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Abstract—We consider the problem of retrieving soil moisture
based on GNSS-R time series data with incidence angle diversity
in the presence of instrument calibration errors, vegetation cover
uncertainty, and surface roughness uncertainty. After defining
an observation model and a retrieval cost function, we derive a
formula for retrieval performance as a function of calibration un-
certainty, time series parameters, and prior statistics. Numerical
results illustrate relationships among various parameters.

Index Terms—Iland remote sensing, soil moisture, reflectometry,
GNSS-R, CYGNSS, sensitivity analysis

I. INTRODUCTION

Soil moisture (SM) is a fundamental quantity in the study
of our planet, providing observability into processes of evapo-
transpiration and groundwater recharge, which influence cycles
of water, energy, and carbon on regional and global scales.
Applications supported by SM observations include weather
and climate forecasting, flood and landslide prediction, aquifer
modeling, drought analysis, crop productivity evaluation, and
human health. The advancement of dependable SM retrieval
methods is therefore of considerable human interest [1].

In this study, we investigate the theoretical retrieval accuracy
for surface SM using time series data from a reflectometer
such as NASA’s Cyclone GNSS (CYGNSS) mission in the
presence of various error sources. We focus on exploring
incidence angle diversity since the effect of surface roughness
on scattered power is relatively sensitive to incidence angle
and also since CYGNSS lacks other modes of diversification
such as frequency and polarization. In particular, we consider
a given resolution cell on the ground through which multiple
specular points pass within a given time interval to provide
multi-incidence angle reflectometry data.

In Section II we propose an observation model and a
retrieval cost function. Our goal is not necessarily to define
complex high-fidelity models but rather only to capture the
primary features relevant to sensitivity analysis. We proceed
to derive a formula for retrieval performance as a function
of calibration uncertainty, time series parameters, and prior
statistics. In Section III we give numerical results to illustrate
the relationships among the various parameters. In Section IV
we discuss limitations of the results and areas for future work.
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II. STATISTICAL MODELING
A. Observation Model

From (S2) of [2], we assume that surface reflectivity can
be obtained from received power and various known system
parameters. We denote this noisy observation of surface re-
flectivity by y. In the case of CYGNSS, y is closely related to
the Level 1 bistatic radar cross section (L1 BRCS) from the
specular bin of the delay-Doppler map (DDM).

Following the approach in [3], which in effect combines
(11.2) and (11.11) of [4], we model surface reflectivity by

Fcoh(9§ My, k57 7') = Avwc(e; T)Arough(e; k;g)l“f(o; mv)(l)
AVWC (3, T) = e_(2 sec )T (2)
Arough(e; ]{;3) — 67(2 cos 6)2(]65)2 (3)

where 6 is incidence angle, m, is volumetric SM, ks is the
surface roughness coefficient, 7 is approximately 0.1lw,, w, is
vegetation water content (VWC), A, is power attenuation
due to VWC, A,ouen is attenuation of coherent power due to
surface roughness under the Kirchhoff approximation [5], and
T'¢ is Fresnel power reflectivity.

Defining geophysical parameter vector

x=[m, ks T}T 4)

and assuming that x is constant over the spatio-temporal extent
of the time series and expressing I'co, in units of decibels

f(0;x) = 101ogo[Ccon (05 my, ks, T)] &)

then we can write the time series of observed surface reflec-
tivities in vector form as

y = f(X) + Veal (6)

where y; = f(0;,x) + v; for observation i = 1,...,N.
Here, we assume that observation noise v, in decibels comes
from instrument calibration error and behaves as multiplicative
(speckle-like) noise when (6) is expressed in linear units.

B. Cost Function and Error Covariance Matrix

We assume that the cost function for the retrieval has the
following quadratic form

J(x') = [y — £(x)] T Cily — £(x)]
+ (Xprior - X/)TC;rlior (Xprior - X/) (7)
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where the prime in x’ serves to distinguish it from truth x, C.;
is the covariance matrix of Va1, Xprior 1S the prior mean of
x, and Cy,ior is the corresponding covariance matrix. We also
assume that v, and X,jor —X are zero mean and uncorrelated
with each other.

