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ABSTRACT 
 

Cyber-physical systems (CPS) enable unprecedented communication between product designers and 

manufacturers. Effective use of these technologies both enables and requires a new paradigm of methods 

and models to identify the most profitable and environmentally friendly production plans for a 

manufacturing network. The Operating System for Cyberphysical Manufacturing and the paired Network 

Operations Administration and Monitoring software are introduced. These technologies guide our 

development of a mixed integer bilevel programming model that models the hierarchy between designers 

and manufacturers as a Stackelberg game while considering multiple objectives for each of them. 

Designers select and pay manufacturers, while manufacturers decide how to execute the order with the 

payment provided by the designer. To solve the model, a tailored solution method combining a 

decomposition-based approach with approximation of the lower level Pareto-optimal solution set is 

proposed. The model is applied to a case study based on a network of manufacturers in Wisconsin and 

Illinois. With the proposed model, designers and manufacturers alike can take full advantage of CPS to 

increase profits and decrease environmental impacts. 

INTRODUCTION  
 

Sustainability and environmental concerns continue to increase in importance to 

manufacturing stakeholders in the face of regulations, diminishing resources, and demand 

for more environmentally-friendly products [1, 2]. The United Nations predicts a 

population of 9.7 billion people by 2050, which will strain both material and energy 

resources [3]. Manufacturing will be particularly affected unless more sustainable 

manufacturing alternatives are found [1]. Redesign of manufacturing supply chains and 

products, as well as remanufacture and recover, are part of the new 6R concept of reduce, 

reuse, recover, redesign, remanufacture, and recycle [4]. Thus, in addition to redesigning 

products, designing sustainable production plans is a key goal of sustainable 

manufacturing [5]. New frameworks for identifying the most sustainable manufacturing 

strategies while remaining cost-competitive are needed [1].  

To develop these frameworks, product designers and manufacturers must use 

cutting-edge technologies, such as cyberphysical systems (CPS) [6]. CPS connect 
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physical components to cyberspace, allowing for distributed control of physical systems 

and machines, connected and responsive networks, and coordinated physical and 

engineered systems [7, 8]. Cyber-physical Production Systems (CPPS) integrate CPS 

with manufacturing science and technology to develop efficient, responsive 

manufacturing networks and factories [9, 10]. Recent development of an Operating 

System for Cyberphysical Manufacturing (OSCM) and the paired Network Operations 

Administration and Monitoring (NOAM) software (described later in this work), among 

other CPS developments like them, allow unprecedented communication between 

manufacturers and designers. However, the potential for CPS technologies to help 

designers and manufacturers identify sustainable production plans remains untapped. 

Recent advances in sustainable product and supply chain design, processing, and 

machining make manufacturing more sustainable [11-13].  However, recent literature 

reviews in this space found that studies focus on empirical, qualitative findings, leaving 

quantitative decision-making tools for sustainable manufacturing underdeveloped [14]. 

Mathematical programming models quantitatively identify the most efficient or 

sustainable product design, production methods, or supply chains [15]. However, studies 

on manufacturing networks usually do not explicitly consider both sustainability 

objectives and the different goals and hierarchy of the stakeholders of a manufacturing 

network. Responsiveness and cooperation among stakeholders in a manufacturing 

network are imperative to achieving sustainable manufacturing [2]. Therefore, 

appropriately modeling stakeholder goals in a manufacturing network is essential. 

Emergent CPS enable responsive communication between designers and manufacturers, 

but quantitative tools that leverage this ability must be developed.  
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General, quantitative decision-making tools that identify sustainable production 

plans while considering objectives and hierarchy of all stakeholders could advance 

sustainable manufacturing considerably. There are several challenges to overcome in 

developing such tools. First, there must be some enabling technology or framework that 

can accurately and efficiently connect all stakeholders of a manufacturing network. Next, 

the tools must be applicable to any general manufacturing network as opposed to specific 

cases, which is often the approach of quantitative studies on sustainable manufacturing 

[14]. Finally, these tools must efficiently identify optimal, sustainable production plans of 

the manufacturing network considering objectives of all stakeholders. This work 

hypothesizes that new advances in CPS technologies motivate and enable such tools to be 

developed, and a new quantitative modeling framework is proposed. The proposed 

approach leverages anticipated advances of CPS like the OSCM/NOAM toolkit with a 

multi-stakeholder, multi-objective model and solution algorithm to optimize a 

manufacturing supply chain over sustainability objectives. This framework can be 

applied to any manufacturing network, enabling efficient identification of the most 

sustainable production plans for a given product. 

The paper is structured as follows. First, relevant literature is presented on 

sustainable manufacturing, CPS, and supply chain design. Next, the CPS technologies 

that motivated this work, OSCM and NOAM, are introduced. The problem statement is 

then defined, and the model is formulated. Finally, the modeling framework is applied to 

a case study on a manufacturing network in the US states of Illinois and Wisconsin.  

Novelties of this work include: 

• Presentation of the OSCM and NOAM framework and software 
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• A quantitative decision-making framework that identifies the most 

profitable production plans with the least greenhouse gas (GHG) 

emissions for general, decentralized manufacturing networks connected 

with CPS technologies 

• A hierarchical bilevel optimization model and tailored solution method 

that considers multiple objectives of designers and manufacturers  

• Application to a manufacturing network in the US states of Illinois and 

Wisconsin 

LITERATURE REVIEW 
 There are three critical bodies of literature relevant to this work. Sustainable 

manufacturing research is reviewed first. Next, research on manufacturing supply chain 

design and optimization is reviewed. Finally, recent advances in CPS research and 

development including OSCM and NOAM are described. Altogether, this work 

synthesizes concepts and research needs from each of these areas to construct a novel 

sustainable manufacturing network model that accounts for multiple objectives of the 

network’s multiple stakeholders.  

Sustainable Manufacturing 

 

Sustainable manufacturing research at the product, process, and supply chain 

levels continues to advance [16]. Researchers have made considerable progress 

developing frameworks and tools to assess a specific product, process, or system’s 

sustainability performance [14, 17, 18]. Sustainable product design that considers both 

production and consumption of the product is imperative [19]. Anastas and Zimmerman’s 

[20] 12 principles of green engineering have guided green engineering design, and 
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Cooper-Searle et al. [21] reiterate the importance of material efficiency in combating 

climate change. Assessment frameworks for machining processes that include metrics for 

energy consumption, costs, environmental impact, and personal health and safety are 

continuously developed and improved [22]. Such frameworks and other approaches, 

including life cycle analysis (LCA) [23], have been applied to analyze impacts of many 

specific products and processes. For example, Su et al. [24] calculated the CO2 emissions 

of different computer chair designs using LCA after the chairs were designed based on 

cost. Such works advance sustainable design and manufacturing but do so on a case-by-

case basis, as opposed to more versatile systematic approaches. 

When processes are assessed for sustainability, each process, such as turning [25] 

or milling [11] [26], is typically assessed individually. Detailed studies on energy or 

material improvement exist for a variety of processes. For example, smarter operation of 

hydraulic presses can result in significant energy savings [27]. Sinha et al. pursued 

economically feasible development of direct air capture of CO2 using different metal 

organic frameworks with temperature swing adsorption technology [28]. Improving the 

energy and material efficiencies of powder metallurgy, an important technology in the 

burgeoning additive manufacturing area, has received considerable attention [29]. 

