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Abstract

Many important industrial processes, such as additive manufacturing, involve rapid mass, flow and heat transport between

gas, liquid and solid phases. Various associated challenges, such as the large density ratio between gas and condensed phases,

make accurate, robust thermal multi-phase flow simulations of these processes very difficult. In order to address some of the

associated challenges, a computational framework for thermal multi-phase flows is developed based on the finite element method

(FEM). A unified model for thermal multi-phase flows similar to the models widely used in the manufacturing community is

adopted. The combination of the level-set method and residual-based variational multi-scale formulation (RBVMS) is used to

solve the governing equations of thermal multi-phase flows. Phase transitions between solid and liquid phases, i.e., melting and

solidification, are considered. Interfacial forces, including surface tension and Marangoni stress, are taken into account and handled

by a density-scaled continuum surface force model. A robust fully coupled solution strategy is adopted to handle various numerical

difficulties associated with thermal multi-phase flow simulations, and implemented by means of a matrix-free technique using

Flexible GMRES. The mathematical formulation and its algorithmic implementation are described in detail. Four numerical

test cases are presented to demonstrate the capability of the proposed formulation. The first case is a benchmark example of

solidification of aluminum in a graphite mold, the second case is a thermo-capillary droplet migration problem, the third case is a

spot laser melting problem, and the fourth case is the melting of metal with an interior gas bubble. The computational results are

compared with analytical, experimental and simulation data from other researchers, with good agreement in cases where such data

is available.

c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Thermal multi-phase flows occur in many traditional manufacturing processes, such as welding and casting, as

well as additive manufacturing processes, such as selective laser melting [1–5]. Although there are several numerical

methods available for the simulations of single phase thermal fluid flows in the literature [6–11], accurate simulation
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Fig. 1. A 2-D sketch of the melting process, showing the melting pool and the heat affected zone.

and solution strategies of these thermal multi-phase flows that can capture complex multi-physical phenomena in

manufacturing processes with large property ratios, still remain a challenging problem.

From the pure fluid mechanics side, the challenges stem from the large density and viscosity ratios between

different phases of fluid, pressure discontinuity across the interface, topological interface change, and effects of

surface tension and its dependence on temperature. The last of these becomes significantly important for small

spatial scales and in the presence of highly curved interfaces and large temperature gradients. In recent decades, a

number of techniques have been developed to simulate isothermal multi-phase flow problems. These can be classified

into two categories based on how the motion of the interface between different phases is handled: interface-tracking

and interface-capturing methods [12,13]. The interface-tracking approaches, including front-tracking methods [14],

boundary-integral methods [15], arbitrary Lagrangian–Eulerian (ALE) methods [16], and space–time finite-element

methods [17,18], use a deformable mesh that conforms to the moving interface. The main advantage of interface-

tracking methods is their ability to achieve high per-degree-of-freedom accuracy near the interfaces. However, when

the interfaces form a singularity or change topology, interface-tracking methods become challenging to apply in

practice, and require the development of special techniques (see, e.g., [19]). Automatic merging or break-up of

interfaces are especially challenging for interface-tracking techniques, which makes 3D multi-phase flow problems

notoriously more difficult to solve using this class of methods. On the other hand, interface-capturing methods, such

as the volume-of-fluid (VOF) method [20], phase-field methods [21–25], diffuse-interface methods [26,27], front-

capturing methods [28], and level set methods [29–33], utilize an auxiliary function defined on the problem domain

to describe the interface, and present a practically simpler alternative to the interface-tracking methods. Although

interface-capturing methods typically require higher mesh resolution to compensate for lower interface accuracy, these

methods are very robust and relatively simple to implement in practice. Because the changes in interface topology do

not present a conceptual difficulty for these methods, they have been applied to a broad range of problems including

bubble dynamics [34–36], jet atomization [37], and free-surface flows [38–41]. Among these methods, the level set

technique is especially popular because of its ability to represent complex interfaces using a smooth implicit function.

In principle, this function can be used not only to separate the different fluid phases at their interface, but also to

compute the interface normal and curvature that are needed to incorporate the interfacial forces, such as surface

tension, in the multi-phase flow model.

As discussed above, great progress has been made in single phase thermal fluid flow and isothermal multi-phase

flow simulations in recent years. However thermal multi-phase flows simulations for manufacturing processes are

still very difficult. The coupling between thermodynamics and fluid dynamics increases the complexity of thermal

multi-phase flow simulations as it involves the interplay of aspects, such as flow, mass, and heat transport, melting,

solidification, and interface deformation. These interacting phenomena are illustrated by a typical melting problem

shown in Fig. 1. In Fig. 1, a non-uniform heat influx (e.g. from a laser source) melts the solid workpiece into a liquid

pool and creates a thermal gradient at the free surface. The dependence of surface tension on temperature gradient

thus results in a significant spatial variation of surface tension, manifested in Marangoni stresses at the free surface,
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which in turn drive liquid flow in the melt pool. This Marangoni-driven flow can have a profound impact on heat

transfer in the melt pool as well as the shape of the melt pool.

In this paper, we aim to provide a robust and stable thermal multi-phase flow simulation tool for manufacturing

processes with complex geometry. Such capability is highly desirable but still lacking in the industrial and academic

communities. We propose a FEM-based computational multi-phase flows formulation to model the complex gas–

liquid–solid systems with large property ratios between different phases. The governing equations are based on a

unified model for thermal fluid/solid flows, which is similar to models widely used in the manufacturing community

for welding, casting, and additive manufacturing [4,5,42–48].

The level set method is adopted in our model to distinguish the gas and condensed phases. The residual-

based variational multiscale (RBVMS) formulation [49] is employed to solve the coupled Navier–Stokes, level

set convection and energy conservation equations. RBVMS, as one of the key techniques in the formulation, was

proposed in [49] for the simulation of incompressible turbulent flows. Since then, several research contributions

[50–58] have shown that RBVMS yields accurate solutions on meshes with large-eddy simulation (LES)-level

resolution that converge rapidly to the direct numerical simulation (DNS) results. The combination of the level set

method and RBVMS has been shown to be an effective method for accurate and robust simulation of free surface

flows [56] and bubble dynamics [33]. This effectiveness is attributed to the flexibility of RBVMS with respect to

different discretizations, such as FEM [56] or iso-geometric analysis (IGA) [56], as well as to the stability and

consistency the method brings for a wide range of flow regimes, both laminar and turbulent.

Phase transition between solid and liquid is considered in this present work. Surface tension and Marangoni effects

are included in the formulation, and are handled through the continuum surface force (CSF) model of Brackbill

et al. [59]. To achieve better performance of multi-phase simulation, a re-distancing approach for the level set

field [40,41,56] is used in this paper. The above-mentioned challenges result in many additional, non-smooth terms

in the governing equations, such as surface tension terms in the momentum equations and a latent heat term in the

energy conservation equation, and highly variable phase-dependent material properties. This makes the governing

equations difficult to solve by traditional loosely coupled approaches, especially for realistic industrial applications.

