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Abstract—We consider the problem of retrieving soil moisture
based on GNSS-R time series data with incidence angle diversity
in the presence of instrument calibration errors, vegetation cover
uncertainty, and surface roughness uncertainty. After defining
an observation model and a retrieval cost function, we derive a
formula for retrieval performance as a function of calibration un-
certainty, time series parameters, and prior statistics. Numerical
results illustrate relationships among various parameters.

Index Terms—land remote sensing, soil moisture, reflectometry,
GNSS-R, CYGNSS, sensitivity analysis

I. INTRODUCTION

Soil moisture (SM) is a fundamental quantity in the study

of our planet, providing observability into processes of evapo-

transpiration and groundwater recharge, which influence cycles

of water, energy, and carbon on regional and global scales.

Applications supported by SM observations include weather

and climate forecasting, flood and landslide prediction, aquifer

modeling, drought analysis, crop productivity evaluation, and

human health. The advancement of dependable SM retrieval

methods is therefore of considerable human interest [1].

In this study, we investigate the theoretical retrieval accuracy

for surface SM using time series data from a reflectometer

such as NASA’s Cyclone GNSS (CYGNSS) mission in the

presence of various error sources. We focus on exploring

incidence angle diversity since the effect of surface roughness

on scattered power is relatively sensitive to incidence angle

and also since CYGNSS lacks other modes of diversification

such as frequency and polarization. In particular, we consider

a given resolution cell on the ground through which multiple

specular points pass within a given time interval to provide

multi-incidence angle reflectometry data.

In Section II we propose an observation model and a

retrieval cost function. Our goal is not necessarily to define

complex high-fidelity models but rather only to capture the

primary features relevant to sensitivity analysis. We proceed

to derive a formula for retrieval performance as a function

of calibration uncertainty, time series parameters, and prior

statistics. In Section III we give numerical results to illustrate

the relationships among the various parameters. In Section IV

we discuss limitations of the results and areas for future work.

This work was performed at the University of Southern California, sup-
ported in part by National Science Foundation grant number 1643004.

II. STATISTICAL MODELING

A. Observation Model

From (S2) of [2], we assume that surface reflectivity can

be obtained from received power and various known system

parameters. We denote this noisy observation of surface re-

flectivity by y. In the case of CYGNSS, y is closely related to

the Level 1 bistatic radar cross section (L1 BRCS) from the

specular bin of the delay-Doppler map (DDM).

Following the approach in [3], which in effect combines

(11.2) and (11.11) of [4], we model surface reflectivity by

Γcoh(θ;mv, ks, τ) = Avwc(θ; τ)Arough(θ; ks)Γf(θ;mv)(1)

Avwc(θ; τ) = e−(2 sec θ)τ (2)

Arough(θ; ks) = e−(2 cos θ)2(ks)2 (3)

where θ is incidence angle, mv is volumetric SM, ks is the

surface roughness coefficient, τ is approximately 0.1wc, wc is

vegetation water content (VWC), Avwc is power attenuation

due to VWC, Arough is attenuation of coherent power due to

surface roughness under the Kirchhoff approximation [5], and

Γf is Fresnel power reflectivity.

Defining geophysical parameter vector

x = [mv ks τ ]
T

(4)

and assuming that x is constant over the spatio-temporal extent

of the time series and expressing Γcoh in units of decibels

f(θ;x) = 10 log10[Γcoh(θ;mv, ks, τ)] (5)

then we can write the time series of observed surface reflec-

tivities in vector form as

y = f(x) + νcal (6)

where yi = f(θi,x) + νi for observation i = 1, . . . , N .

Here, we assume that observation noise νcal in decibels comes

from instrument calibration error and behaves as multiplicative

(speckle-like) noise when (6) is expressed in linear units.

B. Cost Function and Error Covariance Matrix

We assume that the cost function for the retrieval has the

following quadratic form

J(x′) = [y − f(x′)]TC−1
cal [y − f(x′)]

+ (xprior − x′)TC−1
prior(xprior − x′) (7)
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where the prime in x′ serves to distinguish it from truth x, Ccal

is the covariance matrix of νcal, xprior is the prior mean of

x, and Cprior is the corresponding covariance matrix. We also

assume that νcal and xprior−x are zero mean and uncorrelated

with each other.

As an aside, (7) remains a valid cost function even if the

quantities C−1
cal , C

−1
prior, and xprior have no statistical meaning

attached to them. The following results can be extended to this

more general class of retrievals, which includes those based

on simplified models [6]. However, for this study we make the

statistical assumptions stated in the previous paragraph.

