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a b s t r a c t

Directed Energy Deposition (DED) is a growing additive manufacturing technology due to its superior

properties such as build flexibility at multiple scales and limited waste. However, both experimental

and physics-based models have limitations in providing accurate and computationally efficient predic-

tions of process outcomes, which is essential for real-time process control and optimization. In this work,

a recurrent neural network (RNN) structure with a Gated Recurrent Unit (GRU) formulation is proposed

for predicting the high-dimensional thermal history in DED processes with variations in geometry, build

dimensions, toolpath strategy, laser power and scan speed. Our results indicate that the model can accu-

rately predict the thermal history of any given point of the DED build on a test-set database with limited

training. The model’s general applicability and ability to accurately predict thermal histories has been

demonstrated through two overarching tests conducted for long time spans and non-trained geometries.

� 2018 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Additive manufacturing (AM) is a rapidly growing technology,

which provides unique capabilities for building complex and

one-of-a-kind parts especially in the aerospace and biomedical

industries. Directed Energy Deposition (DED) is a metal powder-

blown AM process that uses a laser beam to locally melt the depos-

ited powder as it moves along a specific toolpath building a part

layer-by-layer.

Despite of its many intriguing features, there are challenges

associated with DED due to the inconsistency and sensitivity of

the final properties on process conditions. Experimental studies

have been conducted to analyze the influence of process parame-

ters on microstructure and build properties in [1–5]. However,

these models use a limited number of experiments and are inca-

pable of taking into consideration the complex inter-connectivity

of parameters in AM processes. Physics-based models were pro-

posed to capture thermo-mechanical, thermo-fluidic, and/or

microstructural evolution of the process in [6–9]. However, these

models are not applicable in many cases because of their enormous

computational cost that might take weeks or months of processing

time, even on supercomputers [10], and their discrepancy with

experimental results due to the simplifying assumptions made or

incomplete physics.

Current trends in manufacturing, such as Industry 4.0 [11] and

cyber-physical systems [12], increase the visibility and accessibil-

ity to information, which leads to extensive research in data-

driven models in the manufacturing community [13–16]. The

application of machine learning in a polymer powder bed fusion

process was discussed in [17]. A data-driven model for characteriz-

ing geometrical dimensions of trace products using dense neural

networks was proposed by [18]. In [19], the authors compared

multiple regression models for developing a surrogate model for

AM simulation. The self-organizing map technique was used for

quantifying the geometric accuracy of the Fused Filament Fabrica-

tion process in [20].

Due to the limited number of samples and the omission of cru-

cial time-series features of the process such as the toolpath, which

directly affects thermal history and hierarchical microstructure in

AM, current data-driven models fail to provide a profound under-

standing of this process. To address this gap, we propose a recur-

rent neural network structure for predicting the thermal history

of any given point in a DED build in a many-to-many configuration.

The proposed approach is well-suited for DED processes since it

can accurately calculate the high-dimensional thermal history of

the builds in a computationally efficient manner.
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2. Methodology

A Recurrent Neural Network (RNN) is a special type of artificial

neural network (ANN), designed with the idea that the outcome of

each neuron is dependent on its input (like other types of ANN) and

a history variable from past operations, which enables this struc-

ture to work with sequential data. In particular, the Long Short-

Term Memory (LSTM) [21] and the Gated Recurrent Unit (GRU)

[22] are two successful formulations of RNN structures for training

long sequences of data. The underlying concept of RNN structures,

i.e., the use of information from previous steps combined with the

current state of the system, is in line with differential equations.

Thus, physics that can be formulated with ordinary or partial dif-

ferential equations, such as the finite element method (FEM), are

good applications for RNN models. RNNs allow for the temporal

dependency in the input data to be learned without the need to

specify a fixed set of lagged observations. Traditional time series

analysis such as auto-correlation requires the identification of sea-

sonality and stationarity in a time series, which may change based

on laser speed, size of the build, etc., and need to be explicitly

adjusted for each simulation. Further, neural networks are robust

to noise in input data and the output variables and can learn in

spite of missing values. These properties of RNNs led to the

hypothesis that the RNN structure can predict the temperature his-

tory in DED regardless of its highly nonlinear nature.

3. RNN model architecture

A stacked RNN structure with GRU formulation is considered in

this research as depicted in Fig. 1. Each GRU cell receives input fea-

tures (xt) for that time step and a hidden state from the previous

time step (ht�1) and outputs a new hidden state (ht). The number

of units in each GRU cell represents the dimension of the hidden

state, which is connected to other cells using weights and biases.

Using multiple layers of the GRU structure enables the model to

comprehend deeply hidden correlations in the data. Fully con-

nected layers are considered to combine the outputs of the GRU

units into a single time-series temperature output.

The stacked GRU model is developed using the Keras deep

learning library [23] with the Adam [24] optimization procedure

and a mean-square-error (MSE) cost function between the model

prediction and the database thermal history.

4. Database development

The database considered for training the model is built using an

in-house finite element code, GAMMA, for transient thermal anal-

ysis using an explicit solver [26]. This choice enables us to have

access to high-volumes of input data required for training the

model to learn about the phenomena occurring not only on the

exterior of the AM build but also within its interior. A wide range

of input parameters such as laser power (500–1000W), scan speed

(5–30 mm/s), toolpath strategy (e.g., zigzag, unidirectional or cir-

cular motion), geometric size (5–40 mm), and shapes (e.g., cubic,

cylindrical, thin wall) are used to generate over 250,000 training

points for DED simulation of stainless steel 316L objects.

