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Abstract

In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidi-
fication of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized
events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load
balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give
a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented
to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel
efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due
to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing

simulation with resulting grain structures showing reasonable agreement with those observed in experiments.

Keywords Additive manufacturing - Grain structure - Cellular automaton - High performance computing

1 Introduction

Additive manufacturing (AM) technology, sometimes refer-
red to as 3D printing, is the operation of building a 3D object
from computer-aided design model by successively adding
material layer by layer. This technology allows rapid fabri-
cation, precise geometric control, and flexibility to create or
repair without the use of any die or mold, giving the poten-
tial to revolutionize the global part manufacturing landscape
[21]. Therefore, much effort is being focused on enhanc-
ing AM technologies; research areas include understanding
metal powder fabrication, influences of process parameters
[24], in situ and real time monitoring [27], and the metallurgi-
cal and mechanical properties of the final part [1,7] by means
of experiment, theory, and computational models. This work
is focused on a numerical model to predict the microstruc-
ture during the solidification process; this microstructure has
acritical influence on the mechanical properties of the result-
ing material.
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There are two main types of numerical methods, deter-
ministic and stochastic, used to model the complex dendrite
growth and grain structures during metal solidification. A
typical method of the first type is the phase field method
[4,23]. Phase field methods, in which a field variable varies
smoothly over a diffuse interface region to demarcate differ-
ent phases, have been used to model the growth of dendrite
structures in pure materials and alloys [1,8]. Another method
similar in spirit is the level set method [12,22], which allows a
sharp-interface description of the same phenomena, includ-
ing the detailed treatment of interface conditions. Both of
these approaches are valuable in elucidating fine details of
solidification structures. However, the small length scales
and small numbers of grains attainable using these methods
make it difficult to predict microstructures at sizes that can
be directly tied to the performance of resulting materials.

Examples of stochastic-based methods include kinetic
Monte Carlo (KMC) and Cellular Automaton (CA) meth-
ods (although CA methods include deterministic models
of growth along with stochastic grain nucleation models).
Compared with the methods described above, KMC and
CA methods require fewer computer resources and there-
fore allow simulations of a large numbers of grains within
domains at the millimeter scale and beyond. KMC methods
represent individual grains by associating each discrete lat-
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tice site with a grain, and utilize a Potts model to simulate
solidification and grain growth dynamics by modifying cell
values at each Monte Carlo step to reduce surface energies
between unlike grains. By coupling KMC to a varying tem-
perature field Rodgers et al. have modeled welding [19] and
AM [20] processes; the final grain morphologies are in good
agreement with observed experimental results. However, the
KMC approach as formulated lacks a model to accurately
capture the solidification velocity of individual grains. In the
CA method, grains are tracked on a discrete grid of cells
in which individual cells can be assigned a particular state,
similar to the KMC description. Nucleation of new grains
is modeled stochastically depending on the local undercool-
ing of cells in the liquid state, while grains grow (effectively
“capturing” neighboring cells) according to a dendrite growth
model in the form of a physically-based dendrite tip veloc-
ity law, which itself is dependent on the local undercooling
of each grain site. Like the KMC method, the CA method
can be coupled to a time and space-varying temperature field
that is either prescribed or obtained from a solution to the
energy equation. Because the CA method evolves the grain
structure according to a physically meaningful time step,
compared with the harder-to-interpret Monte Carlo steps
of the KMC method, it is straightforward to couple CA
and thermal models together for a given material and pro-
cess.

The CA method was first developed by Rappaz and Gandin
[18], who successfully predicted the columnar-to-equiaxed
grain transition during solidification. Soon after, the same
authors coupled the CA representation to a finite element
simulation of the local temperature field [9,11], which may
vary in space and time. The resulting cellular automaton-
finite element (CAFE) model has been refined and improved
and applied to increasingly complex simulations of grain
formation [5,15]. Zinoviev et al. [28] and Zhang et al.
[26] have applied CA to model the grain evolution dur-
ing laser AM in 2D. Dezfoli et al. [7] and Panwisawas et
al. [17] utilized a CA model for microstructure prediction
and control of metals in 3D laser AM processes, and have
demonstrated good qualitative agreement with experimental
results.

Although CA has a broad and impactful range of appli-
cations for microstructure prediction in traditional casting
and advanced AM, the length scale of the problem that CA
can reach is limited by the bounding cell size. To accurately
model the extension of grains by branching mechanisms,
the cell size should be smaller than the length at which
the branching mechanisms of the dendrite network take
place; these could be on the length scale of the secondary
even the tertiary dendrite arm spacing. For simulations of
casting aluminum-silicon alloy, Gandin et al. [10] found
a cell size deep = 50m to be sufficient. However, fine
microstructures with dendrite arm spacings as small as a
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few microns are often observed in AM processes due to the
high cooling rate and temperature gradient [25]. For these
length scales, a cell size deey < 10 wm may be required
for sufficient accuracy, which raises a computational chal-
lenge. For example, a 1 cm? volume requires 1 billion cubic
cells of size 10 wm. It should be noted that the number of
cells increases by 2% when refining the cell length scale
by a factor of 2 for the 3D case. To overcome this dif-
ficulty, Gandin et al. [10] have proposed special dynamic
allocation algorithms to model solidification grain structures
in a representative volume of the casting to save memory
size; however, this does not reduce computational burden.
Therefore, high-performance parallel computing algorithms
for CA models are required to model large scale prob-
lems and expedite the simulation process by leveraging
parallel computing resources, especially for AM applica-
tions.

