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Abstract

In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidi-

fication of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized

events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load

balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give

a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented

to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel

efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due

to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing

simulation with resulting grain structures showing reasonable agreement with those observed in experiments.

Keywords Additive manufacturing · Grain structure · Cellular automaton · High performance computing

1 Introduction

Additive manufacturing (AM) technology, sometimes refer-

red to as 3D printing, is the operation of building a 3D object

from computer-aided design model by successively adding

material layer by layer. This technology allows rapid fabri-

cation, precise geometric control, and flexibility to create or

repair without the use of any die or mold, giving the poten-

tial to revolutionize the global part manufacturing landscape

[21]. Therefore, much effort is being focused on enhanc-

ing AM technologies; research areas include understanding

metal powder fabrication, influences of process parameters

[24], in situ and real time monitoring [27], and the metallurgi-

cal and mechanical properties of the final part [1,7] by means

of experiment, theory, and computational models. This work

is focused on a numerical model to predict the microstruc-

ture during the solidification process; this microstructure has

a critical influence on the mechanical properties of the result-

ing material.
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There are two main types of numerical methods, deter-

ministic and stochastic, used to model the complex dendrite

growth and grain structures during metal solidification. A

typical method of the first type is the phase field method

[4,23]. Phase field methods, in which a field variable varies

smoothly over a diffuse interface region to demarcate differ-

ent phases, have been used to model the growth of dendrite

structures in pure materials and alloys [1,8]. Another method

similar in spirit is the level set method [12,22], which allows a

sharp-interface description of the same phenomena, includ-

ing the detailed treatment of interface conditions. Both of

these approaches are valuable in elucidating fine details of

solidification structures. However, the small length scales

and small numbers of grains attainable using these methods

make it difficult to predict microstructures at sizes that can

be directly tied to the performance of resulting materials.

Examples of stochastic-based methods include kinetic

Monte Carlo (KMC) and Cellular Automaton (CA) meth-

ods (although CA methods include deterministic models

of growth along with stochastic grain nucleation models).

Compared with the methods described above, KMC and

CA methods require fewer computer resources and there-

fore allow simulations of a large numbers of grains within

domains at the millimeter scale and beyond. KMC methods

represent individual grains by associating each discrete lat-
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tice site with a grain, and utilize a Potts model to simulate

solidification and grain growth dynamics by modifying cell

values at each Monte Carlo step to reduce surface energies

between unlike grains. By coupling KMC to a varying tem-

perature field Rodgers et al. have modeled welding [19] and

AM [20] processes; the final grain morphologies are in good

agreement with observed experimental results. However, the

KMC approach as formulated lacks a model to accurately

capture the solidification velocity of individual grains. In the

CA method, grains are tracked on a discrete grid of cells

in which individual cells can be assigned a particular state,

similar to the KMC description. Nucleation of new grains

is modeled stochastically depending on the local undercool-

ing of cells in the liquid state, while grains grow (effectively

“capturing” neighboring cells) according to a dendrite growth

model in the form of a physically-based dendrite tip veloc-

ity law, which itself is dependent on the local undercooling

of each grain site. Like the KMC method, the CA method

can be coupled to a time and space-varying temperature field

that is either prescribed or obtained from a solution to the

energy equation. Because the CA method evolves the grain

structure according to a physically meaningful time step,

compared with the harder-to-interpret Monte Carlo steps

of the KMC method, it is straightforward to couple CA

and thermal models together for a given material and pro-

cess.

The CA method was first developed by Rappaz and Gandin

[18], who successfully predicted the columnar-to-equiaxed

grain transition during solidification. Soon after, the same

authors coupled the CA representation to a finite element

simulation of the local temperature field [9,11], which may

vary in space and time. The resulting cellular automaton-

finite element (CAFE) model has been refined and improved

and applied to increasingly complex simulations of grain

formation [5,15]. Zinoviev et al. [28] and Zhang et al.

[26] have applied CA to model the grain evolution dur-

ing laser AM in 2D. Dezfoli et al. [7] and Panwisawas et

al. [17] utilized a CA model for microstructure prediction

and control of metals in 3D laser AM processes, and have

demonstrated good qualitative agreement with experimental

results.

Although CA has a broad and impactful range of appli-

cations for microstructure prediction in traditional casting

and advanced AM, the length scale of the problem that CA

can reach is limited by the bounding cell size. To accurately

model the extension of grains by branching mechanisms,

the cell size should be smaller than the length at which

the branching mechanisms of the dendrite network take

place; these could be on the length scale of the secondary

even the tertiary dendrite arm spacing. For simulations of

casting aluminum-silicon alloy, Gandin et al. [10] found

a cell size dcell = 50 µm to be sufficient. However, fine

microstructures with dendrite arm spacings as small as a

few microns are often observed in AM processes due to the

high cooling rate and temperature gradient [25]. For these

length scales, a cell size dcell < 10 µm may be required

for sufficient accuracy, which raises a computational chal-

lenge. For example, a 1 cm3 volume requires 1 billion cubic

cells of size 10 µm. It should be noted that the number of

cells increases by 23 when refining the cell length scale

by a factor of 2 for the 3D case. To overcome this dif-

ficulty, Gandin et al. [10] have proposed special dynamic

allocation algorithms to model solidification grain structures

in a representative volume of the casting to save memory

size; however, this does not reduce computational burden.

Therefore, high-performance parallel computing algorithms

for CA models are required to model large scale prob-

lems and expedite the simulation process by leveraging

parallel computing resources, especially for AM applica-

tions.

In this work, a parallelized 3D CA model is proposed

using a Message Passing Interface (MPI) system to exchange

data between processors. A static decomposition strategy is

employed to implement the parallelization. Some issues in

the interprocess communications are addressed. The rest of

the paper is organized as follows. In Sect. 2, the 3D CA

model is introduced in detail including heterogeneous nucle-

ation, dendrite tip growth kinetics, the decentered octahedron

growth scheme, and the explicit time integration algorithm. In

Sect. 3, an MPI-based parallelism for 3D CA is proposed. In

Sect. 4, numerical examples including grain growth under a

uniform decreasing temperature field and an AM application

are performed to demonstrate the parallel efficiency of the

method. Finally, conclusions and perspectives are discussed

in Sect. 5.