Several previous efforts indicated that to achieve robust and stable simulation for coupled problems involving high

property ratios between different physical domains, such as fluid structure interaction for hydrofoils [60] and floating

wind turbines [39], cardiovascular simulations [61], and free surface modeling for ship hydrodynamics [41], strong

solution coupling strategies are required [62]. For gas–liquid–solid systems common in manufacturing processes, the

density ratio between condensed and gas phases may be of order 104. In order to achieve better robustness and stability,

we propose a fully coupled solution strategy using a Flexible GMRES solver. A fully coupled strategy requires the

off-diagonal block entries in the Jacobian matrix in the coupled linear system. To avoid assembling these off-diagonal

block entries, which may not only be complex to derive and compute but may also increase the condition number

of the Jacobian matrix because of the different scales between different variables of this multi-physics problem, we

implement a matrix-free technique using a Flexible GMRES solver. Such a combination produces an effective solution

strategy for the thermal multi-phase flows with great robustness, accuracy and efficiency. To the best knowledge of

the authors, this is the first FEM-based computational thermal multi-phase formulation that captures the dynamics of

both gas phase and condensed phases, interface deformation, surface tension, and phase transition simultaneously.

The paper is outlined as follows. The governing equations, including the level set method, the Navier–Stokes

equations and the energy conservation equation are presented in Section 2. Section 3 presents the full semi-discrete

formulation of thermal multi-phase flows. Re-distancing and density-scaled continuum surface force model are also

presented in this section. The time integration algorithm is presented in Section 4. The fully coupled approach using

Flexible GMRES solver is introduced in Section 5. In Section 6, we present four computations using the framework

developed. Conclusions are drawn in Section 7.

2. Governing equations of thermal multi-phase fluid flow for gas–liquid–solid systems at the continuous level

The computational formulation in the present work is based on a unified model for thermal fluid flows that is similar

to models widely used in the manufacturing community for welding and casting analysis [4,5,42–48]. In this model,

the entire gas–liquid–solid system is governed by a single set of fluid mechanics equations with different material

properties for different phases, where the solid is approximated as a fluid with very high viscosity to constrain non-

rigid body deformation to be negligible. Surface tension (capillary force), Marangoni effect (thermo-capillary force),

solid/liquid transition, and buoyancy force, are included in the governing equations. In the present work, solid stress
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Fig. 2. A gas–liquid–solid system.

and recoil pressure of evaporation are not considered, and the same density is used for the solid and liquid phases, so

that no volume change is caused by melting or solidification. With these assumptions, the governing equations of the

thermal multi-phase fluid flow for gas–liquid–solid systems are presented as follows.

2.1. Level set method

Let Ω denote the spatial domain occupied by a gas–liquid–solid system, depicted in Fig. 2. The interface between

the gas phase and liquid/solid phase is denoted by Γgls . In the level set method, the interface Γgls is represented

implicitly by introducing a scalar level set field φ(x, t) and setting

Γgls = {x ∈ Ω | φ(x, t) = 0}. (1)

That is, the gas phase and liquid/solid phase are separated by the zero level set of φ. In the gas phase, φ takes

negative value, while in the solid and liquid phase, φ takes positive value. The level set field moves with the material,

thus the evolution of the level set field is governed by the following convection equation

∂φ

∂t
+ u · ∇φ = 0, (2)

where u is the flow velocity.

A given material property χ (such as density, viscosity, specific heat capacity, and heat conductivity, etc.) at each

point of the domain is computed using the following formula:

χ (φ, fL ) = χg[1 − H (φ)] + [ fLχl + (1 − fL )χs] H (φ), (3)

where χg , χl and χs are the corresponding specific material property for gas, liquid and solid phase, respectively, fL

is the liquid fraction, the model for which will be described below, and H (φ) is the Heaviside function, defined as

H (φ) =

⎧

⎨

⎩

0 if φ < 0

1/2 if φ = 0

1 if φ > 0.

(4)

2.2. Navier–Stokes equations

Since densities of the liquid and solid phases are equal in the present work, density is a function only of the level

set field. Furthermore, by Eq. (2), the material derivative of the density is zero, and the incompressible form of the
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Navier–Stokes equation describes the combined system:

ρ(φ)

(

∂u

∂t
+ u · ∇u

)

− ∇ · σ − ρg − fgls = 0 (5)

∇ · u = 0, (6)

where u is the fluid velocity, ρ is the density, g is the gravitational acceleration vector, and σ (u, p) is the Cauchy

stress, defined as

σ (u, p) = −pI + 2µ(φ, fL )∇su, (7)

where p is the pressure, µ is the dynamic viscosity, and I is the identity matrix, ∇s is the symmetric gradient operator.

Finally, fgls is the interfacial force on the gas–liquid interface, which will be defined later.

To inhibit fluid motion in the solid phase, there are two popular approaches widely used in manufacturing

simulations. The first option is to use a very large viscosity for the solid phase [4,5]. The second is to add another

Darcy force term −Dcu, based on the Carman–Kozeny model [63] to the left hand side of the momentum equation,

where Dc is a large drag coefficient (some applications using this model can be found in [47,48]). In the present work,

the first approach is employed.

2.3. Energy equation

The conservation equation of the enthalpy ρ(cpT + fL L), incorporating fluid flow and heat conduction, is given as

ρ(φ)cp(φ, fL )(
∂T

∂t
+ u · ∇T ) + ρ(φ)L(

∂ fL

∂t
+ u · ∇ fL ) − ∇ · (κ(φ, fL )∇T )− QT = 0, (8)

where T is the temperature, C p is the specific heat capacity, L is the latent heat during phase change, κ is the thermal

conductivity and QT is an energy source term. In this paper, we assume that the liquid fraction follows a linear profile

in the melting interval [64], thus the functional form of fL is

fL =

⎧

⎪

⎨

⎪

⎩

0 if T ⩽ Ts

T − Ts

Tl − Ts

if Ts < T < Tl

1 if T ⩾ Tl

(9)

where Ts and Tl are the solidus and liquidus temperatures, respectively.

The above equations, together with suitably chosen initial and boundary conditions, constitute the thermal multi-

phase flow formulation for gas–liquid–solid systems at the continuous level.