In this work, a parallelized 3D CA model is proposed
using a Message Passing Interface (MPI) system to exchange
data between processors. A static decomposition strategy is
employed to implement the parallelization. Some issues in
the interprocess communications are addressed. The rest of
the paper is organized as follows. In Sect. 2, the 3D CA
model is introduced in detail including heterogeneous nucle-
ation, dendrite tip growth kinetics, the decentered octahedron
growth scheme, and the explicit time integration algorithm. In
Sect. 3, an MPI-based parallelism for 3D CA is proposed. In
Sect. 4, numerical examples including grain growth under a
uniform decreasing temperature field and an AM application
are performed to demonstrate the parallel efficiency of the
method. Finally, conclusions and perspectives are discussed
in Sect. 5.

2 A 3D cellular automaton model

In CA, a material region is discretized by a set of cubic cells
as shown in Fig. 1. Each cell may have variables associated
with it, such as temperature and a state index associating the
cell with a particular grain. In this work, a state index of — 1
denotes a cell in the liquid state, while a non-negative integer
value denotes a state of solidification with grain information.
The two main phenomena in the CA approach are hetero-
geneous nucleation and grain growth. Models for these two
mechanisms are detailed in this section.

2.1 Heterogeneous nucleation

The heterogeneous nucleation model describes the distribu-
tion of nucleation sites, the critical undercooling value at
which nucleation occurs at each site, and the crystal orienta-
tion of newly nucleated grains.
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Fig.1 a A 3D cellular
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2.1.1 Nucleation sites and their critical undercooling
distributions

In CA, nucleation may occur both at the surface and in the
bulk of the liquid volume. The number density for a pop-
ulation of sites, g, is prescribed as an input parameter, and
typically must be fit to experimental measurements. Densi-
ties have units of m—> for bulk nucleation sites and m~2 for
surface nucleation sites. Hereafter, we use o5 and o, to denote
the nucleation density for surface and bulk, respectively. Prior
to the beginning of the simulation, the total number of nucle-
ation sites in the bulk and at the surface are calculated as

Ny=0v-V ey
Ny=05-8 @

where V and S represent the total volume and total surface
area, respectively.

At each nucleation site i, nucleation occurs when the
undercooling (the liquidus temperature minus the local cell
temperature) exceeds a critical value AT it This critical
undercooling may vary from site to site, and is assumed to
follow a Gaussian distribution. In CA, the values of the mean
and standard deviation (AT, and AT, respectively) of
critical undercooling temperatures may differ between sur-
face and bulk nucleation sites, and so subscripts s and v are
used to distinguish such quantities as is done for g.

For a given discretization, N cells are randomly selected
from cells adjacent to the surface of the domain as surface
nucleation sites, and N, cells are selected from all cells in the
domain as potential bulk nucleation sites. For each nucleation
site created, a random critical undercooling is selected from
the corresponding Gaussian distribution function (surface or
bulk), and is assigned as the undercooling at which a grain
will be nucleated at that cell. It should be noted that a cell

(b)

Fig.2 Regular octahedral envelope

may be selected more than once as a possible nucleation site.
In this case, only the smallest of the undercooling values
randomly selected for this site is assigned.

2.1.2 Grain envelope and crystallographic orientation

During the solidification process, a potential nucleation site
at a pre-chosen cell v becomes active (provided it has not
already been captured by a neighboring grain) if the under-
cooling at the center of cell v exceeds its assigned critical
undercooling. Neglecting the incubation time, it is assumed
that the dendritic network within cell v develops as a regular
octahedral envelope bound by {111} planes as shown in Fig.
2. The six half-diagonals of the octahedron correspond to the
primary dendritic growth directions of the grain [11]. Each
grain is characterized by the global orientation of its [001]
crystal direction in terms of a set of Euler angles (¢1, ¢2, ¢3),
where 0 < ¢; <27m,0 < ¢ <m,and 0 < ¢p3 < 27.
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Grains that are nucleated either at the surface or in the bulk
of the volume are assumed to have a random crystallographic
orientation. In order to obtain an isotropically distributed set
of random orientations, two auxiliary variables x; and 3
are first randomly selected from a uniform distribution over
[0,1]. These parameters are then used to generate locations
for ¢ and ¢, on the unit sphere:

¢1 =21y 3)
¢r =cos ' (2x2 — 1) 4

It is straightforward to show that this procedure results in a
random uniform distribution over the unit sphere by calcu-
lating the differential area element over the sphere, dS:

dS = sin ¢odp1dgy = —dgid(cos ¢p) = —4mdxidyx2 (5)

Finally, the third Euler angle, ¢3, is selected from a uniform
distribution over the range [0, 7r /2] with the symmetry of the
octahedral dendrite structure assuring that all unique orien-
tations of the grain are equally likely.

2.2 Growth algorithm for an active grain

The grain growth is governed by the dendrite tip growth
kinetics. During the grain propagation process, a decentered
octahedron method is used to determine a new envelope; each
cell captured by this envelope spawns a new growing octa-
hedron with a crystal orientation inherited from the parent
nucleus. The capture of neighboring cells by the growing
dendritic network is then equivalent to the overall growth of
an octahedral envelope, at least until the envelope impinges
on other grains or boundaries.

2.2.1 Dendrite tip growth kinetics

The dendrite tip growth rate, v, is related to its undercooling,
AT. As presented in [18], the undercooling includes four
contributions:

AT = AT, + AT, + ATy + AT, ()

where AT, AT;, ATy and AT, denote the undercooling con-
tributions associated with solute diffusion, thermal diffusion,
attachment kinetics and solid-liquid interface curvature,
respectively. Based on dendrite tip kinetics models, such as
the KGT model [13] or LGK model [6,14], the relationship
between dendrite tip velocity and undercooling AT can be
determined based on the predominant mechanisms. In order
to speed up calculations, such a relationship is usually fitted
with a polynomial approximation.