To first order, the error covariance matrix (ECM) for the

retrieval is given by

Cx̂ = E[(x̂− x)(x̂− x)T] = (FTC−1
calF+C−1

prior)
−1 (8)

where the retrieval x̂ is the minimizer of (7) and F is the

Jacobian of f(x). The first-order approximation in (8) is valid

when x̂−x is sufficiently small relative to higher-order partial

derivatives of f(x). This, in turn, depends on νcal and xprior−
x being sufficiently small [6].

If νcal and xprior − x are jointly Gaussian, then x̂ is the

maximum a posteriori probability (MAP) estimator. It is also

the minimum mean square error (MMSE) estimator to first

order, and therefore the MMSE is given by the trace of (8) to

first order [6].

If no prior information is available, i.e. C−1
prior = 0 in (7),

and if νcal is Gaussian, then x̂ is the maximum likelihood

(ML) estimator. It is also the minimum variance unbiased

estimator (MVUE) to first order [6].

If prior information is available for some but not all parame-

ters of x and if these parameters and νcal are jointly Gaussian,

then x̂ is the mixed ML-MAP estimator [6].

Even if the random variables involved are non-Gaussian, the

cost function given by (7) may still provide a good retrieval. In

any case, (8) always holds to first order under the assumptions

of the previous sections regardless of whether the random

variables involved are Gaussian [6].

Although not provided here due to space constraints, the

partial derivatives in F are straightforward although somewhat

lengthy to calculate. In particular, calculation of ∂Γf/∂mv

requires a soil dielectric model such as [7], [8].

We now assume that calibration errors are uncorrelated and

homoscedastic with variance σ2
cal and that prior uncertainties

are uncorrelated so that D−1
prior = C−1

prior is diagonal. Then,

(8) becomes

Cx̂ =
σ2
cal

N
(
1

N
FTF+

σ2
cal

N
D−1

prior)
−1 (9)

We proceed to derive an expression for the (1, 1)-element

of Cx̂, which represents SM retrieval uncertainty.

C. Inner Product Representation

Observing that

1

N
FTF =

1

N

N∑

i=1

[∇f(θi)][∇f(θi)]
T (10)

has the form of an average, we generalize (10) by defining a

matrix of inner products

P =

∫
[∇f(θ)][∇f(θ)]TpΘ(θ)dθ (11)

where the elements of P are given by

plm = 〈fl, fm〉 =
∫

fl(θ)fm(θ)pΘ(θ)dθ (12)

and where pΘ(θ) is the probability density function of in-

cidence angles and fn(θ) = ∂f(θ;x)/∂xn. Here, as in the

following, indices l, m, and n will refer to the elements of x.

If we take pΘ(θ) =
∑N

i=1 δ(θ − θi)/N , then we find that

P = FTF/N . In the following, we therefore replace FTF/N
by the inner product representation P and reserve the option

to use a general form for pΘ(θ) that is not necessarily tied to

specific samples of θi or to N .

D. Soil Moisture Retrieval Performance

Since P is symmetric non-negative definite, it can be

factored as P = D
1/2
f RD

1/2
f where elements of diagonal Df

are 〈fn, fn〉 = ‖fn‖2 and elements of correlation R are given

by

ρlm =
〈fl, fm〉√

〈fl, fl〉〈fm, fm〉
=

〈fl, fm〉
‖fl‖‖fm‖ (13)

To account for prior information, we define an attenuation-

like quantity

an =

(
1 +

σ2
cal

N‖fn‖2σ2
n

)−1/2

(14)

where σn is the uncertainty of the nth prior. We note 0 ≤
an ≤ 1. Now let

P̃ = P+
σ2
cal

N
D−1

prior (15)

Then, P̃ can be factored as

P̃ = D̃
1/2
f R̃D̃

1/2
f (16)

where the diagonal elements of D̃f are given by a−2
n ‖fn‖2,

the diagonal elements of R̃ are unity, and the off-diagonal

elements of R̃ are given by

ρ̃lm = alamρlm (17)

For a matrix M, let M(l,m) denote the submatrix formed

by deleting row l and column m from M. Then, we can factor

P̃(1, 1) = D̃
1/2
f (1, 1)R̃(1, 1)D̃

1/2
f (1, 1) (18)

and from Cramer’s rule the (1, 1)-element of P̃−1 is given by

P̃−1
1,1 = det [P̃(1, 1)]/ det (P̃)