The input features designed for each training point include tool-

path feature (based on the distance between the coaxial powder

nozzle outlet and the birthed element), the time of deposition,

closest distance to the boundary of the build, layer height, laser

intensity, and laser state (on or off). Input features are extracted

as time series data from FEM output files and stored in a three-

dimensional tensor compatible with the RNN structure. To investi-

gate the capability of the RNN structure to operate in noisy envi-

ronments, an artificial noise with a standard deviation of 30 K is

added to the thermal history in the database. All input features

and thermal histories are normalized using a linear mapping from

the minimum and maximum of each feature to the range of 0 to 1

in order to speed-up the optimization procedure. The model is

trained over 80% of the database, while 20% of the database is left

out for testing.

5. Results and discussions

5.1. Test-set evaluation

The RNN model is trained for different configurations such as

number of RNN layers (1–5 layers), GRU units (100–500 units),

and fully connected layers (1–3 units). Even for configurations with

a small number of layers and units the model reaches 1e-4 MSE

after 100 epochs of training. An epoch is a complete pass of train-

Fig. 1. Schematic of the many-to-many stacked RNN structure with GRU formulation; Green circles represent GRU units, blue rectangles represent GRU cells, yellow

boundaries represent stacked GRU wrappers, and blue dashed lines within the GRU wrappers represent trainable parameters. The schematic and formulation of GRU units are

provided on the left based on the formulation given in [22,25].
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ing through the database in batch mode. For a configuration of 3

stacked GRU layers with 500 units and 1 fully connected layer with

100 neurons, the model reaches 3.210e-5 MSE on training data and

3.84e-5 on testing data with 100 epochs of training. The training

process took approximately 40 h on a Nvidia Quadro P5000. The

prediction for two random points of a test-set over 20 s of the pro-

cess is demonstrated in Fig. 2. The smoothness of the predicted

thermal histories and the similarity between the patterns of the

applied noise and the prediction error (discrepancy between

the noisy database and predicted thermal history) proves that

the RNN structure can effectively avoid noise in the database and

capture most of the critical features of the thermal history includ-

ing sharp changes and flat regions that happen due to the phase

transitions in the material.

6. Overarching test I: Long time span test

One of the key features of RNN structures for this application is

that it can predict any arbitrary number of time increments (0.1 s

in this case). To assess the generality of the model, a trained model

is used for predicting a longer time span than it has been trained

Fig. 2. Evaluation of the stacked RNN model on the test dataset for two random points over 20 s of the DED process; Comparison of the model prediction (black line) and the

test-set value (cyan dashed line) for the thermal history of a point in a thin-wall build with uni-directional toolpath (left) and a cylindrical build circular toolpath (right).

Fig. 3. Evaluation of the stacked RNN model on the test dataset for 100 s, while trained on 20 s (top) and 50 s (bottom) of the process; Comparison of the model prediction

(black line) and the test-set value (cyan dashed line) for the long-time span thermal history of a point in a cubic build with zigzag toolpath.
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for. Particularly, two stacked RNN models trained for 20 s and 50 s

of the process are used for predicting 100 s of the thermal history.

The model trained on 20 s (Fig. 3 top) performs well for the train-

ing period and continues to have a reasonable prediction for more

than three times of the time span it has been trained on, to have an

overall MSE of 7.05e-5 for 100 s of the process. The model trained

on 50 s (Fig. 3 bottom) decreases the MSE to 3.17e-5 for 100 s of

the prediction. This significant drop in the long-term error of the

model comes with the cost of almost two times the required train-

ing time and resources. It is noteworthy that the sharp gradients,

melting and re-melting of the material, which are the main targets

of this work, happen in a few layers after material deposition and

after that the temperature changes smoothly. Therefore, the

stacked RNN is an effective model for predicting the most critical

features of the thermal history, while the long-term predictions

can be easily improved if necessary.

7. Overarching test II: Dissimilar geometries

The capability of the trained model is further investigated for

predicting the behavior of a dissimilar geometry type from the

training database. A new database with different geometric fea-

tures is developed, and the trained model is used to predict the

thermal history of three points of the build. As depicted in Fig. 4,

the model can accurately predict the behavior of points 1 and 3.

However, there is significant error in the model prediction for point

2, which is because the geometric feature and the state of the

boundaries close to this point is unprecedented to the model.

The results indicate that even with two hand-picked geometric fea-

tures introduced in Sec. 2.2 (i.e., closest distance to a boundary of

the build and layer height features) the model can perform reason-

ably well at material points of untrained builds with similar geo-

metric features as the training database. However, to represent

complex geometries, a more flexible geometric feature extraction

methodology will be needed.

8. Conclusions and future works

This paper presents a stacked RNN structure with a GRU formu-

lation for predicting the thermal history of any given point in a

DED build. The results show that the model reaches an MSE of

2.97e-5 on a test dataset after a 100 epoch training. Additionally,

two overarching tests for predicting the thermal history over a

longer time span and non-trained geometries are examined, show-

ing the potential of RNN models to predict complex behaviors in

AM processes, considering that the accuracy of the model can be

further improved by increasing training epochs and geometry

types included in the database.

Future work of this research includes directly training the

model based on experimental data and developing an optimization

framework for AM based on Reinforcement Learning.
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