2 A 3D cellular automatonmodel

In CA, a material region is discretized by a set of cubic cells

as shown in Fig. 1. Each cell may have variables associated

with it, such as temperature and a state index associating the

cell with a particular grain. In this work, a state index of −1

denotes a cell in the liquid state, while a non-negative integer

value denotes a state of solidification with grain information.

The two main phenomena in the CA approach are hetero-

geneous nucleation and grain growth. Models for these two

mechanisms are detailed in this section.

2.1 Heterogeneous nucleation

The heterogeneous nucleation model describes the distribu-

tion of nucleation sites, the critical undercooling value at

which nucleation occurs at each site, and the crystal orienta-

tion of newly nucleated grains.
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Fig. 1 a A 3D cellular

automaton network to predict

microstructure formation; b a

cross-sectional view of the

network, where ν, μ, and κ are

cell IDs discussed in the text,

solid dots denotes a nucleation

site, and two growing grains are

represented over the solid cells

in blue. (Color figure online)
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2.1.1 Nucleation sites and their critical undercooling

distributions

In CA, nucleation may occur both at the surface and in the

bulk of the liquid volume. The number density for a pop-

ulation of sites, �, is prescribed as an input parameter, and

typically must be fit to experimental measurements. Densi-

ties have units of m−3 for bulk nucleation sites and m−2 for

surface nucleation sites. Hereafter, we use �s and �v to denote

the nucleation density for surface and bulk, respectively. Prior

to the beginning of the simulation, the total number of nucle-

ation sites in the bulk and at the surface are calculated as

Nv = �v · V (1)

Ns = �s · S (2)

where V and S represent the total volume and total surface

area, respectively.

At each nucleation site i , nucleation occurs when the

undercooling (the liquidus temperature minus the local cell

temperature) exceeds a critical value �T cri t
i . This critical

undercooling may vary from site to site, and is assumed to

follow a Gaussian distribution. In CA, the values of the mean

and standard deviation (�Tmax and �Tσ , respectively) of

critical undercooling temperatures may differ between sur-

face and bulk nucleation sites, and so subscripts s and v are

used to distinguish such quantities as is done for �.

For a given discretization, Ns cells are randomly selected

from cells adjacent to the surface of the domain as surface

nucleation sites, and Nv cells are selected from all cells in the

domain as potential bulk nucleation sites. For each nucleation

site created, a random critical undercooling is selected from

the corresponding Gaussian distribution function (surface or

bulk), and is assigned as the undercooling at which a grain

will be nucleated at that cell. It should be noted that a cell

x

y

z

o
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


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Fig. 2 Regular octahedral envelope

may be selected more than once as a possible nucleation site.

In this case, only the smallest of the undercooling values

randomly selected for this site is assigned.

2.1.2 Grain envelope and crystallographic orientation

During the solidification process, a potential nucleation site

at a pre-chosen cell ν becomes active (provided it has not

already been captured by a neighboring grain) if the under-

cooling at the center of cell ν exceeds its assigned critical

undercooling. Neglecting the incubation time, it is assumed

that the dendritic network within cell ν develops as a regular

octahedral envelope bound by {111} planes as shown in Fig.

2. The six half-diagonals of the octahedron correspond to the

primary dendritic growth directions of the grain [11]. Each

grain is characterized by the global orientation of its [001]

crystal direction in terms of a set of Euler angles (φ1, φ2, φ3),

where 0 ≤ φ1 ≤ 2π , 0 ≤ φ2 ≤ π , and 0 ≤ φ3 ≤ 2π .
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Grains that are nucleated either at the surface or in the bulk

of the volume are assumed to have a random crystallographic

orientation. In order to obtain an isotropically distributed set

of random orientations, two auxiliary variables χ1 and χ2

are first randomly selected from a uniform distribution over

[0,1]. These parameters are then used to generate locations

for φ1 and φ2 on the unit sphere:

φ1 = 2πχ1 (3)

φ2 = cos−1(2χ2 − 1) (4)

It is straightforward to show that this procedure results in a

random uniform distribution over the unit sphere by calcu-

lating the differential area element over the sphere, dS:

dS = sin φ2dφ1dφ2 = − dφ1d(cos φ2) = − 4πdχ1dχ2 (5)

Finally, the third Euler angle, φ3, is selected from a uniform

distribution over the range [0, π/2] with the symmetry of the

octahedral dendrite structure assuring that all unique orien-

tations of the grain are equally likely.

2.2 Growth algorithm for an active grain

The grain growth is governed by the dendrite tip growth

kinetics. During the grain propagation process, a decentered

octahedron method is used to determine a new envelope; each

cell captured by this envelope spawns a new growing octa-

hedron with a crystal orientation inherited from the parent

nucleus. The capture of neighboring cells by the growing

dendritic network is then equivalent to the overall growth of

an octahedral envelope, at least until the envelope impinges

on other grains or boundaries.

2.2.1 Dendrite tip growth kinetics

The dendrite tip growth rate, v, is related to its undercooling,

�T . As presented in [18], the undercooling includes four

contributions:

�T = �Tc + �Tt + �Tk + �Tr (6)

where �Tc, �Tt , �Tk and �Tr denote the undercooling con-

tributions associated with solute diffusion, thermal diffusion,

attachment kinetics and solid–liquid interface curvature,

respectively. Based on dendrite tip kinetics models, such as

the KGT model [13] or LGK model [6,14], the relationship

between dendrite tip velocity and undercooling �T can be

determined based on the predominant mechanisms. In order

to speed up calculations, such a relationship is usually fitted

with a polynomial approximation.