3. Numerical formulation

3.1. RBVMS

To numerically solve the coupled Navier–Stokes, level set and energy conservation equations, a residual-

based variational multi-scale formulation (RBVMS) is employed. RBVMS relies on a scale decomposition of the

physical variables (velocity, pressure, level set and temperature fields) combined with variational projections. This

decomposition involving the large scales (those explicitly captured by the mesh) and the fine scales (subgrid scales,

which need to be modeled) can be written

u = uh + u′ (10)

p = ph + p′ (11)

φ = φh + φ′ (12)

T = T h + T ′. (13)

Let Vh denote the set of discrete trial functions for the velocity, pressure, level set and temperature unknowns

{uh, ph, φh, T h}, and let Wh denote the set of discrete test functions for the linear-momentum, continuity, level set and
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energy conservation equations {wh, qh, ηh, ψh}. The formulation for thermal multi-phase flows is stated as follows:

Find {uh, ph, φh, T h} ∈ Vh , such that ∀{wh, qh, ηh, ψh} ∈ Wh ,
∫

Ω

wh · ρ
(

∂uh

∂t
+ uh · ∇uh − g

)

dΩ −
∫

Ω

wh · fgls dΩ

+
∫

Ω

∇wh : σ (uh, ph) dΩ −
∫

Γh

wh · h dΓ +
∫

Ω

qh
∇ · uh dΩ

+
∫

Ω

ηh

(

∂φh

∂t
+ uh · ∇φh

)

dΩ

+
∫

Ω

ψhρC p

(

∂T h

∂t
+ uh · ∇T h

)

dΩ +
∫

Ω

ψhρL

(

∂ f h
L

∂t
+ uh · ∇ f h

L

)

dΩ

+
∫

Ω

∇ψhκ · ∇T h dΩ −
∫

Ω

ψh QT dΩ −
∫

Γh t

ψhhT dΓ

−
nel
∑

e=1

∫

Ωe

(

ρuh · ∇wh + ∇qh
)

· u′(uh, ph) dΩ

−
nel
∑

e=1

∫

Ωe

∇ · wh p′(uh) dΩ +
nel
∑

e=1

∫

Ωe

ρwh · [u′(uh, ph) · ∇uh] dΩ

−
nel
∑

e=1

∫

Ωe

ρ∇wh : [u′(uh, ph)] ⊗ [u′(uh, ph)] dΩ

−
nel
∑

e=1

∫

Ωe

uh · ∇ηhφ′(uh, φh) dΩ

−
nel
∑

e=1

∫

Ωe

ρC puh · ∇ψh T ′(uh, T h) dΩ = 0. (14)

In the above equation, the first five lines correspond to the standard Galerkin formulation of Navier–Stokes, level set

and energy conservation equations, while the rest correspond to the fine scale terms in the multi-scale expansion. In

the fine scale terms, nel denotes the number elements, h denotes the applied traction, hT denotes the applied heat flux,

and u′(uh, ph), p′(uh), φ′(φh,uh) and T ′(φh, T h) are fine scales of fluid velocity, pressure, level set and temperature

fields. Similar to the RBVMS in [49], the fine scales are modeled to be proportional to the residuals of the strong form

equations, given by

u′(uh, ph) = −
τM

ρ

(

ρ
∂uh

∂t
+ ρuh · ∇uh − ∇ · σ (uh, ph) − ρg − fgls

)

(15)

p′(uh) = −τCρ∇ · uh (16)

φ′(φh,uh) = −τφ
(

∂φh

∂t
+ uh · ∇φh

)

(17)

T ′(φh, T h) = −
τT

ρcp

[

ρcp

(

∂T h

∂t
+ uh · ∇T h

)

+ ρL

(

∂ f h
L

∂t
+ uh · ∇ f h

L

)

− ∇ · (κ∇T h) − QT

]

, (18)

where τM , τC , τφ and τT are the stabilization parameters [65–71]. In the present work, these parameters are chosen

as

τM =
(

4

∆t2
+ uh · Guh + C I

(

µ

ρ

)2

G : G

)−1/2

, (19)

τC =
1

tr (G)τM

, (20)
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τφ =
(

4

∆t2
+ uh · Guh

)−1/2

, (21)

τT =
(

4

∆t2
+ uh · Guh + C I

(

κ

ρcp

)2

G : G

)−1/2

, (22)

where C I is a dimensionless positive constant derived from an element-wise inverse estimate [72], G is the element

metric tensor defined by G =
(

∂ξ

∂x

)T
∂ξ

∂x
, and

∂ξ

∂x
is the inverse of the Jacobian of the transformation between the

physical element and its parametric counterpart [33]. Note that the above residuals and stabilization parameters of

Eq. (15) through Eq. (22) are evaluated at the quadrature points. The second derivatives of coarse scale variables that

appear in (15) and (18) can be evaluated directly for higher-order shape functions, such as those used in IGA as in

our previous work for bubble dynamics [33]. For tri-linear finite element shape functions, second derivatives may be

obtained from a L2 projection, or may be assumed small on element interiors and neglected. The latter approach is

used in the current work.

For a detailed presentation of the RBVMS methodology, readers are referred to the original development in [49],

and its applications to single-phase turbulent flows [50,51], free-surface flows [38,39] and stratified flows [56]. It

should be noted that while RBVMS was originally developed for large eddy simulations (LES) of turbulent flows, it

is also an accurate and robust methodology for stabilized simulations of laminar incompressible flows. In this setting,

RBVMS provides a unified stabilization approach in lieu of the combination of upwinding and pressure stabilization

strategies that would otherwise be required for a finite element discretization of the coupled equations.

3.2. Re-distancing the level set field

At the discrete level, in place of its sharp counterpart given by Eq. (4), a regularized version of the Heaviside

function Hϵ is employed:

Hϵ(φ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if φ < −ϵ
1

2

(

1 +
φ

ϵ
+

1

π
sin

(

φπ

ϵ

))

if |φ| ≤ ϵ

1 if φ > ϵ,

(23)

where ϵ ∼ O(h) defines the local width of the interface between the gas phase and liquid/solid phase. As the mesh is

refined, ϵ → 0.

Regularization of the Heaviside function used in Eq. (3) puts a requirement on the level set function to satisfy a

so-called signed-distance property. To enforce this requirement, we “re-distance” φ after every physical time step by

replacing it with φd , where the latter satisfies the Eikonal equation,

⏐

⏐∇φd

⏐

⏐ = 1 in Ω , (24)

and the interior constraint,

φd = φ = 0 on Γt , (25)

which gives the correct position of the interface between the gas phase and liquid/solid phase at all times.

Following the work in [30,38–41,73,74], we introduce a “pseudo-time” variable t̃ and re-state the above problem

as: Given φ from Eq. (2), find φd that satisfies

∂φd

∂ t̃
+ sgn(φ)(

⏐

⏐∇φd

⏐

⏐− 1) = 0 in Ω ,

φd = φ = 0 on Γt ,

φd (x, 0) = φ(x),

(26)

where sgn(φ) is the sign function.
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In order to satisfy the above equations, the following weak formulation at the discrete level is adopted: Given φh
n+1

(level set function at the end of the time step), find φh
d , such that ∀ηh

d ,
∫

Ω

ηh
d

(

∂φh
d

∂ t̃
+ a · ∇φh

d − Sϵ(φ
h
n+1)

)

dΩ

+
∫

Ω

τφd
a · ∇ηh

d

(

∂φh
d

∂ t̃
+ a · ∇φh

d − Sϵ(φ
h
n+1)

)

dΩ

+
∫

Ω

ηh
dλpen

d Hϵ(φ
h)

dφh
(φh

d − φh
n+1) dΩ = 0, (27)

where Sϵ(φ) = 2Hϵ(φ) − 1 is the regularized sign function, a = Sϵ(φ
h
n+1)∇φh

d

/

⏐

⏐∇φh
d

⏐

⏐ is the effective “convective”

velocity, λpen is a penalty parameter, and τφd
is the stabilization parameter given by

τφd
=
(

4

∆t̃2
+ a · Ga

)−1/2

. (28)

The formulation given by Eq. (27) is essentially a stabilized method for the pseudo-time-dependent Eikonal equation,

with additional penalty terms employed to satisfy the interior constraint given by Eq. (25).