Additive manufacturing alternatives to conventional processes could reduce energy 

consumption and GHG emissions as demonstrated for additive repair of tooling for 

injection molding [30]. Remanufacturing is another important component of 

sustainability in manufacturing [31], and the US government promotes the concept 

through the Reducing Embodied-energy and Decreasing Emissions (REMADE) Institute 

[32]. These tools, frameworks, and analyses allow for sophisticated assessment of 
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existing product designs and supply chains but cannot identify the most sustainable 

production plan out of a host of manufacturing options in a manufacturing network. 

Existing frameworks and tools for assessing the sustainability of products, 

processes, and systems do not accommodate predefined processes well enough [12]. To 

address this gap, Alsaffar et al. [12] developed a framework that considered energy 

consumption and GHG emissions from several different processes, like laser cutting, 

bending, and machining. However, machining processes and the supply chain had to be 

pre-defined before calculating their environmental impact. Since different manufacturing 

processes can require considerably different amounts of energy, it is important to be able 

to systematically decide which processes to utilize in a sustainable production plan [33]. 

There does not yet exist a quantitative decision-making framework that systematically 

considers the trade-offs of cost and environmental impact among the many different 

machining and manufacturing process options within a manufacturing network [17]. If 

such a framework existed, product designers and manufacturers could quickly and 

directly identify the most sustainable production plan without having to estimate and 

compare impacts of every possible production plan.  

Sustainable manufacturing systems can only be achieved when the objectives of 

all stakeholders are considered [2]. In many cases, multiple stakeholders in a 

manufacturing network, such as designers, manufacturers, etc., have multiple objectives. 

Identifying the most sustainable production plan while considering objectives of all 

stakeholders in a manufacturing network is a formidable challenge [34]. Manufacturing 

supply chain optimization models considering one manufacturer and multiple suppliers 

exist [35], but sustainability criteria outside of economic concerns are often not 
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considered. Other emerging technologies in the manufacturing and machining spaces, 

like CPS, can be leveraged to develop sustainable and responsive manufacturing and 

production planning, but quantitative methods to leverage these potential advantages 

need to be developed. 

Optimization in Manufacturing and Supply Chain Design 

Researchers often directly include sustainable design criteria and objectives into 

manufacturing decision-making models and methods at the process, product, and supply 

chain levels [15, 36, 37]. Supply chains are modeled mathematically, and objectives such 

as cost or expected net present value, are frequently optimized [38]. Researchers use 

different methods to integrate environmentally-conscious decision-making into supply 

chain design/manufacturing network optimization. Some optimization frameworks 

coordinate product design and manufacturing process configuration for product families 

with a goal of constraining their carbon footprint [39]. Multi-objective optimization is a 

popular approach to design manufacturing systems. Nujoom et al. [13] minimized a 

manufacturing system’s total cost and overall greenhouse gas (GHG) emissions. Another 

study minimized the total cost and GHG emissions of a manufacturing network of a large 

Taiwanese company [40]. Detailed environmental indicators such as Eco-indicator 99 

have also been considered in multi-objective supply chain design while also maximizing 

economic objectives like profit [41].  Life cycle optimization (LCO) integrates LCA with 

mathematical programming and is a key tool for designing environmentally-friendly 

processes and supply chains [42]. Some studies have applied LCO to production 

networks to determine profitable and environmentally-friendly production pathways. 

Cradle-to-gate and cradle-to-grave LCO approaches were applied to a large-scale 
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bioconversion product and process network [43]. Algal bioproduction networks have also 

been considered [44]. To the best of our knowledge, LCO has yet to be applied to 

machining and manufacturing networks.  

Stakeholders at each point along the supply chain have multiple sustainability 

goals. However, there is often a hierarchy of decision-making among the stakeholders 

[39]. For example, decisions made by product designers limit and guide manufacturers’ 

decisions. A popular approach to model this hierarchical structure employs the 

Stackelberg game from game theory, [45] which relies on bilevel programming to model 

the leader-follower aspect of the Stackelberg game [35, 46-48]. This modeling approach 

has been applied to several studies on decentralized supply chain design. For example, an 

integrated forestry and biofuel supply chain was designed with the forestry company as 

the leader, and the pulp company as the follower [46]. Similar approaches model timber 

harvesters as the leader and manufacturers as followers [48]. Shale gas production 

networks have also been modeled with the approach [47]. In all cases, modeling supply 

chains with the Stackelberg game resulted in more realistic and complete results 

compared to modeling all supply chain entities as one player. However, no previous 

approaches considered multiple objectives for the followers. Furthermore, works 

optimizing manufacturing networks often neglect modeling both the multiple 

stakeholders in the network as well as environmental objectives simultaneously [49].  

In general, bilevel programming problems are difficult to solve (NP-hard) [50]. 

While there are many proposed alternative methods to solve them, only a few options 

exist to handle multiple objectives in the lower level. If the problem is structured in a 

certain way, there are methods to analytically identify optimal solutions [51-53]. 
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However, if binary or integer decisions exist in the lower level multi-objective problem, 

tailored solution methods are typically developed [54]. 

Cyber-physical Systems 

CPS are integral components of smart manufacturing and Industry 4.0 [55, 56]. 

While CPS technologies may be applied to a wide range of industries, manufacturing 

could use CPS to develop more efficient and sustainable CPPS [8]. Several web-based or 

software-driven CPPS have been developed recently. A web-based Wise-ShopFloor 

framework was proposed [57] and further developed [58] to plan machining sequences 

and job scheduling based on machine availability. The platform also controls the 

manufacturing process remotely.  

While expectations of CPS to revolutionize the manufacturing industry are high 

[59], gaps remain in developing user-facing, decision-making tools to take advantage of 

these new technologies. CPS technologies that allow the many different stakeholders in 

different geographic locations within a manufacturing network to collaboratively 

exchange and share data and information are needed [6]. Models and algorithms that 

consider manufacturing processes, stakeholders, and systems would be particularly useful 

[56]. Transdisciplnary models and tools must fully take advantage of CPS technologies in 

information-driven economies [10]. Some emerging commercial examples, like Xometry 

[60], Protolabs [61], and Custompart [62], aim to provide pricing, lead times, and 

feedback with processes ranging from CNC machining to injection molding and 3D 

printing. However, these examples do not consider the environmental impacts of 

manufacturing. Other CPS technologies for manufacturing are also being developed, and 

the next section details such technologies that motivate this work. 
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NEW CPS TECHNOLGIES: OSCM  
 

An open source manufacturing network framework is needed to connect different 

machines and handle transactions between customers and manufacturing providers. This 

gap is addressed in a collaborative work between Northwestern University and University 

of Illinois Urbana-Champaign. An Operating System for Cyberphysical Manufacturing 

(OSCM) was developed to enable manufacturing facilities connect their machines and 

capabilities over the internet to create a cyberphysical network of manufacturing 

machines that are visible and accessible to potential customers [63]. Additionally, OSCM 

provides the framework for connecting software assets or ‘apps’ to machines. In this 

framework, software assets are configured to match the capabilities and standard 

operating protocols (SOPs) for a particular machine.  Using the OSCM web-services 

platform and software assets, potential customers can initiate job transactions on a 

machine using multiple visualization and verification tools. Users can access different 

manufacturing resources, study their capabilities, and schedule and price jobs. They can 

then choose the most desirable facility for their manufacturing transaction, easily get 

connected to the facility, share required files and information for the submitted job, and 

visualize their transaction in real-time. 