Various polynomial approximations may be fitted with

different coefficient values for a specific application. For

example, for the Aluminum-Silicon alloy under normal solid-

ification conditions, Gandin and Rappaz [9] proposed a

polynomial formulation:

v(�T ) = η2 · �T 2 + η3 · �T 3 (7)

where η2 and η3 are coefficients with units of m/(s · K2) and

m/(s ·K3), respectively. For Ti–6Al–4V alloy with high ther-

mal gradient solidification conditions, as in AM processes,

Dezfoli et al. [7] have used another polynomial formula given

as:

v(�T ) = η1 · �T + η2 · �T 2 (8)

where η1 is a coefficient with units of m/(s K).

2.2.2 Grain growth

Since the six half-diagonals of the octahedral envelope rep-

resent the 〈100〉 crystallographic directions along which the

grain grows fastest, growth is simulated by extending these

half-diagonals based on the dendrite tip velocityv(�T ). Here

�T is the local undercooling at the center of the cell that

owns the envelope. As time proceeds, the envelope grows

and eventually engulfs neighboring cells to propagate the

grain.

The state of a cell is defined by a set of variables including

the state index, grain orientation, envelope center (i.e., the

growth center) and envelope size; these are denoted as I ,

(φ1, φ2, φ3), C and L , respectively. Note that I is an integer

associating a cell with a particular grain orientation, so that

cells with the same value of I have the same orientation and

are considered part of the same grain. For a regular octahedral

envelope, the size is defined as the distance from its envelope

center to the center of any of its {111} faces. Each solidified

cell has a unique octahedral envelope, with a given center and

size; the full grain is then given by the union of envelopes

with the same orientation and state index.

To detail the grain growth and the capture process, we take

two neighboring cubic cells as an example. As shown in Fig.

1b, the two cells are labeled ν and μ with a cell spacing of

dcell. The initial state indices of both cells are set as −1 (i.e.,

Iν = Iμ = − 1) indicating the liquid state, and the cell ν is

pre-chosen as a nucleation site with a critical undercooling

�T crit
ν . At a particular time tν , the undercooling �Tν(tν) at

the center of cell ν becomes larger than �T crit
ν . At that time, a

grain is nucleated at the center of cell ν with a randomly gen-

erated orientation as described in Sect. 2.1.2. The state index

of cell ν is then set to a unique integer value. Meanwhile,

an active envelope associated with cell ν is defined with size

Lν(tν) = 0 and center Cν at the cell center. Approximating

the temperature as uniform with each cell, the size of the

octahedral envelope at a time t > tν is given by
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Lν(t) =
1

√
3

∫ t

tν

v (�Tv(τ )) dτ (9)

where v is the dendrite tip velocity (i.e., of the 〈100〉 direc-

tions or diagonals of the octahedron). As determined by Eq.

(7) or (8), the dendrite tip velocity is a function of the local

undercooling at the center of the owning cell. Here it is use-

ful again to point out the distinction between the octahedral

envelope for a given cell, defined by six equally-sized diago-

nals, and the grain, which is formed by a union of octahedral

envelopes and spans many cells. Thus, the growth velocity

of the grain is non-uniform in space and time, and varies as

a function of the local temperature throughout the grain.

At some time tμ > tν , the envelope associated with cell ν

engulfs the center of neighboring cell μ. Now cell μ is cap-

tured by cell ν and grain information associated with cell ν is

used to initialize a new grain envelope associated with cell μ.

The state index of cell μ is set as equal to Iν , while Cμ and Lμ

are calculated relative to those of the parent envelope through

a decentered octahedron growth algorithm (described in Sect.

2.2.3). A grain envelope stops growing and is “deactivated”

when all of the cells neighboring its owning cells have been

captured. In this work, the neighbors of a cell are defined as

all face, edge, and corner neighbors, so that a typical interior

cell in 3D has 26 neighbors.

2.2.3 A decentered octahedron growth algorithm

When a cell is captured by a growing grain envelope, a new

octahedral envelope is created at that cell, the size and cen-

ter location of which are computed according to a decentered

octahedron algorithm [11]. Through this approach, three con-

ditions are met: (1) the new octahedron fits fully inside the

old one; (2) a corner of the new octahedron coincides with

the corner of the old one that is closest to the captured cell;

and (3) the maximum size of the new octahedron is fixed

at a value proportional to dcell according to the formulation

introduced by Gandin and Rappaz [11]. Details of the imple-

mentation of this model following their outline are presented

below.

Consider for example the two cells μ and κ shown in Fig.

1b. Assume that the envelope associated with cell μ, with a

set of Euler angles (φ1, φ2, φ3), is growing and approaching

cell κ . In Fig. 3, the open circle μ and the cross Cμ are used

to denote the cell center and envelope center associated with

cell μ.

The size of the envelope associated with cell μ at time t

is given by

Lμ(t) = Lμ(tμ) +
1

√
3

∫ t

tμ

v
(

�Tμ(τ )
)

· dτ (10)
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Fig. 3 Schematic illustration of the octahedron envelope truncation

where Lμ(tμ) represents the initial size of the envelope at cell

μ, created at the time of its capture tμ. At each time step, it is

determined whether cell κ has been captured by the envelope

at cell μ, and if it is, a new envelope at cell κ is initialized

using the procedure below:

1. Transform the coordinate of cell center κ to a local coor-

dinate system associated with the envelope:

x
κ = M−1 · (X

κ − X
Cμ) (11)

where uppercase X and lowercase x represent the coor-

dinates of the cell center in global and local coordinate

systems, respectively, as shown in Fig. 3. Matrix M is

the coordinate rotation matrix given by the Euler angles

(φ1, φ2, φ3).

2. Calculate the octant and nearest octahedral face for the

captured cell. In the local coordinate system, space is

decomposed into eight octants separated by the local

coordinate planes. The signs of the components of x
κ

then determine in which octant cell center κ is located.

The corresponding face of the envelope is denoted by F

with its normal direction, nF , denoted by Miller indices

[h, k, l] (where all indices are +1 or −1).

