spline functions, and η and ζ are the parametric 

coordinates, associated with knot vectors � and ϒ, respectively. 

A NURBS curve C ( ξ ) is obtained by taking a linear combina- 

tion of univariate NURBS basis functions from Eq. (22) and control 

points coordinates B i as 

C(ξ ) = 

n 
∑ 

i =1 

R i,p (ξ ) B i (24) 

Similarly, a NURBS volume patch V ( ξ , η, ζ ) is constructed anal- 
ogously as 

V (ξ , η, ζ ) = 

n 
∑ 

i =1 

m 
∑ 

j=1 

l 
∑ 

k =1 

R p,q,r 
i, j,k 

B i jk (25) 

The unknown field, such as level-set field φ, can be expressed 

as 

φ = 

N s 
∑ 

I=1 

ψ I φI (26) 

where ψ I is the basis functions (B-splines or NURBS), and N s is the 

number of shape functions. 

Although the present framework utilizes C 1 -continuous 

quadratic NURBS, it can easily accommodate other represen- 

tations, such as T-splines or subdivision surfaces [74,75] . 

3.4. Time integration and coupling strategies 

For the time integration of the Navier–Stokes and level-set 

equations we employ the generalized- α technique, which is a fully- 

implicit second-order accurate method with control over the dissi- 

pation of high frequency modes, provided that the proper α values 

are chosen. For more details, the readers are referred to [76–78] . 

At each time step, the combined Navier–Stokes and level-set dis- 

crete residuals are converged by means of a monolithic coupling 

approach, which is also utilized in the free surface simulations 

in [37,79] . In this coupling approach, at every Newton–Raphson it- 

eration, solution increments of the Navier–Stokes and level-set so- 

lutions are computed simultaneously. Linearization of the coupled 

multi-phase flows equation system takes into account both the 

Navier–Stokes and level-set subproblems. Although this approach 

circumvents convergence difficulties associated with a high den- 

sity ratio, and, as a result, enables robust simulation of multi-phase 

flows, its efficient numerical implementation is more challenging 

compared to its staggered counterpart. In the present work, we 

Table 1 

LeVeque deformation problem. 

Error of IGA and FEM results at 

t = T . 

IGA FEM 

Coarse 0.0137 0.0313 

Fine 0.0078 0.0170 

make use of a matrix-free implementation of the flexible gener- 

alized minimum residual (FGMRES) [80,81] technique precondi- 

tioned with individual Navier–Stokes and level-set linearized sub- 

problems. The preconditioning reduces the number of FGMRES it- 

erations required for convergence in order to increase the over- 

all efficiency of the algorithm. For a comprehensive discussion of 

matrix-free and preconditioning techniques, especially for FSI ap- 

plications, the reader is referred to [35,50] . 

4. Numerical examples 

4.1. LeVeque deformation problem: comparison between FEA and IGA 

We first demonstrate that higher-order accuracy and smooth- 

ness of IGA are beneficial for pure level-set convection. The com- 

parison of IGA and FEA on level-set convection can be found 

in [36] . It shows the convergence rate on level-set convection prob- 

lems in terms of L 1 error norm is 2 for IGA and 1 for FEM. Here we 

present an additional comparison by solving a 3D LeVeque defor- 

mation problem [82] . This is a well-known benchmark example, 

tested previously by a number of level-set, volume of fluid and 

hybrid methods [83–86] . In this example, the computational do- 

main is a unit cube, and a sphere of radius 0.15 initially centered 

at (0.35, 0.35, 0.35) is convected by the following spatially- and 

temporally-varying velocity field: 

u 1 = 2 sin 2 (πx ) sin (2 πy ) sin (2 πz) cos 
(

πt 

T 

)

, (27) 

u 2 = − sin (2 πx ) sin 2 (πy ) sin (2 πz) cos 
(

πt 

T 

)

, (28) 

u 3 = − sin (2 πx ) sin (2 πy ) sin 2 (πz) cos 
(

πt 

T 

)

. (29) 

The flow is reversed for t > 
T 
2 , and the sphere location and shape 

are expected to be recovered at t = T . In the present work, we 

first set T = 2 . 2 and simulate the problem using a coarse mesh of 

48 ×48 ×48 elements and a fine mesh of 96 ×96 ×96 elements for 

both C 0 -continuous linear FEA and C 1 -continuous quadratic NURBS. 