The developed framework consists of four layers (Figure 1). The first layer is the 

physical hardware and machine controller. The second layer is the virtualization layer in 

which information of the machine is extracted from the local controller and shared with 

the operating system. Adapters developed for different controllers including Aerotech 

[64], Delta Tau [65], National Instrument devices [66], as well as MTConnect [67] 

compatible devices accomplish this task. The next layer, the operating system, exists in 
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the cloud and allows manufacturing providers to connect their machines to the network 

and use different services of the network. The front-end network component NOAM 

(Network Operations and Administration Module) searches the network and manages 

transactions between users and machines, registrations and authentications, and multiple 

auxiliary assets to facilitate monitoring and verification of the process for both the users 

and service providers.  

This network between manufacturing machines and users provides accessibility 

and transparency beyond what is possible with conventional approaches. Users can 

access information of a wide network of manufacturers as well as their capabilities, 

schedules, costs, locations, materials used, etc. all in a real-time and digitized online 

database. Therefore, this system enables unprecedented opportunities to select optimal 

manufacturing facilities and production plans. However, determining optimal production 

plans becomes challenging when considering the wide range of information accessible to 

users. New decision-making tools are needed to help users quickly and efficiently 

leverage new CPS technologies like OSCM to identify optimal production plans within a 

manufacturing network.  

In summary, CPS technologies like OSCM that enable instant exchange of 

information between users and manufacturers are expected to see widespread adoption in 

the near future [59]. However, there is a need for new decision-making tools that leverage 

these new structural advantages. To meet this need, a mathematical programming model 

is developed that leverages the increased efficiencies made possible by CPS technologies 

like OSCM. 
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PROBLEM STATEMENT 
  

This work proposes a decision-making model, motivated by emerging CPS 

technologies, that solves the problem of identifying the most profitable and most 

environmentally-friendly production plans of a product while ensuring manufacturers 

achieve optimal costs and equipment uptimes. In this problem, the product designer 

wishes to identify specific production plans that maximize profits (revenues minus 

payments to manufacturers and transportation costs) as well as minimize manufacturing 

and transportation GHG emissions, characterized by the 100-year global warming 

potentials (GWP) of emitted GHGs. GHG emissions are chosen as an environmental 

objective over others like energy consumed, water consumed, etc. due to the international 

surge of interest in mitigating climate change. Since GHG emissions of energy consumed 

throughout the manufacturing network are calculated, the impact of the energy consumed 

is still indirectly considered. Other environmental impacts are important and must be 

considered in future works. All part components are to be shipped to a central location for 

assembly. Manufacturers wish to minimize their costs and maximize the uptime of their 

equipment. They propose production plans that optimize these objectives based on the 

payments received from the designer. Therefore, the problem requires a method to model 

the hierarchy between designer and manufacturers while accounting for their multiple 

objectives. 

In this problem, product designers submit details of their part – size, material, 

shape, machining requirements, etc. – as well as proposed payment plans to 

manufacturers who have different capabilities, costs, and locations. Payment plans in this 

context refer to the amount paid to each manufacturer by the designer. Under different 
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payment plans, different manufacturers receive different amounts of funds. 

Manufacturers respond to the designer’s proposed payment plans with a production plan 

(Figure 2). If a manufacturer receives payment from the designer, then that manufacturer 

produces some part components at a level consistent with the amount of funding 

received. Thus, different payment plans result in different manufacturers producing 

different amounts and types of part components (i.e. different production plans).  

Raw material costs and processing costs are considered. Part components are 

manufactured from raw materials through a sequence of machining/manufacturing steps 

which may or may not occur at the same manufacturer’s facility. If parts require further 

upgrading or finishing with capabilities the current manufacturer does not possess, the 

part must be shipped to a manufacturer that has the required capabilities. Each 

manufacturer has different production rates and energy requirements (electricity, natural 

gas, and compressed air) for each of its processes. Parts are transported via diesel-burning 

tractor-trailer trucks, and the designer pays transportation costs. Transportation costs are 

considered on distance and weight bases. 

The problem is defined with a gate-to-gate system boundary and requires 

finalized product designs, with corresponding material compositions and dimensions, as 

an input. Thus, GHG emissions from production of the raw materials are not considered, 

as product design (i.e. material selection) is outside the scope of this work. GHG 

emissions can be reduced by re-designing products with different materials [20], and 

future works may consider such impacts. The problem also does not include disposal or 

end-of-life impacts. When product design and end-use steps are added, a more thorough 

cradle-to-grave approach could be adopted. As this is a demonstrative work, a gate-to-
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gate approach serves as a foundation for future works. Unit processes are single 

manufacturing steps (e.g. milling, casting, turning, etc.) or transportation steps. 

To solve this problem, the following parameters/data are required: 

• Location of each manufacturer 

• Capabilities of each manufacturer 

• Typical costs for each process  

• Natural gas required for each process 

• Electricity consumed by each process 

• Compressed air required for each process 

• Typical processing rates for each process 

• GHG emission rates of each process 

• GHG emission factors for electricity  

• GHG emission rates for diesel-burning trucks in kg CO2-eq/kg-km 

• Transportation costs per kg-km  

• Manufacturing requirements of each part component  

• Volume and surface area of each component of the final part 

• Availabilities and prices of each raw material 

• Prices of the finished part components 

Noteworthy assumptions include: 

• Delivery trucks travel non-stop at a constant speed, and there is no delay 

or detour in transportation from one location to another 

• Manufacturers’ profits are accounted for within the costs they charge 
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• All produced parts and part components can be sold. Components 

produced beyond the required quota are assumed to be sold as spare 

components or to other assemblers. 

• Final part components are shipped to the same site for assembly 

• All manufacturers receive orders at the same time 

• Manufacturers may not build or purchase new machining equipment 

• Parts and components not required by the designer may not be produced 

• All part components from a manufacturer are shipped in one shipment to 

the assembly site 

• Fly-to-buy ratios for the same machining process are the same for each 

manufacturer 

Major decisions include: 

• Level of participation of each manufacturer in each manufacturing step of 

the part components 

• The value of the payment provided to each manufacturer by the designer 

• The amount of each raw material each manufacturer purchases 

• Total production costs and equipment uptimes of each manufacturer 

•  The amount of each material to transport from each manufacturer to 

another manufacturer or the assembly center 

• Total GHG emissions from production and transportation of the part 

components 

• Designer profits 
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In this problem, the designer wishes to identify particular payment plans that 

maximize profits as well as minimize manufacturing and transportation GHG emissions. 

The manufacturers wish to minimize their costs and maximize the uptime of their 

equipment. This work proposes to model the hierarchy between the designer and 

manufacturers as a Stackelberg game [45]. In the Stackelberg game, the leader has 

perfect knowledge of how the followers will respond to its actions. Thus, the leader acts 

in a way that will result in optimal (to the leader) follower responses and actions. 

Extending this metaphor to the current problem, the designer (leader) chooses payment 

plans to the manufacturers (followers) that result in corresponding production plans, 

determined by the manufacturers, that have maximum profit for the designer and 

minimum GHG emissions subject to the manufacturers’ pursuits of minimizing their 

costs and maximizing their equipment uptime (Figure 2).  

Following precedent set in the manufacturing supply chain literature, a bilevel 

programming (BP) model is developed to represent the Stackelberg game structure [46, 

68, 69]. Decisions of the leader and followers are represented by continuous and binary 

variables. Typically, BP problems are difficult to solve, especially when there are 

multiple objectives at both levels [50, 51, 54]. In the next section, the BP model proposed 

is first formulated, and a tailored decomposition-based solution strategy is proposed to 

solve it. After model decomposition, the model becomes a large-scale mixed integer, 

linear programming (MILP) problem, which may be easily solved. 

