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Abstract

Applications structured as Directed Acyclic Graphs (DAGs) of tasks occur in
many domains, including popular scientific workflows. DAG scheduling has thus
received an enormous amount of attention. Many of the popular DAG schedul-
ing heuristics make scheduling decisions based on path lengths. At large scale
compute platforms are subject to various types of failures with non-negligible
probabilities of occurrence. Failures that have recently received increased at-
tention are “silent errors,” which cause data corruption. Tolerating silent errors
is done by checking the validity of computed results and possibly re-executing
a task from scratch. The execution time of a task then becomes a random vari-
able, and so do path lengths in a DAG. Unfortunately, computing the expected
makespan of a DAG (and equivalently computing expected path lengths in a
DAG) is a computationally difficult problem. Consequently, designing effective
scheduling heuristics in this context is challenging. In this work we propose an
algorithm that computes a first order approximation of the expected makespan
of a DAG when tasks are subject to silent errors. We find that our proposed
approximation outperforms previously proposed approaches both in terms of
approximation error and of speed.

1. Introduction

This paper introduces a new algorithm to approximate the expected makespan
of a workflow application, i.e., an application structured as a Directed Acyclic
Graph (DAG) of tasks, in which tasks can fail and must be re-executed. A key
question when executing workflows on parallel platforms is the scheduling of
tasks on the available compute resources, or processors. When not considering
task failures, list scheduling algorithms are the de-facto standard [1], and tools
are available that use such algorithms for scheduling workflow applications onto
large-scale platforms in practice [2, 3]. The prevalent list scheduling heuristics
prioritize tasks with large bottom levels. The bottom-level of a task is defined as

* A preliminary version of this paper has appeared in the Proceedings of the 2016 IEEE
International Workshop on Parallel Programming Models and Systems Software for High-End
Computing (P2S2).

*Corresponding author

Preprint submitted to Parallel Computing November 10, 2017



the longest path from that task to the end of the execution, assuming unlimited
processors. This heuristic is known as CP-scheduling (Critical Path schedul-
ing [4, 5, 6]), and it has been extended to handle heterogeneous environments
(see the HEFT algorithm [7]).

It is well-documented that large-scale platforms are increasingly subject to
errors that can cause task failures. In particular, the occurrence of “silent errors”
(or SDCs, for Silent Data Corruptions) has been recently identified as one of
the major challenges for Exascale [8]. Silent errors can be caused by external
causes, including cosmic radiations or packaging pollution. In addition, silent
errors can occur when using DVFS (Dynamic Voltage Frequency Scaling) to
reduce energy consumption. For instance, at low voltage the probability that a
task produces incorrect results increases [9, 10].

Regardless of their causes, an effective approach for avoiding propagating re-
sults corrupted by silent errors is to use a verification mechanism after executing
each task [11]. When an error is detected, the task is then re-executed. The
verification mechanism can be general-purpose (e.g., based on replication [12],
with re-execution only when the two outputs do not match) or application-
specific. Many application-specific error detection methods are available for
classical High performance Computing (HPC) applications, such as approximate
re-execution for ODE and PDE solvers [13], orthogonality checks for Krylov-
based sparse solvers [14, 15]), or Algorithm-Based Fault Tolerance (ABFT) for
numerical linear algebra [16].

Silent errors make it challenging to define efficient list scheduling algorithms
to schedule task graphs. After the first execution of a task, the error detector is
used to check the result. If the result is correct, the task’s execution is marked as
successful, and its successor tasks are marked as ready. If the result is incorrect,
then the task must be executed (and, given that the first execution has failed,
the second execution will typically succeed with very high probability). While
this scheme is conceptually simple, it greatly complicates the computation of the
bottom-level of a task. And yet, computing the expected length of the longest
path in a DAG with unlimited processors (or equivalently the expected bottom-
level of a task in the DAG), is key to designing silent-error-aware versions of
effective list scheduling heuristics (CP-scheduling, HEFT).