The Backward Euler method is employed to integrate Eq. (27) in pseudo-time at each physical time step, with φh
d

set to φh
n+1 at t̃ = 0. Only a few pseudo-time steps are taken for efficiency, and a new level set field φh

d is generated

with the zero level set coincident with that of φh . The size of the pseudo-time step is chosen based on the convective

CFL condition for the Eikonal equation, and is computed as

∆t̃ = 2γ min
x∈Ωt

(a · Ga)−1/2, (29)

where γ is the Courant number taken to be O(1).

Re-distancing of the level set field may violate mass balance. To correct this, the global mass restoration method,

which is proposed in [75], can be used, provided that the same density are used for both liquid and solid phase. For

more details of the approach, readers are referred to [75] as well as additional Refs. [33,38].

3.3. Interfacial forces

The continuum surface force (CSF) model [59] is used to incorporate interfacial forces into the thermal multi-phase

flow formulation. For this, fgls in Eq. (5) is given by

fgls =
{

σsκsn +
dσs

dT
[∇T − (∇T · n)n]

}

δ, (30)

where the surface tension coefficient is denoted by σs , dσs

dT
is the Marangoni coefficient, and n is the unit normal vector

to the interface given by

n = −
∇φ
⏐

⏐∇φ
⏐

⏐

. (31)

In addition, in Eq. (30), κs is the mean curvature, which can be computed from the level set field as

κs = −∇ · n = −
⏐

⏐∇φ
⏐

⏐

2
tr (ψ(φ)) − ∇φTψ(φ)∇φ

⏐

⏐∇φ
⏐

⏐

3
, (32)

where ψ(φ) is the matrix of second derivatives, or the Hessian, of φ, which is calculated by a L2 projection in

the present work using linear FEM. Please note the current formulation can be incorporated with other types of

discretization, such as higher order Isogeometric Analysis (IGA) [76,77] in which Eq. (32) can be directly applied.

For the isothermal multi-phase flow simulations with surface tension using IGA and its applications to bubble rising

dynamics, readers are referred to [33].

Unlike our previous work [33], in the present work, the density-scaled CSF model, which was used in the original

CSF model paper [59] and has been proved to perform better for the cases with high density ratio in [78], is adopted
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and defined as

δ =
2ρ(φ, fL )δϵ(φ)

ρg + ρl

, (33)

where δϵ is the regularized Dirac delta function, defined as

δϵ(φ) =
d Hϵ(φ)

dφ
. (34)

4. Time integration

The generalized-α method [79] is adopted for time integration and presented as follows. Let U, U̇ and P denote

the vectors of nodal degrees-of-freedom of fluid velocity, its time derivative, and pressure, respectively. Let Φ and Φ̇

denote the vectors of nodal degrees-of-freedom of the level set function and its time derivative. Let Θ and Θ̇ denote

the vectors of nodal degrees-of-freedom of the temperature and its time derivative.

Application of the generalized-α method to the coupled thermal fluid flow formulation leads to a coupled, nonlinear

equation systems that need to be solved at every time step, namely: find Un+1, U̇n+1,Pn+1,Φn+1, Φ̇n+1,Θn+1 and

Θ̇n+1, such that,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

NM (Un+α f
, U̇n+αm ,Pn+1,Φn+α f

, Φ̇n+αm ,Θn+α f
, Θ̇n+αm ) = 0

NC (Un+α f
, U̇n+αm ,Pn+1,Φn+α f

, Φ̇n+αm ,Θn+α f
, Θ̇n+αm ) = 0

NL (Un+α f
, U̇n+αm ,Pn+1,Φn+α f

, Φ̇n+αm ,Θn+α f
, Θ̇n+αm ) = 0

NT (Un+α f
, U̇n+αm ,Pn+1,Φn+α f

, Φ̇n+αm ,Θn+α f
, Θ̇n+αm ) = 0,

(35)

where αm, α f and γ are the real-valued parameters of the generalized-α method and chosen based on the stability and

accuracy [79]. NM ,NC ,NL and NT are the vectors of nodal residuals of fluid momentum, continuity, level set, and

energy conservation equations, respectively, and the intermediate-level solutions are given by

U̇n+αm = U̇n + αm(U̇n+1 − U̇n)

Un+α f
= Un + α f (Un+1 − Un)

Φ̇n+αm = Φ̇n + αm(Φ̇n+1 − Φ̇n)

Φn+α f
= Φn + α f (Φn+1 − Φn)

Θ̇n+αm = Θ̇n + αm(Θ̇n+1 − Θ̇n)

Θn+α f
= Θn + α f (Θn+1 − Θn).

(36)

The quantities at time level tn are assumed known. In addition to the above equations, the relationships between nodal

degrees-of-freedom and their time derivatives are given by the following formulas:

Un+1 = Un + ∆t
[

(1 − γ )U̇n + γ U̇n+1

]

Φn+1 = Φn + ∆t
[

(1 − γ )Φ̇n + γ Φ̇n+1

]

Θn+1 = Θn + ∆t
[

(1 − γ )Θ̇n + γ Θ̇n+1

]

(37)

where γ is a real-valued parameter between 0 and 1. Newton’s method is employed to solve the nonlinear equation

system, which results in the following two-stage predictor–multicorrector algorithm.

Predictor stage. Initialize:

U̇0
n+1 =

γ − 1

γ
U̇n

U0
n+1 = Un

P0
n+1 = Pn
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Φ̇
0
n+1 =

γ − 1

γ
Φ̇n

Φ
0
n+1 = Φn

Θ̇
0
n+1 =

γ − 1

γ
Θ̇n

Θ
0
n+1 = Θn

(38)

where superscript ‘0’ is the initial value of the Newton-iteration counter.

Multicorrector stage. Repeat the following steps until convergence at the time level tn+1:

1. Evaluate the iterates at the intermediate time level:

U̇l
n+αm

= U̇n + αm(U̇l−1
n+1 − U̇n)

Ul
n+α f

= Un + α f (Ul−1
n+1 − Un)

Φ̇
l
n+αm

= Φ̇n + αm(Φ̇l−1
n+1 − Φ̇n)

Φ
l
n+α f

= Φn + α f (Φl−1
n+1 − Φn)

Θ̇
l
n+αm

= Θ̇n + αm(Θ̇ l−1
n+1 − Θ̇n)

Θ
l
n+α f

= Θn + α f (Θ l−1
n+1 − Θn)

(39)

where l is the Newton-iteration counter.