Figs. 1 and 2 show the isosurface of φ = 0 at t = 
T 
2 and t = T , re- 

spectively. Both FEA and IGA are able to capture the intermediate 

shape, and recover a close approximation of the sphere final loca- 

tion and shape, which also improve with mesh refinement. How- 

ever, as is clear from the figures, the IGA results are of higher qual- 

ity than the FEM results. The error between computed results and 

analytical results at t = T of FEM and IGA is tabulated in Table 1 . 

The error is quantified as 

e = 

√ 
∫ 

�(φh − φa ) 2 δε (φh ) d�
∫ 

� δε (φh ) d�
, (30) 

where φa is the analytical solution. In fact the coarse-mesh IGA 

results for the final sphere shape are at least as accurate as the 

fine-mesh FEA results. These results confirm the findings of [36] . 

In order to further evaluate the performance of IGA, the LeV- 

eque deformation problem with period with T = 3 is computed. 
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Fig. 1. LeVeque deformation problem. Isosurface of φ = 0 at t = 0 . 5 T . (Mesh resolution: 48 ×48 ×48 (coarse) and 96 ×96 ×96 (fine)). 

Fig. 2. LeVeque deformation problem. Isosurface of φ = 0 at t = T . (Mesh resolution: 48 ×48 ×48 (coarse) and 96 ×96 ×96 (fine)). 

Please cite this article as: J. Yan et al., Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics 

of rising bubbles, Computers and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.04.017 



6 J. Yan et al. / Computers and Fluids 0 0 0 (2018) 1–13 

ARTICLE IN PRESS 
JID: CAF [m5G; April 26, 2018;23:43 ] 

Fig. 3. LeVeque deformation problem with period T = 3. Isosurface of φ = 0 at t = T 2 (top) and t = T (bottom). (a) Present result (IGA) with resolution 120 × 120 × 120. 

(b) Coupled level-set and volume-of-fluid method (CLSVOF) with resolution 100 × 100 × 100 from [85] . (c) CLSVOF method with resolution 150 × 150 × 150 from [87] . 

(d) CLSVOF method with resolution 150 × 150 × 150 from [86] . 

The isosurface of φ = 0 at t = 
T 
2 and t = T generated by IGA, to- 

gether with some of latest results from the literature, are plotted 

in Fig. 3 . IGA generates quite similar results. 

4.2. Curvature evaluation: comparison between FEA and IGA 

In order to test the methods for their ability to approximate lo- 

cal surface curvature, we evaluate the curvature at the surface of 

an implicitly defined sphere of radius of R = 2 . For this, we con- 

sider a domain that is a cube of size 8 ×8 ×8, and initialize the 

discrete level-set field φh as the interpolation of φ defined by 

φ = 

√ 

(x − 4) 2 + (y − 4) 2 + (z − 4) 2 − R. (31) 

The curvature is calculated by using linear FEA and C 1 -continuous 

quadratic NURBS. In the case of IGA, the curvature Eq. (19) can be 

evaluated directly for φh , while for linear FEA, the L 2 -projection is 

adopted to obtain continuous first-order derivative of φh before in- 

voking Eq. (19) . The latter is a typical approach used for curvature 

computation using linear FEA [30,88] . We use three different ele- 

ment length, R 
h 

= 5 , R 
h 

= 10 and R 
h 

= 20 . For a perfect sphere, the 

exact curvature on the sphere surface satisfied the relation κR = 2 . 

Since in the present application surface tension is localized to a 

small band of elements around the interface, it is important to see 

the accuracy of the curvature evaluation within this region. 

Figs. 4 and 5 present scatter plots of κR (curvature times ra- 

dius) evaluated at all quadrature points of the FEA and IGA meshes, 

respectively, in the region | φh | < ε, where ε = 2 h is the interface 

thickness also used in the bubble-dynamics simulations presented 

in the following sections. The IGA results are much closer to the 

analytical solution than their lower-order FEA counterparts. Note 

that IGA uses 3 × 3 × 3 quadrature points per cell, compared 

with 2 × 2 × 2 for FEA, and therefore the total number of 

quadrature points in the interfacial region is larger for IGA. 