It is known that computing the expected length of the longest path in a
DAG whose task weights are probabilistic is a difficult problem [6]. Even in
the case in which each task is re-executed at most once, i.e., when task weights
are random variables taking only two discrete values, the problem remains #P-
complete [17] (see Section 2 for a detailed discussion). In this work we develop
an algorithm to compute an accurate first-order approximation of the expected
length of the longest path in a general DAG in which tasks are subject to silent
errors, and whose execution lengths can take two different values, depending
upon there is a re-execution or not. More specifically, our contributions are:

e We develop an exact first-order approximation of the expected makespan
of a general DAG, which can be computed in polynomial time;

e We compare our approach to two previously proposed approximations for
DAGs for three sets of task graphs;

e We quantify approximation errors via comparison to a brute-force Monte
Carlo approach; and



e We show that our proposed approximation (i) leads to lower or similar er-
ror than previously proposed approximations (and, importantly, to much
lower error when the probability of task failure is low) and (ii) can be com-
puted in practice much faster than previously proposed approximations.

This paper is organized as follows. Section 2 reviews related work. Section 3
formalizes the problem that we address and states assumptions. Section 4 de-
scribes our proposed approximation. Section 5 presents evaluation results. Sec-
tion 6 concludes with a brief summary of results and with perspectives on future
work.

2. Related Work

In this section we first review previous works on estimating the makespan of
probabilistic DAGs, and then review relevant literature on silent errors.

2.1. Ezpected makespan of probabilistic 2-state DAGSs

Computing the expected makespan of a DAG whose task execution times
obey arbitrary probability distributions is known to be a difficult problem, even
with unlimited processors. When task weights are fixed (deterministic), the
makespan is the length of the longest path in the graph (also called “critical
path”). But assume instead a probabilistic 2-state DAG where task weights obey
a simple 2-state probability distribution: task 7; has weight a; ; with probability
p; and weight a; o with probability 1 — p;. Assume also that all the probability
distributions of all tasks are independent. The makespan of the DAG is now
a random variable. It is known that computing its probability distribution, or
even just its expected value, is a #P-complete problem [17]. Recall that the
class of #P problems is the class of counting problems corresponding to NP
decision problems [18, 19, 20], and that #P-complete problems are at least as
hard as NP-complete problems.

An informal explanation of why computing the expected makespan of prob-
abilistic 2-state DAGs is a difficult combinatorial problem, is as follows. The
main intuitive reason is that the expected value of the maximum of two random
variables is not the maximum of their expectations. As a result, when comput-
ing the length of a path in the DAG, one must keep track of all possible values
for the starting time of each task, together with their probabilities, and there
may be an exponential number of such values [21].

In practice, there are three standard methods to compute the expected
makespan of a probabilistic 2-state DAG, as described hereafter.

2.1.1. Monte Carlo simulations

The Monte Carlo approach works as follows [22, 23]: For each task in the
DAG, a value of its weight is sampled from its probability distribution. Once
this is done, the DAG is deterministic and its longest path can be computed as
explained in Section 3. One then repeats this operation for a large number of
trials, generating a new value at each trial. The set of these values empirically
approaches the actual distribution of the DAG makespan as the number of trials
increases.



An interesting question is that of determining the number of trials to obtain a
high confidence level in the result. We refer the reader to the relevant discussion
in [24]. A key drawback of the Monte Carlo approach is that it is compute-
intensive since the necessary number of trials is typically high. In this work, we
only use Monte Carlo to compute a ground truth so as to assess the accuracy
of our and previously proposed algorithms that compute approximations of the
expected makespan. Hence, instead of determining a minimal number of trials,
we conservatively use a very large number of trials so as to guarantee that our
ground truth is accurate.