2. Use the intermediate values to assemble Nl
M ,Nl

C ,Nl
L and Nl

T , the discrete residuals of the momentum, continuity,

level set, energy conservation equations and the corresponding matrices of the linear equation system at lth iteration:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂NM

∂U̇n+1

⏐

⏐

⏐

⏐

l

∆U̇l
n+1 +

∂NM

∂Pn+1

⏐

⏐

⏐

⏐

l

∆Pl
n+1 +

∂NM

∂Φ̇n+1

⏐

⏐

⏐

⏐

l

∆Φ̇
l
n+1 +

∂NM

∂Θ̈n+1

⏐

⏐

⏐

⏐

l

∆Θ̇
l
n+1 = −Nl

M

∂NC

∂U̇n+1

⏐

⏐

⏐

⏐

l

∆U̇l
n+1 +

∂NC

∂Pn+1

⏐

⏐

⏐

⏐

l

∆Pl
n+1 +

∂NC

∂Φ̇n+1

⏐

⏐

⏐

⏐

l

∆Φ̇
l
n+1 +

∂NC

∂Θ̈n+1

⏐

⏐

⏐

⏐

l

∆Θ̇
l
n+1 = −Nl

C

∂NL

∂U̇n+1

⏐

⏐

⏐

⏐

l

∆U̇l
n+1 +

∂NL

∂Pn+1

⏐

⏐

⏐

⏐

l

∆Pl
n+1 +

∂NL

∂Φ̇n+1

⏐

⏐

⏐

⏐

l

∆Φ̇
l
n+1 +

∂NL

∂Θ̈n+1

⏐

⏐

⏐

⏐

l

∆Θ̇
l
n+1 = −Nl

L

∂NT

∂U̇n+1

⏐

⏐

⏐

⏐

l

∆U̇l
n+1 +

∂NT

∂Pn+1

⏐

⏐

⏐

⏐

l

∆Pl
n+1 +

∂NT

∂Φ̇n+1

⏐

⏐

⏐

⏐

l

∆Φ̇
l
n+1 +

∂NT

∂Θ̈n+1

⏐

⏐

⏐

⏐

l

∆Θ̇
l
n+1 = −Nl

T .

(40)

Note that the system is solved for time derivatives of velocity, pressure, time derivative of level set and time

derivative of temperature.

3. Update the solutions as follows:

U̇l
n+1 = U̇l−1

n+1 + ∆U̇l
n+1

Ul
n+1 = Ul−1

n+1 + γ∆t∆U̇l
n+1

Pl
n+1 = Pl−1

n+1 + ∆Pl
n+1

Φ̇
l
n+1 = Φ̇

l−1
n+1 + ∆Φ̇

l
n+1

Φ
l
n+1 = Φ

l−1
n+1 + γ∆tΦ̇l

n+1

Θ̇
l
n+1 = Θ̇

l−1
n+1 + ∆Θ̇

l
n+1

Θ
l
n+1 = Θ

l−1
n+1 + γ∆tΘ̇ l

n+1

(41)

and increase the Newton-iteration counter by one. For the generalized α method, it has been shown that second-order

accuracy in time is achieved provided that γ = 1
2

+ αm − α f , while unconditionally stability is attained provided that

αm > α f ≥ 1
2
. See [62,80] for more details.
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5. Fully coupled approach: flexible GMRES

For thermal multi-phase flows, many non-smooth terms appear in the governing equations, such as surface tension

terms in the momentum equations and a latent heat term in the energy conservation equation. In addition, in a typical

manufacturing process involving molten metal, the density ratio between the liquid/solid phase and the gas phase

is O(103)–O(104), making stable and robust thermal multi-phase simulations very challenging. In order to increase

robustness, in this work the proposed formulation is solved in a fully coupled fashion. In particular, the large linear

system given in Eq. (40) is solved at each Newton iteration as a monolithic matrix equation using the Generalized

Minimal Residual (GMRES) iterative solver. However, forming the full analytical Jacobian matrix implied by Eq. (40),

especially the off-diagonal blocks, is mathematically and computationally tedious; furthermore, the resulting matrix

may be ill-conditioned due to different scales between different variables of this multi-physics problem. In order to

avoid assembling the full Jacobian matrix while still treating the problem in a fully coupled way, a flexible-GMRES

(FGMRES) technique with block preconditioning is adopted. This approach, which belongs to the class of matrix-free

or Jacobian-free Newton–Krylov methods [81], was used by Johan et al. [82,83] for single phase flow simulations and

later extended to fluid–structure interaction and free-surface flow simulations [39,60,84–86].

The matrix problem to be solved, Eq. (40), has the form

J∆xl+1 = −N(xl) (42)

where J = ∂N/∂x is the Jacobian matrix, xl is the vector of unknowns at Newton iteration l, ∆xl+1 is the increment

to be solved, and N(xl) is the residual computed at the current iteration. The preconditioned GMRES algorithm for

solution of this matrix problem is an iterative scheme characterized by two operations that contribute the majority of

the computational work: (1) multiplication of given vectors v by the left-hand side matrix (in this case J), and (2)

repeated solution of the related matrix problem Mprew = b, where the preconditioning matrix Mpre approximates

J but leads to a matrix equation that can be solved more efficiently than the original equation. Both the matrix

multiplication and preconditioner solve operations are required once at every iteration of the GMRES algorithm.

Full details of the preconditioned GMRES algorithm can be found in [84]; here we describe the computation of these

two main operations in the flexible GMRES approach.

5.1. Matrix-free Jacobian multiplication

Multiplication of a vector v by the Jacobian matrix J(x) can be approximated by a one-sided finite difference:

J(x)v =
∂N(x)

∂x
v ≈

1

ε
(N(x + εv) − N(x)) (43)

where ε is a small scalar parameter. This approximation follows naturally from a first-order Taylor expansion of

N(x + εv) about x. In the case of the solution to Eq. (40), in which the matrix of interest is the Jacobian of the residual

for the fully coupled system, this can be written:

Jv ≈
1

ε

⎡

⎢

⎢

⎣

NM (U̇l
n+1 + εvu,Pl

n+1 + εvp, Φ̇
l
n+1 + εvφ, Θ̇

l
n+1 + εvT ) − NM (U̇l

n+1,Pl
n+1, Φ̇

l
n+1, Θ̇

l
n+1)

NC (U̇l
n+1 + εvu,Pl

n+1 + εvp, Φ̇
l
n+1 + εvφ, Θ̇

l
n+1 + εvT ) − NC (U̇l

n+1,Pl
n+1, Φ̇

l
n+1, Θ̇

l
n+1)

NL (U̇l
n+1 + εvu,Pl

n+1 + εvp, Φ̇
l
n+1 + εvφ, Θ̇

l
n+1 + εvT ) − NL (U̇l

n+1,Pl
n+1, Φ̇

l
n+1, Θ̇

l
n+1)

NT (U̇l
n+1 + εvu,Pl

n+1 + εvp, Φ̇
l
n+1 + εvφ, Θ̇

l
n+1 + εvT ) − NT (U̇l

n+1,Pl
n+1, Φ̇

l
n+1, Θ̇

l
n+1)

⎤

⎥

⎥

⎦

, (44)

where vu , vp, vφ , and vT are the partitions of v corresponding respectively to the velocity, pressure, level set, and

temperature degrees of freedom. The parameter ε must be small enough to lead to a good approximation of the

Jacobian multiplication, but large enough to prevent machine round-off error from affecting the perturbation. In the

present work, a value of (10−3) is used and is found to give good results. More detailed approaches for choosing ε can

be found in [81].

