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ABSTRACT: A new synthetic platform accessing stereoregular
polar polyolefins is introduced. We showcase the stability of
aromatic azaborine derivatives by demonstrating the syndiose-
lective polymerization of BN 2-vinylnaphthalene (BN2VN) by a
monocyclopentadienyl titanium complex. Homogeneous early
transition metal catalysts are well-established systems for the
synthesis of highly stereoregular syndiotactic polystyrene (sPS),
but the oxophilic nature of these complexes results in catalyst
decomposition with polar monomers. BN2VN’s compatibility
with coordination polymerization, and its ability to intercept the
mechanism of styrene polymerization, is attributed to its aromaticity. Stereoretentive postpolymerization oxidation of the
organoborane side chain generates syndiotactic poly(vinyl alcohol) (sPVA), an example of PBN2VN’s potential for diverse
postfunctionalization.

■ INTRODUCTION

Organoboranes are versatile reagents in organic synthesis,1 and
chiral alkylboronate esters are important precursors to enantio-
enriched alcohols and other functional groups.2−4 The
challenges associated with the synthesis of functionalized
polyolefins by coordination−insertion polymerization5−7

suggest that poly(vinyl boronate)s could represent an attractive
solution via postpolymerization transformation of the side-
chain C−B bond. However, there has been limited
investigation of vinyl boronate polymerization, perhaps
reflecting concerns about the Lewis acidity, propensity for
cross-linking, and hydrolytic and oxidative sensitivity of
organoboranes.8,9

We demonst ra te tha t BN 2-v iny lnaphtha lene
(BN2VN)’s10−12 aromaticity13−15 results in a functionalized
vinyl monomer compatible with single-site olefin polymer-
ization catalysts. Monocyclopentadienyl titanium catalysts that
promote syndioselective styrene polymerization16,17 yield
syndiotactic BN2VN polymers (sPBN2VN, Scheme 1). We
recently showed that free radical copolymerization of BN2VN
and styrene provides a precursor to statistical styrene−vinyl
alcohol copolymers (PVA-co-PS) via postpolymerization
oxidation.11,12 Herein, we show stereoretentive18 oxidation of
sPBN2VN to syndiotactic poly(vinyl alcohol) (sPVA).
Poly(vinyl alcohol) (PVA) is a semicrystalline water-soluble

polymer. PVA is typically synthesized by free radical
polymerization of vinyl acetate, followed by saponification,
yielding an atactic polymer.19 PVA hydrogels have potential
therapeutic applications, while high molecular weight PVA
fibrils exhibit high tensile strength.20−23 Tacticity has a
profound effect on both these applications as relative
stereochemistry influences the extent of intra- and intermo-
lecular hydrogen bonding between hydroxyl groups.23−25 sPVA
has particularly strong intermolecular hydrogen bonds.

Synthetic routes to sPVA include cationic polymerization of
vinyl ethers with bulky protecting groups26−28 or radical
polymerization of vinyl pivalate,22,29 followed by protecting
group cleavage. Syndiotacticties are typically modest, and
cationic polymerizations yield low molecular weight materials.
The limited substrate scope of cationic polymerization and the
poor reactivity of vinyl ester-derived radicals also impose a
limitation on the ability to tune PVA’s properties through
copolymerization with nonpolar monomers.
Coordination polymerization of BN2VN is a new synthetic

approach to sPVA that proceeds by an orthogonal mechanism
with the potential to address these limitations. Homogeneous
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Scheme 1. Coordination Polymerization of BN2VN and
Stereoretentive Oxidation
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early transition metal complexes are exceptional in their ability
to provide highly stereoregular polymers.30 The high activity of
single site catalysts for olefin polymerization also expands the
scope of compatible comonomers and resulting functional
polyolefins. As first reported by Ishihara,31 homogeneous
monocyclopentadienyl complexes32,33 such as Cp*TiCl3,