3. Calculate the distance betweenκ and the face with normal

vector of nF as follows

d =
1

√
3

(

hxκ
1 + kxκ

2 + lxκ
3 − λμ

)

(12)

where λμ =
√

3Lμ(t) is the half-diagonal length of the

envelope associated with cell μ. If d < 0, then the cell

center κ is engulfed by the face F ; otherwise, the cell

center is outside of the face F . If the cell κ is captured,

123



548 Computational Mechanics (2018) 61:543–558

continue with the following steps to obtain the new enve-

lope size and center position associated with cell κ .

3. Calculate the projection of the cell center κ onto face F

and denote it as point a:

x
a = x

κ +
1

√
3
|d|nF (13)

4. Determine the closest corner on face F to a. In Fig. 3, the

nearest corner is labeled s1, with the other two corners of

face F denoted by s2 and s3, respectively.

5. Calculate the projections of point a onto the edges s1s2

and s1s3; denote the projected points as i and j , respec-

tively, as follows:

−→
is1 =

(x
s2 − x

s1) · (x
a − x

s1)

‖(xs2 − xs1)‖2
(x

s2 − x
s1) (14)

−→
js1 =

(x
s3 − x

s1) · (x
a − x

s1)

‖(xs3 − xs1)‖2
(x

s3 − x
s1) (15)

6. Determine the new envelope size by first defining two

auxiliary variables:

L12 =
1

2

(

Min
[

is1,
√

3dcell

]

+ Min
[

is2,
√

3dcell

])

(16)

L13 =
1

2

(

Min
[

js1,
√

3dcell

]

+ Min
[

js3,
√

3dcell

])

(17)

Here, the lengths of the new envelope edges along the

s1s2 and s1s3 directions are truncated to no more than√
3dcell. The new envelope size is then computed as:

Lκ =
√

2/3Max [L12, L13] (18)

The length of the half-diagonal of the new envelope is

λκ =
√

3L t
μ. Note that by this procedure, if is1, is2, js1,

and js2 are all less than
√

3dcell (the maximum spacing

between neighboring cell centers), the new envelope has

the same size as the original.

7. Based on the new envelope size, calculate its center such

that the corner of the envelope corresponds with s1:

x
Cκ = (λμ − λκ)

nos1

‖nos1‖
(19)

where x
Cκ is the coordinate of the new grain enve-

lope associated with cell μ, and nos1 denotes the vector

connecting point o to point s1. Through the coordinate

rotation matrix M, the global coordinates of the new enve-

lope center can be obtained as

X
Cκ = X

Cμ + M · x
Cκ (20)

As a result of this procedure a new envelope is created

with envelope center position X
Cκ and envelope size Lκ .

Meanwhile, the orientation of the envelope is identical to

that of the parent envelope, and Iκ = Iμ.

2.2.4 Time integration scheme

An explicit time integration with variable time step size is

applied to integrate grain envelope growth [e.g., Eqs. (9),

(10)] for all active grain envelopes. At time tk , where the

subscript k denotes the kth time step, the time step is deter-

mined as

δtk = ξ · min
μ

(

dcell

v
(

�Tμ(tk)
)

)

(21)

where ξ is a time step factor within a range of (0, 1], and

v
(

�Tμ(tk)
)

is the dendrite tip velocity at cell μ; the min-

imization is taken over all cells μ with an active growing

envelope. Since dcell is a constant, Eq. (21) implies that the

time step is determined by the active envelope with the largest

growth velocity. At time of tk+1 = tk +δtk , the envelope size

is then updated for each grain μ as

Lμ(tk+1) = Lμ(tk) +
1

√
3
v

(

�Tμ(tk)
)

δtk (22)

2.3 Numerical implementation

A summary of the CA procedure at a single time step is

presented here:

1. Loop over all remaining nucleation sites whose cells have

not yet been captured by other grains. At any site whose

undercooling exceeds the critical undercooling assigned

to that site, nucleate a new active grain envelope with a

random orientation.

2. Loop over all active envelopes to determine the current

time step size according to Eq. (21).

3. Loop over all the active envelopes to grow the grains:

(a) Calculate the updated envelope size according to Eq.

(22);

(b) Capture the neighboring cells according to the method

described in Sect. 2.2.3.

2.4 Temperature field

As discussed in Sects. 2.1 and 2.2, the heterogeneous nucle-

ation and dendrite tip growth algorithms are functions of the

local temperature of the cells. In the original CAFE model

[9], a finite element method was used to solve a thermal

conduction equation to provide a temperature field at each

cell center. Alternatively, such a temperature field may be
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ν

One element (coarse mesh)

of a thermal solver

Network (fine mesh) of CA 

Fig. 4 Schematic illustration of the interpolation method for the 2D

case. The temperature at the center of CA cell ν is interpolated from a

rectangular element in the thermal solution mesh. The interpolation is

computed from the four nodal temperature values via the bilinear shape

functions associated with the element

predefined or provided by other numerical methods such as

a mesh-based finite volume method (FVM) or a meshfree

method.

If a thermal solver is applied, a mesh or grid size coarser

then the CA cell network, but overlapping it, is usually

adopted to save computational cost. Each CA cell’s temper-

ature can be interpolated from the coarse mesh element in

which the cell center Cν is located as shown in Fig. 4. The

one-way coupling method proposed in Ref. [10] is used in

this work.

3 A parallelized 3D CAmodel based on a
message-passing paradigm

To accelerate computations and make microstructure sim-

ulations feasible on length scales reaching centimeters and

beyond, a parallelized C++/MPI implementation of the 3D

CA model described in Sect. 2 has been developed. As shown

in Sect. 2, most of the computational cost in the CA model is

incurred in calculating which cells are captured by grow-

ing grain envelopes, and in creating new envelopes. The

amount of calculation during this capture process is related

to the total number of active grain envelopes distributed

throughout the network, and the number of liquid cells

surrounding them. In this section, a static domain decom-

position and parallel communication scheme is proposed to

distribute data and computational burden across multiple pro-

cessors.