2.1.2. Approximation by a series-parallel graph

Basic probability theory tells us how to compute the probability distribution
of the sum of two random variables (by a convolution) and of the maximum
of two random variables (by taking the product of their cumulative density
functions). This simple consideration leads to an exact method to compute the
expected makespan when the DAG is series-parallel (see [25] for a definition
of series-parallel graphs). The problem with probabilistic 2-state series-parallel
graph remains NP-complete in the weak sense and admits a pseudo-polynomial
solution [21].

When the DAG is not series-parallel, one approach is to approximate it by a
series-parallel graph, which is constructed iteratively, first by a sequence of re-
ductions and then by duplicating some vertices. Dodin’s method [26] constructs
such an approximated series-parallel graph, whose expected makespan is used
to estimate that of the original DAG. See [21, 24] for a detailed description of
Dodin’s method. We include this method in our quantitative experiments in
Section 5.

2.1.8. Approximation with normality assumption

The central-limit theorem states that the sum of independent random vari-
ables tends to be normally distributed as the number of variables increases. The
expected makespan of the DAG is a combination of sums and maximums of the
original task weights, so a popular approach proposed by Sculli [27] is based on
the normality assumption:

e Approximate the distribution of each task by a normal distribution of same
mean and variance. This step has constant cost per task for probabilistic
2-state DAGs.

e Use Clarke’s formulas in [28] to compute the mean and variance of the
sum and maximum of two (correlated) normal distributions, and then
assuming that they also follow normal distributions.

e Traverse the original DAG and compute the mean and variance of the
makespan.

See [24] for a full description of Sculli’s method, which we we also include in our
quantitative experiments in Section 5.



2.2. Silent errors

Considerable efforts have been directed at verification techniques to handle
silent errors. A guaranteed, general-purpose verification is only achievable with
expensive techniques, such as process replication [12, 29] or redundancy [30,
31]. However, application-specific information can be exploited to decrease the
verification cost. Algorithm-based fault tolerance (ABFT) [32, 16, 33] is a well-
known technique to detect errors in linear algebra kernels using checksums.
Various techniques have been proposed in other application domains. Benson et
al. [13] compare a higher-order scheme with a lower-order one to detect errors in
the numerical analysis of ODEs. Sao and Vuduc [15] investigate self-stabilizing
corrections after error detection in the conjugate gradient method. Heroux and
Hoemmen [34] design a fault-tolerant GMRES capable of converging despite
silent errors. Bronevetsky and de Supinski [35] provide a comparative study of
detection costs for iterative methods.

Recently, detectors based on data analytics have been proposed to serve as
partial verifications [36, 37, 38]. These detectors use interpolation techniques,
such as time series prediction and spatial multivariate interpolation, on scientific
dataset to offer large error coverage at the expense of a negligible overhead.
Although not perfect, the accuracy-to-cost ratios of these techniques tend to be
very high, which makes them attractive alternatives at large scale.

The rate of silent errors also depends upon the mode of execution. Tem-
perature and power consumption are known to have a high impact on silent
error rates [39]. Furthermore, as mentioned in Section 1, lowering the volt-
age/frequency is also believed to have an adverse effect on system reliabil-
ity [9, 10]. Many papers (e.g., [10, 40, 41, 42]) have assumed the following
exponential silent error rate model:

d(smaz —3)

A(s) = Ao - 107mas s (1)

where )y denotes the average error rate at the maximum speed 4., d > 0is a
constant indicating the sensitivity of error rate to voltage/frequency scaling, and
Smin 1S the minimum speed. In this model the error rate increases as processing
speed decreases. Overall, the main resilience concern is that the above studies
suggest that minimizing energy consumption via DVFS techniques call also lead
to an increased number of silent errors.