MODEL FORMULATION 
The model proposed in this work is a mixed integer, bilevel programming 

problem with multiple objectives in both the upper and lower problems. These problems 
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consist of objective functions to be maximized or minimized as well as constraints and 

equations that define the problem’s feasible solution space. In this section, the model’s 

objective functions and constraints are first formulated. Subsequently, a solution method 

is described. In the following formulation, parameters are given in lower case, and 

variables are given in upper case. Note that parameters are input data to the problem, and 

the value of variables are to be determined by solving the problem i.e. finding optimal 

solutions. Index f denotes manufacturers, m denotes materials/intermediates/final part 

components, f’ denotes manufacturer ff’, and p denotes manufacturing processes. 

The designer wishes to maximize profits: 

 ' ' '

'

max m mff ff m mff f

m f f

pp TR tc d TR C −    +   (1) 

where tc is the transportation cost in $/kg-km, dff’ is the distance between 

manufacturer f and f’≠f in km, TRmff’ is the volume of material m transferred to 

destination f’ from f in m3, ρm is the density of material m in kg/m3, Cf  is the value of the 

payment given to manufacturer f by the designer, and ppm is the selling price of the final 

part component m. The designer also wishes to minimize manufacturing and 

transportation GHG emissions: 

( ) ' '

'

min fp fp f fp fp m ff mff

f p m f f f

ng nge ca cae ref pe X te d TR


 +  +   +      (2) 

where Xfp is the operating level of process p at manufacturer f in throughput 

material or material removed (for milling or turning processes), te is the rate of GHG 

emissions from transportation in kg CO2-eq/km-kg, ngfp is the is the natural gas 

requirement of process p at manufacturer f in kg CH4, nge is the natural gas combustion 

emissions factor, cafp is the compressed air requirement of process p and manufacturer f, 
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cae is the emissions factor associated with the energy required to produce the compressed 

air, reff is the regional electricity GHG emissions impact factor for manufacturer f, and 

pefp is the electricity consumption of process p at manufacturer f. The designer also sets a 

time in which the order must be filled: 

 
' '

'

fp ff ff

p f f fp

X d B
ot

mr ts


+    (3) 

where mrfp is the manufacturing rate of process p at manufacturer f, ts is the 

transportation speed in km/hr, Bff’ is a binary variable that determines if any material was 

transported from manufacturer f to destination f’, and ot is the order time requirement in 

hours. Bff’ is determined with the following constraints: 

 ' ' , , 'mff ff

m

TR bm B f f     (4) 

  ' 0,1 , , 'ffB f f=    (5) 

where bm is large enough to ensure that TRmff’ can take its optimal value when Bff’ 

= 1 and is zero otherwise. The manufacturers’ problem follows next. Cost estimates for 

the different manufacturing processes serve as the basis for optimizing the manufacturing 

flow. Overall manufacturing cost estimation, despite considerable progress in 

manufacturing and information technology, is still very complex and challenging due to 

multiple unpredictable factors like true labor costs, stock costs, utility costs, order sizes, 

equipment costs, etc. [70]. Moreover, even for a given part, the specific manufacturability 

and raw material costs are still hard to quantify, especially considering the intricate nature 

of various manufacturing processes that require extensive engineering experience [71]. 

Therefore, the model employs a simplified cost model, which is a component of the 

manufacturers objective to minimize their overall cost: 
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 ( )min m mf fp fp p fp p fp fp fp

m f p f

mac P vc ac av lc lv X FP fc + +  +   +     (6) 

where macm is the raw material cost for material m, Pmf is the amount of raw 

material m purchased by manufacturer f, vcfp is the cost to run process p if process p is a 

volume-based process (e.g. milling) in $/m3, acfp is the cost to run process p if process p 

is a surface area-based process (e.g. surface treatments) in $/m2, avp is the area-to-volume 

ratio of the component to be processed in process p in m2/m3, lcfp is the cost to run 

process p if process p is a linear process (e.g. welding) in $/m, and lvfp is the line-to-

volume requirement of the component to be processed in process p in m/m3. FPfp is a 

binary variable that determines if process p at manufacturer f is used or not, and fcfp 

represents all fixed costs of process p at manufacturer f (start-up costs, labor, capital 

costs, etc.). FPfp is determined by the following constraints: 

 , ,
fp

fp

FP
X f p

fpp
    (7) 

  0,1 , ,fpFP f p=    (8) 

where fpp is a scaling constant that ensures a minimum processing level if process 

p is selected at manufacturer f. The manufacturers also wish to maximize the uptime of 

their equipment: 

 max
fp

f p fp

X

mr
   (9) 

Manufacturing processes in this work are modeled as input-output processes. The 

following constraint governs how raw materials (e.g. steel, plastic, etc.) or intermediate 

materials (e.g. die cast steel, injection-molded plastic, etc.) are transformed into other 

intermediate materials or final part components: 
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' '

' '

, ,mf mf f pm fp mf mff pm fp

f p f p

P TR mp X S TR md X m f+ +  = + −        (10) 

where mppm is a positive parameter that denotes if material m is produced through 

process p, Smf is the amount of final component m stored/assembled by 

manufacturer/assembler f, and mdpm is a negative parameter that denotes if material m is 

transformed to a different intermediate or final material by process p. For example, in the 

case of an aluminum die casting process, mdpm = -1 for m = aluminum and mppm = 1 for m 

= die cast aluminum for p = aluminum die casting.  

Only raw materials can be purchased: 

 ,mf m

f

P ava m RM     (11) 

 0,mf

f

P m RM=     (12) 

where avam is the availability of raw material m in m3. Demand set by the 

designer must be met or exceeded if both the designer and manufacturers agree to do so: 

 '

'

,mff m

f f FD

TR dem m PM


      (13) 

where demm is the demand for final part component m required to assemble the 

part. 

Costs for each manufacturer are calculated: 

 ( ) ,f m mf fp fp p fp p fp fp fp

m p

C mac P vc ac av lc lv X FP fc f=  + +  +   +      (14) 

Thus, the overall BP problem is constructed: 

min Designer profit (1) 

min Overall GHG emissions (2) 

s.t.   Time requirements and logistics constraints (3)-(5) 
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         min Manufacturers’ costs (6) 

         max Uptime of manufacturers’ processes (9) 

         s.t.  Fixed costs and process selection constraints (7)-(8) 

    Material forming and machining operations (10) 

    Material availability (11)-(12) 

    Demand constraint (13) 

    Individual manufacturers’ costs (14) 

An important property of the model formulation above is its generality. If a 

designer has a product design as well as information on manufacturer capabilities, prices, 

and locations – perhaps from CPS-enabled technology – then this modeling framework 

can be applied to identify profitable production plans with low GHG emissions for that 

product. 

Note that the optimal solutions of the lower level problem act as constraints for 

the upper level problem. Next, the problem is decomposed and reformulated into a 

single-level MILP. The lower level problem is replaced with its Pareto-optimal solutions 

for all values of the variables sent from the upper level to the lower level. The method is 

detailed in the following subsection. 

Solution Method 

A decomposition-based approach similar to the one proposed by Chu et al. [54] is 

now proposed and expanded to account for multiple objectives in the upper and lower 

levels by discretizing the Pareto-optimal space of the lower level problem.  