As an aside, (7) remains a valid cost function even if the
quantities Cc_all, C;ﬁor, and Xpior have no statistical meaning
attached to them. The following results can be extended to this
more general class of retrievals, which includes those based
on simplified models [6]. However, for this study we make the
statistical assumptions stated in the previous paragraph.

To first order, the error covariance matrix (ECM) for the
retrieval is given by

C; =B[(x-x)x—x)T]=F'C_IF+C i) ®

cal

where the retrieval x is the minimizer of (7) and F is the
Jacobian of f(x). The first-order approximation in (8) is valid
when x —x is sufficiently small relative to higher-order partial
derivatives of f(x). This, in turn, depends on Vg, and Xprior —
x being sufficiently small [6].

If vear and Xppi0r — X are jointly Gaussian, then X is the
maximum a posteriori probability (MAP) estimator. It is also
the minimum mean square error (MMSE) estimator to first
order, and therefore the MMSE is given by the trace of (8) to
first order [6].

If no prior information is available, i.e. C;rlior =0 in (7),
and if v, is Gaussian, then x is the maximum likelihood
(ML) estimator. It is also the minimum variance unbiased
estimator (MVUE) to first order [6].

If prior information is available for some but not all parame-
ters of x and if these parameters and v, are jointly Gaussian,
then X is the mixed ML-MAP estimator [6].

Even if the random variables involved are non-Gaussian, the
cost function given by (7) may still provide a good retrieval. In
any case, (8) always holds to first order under the assumptions
of the previous sections regardless of whether the random
variables involved are Gaussian [6].

Although not provided here due to space constraints, the
partial derivatives in F' are straightforward although somewhat
lengthy to calculate. In particular, calculation of 9T't/dm,,
requires a soil dielectric model such as [7], [8].

We now assume that calibration errors are uncorrelated and
homoscedastic with variance 02, and that prior uncertainties
are uncorrelated so that D;rlior = C;rlior is diagonal. Then,
(8) becomes

Oear 1 Tealpy-1 -
CQZ#(NFTF—F Nlerlior) ! )

We proceed to derive an expression for the (1, 1)-element
of C;, which represents SM retrieval uncertainty.

C. Inner Product Representation

Observing that

1 1
—FTF =

N N - [V FENIVF6]"

M=

(10)
1

has the form of an average, we generalize (10) by defining a
matrix of inner products

P [IVHOIVIO) pelo)ds  an
where the elements of P are given by
pin = i f) = [ HOFaOpe®)6 (12

and where pe(f) is the probability density function of in-
cidence angles and f,,(0) = Jf(0;x)/0z,. Here, as in the
following, indices [, m, and n will refer to the elements of x.

If we take pg () = Zf\; 0(6 — 6;)/N, then we find that
P = F'F/N. In the following, we therefore replace FTF/N
by the inner product representation P and reserve the option
to use a general form for pg(#) that is not necessarily tied to
specific samples of #; or to N.

D. Soil Moisture Retrieval Performance

Since P is symmetric non-negative definite, it can be
factored as P = D}/ 2RD}/ * where elements of diagonal D
are {fy, fn) = || f»||* and elements of correlation R are given

by
(ft, fm) _ i fm)
(F1, f) (Foms Fny WAl

To account for prior information, we define an attenuation-
like quantity

(13)

Plm =

o2 —1/2
an = 1+Cal> (14)
( Nl fallPo?

where o, is the uncertainty of the n'® prior. We note 0 <
a, < 1. Now let

D O—gal —1
P=P+ N Dprior (15)
Then, P can be factored as
P - D/’RD)” (16

where the diagonal elements of D; are given by a;;%|| /.2,
the diagonal elements of R are unity, and the off-diagonal
elements of R are given by

ﬁlm, = AQAmPim (17)

For a matrix M, let M(l, m) denote the submatrix formed
by deleting row [ and column m from M. Then, we can factor