A silent error must be detected for each task via some verification mech-
anism [11]. A naive but general-purpose verification technique would consist
in re-running the task once so that an output mismatch indicates a silent er-
ror [12]. In this case, the task can be re-executed one extra time so that the
correct output can be picked via majority voting. Many application-specific,
and thus efficient, error detection methods have been proposed [13, 14, 15, 16].
Because silent errors are not detected when their occur, but only at the end of
the execution of the task (by the verification mechanism), the task must be fully
re-executed in case an error is detected. Assuming that the task re-execution
allows a correct output to be produced, we then need to consider probabilistic
2-state DAGs, in which each task has a weight for the no-error case, and another
(longer) weight for the error case. For simplicity, in this work we assume that
the weight of a task T is a if there is no silent error, and 2a if a silent error is
detected (which requires a re-execution). However, our work is immediately ex-



tensible to arbitrary such two weights to account, for instance, for the overhead
of the silent error detection mechanism.

Finally, this work assume that task failure arrival times are Exponentially
distributed with Mean Time Between Failure (MTBF) 1/A. Extensions to other
probability distributions have been considered in [43, 44]. These extensions
apply in cases when using the distribution’s MTBF as the (average) inverse of
the failure rate and neglecting second order terms (i.e., terms proportional to
the square of that failure rate) would lead to accurate approximations of the
corresponding failure probabilities.

3. Problem statement

We consider a general model of computation in which an application is struc-
tured as a Directed Acyclic Graph, in which vertices represent tasks and edges
represent task precedence. More formally, let G = (V, E) be a DAG, with V' a
set of tasks, and E C V x V a set of edges. For each task i, let a; be its weight,
i.e., its failure-free execution time. Let pa(i, j) denote the length (as a sum of
task weights) of the longest path from task ¢ to task j, if such a path exists,
otherwise let pa(i,j) = —oo. The longest path length in G is then defined as
d(G) = max; jev{pa(i,j)}. Let us call d(G) the failure-free makespan of G.
Because G is acyclic, we can compute d(G) in O(|V|+|E]) time as follows: add
two zero-weight vertices v; and vy to G, where vy represents a unique source
task and vy a unique sink task. Also add an edge from vy to any entry task in
G (a task without predecessor), and an edge from any exit task in G (a task
without successor) to ve. Then d(G) = pa(si,s2) can be computed in time
O(|V| + |E|) [45, Section 24.2].

We consider that tasks fail independently and task failure arrival times
are exponentially distributed with Mean Time Between Failure (MTBF) 1/\.
Therefore, the probability that task ¢ fails during its first execution attempt is
1 — e~ *% _in which case the task must be re-executed from scratch.

Our objective is to compute an approximation of the expected makespan of
G, i.e., the longest path length in G taking into accounts that tasks can fail and
must be re-executed. The failure-free makespan defined above is a clear lower
bound on the expected makespan.

4. Approximating the Expected Makespan

In this section we compute a first-order approximation of the expected
makespan of a DAG G, which we denote as £(G). Our approximation relies
on the fact that in practice X is close to zero, which allows us to neglect O(A\?)
terms.

The probability that the first execution attempt of task i succeeds is:

pi=e M =1=da; +0(\’).

The probability that the first execution attempt of task 4 fails but that its second
execution attempt succeeds is :

(I—e?)e ™ = Xa; + O(N*) =1—p; + O(N?) .



Neglecting the O()\?) terms leads to the approximation that a task either takes
time a;, with probability 1 — Aa;, or time 2a;, with probability Aa;. In other
terms, our first-order approximation consists in assuming that a task never fails
more than once. Hereafter when we say that a task fails, we mean that its first
execution attempt fails and that its second execution attempt succeeds.

For any S C V|, let P(S) denote the probability that all tasks in S fail and
that no task in V'\ S fails. Let also L(S) denote the length of the longest path
in G when all tasks in S fail and no task in V'\ S fails. £(G) is thus defined as:

E(G) =) _P(S)x L(S) .

ScVv

We note that:
P@0) = JJ(1—2ai + 002) =1~ 3" da; +0(N?)
eV eV
P({i}) = (Aa; +O(\)) x [ (1= 2a; +0(N?))
jeV\{i}
= Aa; + O(\?) ,and
P(S)=0()\?) if|S|>1.