Curvature error vs. mesh size is plotted in Fig. 6 . The error is 

quantified as 

e = 

√ 
∑ N p 

ip=1 
(κip R ip − 2) 2 

N p 
, (32) 

Fig. 4. Curvature evaluation using FEA: κR at quadrature points indexed by ip 

within the region of | φh | < 2 h . 

where N p is the number of quadrature points that fall within the 

region defined by | φh | < 2 h . The convergence rate of the L 2 norm 

error is roughly 3 for the quadratic NURBS approximation and 2 

for the linear FEM approximation, and the convergence rate of the 

L ∞ norm error is roughly 2 for the quadratic NURBS approximation 

and 1 for the linear FEM approximation. 

4.3. Static spherical bubble: pressure difference and parasitic currents 

To test the formulation of the surface tension, a static prob- 

lem with an interfacial pressure jump is investigated. A spherical 

bubble of one phase is immersed in a quiescent fluid of another 

phase. In the absence of viscosity and gravity, the surface tension is 

balanced by the pressure difference across the interface, resulting 

in a static bubble. The pressure difference is given by the Young–
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Fig. 5. Curvature evaluation using IGA: κR at quadrature points indexed by ip 

within the region of | φh | < 2 h . 

Laplace equation [43] : 

	p = σs κ = σs 
2 

R 
, (33) 

where R is the bubble radius. In the case of a static bubble, the 

flow velocities should be exactly zero. However, if the surface ten- 

sion coefficient is high, and if the representation of the surface 

forces on the grid has any significant anisotropy, unphysical veloci- 

ties near the interface are often observed. These unphysical veloci- 

ties, sometimes called “parasitic currents” [89] , depend strongly on 

many factors such as grid resolution, viscosity, and surface tension. 

In the present work, the computational domain is a cube of size 

8 ×8 ×8 meshed uniformly with elements of length h = 0 . 2 . The 

bubble of radius R = 2 is positioned at the center of the domain. 

We set the surface tension coefficient σs = 73 and the density ra- 

tio 
ρ2 
ρ1 

= 10 , which are also used in [90] . Time step 	t = 10 −3 . A 

no-penetration boundary condition is applied at all surfaces of the 

computational domain. Note that the viscosity is zero in this sim- 

ulation. 

The magnitude of unphysical currents after 1 and 50 time steps 

is reported in Table 2 , and compared with those presented in Fran- 

cois et al. [90] and Williams et al. [91] , which use the same prob- 

lem set-up. Although both FEA and IGA simulations yield spurious 

velocities, these velocities are orders of magnitude smaller than re- 

ported by Francois and Williams, using a balanced force algorithm 

with numerically computed curvature. This difference can likely be 

attributed to multiple factors, including the accuracy of the curva- 

Table 2 

Static spherical bubble. Maximum velocity 

| u | max after one and 50 time steps for a 3D 

inviscid static bubble computed using different 

methods. “Francois I” are the results of the 

balanced-force algorithm with convolution [90] . 

“Francois II” are the results of the balanced- 

force algorithm using a height function [90] . 

“BKZ” are the results of the original CSF paper 

of Brackbill et al. [43] . “Williams I” are the 

results using convolved curvatures and a step 

delta function [91] . “Williams II” are the results 

using finite-difference normals and a parabolic 

delta function [91] . 