Various polynomial approximations may be fitted with
different coefficient values for a specific application. For

@ Springer

example, for the Aluminum-Silicon alloy under normal solid-
ification conditions, Gandin and Rappaz [9] proposed a
polynomial formulation:

V(AT) =2 - AT? + 3 - AT @)

where 17, and 73 are coefficients with units of m/(s - K?) and
m/(s-K3), respectively. For Ti—-6Al-4V alloy with high ther-
mal gradient solidification conditions, as in AM processes,
Dezfoli et al. [7] have used another polynomial formula given
as:

V(AT) =1 - AT + 15 - AT? (8)
where 71 is a coefficient with units of m/(s K).
2.2.2 Grain growth

Since the six half-diagonals of the octahedral envelope rep-
resent the (100) crystallographic directions along which the
grain grows fastest, growth is simulated by extending these
half-diagonals based on the dendrite tip velocity v(AT'). Here
AT is the local undercooling at the center of the cell that
owns the envelope. As time proceeds, the envelope grows
and eventually engulfs neighboring cells to propagate the
grain.

The state of a cell is defined by a set of variables including
the state index, grain orientation, envelope center (i.e., the
growth center) and envelope size; these are denoted as 1,
(¢1, ¢2, ¢3), C and L, respectively. Note that / is an integer
associating a cell with a particular grain orientation, so that
cells with the same value of / have the same orientation and
are considered part of the same grain. For a regular octahedral
envelope, the size is defined as the distance from its envelope
center to the center of any of its {111} faces. Each solidified
cell has a unique octahedral envelope, with a given center and
size; the full grain is then given by the union of envelopes
with the same orientation and state index.

To detail the grain growth and the capture process, we take
two neighboring cubic cells as an example. As shown in Fig.
1b, the two cells are labeled v and p with a cell spacing of
dcen1. The initial state indices of both cells are set as — 1 (i.e.,
I, = I, = — 1) indicating the liquid state, and the cell v is
pre-chosen as a nucleation site with a critical undercooling
AT,frit. At a particular time f,, the undercooling AT, (t,) at
the center of cell v becomes larger than AT, At that time, a
grain is nucleated at the center of cell v with arandomly gen-
erated orientation as described in Sect. 2.1.2. The state index
of cell v is then set to a unique integer value. Meanwhile,
an active envelope associated with cell v is defined with size
L,(t,) = 0 and center C, at the cell center. Approximating
the temperature as uniform with each cell, the size of the
octahedral envelope at a time ¢ > #, is given by
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1 t
L,(1)=—

N (ATy(7))dr ©))
ty

where v is the dendrite tip velocity (i.e., of the (100) direc-
tions or diagonals of the octahedron). As determined by Eq.
(7) or (8), the dendrite tip velocity is a function of the local
undercooling at the center of the owning cell. Here it is use-
ful again to point out the distinction between the octahedral
envelope for a given cell, defined by six equally-sized diago-
nals, and the grain, which is formed by a union of octahedral
envelopes and spans many cells. Thus, the growth velocity
of the grain is non-uniform in space and time, and varies as
a function of the local temperature throughout the grain.

At some time ,, > t,, the envelope associated with cell v
engulfs the center of neighboring cell ©. Now cell u is cap-
tured by cell v and grain information associated with cell v is
used to initialize a new grain envelope associated with cell u.
The state index of cell v is set as equal to /,,, while C, and L,
are calculated relative to those of the parent envelope through
adecentered octahedron growth algorithm (described in Sect.
2.2.3). A grain envelope stops growing and is “deactivated”
when all of the cells neighboring its owning cells have been
captured. In this work, the neighbors of a cell are defined as
all face, edge, and corner neighbors, so that a typical interior
cell in 3D has 26 neighbors.

2.2.3 A decentered octahedron growth algorithm

When a cell is captured by a growing grain envelope, a new
octahedral envelope is created at that cell, the size and cen-
ter location of which are computed according to a decentered
octahedron algorithm [11]. Through this approach, three con-
ditions are met: (1) the new octahedron fits fully inside the
old one; (2) a corner of the new octahedron coincides with
the corner of the old one that is closest to the captured cell;
and (3) the maximum size of the new octahedron is fixed
at a value proportional to dce) according to the formulation
introduced by Gandin and Rappaz [11]. Details of the imple-
mentation of this model following their outline are presented
below.

Consider for example the two cells  and x shown in Fig.
1b. Assume that the envelope associated with cell u, with a
set of Euler angles (¢1, ¢2, ¢3), is growing and approaching
cell k. In Fig. 3, the open circle u and the cross C,, are used
to denote the cell center and envelope center associated with
cell u.

The size of the envelope associated with cell p at time ¢
is given by

1 1
L;/,(t) = Lp.(tu) + —

7 v (AT, (1)) -dt (10)
1y

Fig.3 Schematic illustration of the octahedron envelope truncation

where L, (¢,,) represents the initial size of the envelope at cell
1, created at the time of its capture #,,. At each time step, it is
determined whether cell « has been captured by the envelope
at cell p, and if it is, a new envelope at cell « is initialized
using the procedure below:

1. Transform the coordinate of cell center « to a local coor-
dinate system associated with the envelope:

=M1 (X© — X% (11)

where uppercase X and lowercase x represent the coor-
dinates of the cell center in global and local coordinate
systems, respectively, as shown in Fig. 3. Matrix M is
the coordinate rotation matrix given by the Euler angles
(@1, 92, $3).

2. Calculate the octant and nearest octahedral face for the
captured cell. In the local coordinate system, space is
decomposed into eight octants separated by the local
coordinate planes. The signs of the components of x*
then determine in which octant cell center « is located.
The corresponding face of the envelope is denoted by F
with its normal direction, n r, denoted by Miller indices
[A, k, ] (where all indices are + 1 or — 1).

3. Calculate the distance between « and the face with normal
vector of n as follows

1
d= ﬁ(hx’f + kx5 + Ix§ — Ay) (12)

where A, = V3L () is the half-diagonal length of the
envelope associated with cell u. If d < 0, then the cell
center « is engulfed by the face F; otherwise, the cell
center is outside of the face F'. If the cell k is captured,
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continue with the following steps to obtain the new enve-
lope size and center position associated with cell «.