Therefore:

E(G)=P0) x LO) + Y P({i}) x L({i}) + O(\?) .
i€V
By definition, L(}) = d(G) (G’s failure-free makespan). Similarly, L({i}) =
d(G;), where G; a DAG identical to G but such that task i has weight 2a;
instead of weight a;. We thus obtain:

E(G)= (1= da;) xd(G)+ > (Aa;) #d(G;) + O(N?)
iev iev
=d(G)+ A _a;(d(G;) — d(G)) + O(N?) .
eV
For a DAG G = (V, E), d(G) can be computed in O(|V|+ |E|) time. There-
fore, the above approximation can be computed in O(|V [*+|V|.|E|) time. Lower

complexity can be achieved by exploiting the fact that G and the G;’s differ in
only the weight of one task.

5. Evaluation

5.1. Makespan Approzimation Techniques

In this section we evaluate three expected makespan approximations tech-
niques:

1. First Order — The approximation described in Section 4;

2. Dodin — The bound in [26], which is computed by transforming any gen-
eral DAG into an approximately equivalent series-parallel graph and then
computing the exact expected makespan of this graph using the approach
explained in Section 2.1.2.
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Figure 1: DAG of a Cholesky factorization on a 5 x 5 tiled matrix

3. Normal — The approach that consists in approximating the discrete ex-
ecution time of each task (i.e., a; with probability p; and 2a; with prob-
ability 1 — p;), by a continuous Normal distribution of same mean and
standard deviation. The overall expected makespan in the approximated
as explained in Section 2.1.3.

5.2. Application DAGs

We measure the error of the three makespan approximation techniques using
3 DAG datasets.

5.2.1. Linear Algebra

This dataset consists of DAGs used in numerical linear algebra computations.
More specifically, we consider 3 classical factorizations of a k x k tiled matrix:
Cholesky, LU, and QR factorization. Each tile has size b x b, where b is a
platform-dependent parameter. Hence the actual size of a k x k tiled matrix is
N x N, where N = kb. For each factorization, the number of vertices in the
DAG depends on k as follows: the Cholesky DAG has %k?’ + O(k?) tasks, while
the LU and QR DAGs have Zk® + O(k?) tasks (but the tasks in QR entail, on
average, twice as many floating-point operations as in LU).

Figures 1, 2, and 3 show examples for k = 5. The tasks in these DAGs are
labeled by the corresponding BLAS kernels [46], and their weights are based
on actual kernel execution times as reported in [47] for an execution on Nvidia
Tesla M2070 GPUs with tiles of size b = 960.
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Figure 2: DAG of a LU factorization on a 5 x 5 tiled matrix

Figure 3: DAG of a QR factorization on a 5 x 5 tiled matrix



For simplicity, in all that follows we call k the DAG size (i.e., the larger k the
more tasks). For each DAG class we perform experiments with k = 4,6, 8, 10,12,
for a total of 3 x 5 = 15 DAGs with up to 650 tasks.

5.2.2. Assembly Trees

This dataset consists of assembly trees for a set of sparse matrices obtained
from the University of Florida Sparse Matrix Collection (http://www.cise.
ufl.edu/research/sparse/matrices/). These matrices satisfy the following
assertions: not binary, not corresponding to a graph, square, with a symmetric
pattern, with between 20,000 and 2,000,000 rows, with an average number of
non-zero elements per row at least equal to 2.5, and with a total number of
non-zero elements at most equal to 5,000,000. Among these matrices, for each
group of matrix in the dataset we pick the one that has the largest number of
non-zero elements, resulting in 76 matrices (given the content of the dataset
at the time this article is being written). We first order the matrices using
MeTiS [48] (through the MeshPart toolbox [49]) and amd (available in Mat-
lab), and then build the corresponding elimination trees using the symbfact
routine of Matlab. We also perform a relaxed node amalgamation on these
elimination trees to create assembly trees. We thus obtain a large set of in-
stances by allowing 1, 2, 4, and 16 (if more than 1.6 x 105 nodes) relaxed
amalgamations per node. Among these assembly trees, we selected four of
them for our experiments: ’dump.l.l.amd.Goodwin.rim-447" (a.k.a. ’'Good-
win’, 4079 nodes), ’dump.1.l.amd.Lili-732’ (a.k.a. ’amd.Lili’, 5139 nodes),
"dump.1.1.amd. FEMLAB.sme3Dc-932’ (a.k.a. 'FEMLAB’, 5707 nodes) and
"dump.1.3.metis.Li.li-732” (a.k.a. 'metis.Li.li’, 2153 nodes).