3.1 Domain decomposition strategy

An optimal domain decomposition gives each processor the

same amount of computational load while minimizing the

interface between subdomains, so that interprocess commu-

nication cost is reduced and parallel efficiency enhanced.

However, the ideal domain decomposition is problem-

dependent, and computational load may be non-uniformly

distributed in space. In CA, the memory requirements per

processor are related to the number of cells located on each

processor, but computational load depends on the distribu-

tion of active and growing grain envelopes throughout the

domain. To balance memory load in CA, a static domain

decomposition strategy is proposed in which the CA cells are

evenly divided among processors such that each processor

owns approximately same number of cells. For convenient

interprocess communications, a Cartesian virtual processor

topology is used. Decomposition may be performed along

one, two, or all three Cartesian directions; flexibility in select-

ing a decomposition increases the ability for computational

load to be balanced among processors for a given problem

geometry.

To illustrate the details of the domain decomposition strat-

egy, we consider a cubical body with eight processors as an

example as shown in Fig. 5. A typical decomposition strategy

is as shown in Fig. 5a, where the domain is decomposed into

two parts along each dimension. Each subdomain is assigned

to a unique processor, and the mapping of subdomains to

processors is facilitated through the use of a virtual Carte-

sian topology in MPI [16]. The Cartesian virtual topology

matches the physical topology as shown by the dashed arrow

lines in Fig. 5b.

In order to grow grains across subdomain interfaces,

the state of cells adjacent to the interfaces must be com-

municated to neighboring processors. To implement this

communication, a one-cell-thick ghost layer around each

processor subdomain is created. For example, Fig. 5c

shows a Y cross-section of a domain with 16 cells on

the plane, indexed starting from 0, decomposed among

four processors. The corresponding ghost layer cells are

shown in Fig. 5d in orange. These ghosting layers pro-

vide a convenient way to perform operations, such as

grain propagation, involving cells that are not on the cur-

rent processor. For clarity of the following description,

we define the cells in blue within each subdomain as

local cells on the current processor as shown in Fig. 5d,

while the cells in the ghost layer are referred to as ghost

cells.

3.2 Interprocess communications

As listed in Sect. 2.3, there are three major computational

steps within each time increment in the CA model. Using

the static domain decomposition parallelism, there are four

interprocess communications during each time step: global

time step size calculation, cross-capture of cells, ghost

cell index update, and maintenance of a global orientation

list.
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Fig. 5 Illustration of domain

decomposition and Cartesian

virtual topology: a domain

decomposition with 8

subdomains; b Cartesian

coordinates for 2 × 2 × 2 3D

topology, where the solid

squares represent the processes

and the edges connect processes

that communicate with each

other; c mesh on a typical Y

cross-section, assuming 16 cells

in the plane; d decomposed

mesh across 4 processors, where

cell indices correspond to those

in subfigure (c). Blue cells are

locally owned, while orange

cells indicate ghost layers to

facilitate communication. (Color

figure online)

proc 0 proc 1

proc 2proc 3

proc 0 proc 1

proc 3 proc 2
X

YZ

O

X

Z

O

(a) (b)

(c) (d)

(0,0,0) (1,0,0)

(0,0,1)
(1,0,1)

(1,1,0)

(1,1,1)(0,1,1)

3.2.1 Determination of the global time step size

The time step size computed in Eq. (21) is a global minimum

over all grain envelopes on all processors. This time step is

coordinated among processors with a simple reduction oper-

ation (e.g., MPI_Allreduce).

3.2.2 Capturing neighboring cells

During the cell-capturing stage of each time step, each pro-

cessor loops only over the active envelopes associated with

its local cells. For an active envelope associated with a cell

that is located at the interface of subdomains, one or more

of the neighboring cells will be a ghost cell. In our imple-

mentation, if a ghost cell is captured by an active envelope,

the new envelope is created by the processor that owns that

cell. For example, referring to Fig. 5d, if cell 6 is captured

by the envelope associated with cell 5 on processor 0, then

the envelope information (size, orientation, center, and cap-

tured cell ID) from cell 5 must be communicated to processor

1; a new envelope associated with cell 6 is then created on

processor 1 (unless cell 6 has already been captured by a

different envelope at the same time step). In this case, the

information related to the capturing grain is wrapped and

sent to the corresponding processor to complete the capture

of neighboring cells. Note that, because a grain envelope

may capture any of the 26 neighbors of its owning cell in 3D,

care must be taken to communicate not only to immediately

adjacent (i.e., face-sharing) processors in the Cartesian topol-

ogy, but also to processors that own ghost cells along edges

and corners. In our implementation, this is handled through

multiple communication steps along Cartesian direction until

all processors have received data corresponding to local

cells.

3.2.3 Updating ghost cell state index

After the cell capture step is complete, if a cell adjacent

to a processor interface has been captured, its ghost cell

“image" on neighboring processors must be updated. There-

fore, another communication operation is required to update

the state indices of ghost layers of cells. At the end of this

communication step, all processors have updated informa-

tion about the state of local and ghost cells.
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Table 1 Nucleation site

parameters used in example

simulations

Case ΔTs,max ΔTs,σ �s ΔTv,max ΔTv,σ �v Ṫ

(◦C) (◦C) (m−2) (◦C) (◦C) (m−3) (◦C/s)

I 0.5 0.1 2.5 × 108 8.0 0.1 5.5 × 1010 −2.3

II 0.5 0.1 2.5 × 108 10.5 0.1 5.5 × 1010 −2.3

The subscripts v and s denote parameters associated with bulk and surface nucleation sites, respectively

3.2.4 Maintaining a global orientation list

The state index of each cell is an integer that associates the

cell with a unique crystallographic orientation (i.e., a set of

Euler angles). Cells with the same state index are considered

to be part of the same grain. In order to ensure global unique-

ness of each index, and to correctly associate each index with

a particular orientation, every processor must have a copy of

the global list of indices and orientations.

At each time step, new grains (with randomly chosen ori-

entations) may be nucleated locally on any processor. After

grains are nucleated, new grain information is gathered glob-

ally, and a list of globally unique orientations and state indices

is generated. This list is passed back to individual proces-

sors, where newly nucleated grains are updated with unique

indices.