Methods t = 	t t = 50 	t 

Francois I 4 . 87 × 10 −3 1 . 63 × 10 −1 

Francois II 4 . 02 × 10 −3 4 . 02 × 10 −2 

BKZ 3 . 49 × 10 −1 2.55 ×10 0 

Williams I 1 . 03 × 10 −1 8 . 46 × 10 −1 

Williams II 8 . 55 × 10 −2 3 . 86 × 10 −1 

FEA (present) 2 × 10 −5 3 . 6 × 10 −4 

IGA (present) 6 × 10 −5 2 . 92 × 10 −3 

ture calculation along with the fact that we utilize a fully-coupled 

velocity-pressure formulation, as opposed to the segregated pres- 

sure projection formulation used in previous work. Several previ- 

ous investigations in [90,92–94] indicate that the magnitude of un- 

physical currents of this static bubble test case can be reduced to 

machine precision using balanced-force algorithms, provided that 

the exact mean curvature is hard coded. In our work, we do not 

use a balanced-force algorithm, and the numerically computed cur- 

vature is used, thus the magnitude does not go to machine preci- 

sion but still remains quite small. The conclusion is that our for- 

mulation, combining RBVMS with a level-set representation, gives 

residual velocities that compare favorably with other methods, in- 

cluding balanced force formulations with numerically computed 

curvature. It is surprising that the residual velocities are smaller 

for FEM than for IGA; this might be attributable to cancellation 

of errors, or to additional damping from the RBVMS stabilization 

terms. Below, we show that using IGA can significantly improve 

the accuracy of the pressure difference. 

Refinement studies in FEM and IGA are performed using the 

coarse mesh with h = 0 . 4 , medium mesh with h = 0 . 2 , and fine 

mesh with h = 0 . 1 . The computed capillary pressure difference 

across the interface for all the cases is summarized in Table 3 . 

Pressure contours on the plane corresponding to z = 4 for the IGA 

simulation on a fine mesh are shown in Fig. 7 . Pressure along a 

symmetry line for the IGA and FEA simulations is plotted in Fig. 8 . 

The pressure results show no oscillation, illustrating the robustness 

Fig. 6. Curvature error convergence rate of FEA and IGA. Left: L 2 norm of error. Right: L ∞ norm of error. 
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Table 3 

Static spherical bubble. Computed 

pressure difference across the bubble 

interface. Note that the exact solu- 

tion is 73 for this case. 

IGA FEA 

Fine mesh 72.87 73.65 

Medium mesh 72.21 74.39 

Coarse mesh 71.63 76.93 

Fig. 7. Static spherical bubble. Pressure contours on a planar cut at z = 4 for the 

IGA simulation. 

Fig. 8. Static spherical bubble. Pressure along the line from (4,4,0) to (4,4,8) for all 

cases. Top: IGA results; Bottom: FEA results. 

of the RBVMS formulation, and exhibit convergence to a discontin- 

uous profile under with mesh refinement. 

4.4. Single rising bubble 

In this section, the proposed formulation is used to simulate the 

problem of a single bubble rising in a quiescent viscous liquid. In 

what follows, properties with subscripts “1” and “2” are associated 

with the surrounding liquid and the fluid inside the bubble, re- 

Fig. 9. Single rising bubble. Problem domain and setup. 

Fig. 10. Single rising bubble. Case B. Top: Time history of bubble-rising speed; Bot- 

tom: Time history of relative mass error. 

spectively. Many experiments have been performed (see, e.g., [95] ) 

investigating the shapes and rise velocities of bubbles in quiescent, 

viscous liquids. It has been found that the bubble dynamics can 

be characterized by choosing an appropriate set of dimensionless 

numbers. Among a large variety of options, in the present work, 

we use the following dimensionless Archimedes ( Ar ), Bond ( Bo ), 

and Reynolds ( Re ) numbers defined as 

Ar = 
ρ1 g 

1 / 2 D 3 / 2 

μ1 
, (34) 

Bo = 
ρ1 gD 2 

σ
, (35) 

Re = 
ρ1 W t D 

μ1 
, (36) 
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Fig. 11. Single rising bubble. Terminal bubble shape computed using different meshes and discretizations and compared to experimentally-captured images from [95] . 

Table 4 

Single rising bubble. Simulation 

cases for different Bond and 

Archimedes numbers. 

Cases D Bo Ar 

A 1 17.7 1.671 

B 1 243 15.24 

C 1 339 30.83 

Table 5 

Single rising bubble. Element size in the refined region and total 

number of elements employed in the computations. 