3. Calculate the projection of the cell center « onto face F
and denote it as point a:

x =x"+i|d|np (13)
V3

4. Determine the closest corner on face F to a. In Fig. 3, the
nearest corner is labeled s, with the other two corners of
face F denoted by s, and s3, respectively.

5. Calculate the projections of point a onto the edges 5152
and s153; denote the projected points as i and j, respec-
tively, as follows:

— x5y . (x4 — x51)
I — 22
@ —x) (x — x)
SR Ty

._) (xS2
is] =

(x% = x) (14)

(x% — x%1) (15)

6. Determine the new envelope size by first defining two
auxiliary variables:

L= % (Min [isl, x/gdceu] + Min [i52’ ﬁd“”])(m)

(Min [ jst, ﬁdcell] + Min [ jss, «/§dceuD
(17

Liz=

-

Here, the lengths of the new envelope edges along the
s152 and sys3 directions are truncated to no more than
«/§dceu. The new envelope size is then computed as:

L = /2/3Max [L12, L13] (18)

The length of the half-diagonal of the new envelope is
A = \/§LL Note that by this procedure, if is1, is2, jsi,
and js, are all less than v/3dcen (the maximum spacing
between neighboring cell centers), the new envelope has
the same size as the original.

7. Based on the new envelope size, calculate its center such
that the corner of the envelope corresponds with sy:

n

G = (g — re) —2 (19)
70,

where xC« is the coordinate of the new grain enve-

lope associated with cell w, and n,s, denotes the vector
connecting point o to point s1. Through the coordinate
rotation matrix M, the global coordinates of the new enve-
lope center can be obtained as

XC = X + M . xC« (20)
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As a result of this procedure a new envelope is created
with envelope center position X« and envelope size L.
Meanwhile, the orientation of the envelope is identical to
that of the parent envelope, and I, = I,.

2.2.4 Time integration scheme

An explicit time integration with variable time step size is
applied to integrate grain envelope growth [e.g., Egs. (9),
(10)] for all active grain envelopes. At time #;, where the
subscript k denotes the kth time step, the time step is deter-
mined as

. . dcell
Sy =& .n}lm (—U (ATM(tk))> 201

where & is a time step factor within a range of (0, 1], and
v (ATM (tk)) is the dendrite tip velocity at cell w; the min-
imization is taken over all cells i with an active growing
envelope. Since d.e) is a constant, Eq. (21) implies that the
time step is determined by the active envelope with the largest
growth velocity. At time of #;+1 = ;. + &k, the envelope size
is then updated for each grain p as

L (tev1) = Lyu(n) + AT, (1)) 81y (22)

v
—=V
NE]
2.3 Numerical implementation

A summary of the CA procedure at a single time step is
presented here:

1. Loop over all remaining nucleation sites whose cells have
not yet been captured by other grains. At any site whose
undercooling exceeds the critical undercooling assigned
to that site, nucleate a new active grain envelope with a
random orientation.

2. Loop over all active envelopes to determine the current
time step size according to Eq. (21).

3. Loop over all the active envelopes to grow the grains:
(a) Calculate the updated envelope size according to Eq.
(22);

(b) Capture the neighboring cells according to the method
described in Sect. 2.2.3.

2.4 Temperature field

As discussed in Sects. 2.1 and 2.2, the heterogeneous nucle-
ation and dendrite tip growth algorithms are functions of the
local temperature of the cells. In the original CAFE model
[9], a finite element method was used to solve a thermal
conduction equation to provide a temperature field at each
cell center. Alternatively, such a temperature field may be
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One element (coarse mesh)
of a thermal solver

D

Network (fine mesh) of CA

Fig. 4 Schematic illustration of the interpolation method for the 2D
case. The temperature at the center of CA cell v is interpolated from a
rectangular element in the thermal solution mesh. The interpolation is
computed from the four nodal temperature values via the bilinear shape
functions associated with the element

predefined or provided by other numerical methods such as
a mesh-based finite volume method (FVM) or a meshfree
method.

If a thermal solver is applied, a mesh or grid size coarser
then the CA cell network, but overlapping it, is usually
adopted to save computational cost. Each CA cell’s temper-
ature can be interpolated from the coarse mesh element in
which the cell center C,, is located as shown in Fig. 4. The
one-way coupling method proposed in Ref. [10] is used in
this work.

3 A parallelized 3D CA model based on a
message-passing paradigm

To accelerate computations and make microstructure sim-
ulations feasible on length scales reaching centimeters and
beyond, a parallelized C++/MPI implementation of the 3D
CA model described in Sect. 2 has been developed. As shown
in Sect. 2, most of the computational cost in the CA model is
incurred in calculating which cells are captured by grow-
ing grain envelopes, and in creating new envelopes. The
amount of calculation during this capture process is related
to the total number of active grain envelopes distributed
throughout the network, and the number of liquid cells
surrounding them. In this section, a static domain decom-
position and parallel communication scheme is proposed to
distribute data and computational burden across multiple pro-
Cessors.

3.1 Domain decomposition strategy
An optimal domain decomposition gives each processor the

same amount of computational load while minimizing the
interface between subdomains, so that interprocess commu-

nication cost is reduced and parallel efficiency enhanced.
However, the ideal domain decomposition is problem-
dependent, and computational load may be non-uniformly
distributed in space. In CA, the memory requirements per
processor are related to the number of cells located on each
processor, but computational load depends on the distribu-
tion of active and growing grain envelopes throughout the
domain. To balance memory load in CA, a static domain
decomposition strategy is proposed in which the CA cells are
evenly divided among processors such that each processor
owns approximately same number of cells. For convenient
interprocess communications, a Cartesian virtual processor
topology is used. Decomposition may be performed along
one, two, or all three Cartesian directions; flexibility in select-
ing a decomposition increases the ability for computational
load to be balanced among processors for a given problem
geometry.