The only variable set by the upper level required to solve the lower level problem 

is the payment provided to each manufacturer Cf. The manufacturers in turn send their 
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responses to the leader with corresponding values of Xfp and TRmff’ (the production plan). 

Thus, if Cf is bounded for all f, then the feasible range of each Cf may be divided into 

discrete steps. The lower level problem may then be solved to find a pair of values for Xfp 

and TRmff’ for each Pareto-optimal solution for each step of each Cf. The Pareto-optimal 

solutions of each step populate the lower level Pareto-optimal solution set, used to solve 

the upper level problem. 

Since the model is formulated in such a way that each Cf must have upper and 

lower bounds, the following optimization problems find the minimum and maximum 

feasible values for each Cf: 

(C_Min) 

min ,f fcfn C f=     (15) 

s.t.       Lower level constraints (7)-(8) and (10)-(14) 
 

and 

(C_Max) 

max ,f fcfx C f=     (16) 

s.t.       Lower level constraints (7)-(8) and (10)-(14)   

 where cfnf is the minimum possible payment assigned to manufacturer f, and cfxf 

is the maximum possible payment assigned to manufacturer f. Now the range of possible 

payment values for each manufacturer can be discretized: 

 ,
1

f f

f

q

cfx cfn
dc f

N

−
= 

−
  (17) 

 , , 1...fq f f qcfq cfn q dc f q N= +   =    (18) 
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where dcf is the step size for the range of payment values for manufacturer f 

governed by the number of discrete points desired Nq, and cfqq is the payment made to 

manufacturer f at point q. Now that each Cf is discretized via (15)-(18), the following set 

of f∙q multi-objective optimization problems emerges: 

(Low_Cq) 

( )min m mf fp fp p fp p fp fp fp

m f p f

mac P vc ac av lc lv X FP fc + +  +   +                      (19) 

max
fp

f p fp

X

mr
                (20) 

s.t. Lower level constraints (7)-(8) and (10)-(14) 

,f fqC cfq f=                (21) 

For each q problems for each manufacturer f, the payment value for manufacturer 

f is fixed by cfqfq, while the payments received by other manufacturers can vary. The 

process is repeated f∙q times to thoroughly search the feasible space defined by the 

minimum and maximum payment values to each manufacturer. The output of problem 

(Low_Cq) is a set of Pareto-optimal solutions demonstrating the trade-off between 

minimizing the manufacturers’ costs and maximizing their equipment uptime. If each of 

the q Pareto-optimal curves for each manufacturer f are discretized with n points, the ε-

constraint method is applied to (Low_Cq), resulting in n∙q problems as follows [72]: 

(Low_Cq_Single) 

( )
',

arg min
fpqn mff qn

m mf fp fp p fp p fp fp fp
xq trq m f p f

mac P vc ac av lc lv X FP fc + +  +   +             (22) 

s.t. 
n fpn

f p

td               (23) 
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 Lower level constraints (7)-(8) and (10)-(14) 

Fixed contract level for manufacturer f for problem q (21) 

where tdfpn denotes the discretization of the equipment uptime objective into n 

possible values as per the ε-constraint method. (Low_Cq_Single) may be solved f∙q∙n 

times, resulting in up to f∙q∙n paired (cfqfqn,xqfpqn,trmff’qn)  points that define the lower level 

Pareto-optimal solution set required to solve the upper level problem. When enough 

(cfqfqn,xqfpqn,trmff’qn) points have been found to adequately describe the lower level Pareto-

optimal solution set, the original problem may be reformulated as a single-level, MILP 

problem: 

(Multi_UP) 

min Designer profit (1) 

min Overall GHG emissions(2) 

s.t.    Time requirements and logistics constraints (3)-(5) 

         , ,fp fpqn qn

q n

X xq SL f p=      (24) 

          ,f fqn qn

q n

C cfqn SL f=      (25) 

          ' ' , , , 'mff mff qn qn

q n

TR trq SL m f f=     (26) 

          1qn

q n

SL =    (27) 

           0,1 , ,qnSL q n     (28) 

where SLqn is a binary variable that denotes if the lower level Pareto optimal 

solution at point q,n is chosen. Applying the ε-constraint method to (Multi_UP) results in 

the following single-level, single objective MILP problem: 
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(Final_UP) 

min Designer profit (1) 

s.t. ( ) ' '

'

fp fp f fp fp m ff mff u

f p m f f f

ng nge ca cae ref pe X te d TR 


 +  +   +                   (29) 

       Time requirements and logistics constraints (3)-(5) 

       Lower level Pareto-optimal point selection constraints (24)-(28) 

where εu is the value of the ε-constraint for the environmental objective in the 

upper-level problem.  

The final challenge is determining the appropriate sizes of q and n. If q and n are 

too small, the solutions to Final_UP may not be satisfactory. If q and n are too large, the 

time required to compute all (cfqfqn,xqfpqn,trmff’qn)  points becomes prohibitive. This 

problem is tackled by introducing an algorithm that increases q iteratively until there is 

no improvement in the solutions of (Final_UP) without constraint (29) (Figure 3). Then, 

the algorithm assumes that a number of (cfqfqn,xqfpqn,trmff’qn)  points that is large enough to 

optimize the upper level cost objective (1) will also be large enough to optimize the upper 

level environmental objective (2). After a sufficiently large number of points is obtained, 

(Final_UP) is solved to generate the Pareto-optimal solutions for the designer. Note that 

only approximate solutions can be found with this method. If the number of 

(cfqfqn,xqfpqn,trmff’qn) is large enough, however, the approximation is assumed to provide 

satisfactory solutions. 

CASE STUDY DEFINITION 
The modeling framework and solution strategy are applied to a case study of a 

manufacturing network of 22 manufacturers in Wisconsin and Illinois. Five 

manufacturers are in Wisconsin, and the remaining 17 are in Illinois (Figure 4). At least 
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10,000 units of aluminum bearing brackets, rods, and steel gearbox housings must be 

fabricated. Finished part components are shipped to an assembly center in Fon du Lac, 

Wisconsin, a location between the two manufacturing groups considered in this work, for 

assembly (Figure 4). The geometries of the parts are depicted in Figure 5, and some 

operations that could be used to manufacture each part component are summarized in 

Table 1.  

The data described in this section function as input parameters to the model 

formulated in the previous section for this case study. Wherever possible, data from peer-

reviewed sources, government publications, or relevant databases are utilized [73-77]. 

Component selling prices (parameter ppm in equation (1)) were estimated from similar 

parts found in an online search. The lower end of the prices identified in the search were 

used in this study as a conservative estimate of price. From this search, we estimated that 

the aluminum brackets can be sold for $6.31, the aluminum rods may be sold for $3.69, 

the steel front housings of the gearbox housing may be sold for $22.31, the back housings 

for $74.18, and the plastic rings for $3.51. Due to the significant estimations and 

difficulty of estimating costs and prices, economic results from this model cannot replace 

rigorous economic estimation of production.  

Locations and capabilities of manufacturers were extracted from multiple public 

online resources such as the Illinois Manufacturing directory, Manufacturing in 

Wisconsin’s directory, and the manufacturers’ websites [76, 77]. Estimated 

manufacturing capabilities and other information for these manufacturers are given in 

Table 2. To ensure the privacy of these companies, their names are not provided. While 

some of the manufacturing capabilities gathered are based on readily available 
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descriptions of the manufacturer's industry sectors, core competencies, and provided 

services, there often was no clear information. For the sake of this work, 

manufacturing capabilities for companies with inadequate information are estimated 

based on products advertised on the manufacturers’ websites. Approximate processing 

and machining rates (parameter mrfp) for each process were estimated from Polgar et al. 

or industry data [78].  