Coarse mesh Medium mesh Fine mesh 

h 1/20 1/30 1/40 

No. of elements 415, 0 0 0 1, 4 4 4, 0 0 0 3, 474, 936 

where D is the bubble diameter, g is the gravitational-acceleration 

magnitude, and W t is the bubble terminal speed. Ar reflects the ra- 

tio of buoyancy to viscous force, Bo the ratio of buoyancy to surface 

tension force, and Re the ratio of inertial to viscous force. In order 

to mimic a realistic liquid-gas system (e.g., water and air), the fluid 

density and viscosity ratios are set to 
ρ1 
ρ2 

= 1 , 0 0 0 and 
μ1 
μ2 

= 100 , 

respectively. 

The problem setup is shown in Fig. 9 . The domain is a box with 

dimensions 12 ×12 ×24. At the initial time a bubble with diame- 

ter D = 1 is placed at the location (6, 6, 10.5). Based on previous 

studies [10,31] , the domain is large enough to avoid the effect of 

side walls. A no-penetration boundary condition is applied at all 

surfaces of the computational domain. The region [5.2, 6.8] × [5.2, 

6.8] × [9, 15.5] is meshed with small, uniform elements to better 

capture the bubble deformation, while the element size is gradu- 

ally increased toward the boundaries of the computational domain. 

Three cases that are commonly used for validation of multi- 

phase flow numerical formulations are simulated using the dimen- 

sionless numbers summarized in Table 4 . Case B from the table 

is chosen for the mesh refinement study. Both IGA and FEA simu- 

lations are performed using three different meshes. The element 

length in the refined region and total number of elements are 

shown in Table 5 . The time history of bubble rising speed and 

Table 6 

Single rising bubble. Terminal Re for case B computed using different 

meshes and discretizations. 

Coarse mesh Medium mesh Fine mesh Experiment 

IGA 7.4206 7.5763 7.5862 7.77 

FEM 7.0313 7.1554 7.1846 

Table 7 

Single rising bubble. All cases computed on the finest IGA mesh. Terminal Re . 

Cases Present Experiment Hua et al. [10] Amaya-Bower and Lee [21] 

A 0.2593 0.232 0.182 

B 7.5862 7.77 7.605 6.2 

C 18.1717 18.3 17.758 15.2 

relative mass error are plotted in Fig. 10 . The terminal Reynolds 

number is reported in Table 6 , while the terminal bubble shape 

is shown in Fig. 11 . The convergence trend is clearly observed for 

both FEA and IGA simulations in terms of bubble-rising speed, as 

well as terminal Re and shape. In Fig. 11 , comparing the medium 

and fine FEM results indicates that the final bubble shape has not 

yet converged for the FEM solution, which may explain the dis- 

crepancy between the IGA and FEM terminal velocities seen in 

Table 6 . Mass balance is well satisfied for all cases, with a rela- 

tive mass error of O (10 −7 ) . The difference in the bubble shape be- 

tween the medium and fine mesh is small, which is also consistent 

with the terminal Re number results. In this case, IGA again out- 

performs FEA: The terminal Re in the IGA computations is closer 

to the experimental value, and the terminal bubble shape in the 

IGA computations is closer to that in the experimentally-captured 

image (see Fig. 11 ). 

The rest of the cases are computed using IGA on the finest 

mesh. Fig. 12 shows the time history of the bubble-rising speed 

and relative mass errors for all cases. Table 7 and Fig. 13 show 

the terminal Re and bubble shapes, respectively. For case A, sur- 

face tension dominates, so the bubble spherical shape is preserved 

very well, resulting in the smallest Re among the cases simu- 

lated. For case C, buoyancy plays a more important role than sur- 

face tension, resulting in the largest bubble deformation and high- 

est Re among the cases simulated. Experimental results from [95] , 
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Fig. 12. Single rising bubble. All cases computed on the finest IGA mesh. Top: Time 

history of bubble-rising speed; Bottom: Time history of relative mass error. 

and computational results from Hua et al. [10] using a front- 

tracking method and Amaya-Bower and Lee [21] using the Lattice–

Boltzmann method with a diffuse interface approach, are reported 

for comparison in Table 7 . While for case B the terminal Re of Hua 

et al. [10] is slightly closer to the experimental value than that pre- 

dicted in the present work, in the remaining cases, the IGA results 

are closest to the experimental data. 

Fig. 14. Bubble merging and interaction with free surface. Initial configuration of 

the bubbles and free-surface. 