= ‖f1‖−2 det [R̃(1, 1)]/ det (R̃) (19)

The desired result follows from (19), (15), and (9)

σm̂v
=

σcal√
N

amv

∥∥∥∥
∂f

∂mv

∥∥∥∥
−1

√
det [R̃(1, 1)]

det (R̃)
(20)
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TABLE I
SOIL PARAMETERS

Frequency 1.575 42 GHz
Water temperature 20 ◦C

Salinity of water 4 gsalt kg−1
water

Bulk density 1.55 g cm−3

Particle density 2.66 g cm−3

Mass fraction of sand 40 %
Mass fraction of clay 50 %
Mass fraction of silt 10 %
Water volume fraction mv 20 %

The determinant factor in (20) is given explicitly by
√

1− ρ̃223
1− ρ̃223 − ρ̃212 − ρ̃213 + 2ρ̃23ρ̃12ρ̃13

(21)

It is minimized to unity when ρ̃12 = ρ̃13 = 0, i.e. when one

or more of the following hold
〈

∂f

∂mv
,

∂f

∂(ks)

〉
=

〈
∂f

∂mv
,
∂f

∂τ

〉
= 0 (22)

aks = aτ = 0 (23)

amv
= 0 (24)

From (14), we see that priors are effective when

σn � σcal/(
√
N‖fn‖) (25)

since condition (25) drives an to zero. If instead

σn � σcal/(
√
N‖fn‖) (26)

holds, then the prior has no benefit to retrieval performance

(20) since condition (26) drives an to unity.

III. NUMERICAL RESULTS

A. Parameters

Computation of Γf and its partials requires specification

of transmit/receive polarization and soil dielectric constant.

We assume the transmitted signal has right hand circular

polarization (RHCP) and the receive antenna has left hand

circular polarization (LHCP) to accommodate polarization

change on reflection. We use Peplinski’s soil dielectric model

[7], [8] with soil parameters given in Table I.

B. Sensitivities

Normalized sensitivities are shown in Fig. 1 for 0° ≤
θ ≤ 70°. The corresponding norms and correlations (13) of

the sensitivity functions over various ranges of θ are given

in Table II. We assume θ has uniform distribution over its

corresponding range to compute the underlying inner products

(11). We note the values of ‖∂f/∂mv‖ and ‖∂f/∂(ks)‖
depend on the assumed values of mv and ks. Here, mv = 0.20
by Table I and we take ks = 0.13 based on Soil Moisture

Active Passive (SMAP) ancillary data [3].

The determinant factor (21) is calculated in Table III for the

θ-intervals and ρ-values from Table II. When a parameter n is

listed as “known” in Table III, then σn = 0 and thus an = 0
by (14) and the corresponding values of ρ̃ in (21) are zero by

(17). This is equivalent to removing the parameter from x.

TABLE II
SENSITIVITY NORMS AND CORRELATIONS

θ (deg)

∥

∥

∥

∂f
∂mv

∥

∥

∥

∥

∥

∥

∂f
∂(ks)

∥

∥

∥

∥

∥

∥

∂f
∂τ

∥

∥

∥
ρmv,ks ρmv,τ ρks,τ

10–70 12.5 2.9 13.7 −0.893 −0.959 0.735
10–40 12.2 3.7 9.8 −0.990 −0.997 0.977
35–55 12.3 2.7 11.8 −0.968 −0.992 0.929
40–70 12.7 1.6 16.6 −0.912 −0.979 0.813

TABLE III
DETERMINANT FACTOR

Known? Incidence Angle Range (degrees)
mv ks τ 10–70 10–40 25–55 40–70

N N N 16.0 236.3 75.9 26.5
N Y N 3.5 13.7 7.9 4.9
N N Y 2.2 7.0 4.0 2.4
N Y Y 1.0 1.0 1.0 1.0

C. Calibration Accuracy Requirement

If we solve (20) for σcal, then we obtain the calibration

accuracy required to satisfy a specified retrieval accuracy σ̂mv

as a function of the time-series parameters and priors. Fig. 2

shows σcal as a function of prior surface roughness and prior

VWC uncertainties, where we fix σ̂mv
= 4%, N = 4, 0° ≤

θ ≤ 70°, and prior σmv
= ∞. Here, the prior uncertainties are

expressed in decibels of receive power for nadir incidence, i.e.

by |∂fn(θ = 0)|σn for n = ks, τ . This has the advantage of

making ‖fks‖σks in (14) independent of ks. Otherwise, Fig. 2

would depend on the value of ks. To convert a value on the

y-axis to units of σks for an assumed true value of ks, divide

by 34.7×ks. To convert a value on the x-axis to units of στ ,

multiply by 0.115 13. To convert an x-axis value to units of

kg m−2 using the SMAP VWC model, multiply by 1.1513.