4 Numerical examples

Two sets of examples are conducted to demonstrate the

method and implementation. In the first, a uniform tempera-

ture field with a constant cooling rate is applied to show the

influence of cell size and time step size while demonstrating

the parallel efficiency of the proposed parallelized method.

The second set of examples demonstrates an application to

the AM process, where a finite volume method is used to

provide a thermal field.

4.1 Grain growth in a uniform temperature field

In this section, we conduct microstructure prediction simu-

lations for an Aluminum-7 wt% silicon (Al-7 wt%Si) alloy

under a uniform temperature field with a constant cooling

rate, Ṫ . Parameters for these examples, including the growth

kinetics law, are taken from Refs. [9,18] and are summarized

in Tables 1 and 2. It should be noted that the only difference

between Case I and Case II in Table 1 is the mean undercool-

ing, ΔTv,max, for the bulk nucleation; this difference leads to

different final grain morphologies.

4.1.1 Mesh size and time step size influence

To study the solution dependence on mesh size and time step

size, a cubic domain of 5 × 5 × 3 mm3 is chosen to represent

Table 2 Growth kinetics for Al-7 wt%Si alloy

v(ΔT ) = η2 · ΔT 2 + η3 · ΔT 3

η2 = 2.90 × 10−6 m/(s K2) η3 = 1.49 × 10−6 m/(s K3)

a 3D Al-7 wt%Si ingot cast in a mold. As reported in [11,18],

the secondary dendrite arm spacing for this type of material

by casting is on the order of 15 µm.

First, two simulations corresponding to the two sets of

parameters listed in Table 1 are conducted with the same cell

size, dcell = 10 µm and time step factor, ξ = 0.2. The final

grain morphologies of both cases from the 3D CA model are

presented in Fig. 6, where the colors represent the unique ID

and orientations for different grains. From Fig. 6, one can see

that columnar growth from the surfaces is predicted in both

cases, and inspection of our results shows that grains that have

〈100〉 crystal orientations perpendicular to the surface are

most prevalent because of the relatively faster growth rates

in those directions. Since ΔTv,max for case II is larger than

that of case I, bulk nucleation ahead of the growing columnar

grains is postponed in case II, and those columnar grains

approach the center of the ingot in case II before a columnar-

to-equiaxed transition (CET) can take place. By calculating

the expected length that the columnar grains attain before

bulk nucleation can occur, we can estimate the column length

at the CET in terms of the parameters listed in Tables 1 and

2 as

lCET =
1

Ṫ

[η2

3

(

ΔT 3
v,max − ΔT 3

s,max

)

+
η3

4

(

ΔT 4
v,max − ΔT 4

s,max

)]

(23)

which gives 0.88 and 2.5 mm for cases I and II, respectively.

Because the half-thickness of the domain in the z direction

is only 1.5 mm, a CET expected to be present in case I but

not in case II. This prediction, along with the approximate

position of the CET in case I, is verified by the results shown

in Fig. 6.

Case I is used for refined simulations to illustrate the

influence of mesh size and time step size. Keeping the time

step factor as ξ = 0.2, additional cases with cell sizes of

dcell = 40, 20 and 5 µm are conducted. Note that even when

model parameters in Tables 1 and 2 are kept constant across

simulations, results are not expected to be identical for dif-
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Fig. 6 Grain structure of an Al-7 wt%Si specimen result from 3D CA with cell size dcell = 10 µm, time step factor ξ = 0.2 and other parameters

listed in Table 1: a for case I with ΔTv,max = 8.0 ◦C, b for case II with ΔTv,max = 10.5◦C. Here a corner is cut off to disclose the inner grain

morphology

Table 3 Final number of grains versus cell size for spatial refinement

study

Cell size (µm) 40 20 10 5

Grain number 24,227 27,970 29,122 29,447

ferent values of dcell because of the randomness of nucleation

site distribution; results should, however, be similar across

simulations and show equivalent morphologies, grain sizes,

and grain aspect ratios and orientations. The final number of

grains for each case is compared in Table 3. It is seen that the

number of grains increases as the cell size decreases. This is

mainly attributable to the initial random distribution of nucle-

ation sites in the domain, for which only a single site per cell

(that with the smallest critical undercooling for nucleation)

is retained; a coarser mesh leads to a larger number of cells

with multiple nucleation sites. Effectively, a finer mesh leads

to a larger number of small grains. This is evident in Fig.

7a, which shows a histogram of grain volumes (quantified

by the radius of the sphere with equal volume) for different

choices of cell size. There is a shift toward smaller grain size

as the mesh is refined, consistent with the trend in Table 3. A

comparison of grain structures on the XY plane for different

cell sizes is shown in Fig. 8. All of the results show very sim-

ilar grain patterns for this case, although smaller cell sizes

clearly lead to smoother and higher-resolution representa-

tions of grain boundaries.

In a second study, additional cases with time step factors

of ξ = 0.8, 0.4, and 0.1 are carried out while keeping the cell

size fixed at 10 µm. Although the nucleation site distribution

is identical across these cases because there is no change in

the mesh, a different time step size may influence the compe-

tition between neighboring grains and the order in which cells

are captured; as a result the final grain structures are expected

to be different in their details, though not necessarily in their

basic structure. The total number of grains versus time step

factor is presented in Table 4; differences are small, but the

clear trend is a slight decrease in number as the time step

Table 4 Final number of grains versus time step size for temporal

refinement study

Step size factor 0.8 0.4 0.2 0.1

Grain number 29,143 29,127 29,122 29,119

factor decreases. This might be attributable to the ability of

a smaller time step to more accurately capture the nonlinear

dendrite growth rate in this problem; dendrite envelope size

increases slightly more over a given time interval for the finer

time resolution, capturing more neighboring cells before new

grains can be nucleated there. The comparison of grain size

distributions is plotted in Fig. 7b, from which it is can be

seen that a time step size factor less than or equal 0.4 has lit-

tle influence on the grain size distribution. In Fig. 9, the top

subfigures are cross-sectional views of the grain structures

in the Y Z plane and the bottom subfigures are close-ups cor-

responding to the highlighted rectangular regions. (It should

be noted that the same grain for different cases may have

different colors; this is because we randomize the numeri-

cal values of the state indices to maximize contrast among

adjacent grains.) In Fig. 9, differences in details of the grain

structure can be observed between all four figures. Some of

these differences (e.g., the varying shapes of the 3-grain junc-

tion highlighted in the insets) are decreased for the smallest

time steps, but other discrepancies remain. These differences

are attributed to occurrences in which a cell is captured by

two or more different grain envelopes at the same time step,

and must be assigned to just one of them; in our algorithm,

the assignment is simply to the first grain treated in the loop.