To illustrate the details of the domain decomposition strat-
egy, we consider a cubical body with eight processors as an
example as shown in Fig. 5. A typical decomposition strategy
is as shown in Fig. 5a, where the domain is decomposed into
two parts along each dimension. Each subdomain is assigned
to a unique processor, and the mapping of subdomains to
processors is facilitated through the use of a virtual Carte-
sian topology in MPI [16]. The Cartesian virtual topology
matches the physical topology as shown by the dashed arrow
lines in Fig. 5b.

In order to grow grains across subdomain interfaces,
the state of cells adjacent to the interfaces must be com-
municated to neighboring processors. To implement this
communication, a one-cell-thick ghost layer around each
processor subdomain is created. For example, Fig. Sc
shows a Y cross-section of a domain with 16 cells on
the plane, indexed starting from 0, decomposed among
four processors. The corresponding ghost layer cells are
shown in Fig. 5d in orange. These ghosting layers pro-
vide a convenient way to perform operations, such as
grain propagation, involving cells that are not on the cur-
rent processor. For clarity of the following description,
we define the cells in blue within each subdomain as
local cells on the current processor as shown in Fig. 5d,
while the cells in the ghost layer are referred to as ghost
cells.

3.2 Interprocess communications

As listed in Sect. 2.3, there are three major computational
steps within each time increment in the CA model. Using
the static domain decomposition parallelism, there are four
interprocess communications during each time step: global
time step size calculation, cross-capture of cells, ghost
cell index update, and maintenance of a global orientation
list.
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Fig.5 Illustration of domain

decomposition and Cartesian
virtual topology: a domain

(1,1,1)

decomposition with 8
subdomains; b Cartesian
coordinates for 2 x 2 x 2 3D
topology, where the solid
squares represent the processes
and the edges connect processes
that communicate with each
other; ¢ mesh on a typical ¥
cross-section, assuming 16 cells

in the plane; d decomposed zZ Y

mesh across 4 processors, where

cell indices correspond to those 0 (a)
in subfigure (c). Blue cells are X

locally owned, while orange
cells indicate ghost layers to
facilitate communication. (Color
figure online)

3.2.1 Determination of the global time step size

The time step size computed in Eq. (21) is a global minimum
over all grain envelopes on all processors. This time step is
coordinated among processors with a simple reduction oper-
ation (e.g., MPI_Allreduce).

3.2.2 Capturing neighboring cells

During the cell-capturing stage of each time step, each pro-
cessor loops only over the active envelopes associated with
its local cells. For an active envelope associated with a cell
that is located at the interface of subdomains, one or more
of the neighboring cells will be a ghost cell. In our imple-
mentation, if a ghost cell is captured by an active envelope,
the new envelope is created by the processor that owns that
cell. For example, referring to Fig. 5d, if cell 6 is captured
by the envelope associated with cell 5 on processor 0, then
the envelope information (size, orientation, center, and cap-
tured cell ID) from cell 5 must be communicated to processor
1; a new envelope associated with cell 6 is then created on
processor 1 (unless cell 6 has already been captured by a

@ Springer

LT T T

(d)

different envelope at the same time step). In this case, the
information related to the capturing grain is wrapped and
sent to the corresponding processor to complete the capture
of neighboring cells. Note that, because a grain envelope
may capture any of the 26 neighbors of its owning cell in 3D,
care must be taken to communicate not only to immediately
adjacent (i.e., face-sharing) processors in the Cartesian topol-
ogy, but also to processors that own ghost cells along edges
and corners. In our implementation, this is handled through
multiple communication steps along Cartesian direction until
all processors have received data corresponding to local
cells.

3.2.3 Updating ghost cell state index

After the cell capture step is complete, if a cell adjacent
to a processor interface has been captured, its ghost cell
“image" on neighboring processors must be updated. There-
fore, another communication operation is required to update
the state indices of ghost layers of cells. At the end of this
communication step, all processors have updated informa-
tion about the state of local and ghost cells.
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Table 1 Nucleation site -
. Case ATy ATy Os AT, ATy » 0 T
arameters used in example $,max 5o $ v, max v v
ls)imulations P Q) Q) (m=?) ) °C) (m™3) (°C/s)
I 0.5 0.1 2.5 x 108 8.0 0.1 5.5 x 1019 -23
II 0.5 0.1 2.5 x 108 10.5 0.1 5.5 x 1010 -23

The subscripts v and s denote parameters associated with bulk and surface nucleation sites, respectively

3.2.4 Maintaining a global orientation list

The state index of each cell is an integer that associates the
cell with a unique crystallographic orientation (i.e., a set of
Euler angles). Cells with the same state index are considered
to be part of the same grain. In order to ensure global unique-
ness of each index, and to correctly associate each index with
a particular orientation, every processor must have a copy of
the global list of indices and orientations.

At each time step, new grains (with randomly chosen ori-
entations) may be nucleated locally on any processor. After
grains are nucleated, new grain information is gathered glob-
ally, and alist of globally unique orientations and state indices
is generated. This list is passed back to individual proces-
sors, where newly nucleated grains are updated with unique
indices.

4 Numerical examples

Two sets of examples are conducted to demonstrate the
method and implementation. In the first, a uniform tempera-
ture field with a constant cooling rate is applied to show the
influence of cell size and time step size while demonstrating
the parallel efficiency of the proposed parallelized method.
The second set of examples demonstrates an application to
the AM process, where a finite volume method is used to
provide a thermal field.

4.1 Grain growth in a uniform temperature field

In this section, we conduct microstructure prediction simu-
lations for an Aluminum-7 wt% silicon (Al-7wt%Si) alloy
under a uniform temperature field with a constant cooling
rate, 7. Parameters for these examples, including the growth
kinetics law, are taken from Refs. [9,18] and are summarized
in Tables 1 and 2. It should be noted that the only difference
between Case I and Case Il in Table 1 is the mean undercool-
ing, AT, max, for the bulk nucleation; this difference leads to
different final grain morphologies.