For the case where σks →∞ in Fig. 2, i.e. when surface

roughness is a priori unknown, the corresponding required

calibration accuracy is shown as the blue line plotted in Fig. 3.

Three other lines are also plotted in Fig. 3 for the three

subintervals of incidence angle considered in Tables II and III.

As can be seen, requirements are tight for this particular case

as compared with the calibration uncertainty of 0.39 dB for the

latest CYGNSS Level 1 data [9]. In general, we have found

that the requirements become looser for drier soils and tighter

for wetter soils due to mv-dependence of the sensitivity factor

‖∂f/∂mv‖ in (20).

IV. DISCUSSION

Equation (20) has not yet been validated with test data.

We anticipate performing a validation with version 2.1 of the

CYGNSS Level 1 data and with existing SMAP cal/val sites

and possible new sites with dry lake beds or salt flats.

The validity of (20) and the numerical results in Section III

will depend on the many assumptions stated above. The

assumption that coherent power can be measured, e.g. from

DDM data, depends on properties of the waveform and the

instrument, among others. The simple VWC model (2) may
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Fig. 1. Normalized sensitivities fn(θ)/‖fn‖ =
(∂f/∂xn)/‖∂f/∂xn‖ as a function of incidence
angle θ for xn = mv, ks, τ . As indicated in the
legend, the sign of the sensitivity for ks and τ has
been reversed for plotting convenience.
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Fig. 2. Calibration uncertainty (dB) as a function
of prior surface roughness uncertainty and prior
VWC uncertainty that is required to achieve SM
retrieval uncertainty of 4% using 4 observations
between 0° and 70° of incidence.
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Fig. 3. Calibration uncertainty (dB) as a function
of prior VWC uncertainty required to achieve to
SM retrieval uncertainty of 4% using 4 observa-
tions for various incidence angle intervals when
surface roughness is unknown. Multiply x-axis by
1.1513 to convert to kg m−2.

need to be developed to account for θ-dependent vegetation

structure as in [10]. Validity of the Kirchhoff approximation

in (3) depends on properties of the rough surface. Although

we assumed perfect knowledge of soil dielectric model and

soil texture for computing ∂Γf/∂mv, our analysis could be

extended to include soil texture uncertainty. We also assumed

no SM variation with depth. However, such variation may

occur and could affect reflected power, e.g. similar to an

antireflective coating.

The assumption that geophysical parameters remain con-

stant over the spatial-temporal extent of the time series needs

to be investigated. In the case of CYGNSS, the specular region

tends to be long and narrow due to the sensor’s relatively long

noncoherent integration time. Thus, consecutive measurements

within a given cell on the ground may not overlap much

[2, Fig. S1], giving rise to spatial noise. Furthermore, SM

may change during a time series window due to weather

events. These variations could be addressed, for example, in

the framework of Kalman filtering.

The cost function (7) has desirable optimality properties

when the random variables involved are Gaussian as discussed

in Section II-B. However, we know that the prior distributions

of geophysical parameters cannot be perfectly Gaussian since

their values are constrained to lie in closed or half-open

intervals. Incorporation of these intervals as constraints in

the retrieval may increase its performance and the sensitivity

model would need to be updated accordingly.

Although we assumed prior estimates of ks and τ were

uncorrelated, if these estimates come from another sensor such

as SMAP, then their uncertainties may be correlated and this

would need to be accounted for. Additionally, the assumed

model of calibration error as uncorrelated homoscedastic

multiplicative noise needs to be examined more closely and

developed if needed.

While validity of the ECM (8) does not depend on Gaussian-

ity, it does depend on a linear approximation whose validity

should be explored. Also, while (8) assumes perfect knowledge

of all statistics, it can be extended to account for model

mismatch in (7). It is important to understand the effects of

such mismatch since statistics are seldom precisely known.

Numerical results in Section III assume that θ is uniformly

distributed over a given interval, and we see these results

are sensitive to interval size and location. Thus, the assumed

uniform distribution should be updated to match the actual θ-

distribution, e.g. from orbital simulations or instrument data.
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