5.2. Preconditioning

The convergence speed of GMRES depends strongly on how well the preconditioning matrix Mpre approximates

the full system matrix; a good preconditioner can greatly reduce the number of iterations, and therefore the number of
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Fig. 3. A schematic drawing of the solidification of aluminum in a mold. Upper: initial temperature profile. Lower: temperature profile after

solidification.

costly evaluations of the residual vector N. In the FGMRES method, the preconditioning matrix is a block-diagonal

approximation to the full Jacobian matrix, i.e.:

Mpre =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂NM

∂U̇n+1

∂NM

∂Pn+1

0 0

∂NC

∂U̇n+1

∂NC

∂Pn+1

0 0

0 0
∂NL

∂Φ̇n+1

0

0 0 0
∂NT

∂Θ̇n+1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (45)

The implication of this form is that, in order to solve the preconditioner matrix system, Mprew = b, we solve

individually for the uncoupled velocity–pressure, level set, and energy problems. Note that in this approach, the

non-zero blocks of the matrix (such as ∂NM/∂U̇n+1) are fully formed and stored (that is, a matrix-free approach is not

used for the preconditioner solve). The individual uncoupled systems can then be solved using a standard GMRES

algorithm.

In summary, the FGMRES method combines an outer, matrix-free GMRES iteration loop over the fully coupled

system with an inner preconditioner solution of the individual, block uncoupled systems of equations. With this

approach, only a small number of outer iterations are required for accurate solution. For example, in the numerical

examples shown in Sections 6.3 and 6.4, the relative tolerance for nonlinear and linear solves is set to 0.001. The

maximum number of matrix-free outer iterations used is 4, while the numbers of GMRES iterations used at each

preconditioning solution are 80, 30, and 40 for the Navier–Stokes, level set, and energy equations, respectively.

6. Numerical examples

6.1. Solidification of aluminum in a graphite mold

Solution of the energy equation with phase change is tested in this section. Consider the one-dimensional

solidification process of a pure aluminum in a graphite mold, as depicted in Fig. 3. Pure liquid aluminum, initially with

uniform temperature Thigh greater than the melting temperature Tmelt , occupies half of the domain 0 m< x ≤ 0.4 m. A

graphite mold, initially with uniform temperature Tlow < Tmelt , occupies the other half domain of −0.4 m ≤ x ≤ 0 m.

Solidification begins at time t = 0 by transferring heat into the mold. After some time, the temperature distributions in

the mold, solid and liquid will correspond to the schematic depicted in Fig. 3 (lower). This problem provides valuable

insight into the behavior of solidifying systems and the roles of various parameters.

The material properties of the graphite mold and aluminum are given in Table 1. A similar problem was investigated

analytically in [87]. Unlike [87], the same density and heat capacity are used for the solid and liquid phases in order

to be consistent with the zero convection assumption. The initial temperature of the liquid is Thigh = 973.15 K, the

mold has an initial temperature of Tlow = 298.15 K, and the melting point for aluminum is Tmelt = 933.15 K.
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Table 1

Definition of material properties.

Materials Graphite Aluminum (solid) Aluminum (liquid)

Density (kg/m3) 2200 2555 2555

Specific heat (J/(kg K)) 1700 1190 1190

Thermal conductivity (W/(kg K)) 100 211 91

Latent heat (J/kg) – 3.98 × 105 –

Fig. 4. The temperature distribution at t = 10 s. Left: temperature profile between −0.1 m< x < 0.1 m; Right: temperature profile of a zoomed-in

window around the solid–liquid interface.

The analytical solution on an infinite domain, adapted from that in [87], is

x∗ = 7.095 × 10−3
√

t s

Tm = 769.95 + 471.8er f

(

96.69x
√

t

)

K

Ts = 769.95 + 360.2er f

(

60.02x
√

t

)

K

Tl = 973.15 − 111.4er f c

(

91.39x
√

t

)

K ,

(46)

where x∗ is the location of solid–liquid interface and Tm , Ts and Tl are the temperature distribution in the mold, solid

phase and liquid phase, respectively.

We compute a 3D solution to this quasi-1D problem, using structured brick elements; 4 × 4 elements are used in the

yz plane. A refinement study is performed by choosing three different element lengths (h = 0.004, 0.002 and 0.001)

for the x-direction. The analytical solution at t = 5 s is used as the initial conditions for all simulations. Although the

material is pure aluminum with a sharp phase transition at the melting temperature, to make the problem numerically

computable, we artificially select liquidus and solidus temperatures to give a “mushy zone” interval of 10 K about the

melting temperature (the size of this interval is further explored below).

Fig. 4 shows the temperature distribution at t = 10 s. Fig. 5 shows the time history of the position of the solid–

liquid interface x∗ after 5 s. The analytical solutions are also plotted for comparison. Intermittent error is observed

in the position of the interface as the interface traverses discrete elements; this error is reduced when the mesh is

refined. Convergence is observed among three different element lengths, and good agreement between the computed

and analytical solutions is achieved.
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Fig. 5. Time history of the position of solid–liquid interface x∗.

Fig. 6. The temperature distribution at t = 10 s using three different mushy zone temperature intervals. Left: temperature profile between −0.1 m

< x < 0.1 m; Right: temperature profile of a zoomed-in window around the solid–liquid interface.

The effect of the temperature interval of the mushy zone is also investigated. Fig. 6 shows the temperature

distribution at t = 10 s for the fine mesh using 10 K, 20 K and 40 K for the artificial mushy zone temperature

interval. We find that using a larger mushy zone temperature interval cannot resolve the solid–liquid interface very

well. However, as we refine the temperature interval of the mushy zone, the computed results approach the analytical

solution.

6.2. Thermocapillary droplet migration

In this section, the thermocapillary migration of a droplet in an ambient liquid with a linear initial temperature

profile and without gravity is tested. The physical problem and the computational domain are sketched in Fig. 7. The

simulations are performed on a 3D cube. The top and bottom surfaces are treated as no-slip walls and the temperature
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Fig. 7. Marangoni driven flows problem.

Table 2

Definition of material properties.

ρ µ κ cp

500 kg m−3 2.4 × 10−2 Pa s 2.4 × 10−6 W m−1 K−1 10−4 J kg−1 K−1

Table 3

Definition of material properties.

σs
dσs
dT

|∇T | a

0.01 N m−1 −2 × 10−3 N m−1 K−1 200 K m−1 1.44 × 10−3 m

is fixed at the prescribed high (top) and low (bottom) temperatures. In the other directions, a no-penetration boundary

condition is used for the velocity field and zero heat flux is used for the temperature field. The fluid is initially at rest

and the initial temperature increases linearly from the cold bottom wall toward the hot top wall with given constant

gradient. The material properties of the ambient fluid are given as in Table 2. The ratios of the material properties

between the droplet and the ambient fluid are chosen to be 0.5. The surface tension coefficient, Marangoni coefficient,

temperature gradient, and radius of the drop are given in Table 3. The problem can be characterized by Reynolds

number, the Marangoni number and the capillary number, which are defined by

Re =
ρaWr

µ
, (47)

Ma =
ρcpaWr

κ
, (48)

Ca =
µWr

σs

, (49)

where Wr is the reference velocity, defined as Wr = dσs

dT
|∇T |a/µ. The material properties used give Re = 0.72,

Ma = 0.72 and Ca = 0.0576, which are also used in the numerical simulations performed by Ma and Bothe [88]

using the volume of fluid method.