4.1.1 Mesh size and time step size influence

To study the solution dependence on mesh size and time step
size, a cubic domain of 5 x 5 x 3 mm? is chosen to represent

Table 2 Growth kinetics for Al-7wt%S$i alloy

V(AT) =1 - AT? + 13 - AT?

m =2.90 x 107° m/(s K?) m =149 x 107 m/(s K?)

a3D Al-7wt%Si ingot cast in a mold. As reported in [11,18],
the secondary dendrite arm spacing for this type of material
by casting is on the order of 15 pm.

First, two simulations corresponding to the two sets of
parameters listed in Table 1 are conducted with the same cell
size, deent = 10 wm and time step factor, £ = 0.2. The final
grain morphologies of both cases from the 3D CA model are
presented in Fig. 6, where the colors represent the unique ID
and orientations for different grains. From Fig. 6, one can see
that columnar growth from the surfaces is predicted in both
cases, and inspection of our results shows that grains that have
(100) crystal orientations perpendicular to the surface are
most prevalent because of the relatively faster growth rates
in those directions. Since AT, max for case II is larger than
that of case I, bulk nucleation ahead of the growing columnar
grains is postponed in case II, and those columnar grains
approach the center of the ingot in case II before a columnar-
to-equiaxed transition (CET) can take place. By calculating
the expected length that the columnar grains attain before
bulk nucleation can occur, we can estimate the column length
at the CET in terms of the parameters listed in Tables 1 and
2 as

L m 3 3
lceT = 7 [? (ATv,max - ATs,max)
13
+ Z <AT‘:‘:H}3X - ATs%max>i| (23)

which gives 0.88 and 2.5 mm for cases I and II, respectively.
Because the half-thickness of the domain in the z direction
is only 1.5 mm, a CET expected to be present in case I but
not in case II. This prediction, along with the approximate
position of the CET in case I, is verified by the results shown
in Fig. 6.

Case I is used for refined simulations to illustrate the
influence of mesh size and time step size. Keeping the time
step factor as & = 0.2, additional cases with cell sizes of
dcenn = 40, 20 and 5 wm are conducted. Note that even when
model parameters in Tables 1 and 2 are kept constant across
simulations, results are not expected to be identical for dif-
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(a)

(b)

Fig.6 Grain structure of an Al-7 wt%Si specimen result from 3D CA with cell size dee;j = 10 wm, time step factor & = 0.2 and other parameters
listed in Table 1: a for case I with AT, nax = 8.0°C, b for case II with AT, nax = 10.5°C. Here a corner is cut off to disclose the inner grain

morphology

Table 3 Final number of grains versus cell size for spatial refinement
study

Table 4 Final number of grains versus time step size for temporal
refinement study

Cell size (jLm) 40 20 10 5

Step size factor 0.8 0.4 0.2 0.1

Grain number 24,227 27,970 29,122 29,447

Grain number 29,143 29,127 29,122 29,119

ferent values of d.q) because of the randomness of nucleation
site distribution; results should, however, be similar across
simulations and show equivalent morphologies, grain sizes,
and grain aspect ratios and orientations. The final number of
grains for each case is compared in Table 3. It is seen that the
number of grains increases as the cell size decreases. This is
mainly attributable to the initial random distribution of nucle-
ation sites in the domain, for which only a single site per cell
(that with the smallest critical undercooling for nucleation)
is retained; a coarser mesh leads to a larger number of cells
with multiple nucleation sites. Effectively, a finer mesh leads
to a larger number of small grains. This is evident in Fig.
7a, which shows a histogram of grain volumes (quantified
by the radius of the sphere with equal volume) for different
choices of cell size. There is a shift toward smaller grain size
as the mesh is refined, consistent with the trend in Table 3. A
comparison of grain structures on the XY plane for different
cell sizes is shown in Fig. 8. All of the results show very sim-
ilar grain patterns for this case, although smaller cell sizes
clearly lead to smoother and higher-resolution representa-
tions of grain boundaries.

In a second study, additional cases with time step factors
of £ = 0.8, 0.4, and 0.1 are carried out while keeping the cell
size fixed at 10 wm. Although the nucleation site distribution
is identical across these cases because there is no change in
the mesh, a different time step size may influence the compe-
tition between neighboring grains and the order in which cells
are captured; as a result the final grain structures are expected
to be different in their details, though not necessarily in their
basic structure. The total number of grains versus time step
factor is presented in Table 4; differences are small, but the
clear trend is a slight decrease in number as the time step
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factor decreases. This might be attributable to the ability of
a smaller time step to more accurately capture the nonlinear
dendrite growth rate in this problem; dendrite envelope size
increases slightly more over a given time interval for the finer
time resolution, capturing more neighboring cells before new
grains can be nucleated there. The comparison of grain size
distributions is plotted in Fig. 7b, from which it is can be
seen that a time step size factor less than or equal 0.4 has lit-
tle influence on the grain size distribution. In Fig. 9, the top
subfigures are cross-sectional views of the grain structures
in the Y Z plane and the bottom subfigures are close-ups cor-
responding to the highlighted rectangular regions. (It should
be noted that the same grain for different cases may have
different colors; this is because we randomize the numeri-
cal values of the state indices to maximize contrast among
adjacent grains.) In Fig. 9, differences in details of the grain
structure can be observed between all four figures. Some of
these differences (e.g., the varying shapes of the 3-grain junc-
tion highlighted in the insets) are decreased for the smallest
time steps, but other discrepancies remain. These differences
are attributed to occurrences in which a cell is captured by
two or more different grain envelopes at the same time step,
and must be assigned to just one of them; in our algorithm,
the assignment is simply to the first grain treated in the loop.
These multi-capture events occur less frequently as the time
step is reduced, but do not go away completely; each such
event may lead to a discrepancy that compounds over time,
and time step convergence in the familiar sense cannot be
observed. Because the overall quality of the solution is not
affected by these differences, we accept that the solution may
be time-step dependent, and select a time step factor £ = 0.2
for the ensuing examples in this work.
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Fig.7 Grain size (in terms of 35
equivalent sphere radius)
distribution: a variable cell size, e 30¢
time step factor £ = 0.2; b < sl
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Fig.8 XY cross-section view of grain structure of an Al-7 wt%Si spec-
imen result from 3D CA for case I (see Table 1) with a time step factor
& = 0.2 and varying cell size: a dcey = 0.04 mm, b deeyp = 0.02 mm,
¢ deerp = 0.01 mm and d dgepp = 0.005 mm