31

Cp*TiMe3,
17,34 IndTiCl3,

35 and others36 are effective catalysts
for syndioselective styrene polymerization upon activation by
methylaluminoxane (MAO) or tris(pentafluorophenyl)borane
(B(C6F5)3). The powerful Lewis acid B(C6F5)3 abstracts a
methyl group from Cp*TiMe3, yielding the cationic active
catalyst.16,37−41 Stereoselectivity is typically very high (>98%
syndiotactic).33 Syndiotactic polystyrene (sPS) is a semi-
crystalline polymer with a high melting point (270 °C) and
other attractive properties.42,43 Coordination copolymerization
of styrene and polar monomers like vinyl acetate is a significant
challenge due to interactions between the polar functional
group and Ti+ or the Lewis acid cocatalyst.7

■ RESULTS AND DISCUSSION
We hypothesized that an aromatic cage around boron and
nitrogen would reduce Lewis acidity and basicity, resulting in

compatibility with coordination polymerization catalysts.
Additionally, BN2VN’s aromaticity suggests its ability to
intercept the mechanism of styrene syndioselective polymer-
ization. While several aromatic vinyl boronates are known,44−46

BN2VN’s scalable two-step synthesis is attractive for

postfunctionalization studies.10,47 A series of group IV catalysts
known to promote styrene polymerization were examined in
BN2VN polymerization (Table 1). No conversion was
observed with Cp2ZrCl2/MAO (entry 1). More promising
levels of conversion were observed with Cp2TiCl2/MAO and
Cp*TiCl3/MAO (entries 2 and 3). Cp*TiMe3/B(C6F5)3
provided good yields of moderate molecular weight polymers
with a significant reduction in cocatalyst loading compared to
Ti/MAO systems (entries 4−6). In general, polymerization of
BN2VN and the nonpolar hydrocarbon 2-vinylnaphthalene
(2VN) results in lower yields and molecular weights than
observed with styrene coordination polymerization (Table S1).
Both sPS and sPBN2VN are much less soluble in organic

solvents than their atactic counterparts.48 Soxhlet extraction in
acetone yielded a soluble atactic fraction and an insoluble

Table 1. Group (IV) Transition Metal Catalysts for BN2VN Coordination Polymerization

before fractionation after fractionation

entry cat. cocat. [cat.]/[cocat.] yield (%) Mn
a (kDa) Đ recovery (%) Mn

a (kDa) Đ

1 Cp2ZrCl2
b MAO 0.025/20.0 0 n.d. n.d. n.d. n.d. n.d.

2 Cp2TiCl2
b MAO 0.025/22.5 36e n.d. n.d. n.d. n.d. n.d.

3 Cp*TiCl3
b MAO 0.025/22.5 21e n.d. n.d. n.d. n.d. n.d.

4 Cp*TiMe3
c B(C6F5)3 0.50/0.50 33 12.2 2.33 74 12.1 2.33

5 Cp*TiMe3
d B(C6F5)3 1.00/1.00 67 15.0 2.24 78 15.0 2.24

6 Cp*TiMe3
d B(C6F5)3 1.00/1.50 85 16.0 2.41 74 16.0 2.41

aDetermined by GPC at 254 nm relative to a polystyrene standard. bConditions: 50 °C, 24 h, [BN2VN] = 2.0 M in toluene. cConditions: 35 °C, 2
h, [BN2VN] = 0.95 M in toluene. dConditions: 35 °C, 2 h, [BN2VN] = 2.0 M in toluene. eGPC analysis could not be performed due to the
insolubility in THF at room temperature. Cp = cyclopentadienyl; Cp* = pentamethylcyclopentadienyl; MAO = methylaluminoxane, cat. = catalyst,
cocat. = cocatalyst.

Figure 1. SEC data before (dashed) and after (solid) fractionation in
acetone. Response by absorbance at 310 nm. Relative to a polystyrene
standard.