The effect of domain size was studied in [88]. In the present work, the computational domain was chosen

large enough to avoid wall effects according to the investigation in [88]. Three different meshes are employed to

perform the simulations, with 16, 32 and 64 elements across the bubble diameter, respectively. Fig. 8 shows the
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Fig. 8. Velocity vectors around the droplet on the medium mesh.

velocity vector on the x = 0 cross section for the medium mesh at the terminal stage. Due to the Marangoni

effect, the surface tension is higher where the temperature is lower. Thus, around the bubble surface, the flow

direction goes from higher temperature to lower temperature. A recirculation vortex is formed inside the bubble.

This flow pattern was also observed in other numerical simulations, such as [89]. The time history of dimensionless

migration velocity W ∗ = W/Wr plotted against dimensionless time t∗ = tWr/a is shown in Fig. 9 for the three

meshes. Young [90] obtained an analytical expression of the dimensionless terminal migration velocity, given as

W ∗ = 2/[(2 + rκ )(2 + 3rµ)], by assuming infinite domain and Stokes flow, and neglecting convective heat transport

and deformation of the bubble. In the analytical expression, rκ and rµ denote the ratios of the thermal conductivities

and dynamic viscosities between the bubble and the ambient fluid. The analytical solution and the numerical solution

computed by Ma and Bothe [88] using the largest domain size are also plotted in Fig. 9 for comparison. A convergence

trend and good agreement between different approaches are achieved.

6.3. Simulations of laser spot melt pool flows

In this section, the computational formulation is used to simulate laser spot melting, which was measured

experimentally by Pitscheneder [91] and previously simulated by Saldi [48]. The material properties of the metal

are based on steel (Fe–S system), and listed in Table 4. The setup of the computation is shown in Fig. 10. The

computational domain is a cylinder with length of 14 mm and radius of 7 mm. The mesh is refined within a cylinder

with length of 6 mm and radius of 3 mm in order to better capture the fluid dynamics of the melt pool. The element

lengths and mesh statistics are summarized in Tables 5 and 6, and a cutaway view of the mesh is shown in Fig. 11.

The initial condition is zero velocity and constant room temperature everywhere. On the lateral and bottom surfaces,

no penetration and zero heat flux boundary conditions are adopted for the velocity field and the temperature field,

respectively. A stationary laser heat flux with a top-hat profile is applied on the top surface of the computational

domain. The prescribed flux on the top surface is

qin =

⎧

⎨

⎩

ηQ

πR2
laser

for r ⩽ rq

0 for r > rq

(50)

where r is the radial coordinate in xy plane, Rlaser = 1.4 mm is the equivalent laser radius, Q = 5200 W is the laser

power, and η = 0.13 is the surface absorptivity.
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Fig. 9. Time history of migration velocity of different meshes. The analytical solution obtained by Young [90] is shown in black dash line. The

terminal velocity obtained by Ma and Bothe [88] using largest domain size is shown in blue dash line. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Table 4

Material properties of the metal.

Materials properties Values Units

Density of metal 8100 kg/m3

Viscosity of metal 0.006 Pa s

Melting temperature of metal 1620 K

Solidus temperature 1610 K

Liquidus temperature 1630 K

Thermal conductivity of solid 22.9 J/(m s K)

Thermal conductivity of liquid 22.9 J/(m s K)

Specific heat of solid 627 J/(kg K)

Specific heat of liquid 723.14 J/(kg K)

Latent heat of melting 2.508 × 105 J/kg

In the present work, we make use of a flat free-surface assumption, which is also employed in [48,91]. To drive the

flow, the following boundary condition is applied on the top surface:

(−pI + 2µ∇
Su) · n =

dσs

dT
[∇T − (∇T · n)n] . (51)

Pitscheneder et al. [91] also investigated the effect of sulfur activity on the melt pool flow and shape, thus the

dependence of surface tension on temperature and sulfur activity needs to be known. The theoretical model by Sahoo

et al. [92] is used in this paper and is given by

dσs

dT
=

dσs

dT

⏐

⏐

⏐

0
− RτSln(1 + K ai ) −

K ai

1 + K ai

τS(∆H 0 − ∆H M )

T
(52)

K = ki exp(
−∆H 0

RT
) (53)

where dσs

dT

⏐

⏐

⏐

0
is the Marangoni coefficient for pure metal, τS is the surface excess at saturation, K is the equilibrium

constant for segregation, ki is the entropy factor, ∆H 0 is the standard heat of adsorption, ∆H M is the partial molar

enthalpy of species mixing in the solution, and ai is sulfur activity in % weight. The values of these parameters for

Fe–S system are listed in Table 7. In this paper, two sulfur activities with ai = 0.002%-wt (20 ppm) and ai =
0.015%-wt (150 ppm) are used. The corresponding Marangoni coefficient as a function of temperature is plotted in

Fig. 14.
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Fig. 10. Computational setup.

Fig. 11. Mesh of the computational domain.

Table 5

Element lengths employed in the simulation.

Outer cylinder Refined cylinder Units

2 0.012 mm

Table 6

Mesh statistics.

Total number of nodes Total number of elements

164,939 965,041

Table 7

Parameters for Marangoni coefficient.

Parameters Values Units

dσs
dT

⏐

⏐

0
−5 × 10−4 N/(m K)

τS 1.3 × 10−8 kmole/m2

ki 3.18 × 10−3 –

∆H0 −1.66 × 108 J/kmole

∆H M 0 J/kmole
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Fig. 12. Time history of the width and depth of the melt pool. The experimental measurements from [91] and the computational result from [48]

using OpenFoam are also plotted for comparison.

Fig. 12 shows the time history of the depth and width of the melt pool of the two cases. The experimental

measurements from Pitscheneder et al. [91] and the computational result from [48] using OpenFoam are also plotted

for comparison. It can be seen that the computational result from this paper is slightly closer to the experimental result.

The melt pool shape and velocity vectors in the melt pool at t = 10 s are shown in Fig. 13, where the background

indicates the temperature. The melt pool shapes look quite similar to experimental image obtained by Pitscheneder

et al. [91]. It can be also seen that the shapes of the two melt pools with different sulfur activity are quite different,

where the melt pool with ai = 0.015%-wt (150 ppm) has a larger depth and smaller width than that of the case

with ai = 0.002%-wt (20 ppm). For the case with ai = 0.002%-wt (20 ppm), as shown in Fig. 14, the Marangoni

coefficient dσs

dT
is mostly negative in the temperature range of the melt pool. This implies that surface tension in the hot

zone (center of the melt pool) is lower than that in the melt pool edge, and the surface flow moves outward, resulting

in a wide but shallow melt pool. In contrast, for the case with ai = 0.015%-wt (150 ppm), dσs

dT
is mostly positive in the

temperature range of the melt pool and an opposite direction of the melt pool flow is obtained, resulting in a narrow

but deep melt pool.
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Fig. 13. Predicted shape (top) and experimental images [91] (bottom) for the melt pool in the two cases with 20 ppm (left) and 150 ppm (right)

sulfur activity at 10 s. In the simulations, the predicted solid–liquid interface is indicated by the solid black line, while the background color denotes

the temperature profile. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Marangoni coefficient as a function of temperature for samples with 20 and 150 ppm sulfur activity.
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Table 8

Material properties of the gas, surface tension and Marangoni coefficient.