Longitude and latitude coordinates for each manufacturer were estimated. The 

coordinates were then used to estimate distances between all manufacturers as well as all 

manufacturers and the assembly location (parameter dff’). Distances calculated from 

online mapping/direction services might provide more accurate travel distances and 

times. However, such services are often incorrect due to road closures, traffic situations, 

etc., and there is no guarantee the delivery drivers will take the suggested path(s). Thus, 

distances were calculated via longitude and latitude as a rough estimate for the purposes 

of this work.  

While the model presented in the preceding section can handle any number of 

input materials and processes, the presented case study considers 8 raw materials: 

aluminum, steel, cast iron, chromium steel, copper, brass, plastic, and magnesium alloy. 

76 machining and processing methods, such as sand casting, milling, and powder coating 

processes, are considered. Not every material or process will be utilized in this case 

study, but the material and process options serve as a foundation for future studies and 

different product designs. Raw material costs (parameter macm) are retrieved from 

industrial market prices. Process costs, influenced by part complexity (how intricate 

required machining steps are), the manufacturing process (see description of equation (6)
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), and material type, are estimated with online resources and industrial surveys [62, 79]. 

Process costs, energy use (see equation (2)), and processing rates for each process at each 

manufacturer were varied between 50% and 150% of the base process estimates to better 

model price and performance variability from manufacturer to manufacturer. 

Data on each manufacturing process’s electricity, natural gas, compressed air 

consumption and any direct emissions were retrieved from the EcoInvent database 

(version 3.4) [80]. If the process uses electricity, then electricity emission factors are used 

from the state in which the manufacturer is located to calculate indirect processing 

emissions [73, 74]. Diesel trucks are assumed to transport part components, so the GHG 

emission rate of diesel combustion and typical gas mileage of tractor-trailer trucks to 

model transportation emissions are used to calculate transportation emissions [75, 81]. 

GHG emissions are calculated from the amount and type of each energy source used, and 

IPCC impact factors are used to calculate GWP-100 [82] in equation (2). The designer’s 

total production time (parameter ot in equation (3)) is set at 3,600 hours (or 150 days). 

Availabilities of each raw material (parameter avam in equation (11)) are set at 4 m3. 

RESULTS AND DISCUSSION 
All computational experiments are performed on a DELL OPTIPLEX 790 

desktop with Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz and 8 GB RAM. All the 

models and solution procedure are coded in GAMS 25.0.3 [83]. All MILPs were solved 

with the CPLEX 12.8.0.0 solver (IBM, Armonk, NY, USA). The q lower-level problems 

had over 4,000 equations, approximately 48,000 continuous variables, and approximately 

1,750 discrete variables. The (Final_UP) problems had over 43,000 equations, 46,000 

continuous variables, and approximately 3,600 discrete variables. The number of lower 
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level Pareto-optimal solutions n found for each of the f·q problems was fixed at 10, q 

started at 9 and increased by 5 for each iteration of the solution algorithm. The algorithm 

tolerance τ in Figure 3 was set at 0.01, or 1%. The problem was solved in approximately 

3,700 seconds of wall-clock time and 1,300 CPU seconds and required two iterations of 

the solution algorithm. Thus, the lower level Pareto optimal solution space was estimated 

with approximately 1,980 points.  

Figure 6 displays the Pareto-optimal curve for the designer, highlighting the trade-

off between GHG emissions and profit. Profits range from -$992,593 (losses) to 

$133,774, and corresponding GHG emissions range from 2,152 kg CO2-eq to 3,000 kg 

CO2-eq. Machining/processing emissions dominate overall GHG emissions. Even though 

each production plan features different manufacturers in different proportions, the overall 

ratio between transportation emissions and machining/processing emissions are similar 

for all solutions.  

At the solution with the fewest GHG emissions, either exactly or slightly more 

than 10,000 units of each part component are made, satisfying the quota. More of the 

most cost-effective parts are made in the solutions with higher profits. Specifically, 

production of aluminum rods and plastic rings increases quickly. These components are 

relatively cheaper to make than the other components, so the designer can realize 

increased relative gains by overproducing these components, and the manufacturers enjoy 

increased process uptime. There is an area of the designer’s Pareto-optimal curve where 

relatively small decreases in profits result in significant decreases in GHG emissions, and 

the reverse is also true. For example, the solution with the fewest GHG emissions emits 

2,152 kg CO2-eq with losses of $992,593. However, if the designer is willing to accept an 
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increase in GHG emissions from 2,152 kg CO2-eq to 2,225 kg CO2-eq (increase of ~3%), 

then losses decrease dramatically from $992,593 to $281,696 (a drop of ~72%). These 

results clearly demonstrate the advantages of identifying trade-off solutions for 

production of different parts. Without the systematic, quantitative approach taken in this 

work, designers and manufacturers would have no means to identify these alternative 

production plans. Thus, they might not realize that minor changes to their production plan 

could result in a production plan they might prefer featuring significant improvement in 

profits or GHG emissions.  

The results show it is possible to remain profitable while decreasing 

environmental impacts. Figure 6 highlights a compromise solution, chosen because the 

production plan is profitable, making $24,160 of profits with GHG emissions at 2,356 kg 

CO2-eq, or 79% of the worst possible value of 3,000 kg CO2-eq. The manufacturers have 

a Pareto-optimal curve depicting the trade-offs between their costs and cumulative 

production time. Manufacturers’ possible costs at this compromise solution range from 

$2,091,635 to $3,538,656, and their cumulative production times range from 6,032 hours 

to 15,150 hours. Figure 7 and Table 3 detail the production plan for the compromise 

solution. The designer pays $1,906,728 to manufacturer 3, $223,564 to manufacturer 10, 

$26,050 to manufacturer 17, and $60,970 to manufacturer 22. Machining emissions of 

2,007 kg CO2-eq dwarf transportation emissions of 349 kg CO2-eq. These results 

represent a further need for research and development of more energy-efficient 

machining technologies and processes. 

Manufacturer 3 is a key manufacturer in the compromise solution. While charging 

a relatively high price compared to other manufacturers, manufacturer 3 is the closest 



Journal of Manufacturing Science and Engineering 

 

32 
 

manufacturer to the assembly center, minimizing transportation costs and emissions. 

Manufacturer 3 processes 4,023 kg of aluminum into 10,000 bracket bodies via die 

casting, milling, drilling, and painting. 19,240 kg of steel are processed into 7,755 

gearbox back housings and 10,000 gearbox front housings via milling, drilling, welding, 

and painting. Manufacturer 10 mills, welds, and paints 4,025 kg of steel to make 2,245 

gearbox back housings. Manufacturer 17 rolls 6,777 kg of aluminum into 28,784 rods, 

and manufacturer 22 molds 3,320 kg of plastic granules into 316,000 plastic rings. Total 

order time, based on transportation of the components and the longest processing time of 

all manufacturers, is 2,365 hours (~99 days). Manufacturers that could make the part 

components from raw material to completed component in-house were chosen whenever 

possible. Doing so decreases transportation costs, transportation emissions, and overall 

manufacturing and delivery time. 