4.1.2 Parallel efficiency demonstration

To demonstrate the parallel efficiency of the proposed par-
allelized 3D CA model, an example with a domain size of
20 x 5 x 5mm?, deey = 10 um, £ = 0.2 and others param-
eters as listed in Case I of Table 1 is run in parallel on
different number of processors. For this example, the domain
is decomposed only along X dimension.

The overall parallel efficiency with respect to processors
number used is listed in Table 5 and plotted in Fig. 10.
The parallel efficiency decreases with increasing number of
processors for most cases. This drop in efficiency can be

553
- 35 T I I
W Cell size=5 um I Factor=0.1
B Cell size=10 m 30 B Factor=0.2
3 Cell size=20 ym | 25 [ Factor=0.4

[ Cell size=40 ym

[ Factor=0.8

Volume fraction (%)

0.03 0.06 0.090.12 0.150.18 0.21 0.24

Equivalent sphere radius (mm)

(b)

(c) (d)

Fig.9 Y Z cross-section view of grain structure of an Al-7 wt%S$i spec-
imen result from 3D CA for Case I using dgej = 10 wm and various
time step factors §:a £ =0.8,b£& =04,c& =0.2andd & =0.1

attributed in part to load imbalance for this problem. In the
CA model, the computational load on each processor p at
a given time step, B (k), is expected to be dominated by
the initialization of new grain envelopes for each cell that is
captured at a given time f. Therefore, we can approximate
the total computational load as the number of liquid cells
captured at each time step, N, (k). The degree of load imbal-
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Table 5 Computation time ¢
and parallel efficiency E of the Processor (n) ! 2 4 8 16 32 o4
proposed parallelized 3D CA t (hour) 11.11 5.74 3.10 1.59 0.93 0.58 0.38
model for the case with a

3 E (%) - 96.75 89.49 87.30 74.57 59.88 45.85

domain size of 20 x 5 x 5mm
and dee = 10 wm

Efficiency is computed as E = t1/(n, x tp), where t; and ¢, denote the total run time for the serial program
and parallel program, respectively, and 7, is the number of processors

100

x©
(=}

D
(=}

IS
IS

[}
(=}

Parallel Efficiency (%)

1 2 4 8 16 32 64
Processors

Fig. 10 Parallel efficiency of the proposed parallelized 3D CA model
for the case with a domain size of 20 x 5 x 5mm? and dee; = 10 pwm

the number of processors. It can be seen that the load is heav-
ily influenced by differences in the number of surface cells
on each processor, because surface nucleation sites are more
active early in the simulation compared with the bulk volume,
and less active later. For the two-processor case, symmetry
leads to an equal number of surface cells on both processors.
As aresult, the loading curves for this case overlap (Fig. 11a)
and load is well balanced; the parallel efficiency is 96.75%.
For higher numbers of processors, the total number of cells
is equal across processors, but the surface cells are more
concentrated on just two processors (because the domain is
decomposed only in the x direction). These two processors
have a higher workload at early times, when microstructure

ance in a global sense can be illustrated by comparing N, (k)
across processor as a function of time.

In Fig. 11, N, (k) for cases with 2, 4, 8 and 16 processors
are plotted to show the load balance variation with increasing

Fig. 11 Computational load for
each processor as estimated by
the number of liquid cells
captured at each time step,

N (k), for various numbers of
processors: a 2 processors, b 4
processors, ¢ 8 processors, and
d 16 processors
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formation is dominated by surface nucleation, but lower at
later times when surface regions have finished solidifying.
This discrepancy and the resulting load imbalance, become
more pronounced as the total number of processors increases,
leading to lower parallel efficiencies.
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Fig. 12 a Temperature solution and track geometry at the end of a single beam pass through the powder bed; b outline of the CA region inside the

outline of the temperature solution domain shown in (a)

4.2 Grain growth during additive manufacturing

In the Selective Electron Beam Melting (SEBM) AM pro-
cess, melting of material is controlled by multiple processing
parameters, including beam power, scanning velocity, tool
path, build temperature, powder size distribution and so
on, which can lead to different solidification conditions.
Therefore, the resulting material microstructure morphology
can be heterogeneous and may be different from sample to
sample, but share common features under reasonable oper-
ating parameters. For AM of Ti—-6Al-4V, common features
include columnar grain structures and epitaxial growth. A
radial distribution pattern of columnar grains can often be
observed along the cross-section normal to the heat source
scan direction for a single track in accordance to the heat
flux distribution, as demonstrated by the typical SEBM Ti—
6Al-4V microstructures obtained under different processing
parameters reported in [2,3]. The pattern of the columnar
structure is attributed to the steep thermal gradient associ-
ated with the moving melt pool, where the base plate and
consolidated material act as a heat sink and the surround-
ing loose/lightly sintered titanium powder acts as insulation.
Columnar grains grow quickly under the high thermal gra-
dient, without time for nucleation ahead of the solidification
front occur, leading to epitaxial re-growth within each melted
layer. For each single track, this epitaxial growth can take
place on material already consolidated in the previous layer
or substrate, or from partially-melted powder particles in the
surrounding powder bed, as demonstrated by Fig. 5 in the
work of Antonysamy et al. [2]. As a consequence, the grain
size of each new layer is significantly dependent on the exist-
ing material; for this reason, the grain size shown in Fig. 2 of
Al-Bermani et al. [3] is different from that of Fig. 5 in Ref.
[2].