Figure 2. (a) Cropped FTIR spectra of aPBN2VN (from AIBN) and
sPBN2VN. (b) Cropped UV−vis spectra of aPBN2VN and
sPBN2VN. The absorption band at 320 nm is labeled. THF,
[polymer] = 0.02 mg mL−1, 25 °C.
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stereoregular fraction (74−78 wt % % recovery, Table 1). The
sPBN2VN fraction is an off-white powdery solid that is
sparingly soluble in THF at room temperature. At elevated
temperatures (100−120 °C), good solubility in DMSO and
limited solubility in 1,1,2,2-tetrachloroethane (TCE) are
observed. Results of size exclusion chromatography (SEC)
before and after fractionation are shown in Figure 1.
Spectroscopic characterization confirms that the BN

naphthalene side chain survives polymerization. The Fourier
transform infrared (FTIR) spectra of sPBN2VN and
aPBN2VN from free radical polymerization agree (Figure
2a). The characteristic NH stretching frequency (ca. 3370
cm−1) is observed as well as CH stretching frequencies. Like
aromatic hydrocarbons, extended azaborines rings show
intense absorption bands in the ultraviolet to visible
region.49,50 The UV−vis spectrum of sPBN2VN exhibits the
characteristic 320 nm absorption band of the BN naphthalene
side chain (Figure 2b).10,11

NMR spectroscopy supports a stereoregular structure. Much
sharper peaks are observed in the 1H NMR spectra of
sPBN2VN samples compared to aPBN2VN. The seven peaks
in the aromatic region of the 1H NMR spectrum are assigned
to the BN naphthalene side chain (Figure 3a). Peaks at δ 1.44
and δ 1.05 are assigned to the methylene (β) and methine (α)
protons of the polymer backbone (Figure 3b). NMR spectra
were collected in DMSO-d6, a coordinating solvent. UV−vis

spectra of PBN2VN in DMSO and THF are identical and
show the characteristic 320 nm transition consistent with
aromaticity, suggesting that DMSO does not coordinate
BN2VN (Figure S1). DMSO-d6 may hydrogen bond to the
polymer, as the NH resonance is observed at δ 8.34, a
downfield shift of over 1 ppm compared to dichloromethane-
d2.

10

While the resonances of carbon atoms attached to boron (δ
128.7 (C8) and δ 28.7 (α)) are broad due to the quadrupolar
relaxation of boron-11 (s = 3/2),51 peak shapes are singlets and
generally narrower than observed in the spectrum of
aPBN2VN arising from free radical polymerization (Figure
3c,d), suggesting a very high degree of stereoregularity. Peak
assignments were made on the basis of COSY, NOESY,
TOCSY, and 1H−13C HSQC NMR experiments (Figure 3e,f
and Supporting Information).
The challenging analysis of organoboranes by 13C NMR

spectroscopy limits the utility of quantitative NMR experi-
ments in the assignment of stereoregular PBN2VN micro-
structure to syndiotactic or isotactic. Nor are small molecule
analogues of BN2VN meso and racemo diads known. For these
reasons, characterization of tacticity is based on conversion to
PVA, as diagnostic spectroscopic signatures are known for both
isotactic and syndiotactic PVA.52 Organoborane oxidation with
alkaline hydrogen peroxide proceeds by a stereoretentive
mechanism in which hydroperoxide ion (HOO−) coordinates

Figure 3. NMR spectra of PBN2VN. (a, b) Cropped 1H NMR spectra (400 MHz, 120 °C, DMSO-d6). Top: aPBN2VN (from AIBN); bottom:
sPBN2VN (from Cp*TiMe3/B(C6F5)3). (c, d) Cropped

13C {1H} NMR spectra (101 MHz, 120 °C, DMSO-d6). Top: aPBN2VN (from AIBN);
bottom: sPBN2VN (from Cp*TiMe3/B(C6F5)3). (e) Cropped

1H−1H COSY spectrum of sPBN2VN. (f) Cropped 1H−13C HSQC spectrum of
sPBN2VN (400 MHz, 120 °C, DMSO-d6). Peak assignments are indicated. Asterisk indicates solvent signal. See the Supporting Information for full
spectra.
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boron, followed by concerted 1,2-alkyl migration and O−O
bond cleavage.18