Materials Properties Values Units

Density of gas 1.784 kg/m3

Viscosity of gas 2.1 × 10−5 Pa s

Thermal conductivity of gas 0.016 J/(m s K)

Specific heat of gas 520 J/(kg K)

Latent heat of melting 2.508 × 105 J/kg

Surface tension 1.8 N/m

Marangoni coefficient −5 × 10−4 N/(m K)

Table 9

Element lengths employed in the simulation.

Outer box Refined box Further refined box Units

0.5 0.05 0.002 mm

Table 10

Mesh statistics.

Total number of nodes Total number of elements

498,383 2922,576

Fig. 15. Computational setup.

6.4. Melting and solidification of metal with a spherical bubble

An important source of defects in additively manufactured materials is the trapping of voids or bubbles during

solidification, which is difficult to model or observe experimentally. To demonstrate the capability of the proposed

formulation to capture this phenomenon, the melting and solidification of a metal with a spherical bubble inside is

simulated. In this simulation, all the functionalities of the proposed framework are enabled. Metal are based on steel

(Fe–S system) with zero sulfur activity. Thus the Marangoni coefficient is constant and negative in this case. The

material properties of the metal and gas, surface tension and Marangoni coefficient are listed in Tables 4 and 8. The

setup of the computation is shown in Fig. 15. The metal domain is a cubical box with side length 5 mm, with a spherical

bubble located on the central vertical axis under the top surface. The gas bubble is initially located at (0,0,4.5367) mm

with radius of 0.022 mm. A mesh-refined region with dimensions of 2 mm × 2 mm × 1.3333 mm is included to better

capture the dynamics of the melt pool. A further refined region with dimensions of 0.08 mm × 0.08 mm × 0.2 mm is

designed to better resolve the deformation of the gas bubble. A snapshot of the mesh is shown in Fig. 16. The element

lengths and mesh statistics are summarized in Table 9 and Table 10. The same initial and boundary conditions used in

the previous section are employed here again, except at the top surface, at which, a non-moving laser heat flux with a
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Fig. 16. Mesh of the computational domain.

Gaussian profile is applied and specified as follows:

qin =
2ηQ

πR2
laser

e
−2( r

Rlaser
)
2

(54)

where Rlaser = 0.5657 mm, Q = 1875 W, and η = 0.13 are used. In the simulation, the laser is turned on immediately

once the simulation is started and remains active until t = 4.475 × 10−3 s, when the solid–liquid interface just passes

the bubble. After this point, to promote solidification and demonstrate trapping of the bubble, a fixed temperature of

600 K is prescribed on the top surface. The computation is performed until the entire metal is re-solidified.

Fig. 17 shows 6 snapshots of the bubble shape and temperature at the central plane (x = 0) of the domain. Before

0.003 s, the gas bubble is trapped in the solid and does not move at all. After the surrounding metal has been melted,

the bubble starts to deform. In the time interval between 0.003 s and 0.0043 s, the upper part of the bubble is in the

liquid and begins to rise, while the lower part is still in the solid and lags behind; thus the total average rising speed of

the bubble is slow. After 0.0043 s, as the solid surrounding the bubble is totally melted into liquid, the bubble deforms

dramatically and rises toward to the top surface. Fig. 18 shows 6 snapshots of the velocity vectors in the melt pool

at the central plane (x = 0) of the domain, with background color denoting the velocity magnitude. Since we are

using a negative Marangoni coefficient, the flow at the surface goes from high temperature to low temperature. Thus a

recirculation region (a toroidal vortex in this axisymmetric flow) is formed in the melt pool. After the bubble is fully

in the liquid phase, another vortex is formed around the gas bubble. After the laser is turned off, the metal starts to

re-solidify. Since a very low temperature is utilized for the top surface, a closed solid–liquid interface is formed and

surrounds the rising bubble. In the end, the entire material is re-solidified, the bubble is trapped in the solid. Fig. 19

shows the time history of the position of the center of the gas bubble. From this plot, we can also see that the gas

bubble barely moves until it is released from the solid phase. After the metal around the bubble is totally melted, the

bubble is quickly carried to the surface by buoyancy and the upward central vertical velocity driven by the Marangoni

effect. This is also supported by Fig. 18 (d and e), from which we can clearly see that the velocity magnitude around

the bubble is significantly higher than the velocity magnitude in other regions of the melt pool. Once the bubble meets

the solid–liquid interface, the average position of the bubble decreases slightly, and then stays as a constant as the

remaining metal solidifies.

7. Conclusions

In this paper, a fully coupled formulation for thermal multi-phase flows is developed. The formulation is based

on the level set technique and RBVMS, and incorporates phase transition, surface tension and Marangoni effect. A
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Fig. 17. Temperature profile. The solid–liquid interface is indicated by the solid black line. (a) t = 1.225 × 10−3 s; (b) t = 3.4250 × 10−3 s ;

(c) t = 4.5125 × 10−3 s; (d) t = 4.52 × 10−3 s; (e) t = 4.608 × 10−3 s. (f) t = 1 × 10−2 s.

fully coupled solution strategy based on FGMRES is developed to achieve robust simulations. Numerical evidence is

presented in the first two computational cases, including mesh refinement studies and validation using analytical and

computational results from the literature, that support the accuracy of the proposed approach. The last numerical

example illustrates the power of the proposed methodology with all the functionalities enabled by applying the

formulation to a challenging problem involving the fluid dynamics of gas and condensed phases, solid–liquid phase

transition, bubble deformation, bubble rise in a melt pool, and bubble trapping in the re-solidified material.

To the best knowledge of the authors, this is the first FEM-based thermal multi-phase flows formulation with

the capability to capture phase transition, interfacial forces, and the dynamics of gas, liquid and solid phases

simultaneously. Through the four numerical examples presented, the formulation has been proved to be accurate

and robust, and can be widely applied to simulate complex gas–liquid–solid systems such as those in additive

manufacturing processes, which are difficult to model by current numerical methods.
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Fig. 18. Velocity vectors in the melt pool. The solid–liquid interface is indicated by the solid white line. The background color indicates the

velocity magnitude. (a) t = 1.225 × 10−3 s; (b) t = 3.4250 × 10−3 s; (c) t = 4.5125 × 10−3 s; (d) t = 4.52 × 10−3 s; (e) t = 4.608 × 10−3 s.

(f) t = 1 × 10−2 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Time history of the bubble center.
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