Figure 8 and Table 4 detail the production plan for the solution with the highest 

profit. The designer pays $2,177,472 to manufacturer 10, $398,237 to manufacturer 19, 

$60,328 to manufacturer 18, $31,945 to manufacturer 3, $26,050 to manufacturer 17, and 

$13,164 to manufacturer 22. Total time to produce and deliver the parts is 2,226 hours 

(~93 days). Total GHG emissions are 3,000 kg CO2-eq, with 552 kg CO2-eq from 

transportation emissions and 2,448 kg CO2-eq from machining/processing emissions. The 

number of components produced by each manufacturer and their processing times are 

shown in Table 4. As in the compromise solution, manufacturer 3 is chosen to make 

aluminum bracket bodies as it is the closest manufacturer to the assembly center, limiting 

transportation costs. However, it is not the most cost-effective producer of the bracket 

bodies, so manufacturer 19 produces 9,304 of the 10,000 total bracket bodies, even 
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though transportation costs are higher. Similarly, manufacturers 18 and 22 are both 

chosen to produce different numbers of plastic rings. Thus, the model identifies the trade-

off between transportation costs and production costs and can find an optimal production 

plan taking this trade-off into account. Manufacturer 10 receives the largest payment 

because it is the only manufacturer that produces the steel components, producing 10,045 

gearbox front housings and 15,014 gearbox back housings. Manufacturer 17 produces 

28,784 aluminum rods. From these results, the aluminum rods, plastic rings, and gearbox 

back housings are more cost-effective to produce and transport than the bracket bodies 

and gearbox front housings. The designer could use these results to re-design the part so 

that production and transportation of all components are more cost-effective. 

Figure 9 and Table 5 detail the production plan for the solution with the fewest 

GHG emissions. The designer pays $1,678,828 to manufacturer 10, $309,671 to 

manufacturer 3, $90,836 to manufacturer 19, $9,064 to manufacturer 11, and $13,164 to 

manufacturer 14. Total time to produce and deliver the parts is 2,712 hours (~113 days). 

Thus, it takes longer to produce and transport the part in this solution than in the 

compromise solution and the solution with the highest profit. Total GHG emissions are 

2,152 kg CO2-eq, with 340 kg CO2-eq from transportation emissions and 1,812 kg CO2-

eq from machining/processing emissions. The number of components produced by each 

manufacturer and their processing times are shown in Table 5. As in the compromise 

solution and the solution with the highest profit, manufacturer 3 is chosen to make 

aluminum bracket bodies as it is the closest manufacturer to the assembly center, limiting 

transportation emissions. However, it emits more GHG emissions producing each bracket 

body compared to manufacturer 19. Therefore, manufacturer 19 produces 2,209 of the 
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10,000 total bracket bodies, even though transportation emissions are higher. This result 

shows that, much like the trade-off between production and transportation costs, the 

model identifies the trade-off between transportation and production emissions. 

Manufacturer 10 again receives the largest payment, producing 10,000 gearbox front 

housings and 10,000 gearbox back housings. Manufacturer 11 produces 10,000 

aluminum rods. Manufacturer 14 produces 10,476 plastic rings, just over the 10,000 ring 

quota. All components are produced exactly at or close to the 10,000 unit quotas. Doing 

so decreases transportation and production emissions, but results in an economic loss of 

$992,593. 

Interestingly, manufacturer 10 is a major player in both the solution with the 

highest profit and the solution with the fewest GHG emissions. Manufacturer 10 is one of 

the closest steel processing manufacturers to the assembly center, limiting transportation 

emissions. In addition, manufacturer 10 also charges some of the lowest rates for steel 

milling of all manufacturers. Manufacturer 3 is always the only manufacturer chosen 

from Wisconsin, even though the distances between the clusters of manufacturers in 

Wisconsin and Illinois to the assembly center are similar. Electricity produced in Illinois 

has a significantly lower GHG emissions impact (0.39 kg CO2/kWh) than Wisconsin 

(0.63 kg CO2/kWh). This difference could explain why no other Wisconsin 

manufacturers are selected. Manufacturer 3 might also always be selected because it has 

more processing capabilities than any other manufacturer; it is the only manufacturer that 

can die cast the aluminum, mill it, and perform surface treatment all in-house. 

Manufacturers that can process the raw material to the final components are always 

preferred. 
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CONCLUSION 
 

This work showcased new cyber-physical systems (CPS) technologies: the 

Operating System for Cyberphysical Manufacturing (OSCM) and the paired Network 

Operations Administration and Monitoring (NOAM) software. These technologies, and 

others like them, require new techniques to leverage their capabilities. With 

unprecedented communication and connection between designers and manufacturers 

possible with such technologies, more profitable production plans can be developed if 

objectives of all stakeholders are considered. Such technologies can also help quantify 

and manage environmental impacts of production plans. Thus, a mixed integer bilevel 

model based on the Stackelberg game was developed that considers the multiple 

objectives of designers and manufacturers in a manufacturing network connected with 

CPS technologies like OSCM and NOAM. The part designer (the leader) wished to 

produce their part(s) at maximum profit with minimum greenhouse gas (GHG) emissions. 

The manufacturers (followers) wished to minimize their costs while maximizing the 

uptime of their equipment. A decomposition-based solution algorithm leveraged the 

structure of the model to discretize the multi-objective solution space of the lower level 

problem. 

The proposed model and solution algorithm were applied to a case study based on 

a network of manufacturers in Illinois and Wisconsin. The case study required 

components for at least 10,000 aluminum bearing brackets, rods, and steel gearbox 

housings.  GHG emissions ranged from 2,152 kg CO2-eq to 3,000 kg CO2-eq with 

corresponding profits/losses of -$993,000 and $134,000. The approach found production 

plan alternatives with different profits and environmental impacts. The approach 



Journal of Manufacturing Science and Engineering 

 

36 
 

leveraged communication and connectivity advances provided by CPS to identify more 

profitable and environmentally friendly production plans. Thus, this work represents 

another step towards implementation of CPS at the manufacturing network level. 
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NOMENCLATURE 
Decision variables and subset designations are denoted in upper case. All 

parameters are in lower case. 

Sets and Subsets 

 

f=f’ Set of all manufacturers in the manufacturing network 

FDf Subset of all final destinations (demand nodes) 

m Set of all input, intermediate, or final materials 

n Set of points found on each Pareto-optimal curve considered in the lower 

level 

p Set of all machining and manufacturing processes 

PMm  Subset denoting all product materials 
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q Set denoting number of divisions of each manufacturer’s contract values  

RMm  Subset of all raw materials 

u Set of points found on the upper level Pareto-optimal curve  

Variables 

Bff’ Binary variable denoting if any material was transported from 

manufacturer f to destination f’ 