Oxidation confirms a syndiotactic microstructure. A THF−
ethanol solution of sPBN2VN was treated with alkaline
hydrogen peroxide for 24 h at 65 °C. sPVA was isolated as a
white powder in 31% yield by precipitation into water.
Synthetic sPVA is UV-inactive, indicating cleavage of the BN
naphthalene chromophore (Figure S2). FTIR spectroscopy
shows the characteristic broad ca. 3250 cm−1 hydroxyl
stretching frequency (Figure 4a). Murahashi et al. reported
IR spectra of both isotactic and syndiotactic PVA and
identified features at 916 and 849 cm−1 as diagnostic of
sPVA.52 Both resonances are readily identified in our synthetic
sample of sPVA and are not apparent in a commercially
available sample of aPVA (Figure 4b).
The poor solubility of sPBN2VN-derived sPVA complicates

NMR spectroscopic analysis of stereoregularity. PVA tacticity
is typically quantified by 1H NMR spectroscopy at room
temperature or 50 °C in DMSO-d6, as hydroxyl protons
associated with isotactic (mm), heterotactic (mr), and
syndiotactic (rr) triads resolve.53,54 However, sPVA solubility
is known to decrease with increasing syndiotacticity,55 and our
sPVA is poorly soluble in DMSO. It is insoluble in DMSO-d6
at room temperature and 50 °C. 1H NMR spectra recorded at
these temperatures do not show PVA resonances. After heating
to 120 °C, 1H NMR signatures of sPVA are observed (Figure
S3); however, the known coalescence of hydroxyl and methine
resonances at elevated temperatures54 precludes direct
determination of % syndiotacticity from the 120 °C spectrum.
Upon cooling back to 50 °C, hydroxyl resonances in the 1H
NMR spectrum resolve and show that sPBN2VN-derived
sPVA is enriched in rr (syndiotactic) triads compared to aPVA
(Figure 5). Solid-state carbon-13 NMR spectroscopy of PVA is
not suitable for quantitative determination of tacticity as intra-
and intermolecular hydrogen bonding influence methine
carbon chemical shift.56

Like sPS, sPBN2VN is a semicrystalline solid. It has not only
a glass transition temperature (Tg) comparable to aPBN2VN
but also a high melting point above 300 °C (Table 2).
Synthetic sPVA derived from sPBN2VN is a solid at room
temperature, but decomposition of neat samples was observed
during thermal analysis by differential scanning calorimetry
(see the Supporting Information).57

■ CONCLUSION

We report the synthesis of a stereoregular poly(vinyl boronate)
via single site catalysis of BN2VN polymerization. Achieving
the synthesis of sPBN2VN facilitates the preparation of
stereoregular functional polyolefins via the versatile chemistry
of organoboranes, as demonstrated in a synthesis of
syndiotactic PVA. Aromaticity is key to the stability of the
polar monomer and interception of the proposed mechanism
of syndioselective styrene polymerization. The mechanistically
unique route to sPVA reported herein supports the future
development of stereoregular functional polyolefins.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge on the
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Synthetic procedures, tabulated characterization data,

copies of spectra, supplemental figures and data (PDF)

Figure 4. Cropped FTIR spectra of an authentic sample of aPVA and
sPBN2VN-derived sPVA highlighting (a) ν(OH) and (b) bands
characteristic of syndiotacticity.

Figure 5. Cropped 1H NMR (400 MHz, DMSO-d6) spectra of sPVA
(top) and aPVA (bottom). Peak assignments are indicated. See the
Supporting Information for full spectra.

Table 2. Physical Properties of Polymers

entry polymer Tg
a (°C) Tm

b (°C)

1 aPS 100 n.a.
2 sPS 101 272
3 aPBN2VN 135 n.a.
4 sPBN2VN 131 319
5 aPVA 85 n.a.
6 sPVA 93 n.d.c

aTemperature of midpoint of glass transition. bTemperature of
midpoint of melting. csPVA decomposed during analysis.
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