These multi-capture events occur less frequently as the time

step is reduced, but do not go away completely; each such

event may lead to a discrepancy that compounds over time,

and time step convergence in the familiar sense cannot be

observed. Because the overall quality of the solution is not

affected by these differences, we accept that the solution may

be time-step dependent, and select a time step factor ξ = 0.2

for the ensuing examples in this work.
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Fig. 7 Grain size (in terms of

equivalent sphere radius)

distribution: a variable cell size,

time step factor ξ = 0.2; b

variable time step factor, cell

size 10 µm
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1 mm

Fig. 8 XY cross-section view of grain structure of an Al-7 wt%Si spec-

imen result from 3D CA for case I (see Table 1) with a time step factor

ξ = 0.2 and varying cell size: a dcell = 0.04 mm, b dcell = 0.02 mm,

c dcell = 0.01 mm and d dcell = 0.005 mm

4.1.2 Parallel efficiency demonstration

To demonstrate the parallel efficiency of the proposed par-

allelized 3D CA model, an example with a domain size of

20 × 5 × 5 mm3, dcell = 10 µm, ξ = 0.2 and others param-

eters as listed in Case I of Table 1 is run in parallel on

different number of processors. For this example, the domain

is decomposed only along X dimension.

The overall parallel efficiency with respect to processors

number used is listed in Table 5 and plotted in Fig. 10.

The parallel efficiency decreases with increasing number of

processors for most cases. This drop in efficiency can be

(a) (b)

(d)(c)

1 mm

Fig. 9 Y Z cross-section view of grain structure of an Al-7 wt%Si spec-

imen result from 3D CA for Case I using dcell = 10 µm and various

time step factors ξ : a ξ = 0.8, b ξ = 0.4 , c ξ = 0.2 and d ξ = 0.1

attributed in part to load imbalance for this problem. In the

CA model, the computational load on each processor p at

a given time step, Bp(k), is expected to be dominated by

the initialization of new grain envelopes for each cell that is

captured at a given time tk . Therefore, we can approximate

the total computational load as the number of liquid cells

captured at each time step, Np(k). The degree of load imbal-
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Table 5 Computation time t

and parallel efficiency E of the

proposed parallelized 3D CA

model for the case with a

domain size of 20 × 5 × 5 mm3

and dcell = 10 µm

Processor (n p) 1 2 4 8 16 32 64

t (hour) 11.11 5.74 3.10 1.59 0.93 0.58 0.38

E (%) – 96.75 89.49 87.30 74.57 59.88 45.85

Efficiency is computed as E = t1/(n p × tp), where t1 and tp denote the total run time for the serial program

and parallel program, respectively, and n p is the number of processors
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Fig. 10 Parallel efficiency of the proposed parallelized 3D CA model

for the case with a domain size of 20 × 5 × 5 mm3 and dcell = 10 µm

ance in a global sense can be illustrated by comparing Np(k)

across processor as a function of time.

In Fig. 11, Np(k) for cases with 2, 4, 8 and 16 processors

are plotted to show the load balance variation with increasing

the number of processors. It can be seen that the load is heav-

ily influenced by differences in the number of surface cells

on each processor, because surface nucleation sites are more

active early in the simulation compared with the bulk volume,

and less active later. For the two-processor case, symmetry

leads to an equal number of surface cells on both processors.

As a result, the loading curves for this case overlap (Fig. 11a)

and load is well balanced; the parallel efficiency is 96.75%.

For higher numbers of processors, the total number of cells

is equal across processors, but the surface cells are more

concentrated on just two processors (because the domain is

decomposed only in the x direction). These two processors

have a higher workload at early times, when microstructure

formation is dominated by surface nucleation, but lower at

later times when surface regions have finished solidifying.

This discrepancy and the resulting load imbalance, become

more pronounced as the total number of processors increases,

leading to lower parallel efficiencies.

Fig. 11 Computational load for

each processor as estimated by

the number of liquid cells

captured at each time step,

Np(k), for various numbers of

processors: a 2 processors, b 4

processors, c 8 processors, and

d 16 processors
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(a) (b)

Fig. 12 a Temperature solution and track geometry at the end of a single beam pass through the powder bed; b outline of the CA region inside the

outline of the temperature solution domain shown in (a)

4.2 Grain growth during additive manufacturing

In the Selective Electron Beam Melting (SEBM) AM pro-

cess, melting of material is controlled by multiple processing

parameters, including beam power, scanning velocity, tool

path, build temperature, powder size distribution and so

on, which can lead to different solidification conditions.

Therefore, the resulting material microstructure morphology

can be heterogeneous and may be different from sample to

sample, but share common features under reasonable oper-

ating parameters. For AM of Ti–6Al–4V, common features

include columnar grain structures and epitaxial growth. A

radial distribution pattern of columnar grains can often be

observed along the cross-section normal to the heat source

scan direction for a single track in accordance to the heat

flux distribution, as demonstrated by the typical SEBM Ti–

6Al–4V microstructures obtained under different processing

parameters reported in [2,3]. The pattern of the columnar

structure is attributed to the steep thermal gradient associ-

ated with the moving melt pool, where the base plate and

consolidated material act as a heat sink and the surround-

ing loose/lightly sintered titanium powder acts as insulation.