Cf Contract/payment value to each manufacturer f from the leader in $ 

FPfp Binary variable that determines if process p at manufacturer f is used or 

not 

Pmf Quantity of raw material RMm purchased by manufacturer f in m3 

Smf Quantity of material m sent to final destination f in m3 

SLqn Binary variable denoting if the upper level selects the lower-level 

solution for division point q and corresponding Pareto-optimal point n 

Xpf Quantity produced by process p at manufacturer f in m3 

Parameters 
 

acfp Cost to run process p if process p is a surface area-based process  

avp Area-to-volume ratio of the component to be processed in process p 

avam Availability of raw material RMm in m3 

cfqfqn Optimal value of Cf at step q and Pareto-optimal point n from the lower 
level 

cfnf Minimum feasible contract value for manufacturer f 
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cqfq Contract value for manufacturer f at step q 

cfxf Maximum feasible contract value for manufacturer f 

dff’  Distance in km from manufacturer f to destination f’ 

dcf Step size for range of contract values for manufacturer f 

demm  Final demand of material m in m3 

dpefp Direct GHG emissions from process p at manufacturer f in kg CO2-eq/m3 

εn Epsilon value for calculating point n along the lower level Pareto curve 

εu Epsilon value for calculating point u along the upper level Pareto curve 

fcfp Fixed costs of process p at manufacturer f 

fpp Scaling parameter that ensures a minimum processing level of a process 

if it is selected 

lcfp Cost to run process p if process p is a linear process 

lvfp Linear processing requirement to volume ratio of the component to be 

processed in process p 

macm Cost of raw material RMm in $k/kg 

mdpm Negative parameter denoting if material m is consumed in process p 

mppm Positive parameter denoting if material m is produced through process p 

mrfp Manufacturing rate of process p at manufacturer f in m3/hr 

ot Overall time limit for the order to be filled in hours 
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pefp Electricity consumption of process p at manufacturer f in kWh/m3 

ppm Selling price of final products PMm  

reff Regional electricity GHG emissions impact factor for manufacturer f in 

kg CO2-eq/kWh 

tc Transportation cost in $/m3-km 

tdfqn Discretization of the time objective of the lower level for the ε-constraint 

method 

te Transportation emissions in kg CO2-eq/km 

trmff’qn Optimal value of TRmff’ at step q and lower level Pareto optimal point n 

ts Transportation speed in km/hr 

vcfp Cost to run process p if process p is a volume-based process 

xqfpqn Optimal value of Xfp at step q and lower level Pareto-optimal point n 
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Figure Captions List 

 

Fig. 1 Cyber-physical manufacturing network framework: OSCM and NOAM 

Fig. 2 The designer (leader) proposes a set of payment distributions to the 

manufacturing network (followers). The manufacturers decide how to 

make the part under each payment distribution and return a manufacturing 

pathway to the designer. 

Fig. 3 Solution algorithm flowchart  

Fig. 4 Maps representing the manufacturers (green dots) in Wisconsin and 

Illinois considered in the case studies. The yellow star is the final demand 

location. Full network (left), Wisconsin manufacturers (middle), and 

Illinois manufacturers (right). 

Fig. 5 Part designs considered in the case studies. Aluminum bearing bracket 

(left), and steel gearbox housing (right). 

Fig. 6 Case study results. The compromise solution is shown in yellow, and the 

corresponding Pareto-optimal curve for the manufacturers is also shown. 

The solution with the fewest GHG emissions is circled in green, and the 

solution with the highest profit is circled in amber. 

Fig. 7 Production plan details for the compromise solution. 

Fig. 8 Production plan details for the solution with the highest profit. 

Fig. 9 Production plan details for the solution with the fewest GHG emissions. 
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Table 1. Parts, their components, required materials, and possible manufacturing 
sequence considered in the case study 

Part Component Name Material 
Manufacturing 

Sequence 

Bearing 

Bracket 

Bracket Body Aluminum 
Casting, Milling, 

Drilling, Painting 

Rod Aluminum Rolling 

Gearbox 

Housing 

Front Housing Steel 
Milling, Drilling, 

Painting 

Back Housing Steel 
Milling, Welding, 

Painting 

Rings Polyethylene 
Plastic Injection 

Molding 
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Table 2. List of manufacturers, their capabilities, and location by state 

Manufacturer Capabilities State 

1 Welding WI 

2 Rolling WI 

3 Drilling, Milling, Surface Treatment, Turning, Welding WI 

4 Surface Treatment WI 

5 Die Casting WI 

6 Surface Treatment, Welding IL 

7 Drilling, Milling, Rolling, Turning IL 

8 Drilling, Milling, Turning IL 

9 Surface Treatment, Welding IL 

10 Drilling, Milling, Welding, Surface Treatment, Turning IL 

11 Die Casting, rolling IL 

12 Sand Casting IL 

13 Welding IL 

14 Die Casting, Plastic Injection Molding IL 

15 Drilling, Milling, Turning IL 

16 Sand Casting IL 

17 Rolling IL 

18 Plastic Injection molding IL 
19 Sand Casting, Drilling, Turning, Surface Treatment IL 

20 Surface Treatment, Welding IL 

21 Drilling, Milling, Turning IL 

22 Drilling, Milling, Plastic Injection Molding, Turning IL 
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Table 3. Production plan details for the compromise solution.  

Manufacturer 
Materials 

Purchased 

Quantity 

Purchased 

(kg) 
Processes Products 

Number 

Produced 
Processing 

Time (hrs) 

3 
Aluminum 

Steel 
4,023 
19,240 

Al: Die 
Casting, 
Milling, 
Drilling, 
Painting.  

Steel: 
Milling, 
Drilling, 
Welding, 
Painting 

Aluminum 
Bracket 
Bodies 

 Gearbox 
Back 

Housing 
Gearbox 

Front 
Housing 

10,000 
7,755 

10,000 

2,360 
1,720 
938 

10 Steel 4,025 
Milling, 
Welding, 
Painting 

Gearbox 
Back 

Housing 
2,245 417 

17 Aluminum 6,777 Rolling 
Aluminum 

Rods 
28,784 2,510 

22 
Plastic 

Granules 
3,320 Molding 

Plastic 
Rings 

316,000 1,107 
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Table 4. Production plan details for the solution with the highest profit 

Manufacturer 
Materials 

Purchased 

Quantity 

Purchased 

(kg) 

Processes Products 
Number 

Produced 

Processing 

Time (hrs) 

3 Aluminum 297 

Die 
Casting, 
Milling, 
Drilling, 
Painting. 

Aluminum 
Bracket 
Bodies 

 

736 174 

10 Steel 32,200 
Milling, 
Welding, 
Painting 

Gearbox 
Front 

Housing 
Gearbox 

Back 
Housing 

10,045 
15,014 

525 
2,220 

17 Aluminum 6,777 Rolling 
Aluminum 

Rods 
28,784 628 

18 
Plastic 

Granules 
3,280 Molding 

Plastic 
Rings 

312,381 1,640 

19 Aluminum 3,753 

Die 
Casting, 
Milling, 
Drilling, 
Painting 

Aluminum 
Bracket 
Bodies 

9,304 1,390 

22 
Plastic 

Granules 
3,320 Molding 

Plastic 
Rings 

68,571 720 
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Table 5. Production plan details for the solution with the fewest GHG emissions  

Manufacturer 
Materials 

Purchased 

Quantity 

Purchased 

(kg) 

Processes Products 
Number 

Produced 

Processing 

Time (hrs) 

3 Aluminum 3,132 
Turning, 
Drilling, 
Painting. 

Aluminum 
Bracket Bodies 

 
7,764 2,707 

10 Steel 23,265 

Milling, 
Drilling, 
Welding, 
Painting 

Gearbox Front 
Housing 

Gearbox Back 
Housing 

10,000 
10,000 

525 
1,480 

11 Aluminum 2,349 Rolling Aluminum Rods 10,000 218 

14 
Plastic 

Granules 
110 Molding Plastic Rings 10,476 22 

19 Aluminum 891 

Die 
Casting, 
Milling, 
Drilling, 
Painting 

Aluminum 
Bracket Bodies 

2,209 330 
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