In this section, a single track of the SEBM AM process
with a Ti-6A1-4V alloy powder bed is simulated to demon-
strate the application of the 3D CA model. In this example,

Table 6 Growth kinetics and nucleation parameters for Ti—-6Al-4V

V(AT) =1 - AT + 1 - AT?

n = 0.544 x 1073 m/(s K) 7 =2.03 x 1073 m/(s K?)

the diameters of spherical powder particles range between 40
and 80 wm, the layer thickness is 0.05 mm, and the electron
beam power is 60 W with a scan speed of 0.5 m/s. The tem-
perature solution and track geometry at the end of a single
beam pass through the powder bed are shown in Fig. 12a.
Details of this thermal/fluid simulation can be found in [24];
here, we couple the results of this computation to the 3D CA
model and focus only on the grain structure prediction during
the solidification process.

The region size of interest is 0.7 x 0.225 x 0.055 mm?,
as illustrated by the inner outline shown in Fig. 12b. The
parameters for the 3D CA model, taken from Ref. [7], are
summarized in Table 6. For this case, nucleation of grains
within the melt pool is ignored, and grains grow from the pre-
defined structure of the existing material, which is assumed
to have a fine grain structure. In this simulation, we use a cell
size of dce) = 1 wm and a time step factor of £ = 0.2 for the
CA model.

Figure 13 shows four snapshots of the solidification
microstructure in the selected domain. The emergence of
columnar grain growth from an existing substrate is captured,
showing reasonable agreement with experimental results,
e.g., Fig. 3 in [2] showing the primary §-grain structure that
forms during initial solidification, and Fig. 12 in [3]. Further-
more, the X Z cross-sections of the final grain morphology
at three different Y positions are given in Fig. 14a, where
the Y direction is across the melt track. All three subfigures
show similar grain patterns and demonstrate columnar grains
growing upward and tilted slightly along the direction of the
beam scan, aligning with the temperature gradient. In Fig.
14b, the grain morphologies in the Y Z plane at three dif-
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Fig. 13 Evolution of the molten pool microstructure represented by
four snapshots at increasing times: a 0.3492 ms, b 1.1342 ms, ¢ 1.4291
ms, and d 1.8427 ms

ferent X locations, where X is the direction along the melt
track, show the radial, epitaxial grain growth from underly-
ing material. These results show good qualitative agreement
with results observed in experiments [2,3].

The parallel efficiency of the proposed method for this
problem is presented in Fig. 15. In this scaling study, the
domain is decomposed only along the X direction. This
domain decomposition strategy leads to a good load balance
for the 2 processor case, but becomes increasingly worse
with larger numbers of the processors due to the moving
molten pool as shown in Fig. 13. As a result, a static domain
decomposition strategy may not be desirable for this prob-
lem due to load imbalances from the transient evolution of
extremely localized events. Other parallelization strategies,

Y=0.0727mm

100 100
& 90
> 80 80
2 70
8 60
S 60
=
& 50
T 40 40
= 30
£ 2 20

10
0 0
1 2 4 8

Processors

Fig. 15 Parallel efficiency of the proposed parallelized 3D CA model
for the Selective Electron Beam Melting (SEBM) simulation

including reallocation of domains to rebalance workload, will
be explored in future work.

5 Conclusion

In this work, a parallelized 3D cellular automaton (CA)
model was presented to simulate the grain structure dur-
ing solidification of an alloy in both casting and additive
manufacturing. In this model, a static domain decompo-
sition strategy is applied in a distributed memory scheme
implemented using MPI. For interprocess communications,
a Cartesian virtual topology is used together with ghost lay-
ers of cells surrounding each processor domains. In CA,
growth of individual grains is modeled by capturing cells
surrounding it, which requires simple and efficient inter-
process communications associated with the captured ghost
cells and ghost cells’ phase state update. From the numeri-

50 um

|

Y=0.1127mm

|

Y=0.1527mm

'

s (a)

X=0.1915mm

X=0.3495mm

X=0.5075mm S0 um

Z z - v
X -| W & Mo

(b)

Fig. 14 Cross-sectional views of grain morphology: a X Z plane at three different locations, and b Y Z plane at three different locations
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cal casting examples, the parallel efficiency of the proposed
model can retain more than 80% with eight processors,
and reasonable efficiencies on 64 processors, although load
imbalance can lead to loss of efficiency depending on the
problem geometry. For the problems tested, it is demon-
strated that load imbalances rise from the distribution of the
surface and bulk nucleation with different critical undercool-
ing. In addition, keeping the cell size less than the dendrite
arm spacing and time step size factor around 0.2 are rec-
ommended for accurate CA predictions. Furthermore, the
grain growth of Ti—-6Al-4V alloy powder-bed by Selective
Electron Beam Melting was predicted, where the tempera-
ture field with large undercooling rate and a high gradient
is solved through a finite volume method based on a high
fidelity discrete model. The microstructure results are in qual-
itative agreement with those of experimental observation. In
our upcoming work, the solidification microstructure under
different process parameters, such as heat source power,
scanning speed, layer thickness, and scan direction, all of
which can influence the temperature field, will be presented.

The static domain decomposition strategy may suffer from
a significant load imbalance in AM simulations because the
actively growing grains are located on only a subset of the
computational processors. For cases like this, other paral-
lelization strategies, including reallocation of domains to
rebalance workload, may be preferred in order to maintain
good parallel efficiency on large numbers of processors. This
is a direction for future exploration.
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