P(1,1) = D/*(1,1)R(1,1)D}/*(1,1) (18)

and from Cramer’s rule the (1, 1)-element of P~ is given by

P 1 = det[P(1,1)]/ det (P)
= || f1]I7* det [R(1,1)]/ det (R)

The desired result follows from (19), (15), and (9)

(19)

Ocal af -1 det[RN(l,l)]
= Jeal N = 20
7 \/Na Y| Omy det (R) 0
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TABLE I
SOIL PARAMETERS

Frequency 1.57542 GHz
Water temperature 20 °C
Salinity of water 4 Zsalt KEhier
Bulk density 1.55 gem™
Particle density 2.66 gem™
Mass fraction of sand 40 %
Mass fraction of clay 50 %
Mass fraction of silt 10 %
Water volume fraction m., 20 %

The determinant factor in (20) is given explicitly by

1— ~2
— ) ~p223 - 2n
1 = p33 — pia — P15 + 2p23P12P13
It is minimized to unity when pi1o = p13 = 0, i.e. when one
or more of the following hold

gk
omy d(ks)/  \om, or/

akS:aT:O

(22)
(23)
A, =0 (24)
From (14), we see that priors are effective when
o0 < Tear/(VN| full)
since condition (25) drives a,, to zero. If instead

o > 0cat/ (VN full)

holds, then the prior has no benefit to retrieval performance
(20) since condition (26) drives a,, to unity.

(25)

(26)

III. NUMERICAL RESULTS
A. Parameters

Computation of I'y and its partials requires specification
of transmit/receive polarization and soil dielectric constant.
We assume the transmitted signal has right hand circular
polarization (RHCP) and the receive antenna has left hand
circular polarization (LHCP) to accommodate polarization
change on reflection. We use Peplinski’s soil dielectric model
[7], [8] with soil parameters given in Table I.

B. Sensitivities

Normalized sensitivities are shown in Fig. 1 for 0° <
6 < 70°. The corresponding norms and correlations (13) of
the sensitivity functions over various ranges of 6 are given
in Table II. We assume € has uniform distribution over its
corresponding range to compute the underlying inner products
(11). We note the values of ||0f/0Om| and [|0f/0(ks)||
depend on the assumed values of m, and ks. Here, m, = 0.20
by Table I and we take ks = 0.13 based on Soil Moisture
Active Passive (SMAP) ancillary data [3].

The determinant factor (21) is calculated in Table III for the
f-intervals and p-values from Table II. When a parameter n is
listed as “known” in Table III, then o,, = 0 and thus a,, =0
by (14) and the corresponding values of p in (21) are zero by
(17). This is equivalent to removing the parameter from x.
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TABLE II
SENSITIVITY NORMS AND CORRELATIONS

0 (deg) H 6(2,{\, H B?kfé) ‘ % Pmy,ks  Pmy,m  Pks,T
10-70 12.5 29 137  -0.893  -0.959  0.735
10-40 12.2 3.7 9.8 -0990 -0.997 0977
35-55 12.3 2.7 1.8 -0968 -0.992  0.929
40-70 12.7 1.6 166 -0912 -0979  0.813
TABLE I
DETERMINANT FACTOR
Known? Incidence Angle Range (degrees)
my ks 7 | 10-70 1040 25-55  40-70
N N N | 160 236.3 75.9 26.5
N Y N 35 13.7 79 49
N N Y 2.2 7.0 4.0 2.4
N Y Y 1.0 1.0 1.0 1.0

C. Calibration Accuracy Requirement

If we solve (20) for .., then we obtain the calibration
accuracy required to satisfy a specified retrieval accuracy &,
as a function of the time-series parameters and priors. Fig. 2
shows o, as a function of prior surface roughness and prior
VWC uncertainties, where we fix &,,, = 4%, N = 4, 0° <
6 < 70°, and prior 0,,,, = 0o. Here, the prior uncertainties are
expressed in decibels of receive power for nadir incidence, i.e.
by |0fn(0 = 0)|o,, for n = ks, 7. This has the advantage of
making || fxs||oks in (14) independent of ks. Otherwise, Fig. 2
would depend on the value of ks. To convert a value on the
y-axis to units of oy for an assumed true value of ks, divide
by 34.7xks. To convert a value on the x-axis to units of o,
multiply by 0.11513. To convert an z-axis value to units of
kg m™ using the SMAP VWC model, multiply by 1.1513.