Columnar grains grow quickly under the high thermal gra-

dient, without time for nucleation ahead of the solidification

front occur, leading to epitaxial re-growth within each melted

layer. For each single track, this epitaxial growth can take

place on material already consolidated in the previous layer

or substrate, or from partially-melted powder particles in the

surrounding powder bed, as demonstrated by Fig. 5 in the

work of Antonysamy et al. [2]. As a consequence, the grain

size of each new layer is significantly dependent on the exist-

ing material; for this reason, the grain size shown in Fig. 2 of

Al-Bermani et al. [3] is different from that of Fig. 5 in Ref.

[2].

In this section, a single track of the SEBM AM process

with a Ti–6Al–4V alloy powder bed is simulated to demon-

strate the application of the 3D CA model. In this example,

Table 6 Growth kinetics and nucleation parameters for Ti–6Al–4V

v(ΔT ) = η1 · ΔT + η2 · ΔT 2

η1 = 0.544 × 10−3 m/(s K) η2 = 2.03 × 10−3 m/(s K2)

the diameters of spherical powder particles range between 40

and 80 µm, the layer thickness is 0.05 mm, and the electron

beam power is 60 W with a scan speed of 0.5 m/s. The tem-

perature solution and track geometry at the end of a single

beam pass through the powder bed are shown in Fig. 12a.

Details of this thermal/fluid simulation can be found in [24];

here, we couple the results of this computation to the 3D CA

model and focus only on the grain structure prediction during

the solidification process.

The region size of interest is 0.7 × 0.225 × 0.055 mm3,

as illustrated by the inner outline shown in Fig. 12b. The

parameters for the 3D CA model, taken from Ref. [7], are

summarized in Table 6. For this case, nucleation of grains

within the melt pool is ignored, and grains grow from the pre-

defined structure of the existing material, which is assumed

to have a fine grain structure. In this simulation, we use a cell

size of dcell = 1 µm and a time step factor of ξ = 0.2 for the

CA model.

Figure 13 shows four snapshots of the solidification

microstructure in the selected domain. The emergence of

columnar grain growth from an existing substrate is captured,

showing reasonable agreement with experimental results,

e.g., Fig. 3 in [2] showing the primary β-grain structure that

forms during initial solidification, and Fig. 12 in [3]. Further-

more, the X Z cross-sections of the final grain morphology

at three different Y positions are given in Fig. 14a, where

the Y direction is across the melt track. All three subfigures

show similar grain patterns and demonstrate columnar grains

growing upward and tilted slightly along the direction of the

beam scan, aligning with the temperature gradient. In Fig.

14b, the grain morphologies in the Y Z plane at three dif-
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(d)(c)

(a) (b)

Fig. 13 Evolution of the molten pool microstructure represented by

four snapshots at increasing times: a 0.3492 ms, b 1.1342 ms, c 1.4291

ms, and d 1.8427 ms

ferent X locations, where X is the direction along the melt

track, show the radial, epitaxial grain growth from underly-

ing material. These results show good qualitative agreement

with results observed in experiments [2,3].

The parallel efficiency of the proposed method for this

problem is presented in Fig. 15. In this scaling study, the

domain is decomposed only along the X direction. This

domain decomposition strategy leads to a good load balance

for the 2 processor case, but becomes increasingly worse

with larger numbers of the processors due to the moving

molten pool as shown in Fig. 13. As a result, a static domain

decomposition strategy may not be desirable for this prob-

lem due to load imbalances from the transient evolution of

extremely localized events. Other parallelization strategies,
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Fig. 15 Parallel efficiency of the proposed parallelized 3D CA model

for the Selective Electron Beam Melting (SEBM) simulation

including reallocation of domains to rebalance workload, will

be explored in future work.

5 Conclusion

In this work, a parallelized 3D cellular automaton (CA)

model was presented to simulate the grain structure dur-

ing solidification of an alloy in both casting and additive

manufacturing. In this model, a static domain decompo-

sition strategy is applied in a distributed memory scheme

implemented using MPI. For interprocess communications,

a Cartesian virtual topology is used together with ghost lay-

ers of cells surrounding each processor domains. In CA,

growth of individual grains is modeled by capturing cells

surrounding it, which requires simple and efficient inter-

process communications associated with the captured ghost

cells and ghost cells’ phase state update. From the numeri-

X=0.1915mm X=0.5075mmX=0.3495mm

(b)

Y=0.1127mm

Y=0.0727mm

Y=0.1527mm

(a)

mµ50

mµ50

Fig. 14 Cross-sectional views of grain morphology: a X Z plane at three different locations, and b Y Z plane at three different locations
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cal casting examples, the parallel efficiency of the proposed

model can retain more than 80% with eight processors,

and reasonable efficiencies on 64 processors, although load

imbalance can lead to loss of efficiency depending on the

problem geometry. For the problems tested, it is demon-

strated that load imbalances rise from the distribution of the

surface and bulk nucleation with different critical undercool-

ing. In addition, keeping the cell size less than the dendrite

arm spacing and time step size factor around 0.2 are rec-

ommended for accurate CA predictions. Furthermore, the

grain growth of Ti–6Al–4V alloy powder-bed by Selective

Electron Beam Melting was predicted, where the tempera-

ture field with large undercooling rate and a high gradient

is solved through a finite volume method based on a high

fidelity discrete model. The microstructure results are in qual-

itative agreement with those of experimental observation. In

our upcoming work, the solidification microstructure under

different process parameters, such as heat source power,

scanning speed, layer thickness, and scan direction, all of

which can influence the temperature field, will be presented.

The static domain decomposition strategy may suffer from

a significant load imbalance in AM simulations because the

actively growing grains are located on only a subset of the

computational processors. For cases like this, other paral-

lelization strategies, including reallocation of domains to

rebalance workload, may be preferred in order to maintain

good parallel efficiency on large numbers of processors. This

is a direction for future exploration.
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