4.5. Bubble merging and interaction with free surface 

To demonstrate a capability of the proposed methodology 

to handle complex multi-phase flow scenarios, we simulate 

buoyancy-driven merging of two bubbles of the same density in 

the presence of a free surface. The initial positions of the bubbles 

and the free surface are shown in Fig. 14 . The larger bubble with a 

diameter D b = 1 is centered at (6,6,10.5), while the smaller bubble 

with a diameter D s = 0 . 8 is centered at (6,6,11.6). The free-surface, 

which is initially flat, is located at z = 12 . 4 . The density and viscos- 

ity ratios are set to 
ρ1 
ρ2 

= 10 0 0 and 
μ1 
μ2 

= 100 , respectively. The Ar 

and Bo based on the larger bubble are 15.24 and 243, respectively. 

Fig. 13. Single rising bubble. Terminal bubble shape for all cases. (a) Experimental results from [95] ; (b) Fine-mesh IGA simulations; (c) Front-tracking method simulations 

from [10] ; (d) Lattice–Boltzmann with diffuse interface simulations from [21] . 
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Fig. 15. Bubble merging and interaction with free surface. Left: Pressure contour prior to merging on a planar cut at y = 6 ; Right: Velocity magnitude contour and velocity 

streamlines on a planar cut at y = 6 . 

Fig. 16. Bubble merging and interaction with free surface. Snapshots of the system at (a) t = 0 . 25 ; (b) t = 0 . 5 ; (c) t = 0 . 75 ; (d) t = 1 ; (e) t = 3 . 49 . 
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The finest IGA mesh from the previous section is also employed in 

this example. A no-penetration boundary condition is applied at all 

surfaces of the computational domain. 

Fig. 15 shows a snapshot of the bubble deformed shapes super- 

posed with the pressure contours, the flow speed contours and ve- 

locity streamlines on a planar cut at x = 6 at an instant when the 

bubbles are about to merge. Fig. 16 illustrates the merging process 

and its interaction with the free surface. The larger bubble travels 

in the wake of the smaller one, and rises faster than the smaller 

bubble. A lower pressure region is observed between the two bub- 

bles in Fig. 15 . As time evolves, the upward-moving jet produced 

by the lower bubble not only affects the upper bubble transients, 

but also dictates the shape of the lower bubble. When the larger 

bubble reaches the smaller one, the two bubbles merge. The now 

single, merged bubble deforms even more as it gets closer to the 

free surface, and begins displacing the free surface upwards. The 

liquid sheet between the bubble and free surface thins and even- 

tually breaks producing complex free-surface deformation patterns. 

Eventually, as the coupled system reaches a steady state, the free 

surface settles back into a flat configuration. 

5. Conclusions 

In this paper, a new formulation for multi-phase flows is de- 

veloped. The formulation is based on the level-set technique and 

incorporates surface tension. RBVMS is used as the core fluid me- 

chanics formulation. Both standard low-order FEA and NURBS- 

based IGA are employed to discretize the formulation in space. The 

use of smooth NURBS functions enables a direct computation of 

curvature, and as a result, of the surface tension term. In contrast, 

linear FEA requires an additional projection step to calculate the 

curvature. numerical evidence is presented, including mesh refine- 

ment studies and validation using experimental data, which sup- 

ports superior performance of the IGA approach. The good perfor- 

mance of IGA is mainly due to the higher-order accuracy of the 

technique, and the ability to directly and accurately compute, using 

smooth NURBS functions, the curvature term, which is a key in- 

gredient the surface tension formulation. In addition, the proposed 

formulation significantly reduces the so-called “parasitic currents”

that are present in the classical numerical formulations of multi- 

phase flows, using numerical computed mean curvature. There is 

extra computational cost for IGA compared with FEM when using 

the same number of points, for two reasons: IGA requires more 

quadrature points for accurate integration, and the support of the 

IGA basis functions is larger. But as we have shown, a coarse IGA 

mesh can produce the same and occasionally superior accuracy 

compared to FEM on a fine mesh. The last numerical example il- 

lustrates the power of the proposed methodology on a challenging 

example involving two bubbles merging in the presence of a de- 

forming free surface. 
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