For the case where o5 — oo in Fig. 2, i.e. when surface
roughness is a priori unknown, the corresponding required
calibration accuracy is shown as the blue line plotted in Fig. 3.
Three other lines are also plotted in Fig. 3 for the three
subintervals of incidence angle considered in Tables II and III.
As can be seen, requirements are tight for this particular case
as compared with the calibration uncertainty of 0.39 dB for the
latest CYGNSS Level 1 data [9]. In general, we have found
that the requirements become looser for drier soils and tighter
for wetter soils due to m.-dependence of the sensitivity factor

[0 /Omy || in (20).

IV. DISCUSSION

Equation (20) has not yet been validated with test data.
We anticipate performing a validation with version 2.1 of the
CYGNSS Level 1 data and with existing SMAP cal/val sites
and possible new sites with dry lake beds or salt flats.

The validity of (20) and the numerical results in Section III
will depend on the many assumptions stated above. The
assumption that coherent power can be measured, e.g. from
DDM data, depends on properties of the waveform and the
instrument, among others. The simple VWC model (2) may
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Fig. 2. Calibration uncertainty (dB) as a function
of prior surface roughness uncertainty and prior
VWC uncertainty that is required to achieve SM
retrieval uncertainty of 4% using 4 observations
between 0° and 70° of incidence.
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Fig. 3. Calibration uncertainty (dB) as a function
of prior VWC uncertainty required to achieve to
SM retrieval uncertainty of 4% using 4 observa-
tions for various incidence angle intervals when
surface roughness is unknown. Multiply z-axis by

need to be developed to account for f-dependent vegetation
structure as in [10]. Validity of the Kirchhoff approximation
in (3) depends on properties of the rough surface. Although
we assumed perfect knowledge of soil dielectric model and
soil texture for computing OI't/Om., our analysis could be
extended to include soil texture uncertainty. We also assumed
no SM variation with depth. However, such variation may
occur and could affect reflected power, e.g. similar to an
antireflective coating.

The assumption that geophysical parameters remain con-
stant over the spatial-temporal extent of the time series needs
to be investigated. In the case of CYGNSS, the specular region
tends to be long and narrow due to the sensor’s relatively long
noncoherent integration time. Thus, consecutive measurements
within a given cell on the ground may not overlap much
[2, Fig. S1], giving rise to spatial noise. Furthermore, SM
may change during a time series window due to weather
events. These variations could be addressed, for example, in
the framework of Kalman filtering.

The cost function (7) has desirable optimality properties
when the random variables involved are Gaussian as discussed
in Section II-B. However, we know that the prior distributions
of geophysical parameters cannot be perfectly Gaussian since
their values are constrained to lie in closed or half-open
intervals. Incorporation of these intervals as constraints in
the retrieval may increase its performance and the sensitivity
model would need to be updated accordingly.

Although we assumed prior estimates of ks and 7 were
uncorrelated, if these estimates come from another sensor such
as SMAP, then their uncertainties may be correlated and this
would need to be accounted for. Additionally, the assumed
model of calibration error as uncorrelated homoscedastic
multiplicative noise needs to be examined more closely and
developed if needed.

While validity of the ECM (8) does not depend on Gaussian-
ity, it does depend on a linear approximation whose validity

1.1513 to convert to kgm=2.

should be explored. Also, while (8) assumes perfect knowledge
of all statistics, it can be extended to account for model
mismatch in (7). It is important to understand the effects of
such mismatch since statistics are seldom precisely known.
Numerical results in Section III assume that 6 is uniformly
distributed over a given interval, and we see these results
are sensitive to interval size and location. Thus, the assumed
uniform distribution should be updated to match the actual 6-
distribution, e.g. from orbital simulations or instrument data.
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