5.2.8. Random task graphs

This dataset consists random DAGs generated using the Directed Acyclic
Graph GENerator (DAGGEN)!. DAGGEN uses four popular parameters to
define the shape of a DAG: size, width, density and jumps.

e The size determines the number of tasks in the DAG (tasks are organized
in levels).

e The width determines the maximum parallelism in the DAG, that is the
number of tasks in the largest level. A small value leads to “chain” graphs
and a large value to “fork-join” graphs.

e The density denotes the number of edges between two levels of the DAG,
with a low value leading to few edges and a large value to many edges.

e Random jump edges are added that go from level [ to levels [+ 1...1+
Jumps.

The second and third parameters take values between 0 and 1. Our DAG
generation procedure is similar to the one used in [50]. Specifically, we generate
three sets of random DAGs:

e DAGGEN1: 100 randomly generated DAGs with size = 1000, width = 0.3,
density = 0.5 and jumps = 5. A sample DAGGEN] DAG is depicted in
Figure 4.

LCode publicly available at https://github.com/frs69wq/daggen.
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e DAGGEN2: 100 randomly generated DAGs with size = 1000, width = 0.3,
density = 0.9 and jumps = 7.

e DAGGEN3: 100 randomly generated DAGs with size = 1000, width = 0.9,
density = 0.5 and jumps = 10.

5.3. Fxperimental Methodology

For each DAG, and for a given failure rate A (see Section 3), we compute
the First Order, Dodin, and Normal approximations of the expected makespan.
To compute approximation errors one would ideally use the exact expected
makespan (the computation of which is a P#-complete problem). Instead, we
resort to the brute-force Monte Carlo approach described in Section 2.1.1. We
use 300,000 random trials. For each task in a trial, the task succeeds or fails
as determined by sampling a random time-to-next-failure value from an Ex-
ponential distribution with parameter \. We then approximate the expected
makespan as the average makespan over the 300,000 samples. This method is
prohibitively expensive in practice, but provides us with a reasonable ground
truth in our experiments. In all results hereafter we report on the relative error
between the approximations and this ground truth.

To allow for consistent comparisons of results across different DAGs (with
different numbers of tasks and different task weights), in our experiments we
simply fix the probability that a task of average weight fails, which we denote
as Prail, and compute the failure rate. Formally, for a given DAG G = (V, E)
and a given pr,; value, we compute the average task weight as a =, a;/|V|
and pick the failure rate A\ such that

Prain =1—e .

We evaluate the performance of our proposed approximation and compare it
to its competitors for a range of pg,; values. We present results for a wide range
of values, noting that the higher values correspond to error rates much higher
than those observed or expected on current and future large-scale computing
platforms. The average execution time of a task in our experiments is a = 0.15
seconds. So, for instance, pr.q = 0.01 leads to an error rate A\ = 0.067. The
corresponding MTBF is u = 1/\ = 14.9 seconds. For a platform with 100,000
processors, this corresponds to an individual MTBF (per processor) of 17.3 days,
quite an unrealistic value since individual processor MTBF's are typically esti-
mated to be several years. Table 1 shows the pg,; values used in our experiments
and corresponding platform MTBF values (assuming 100,000 processors). The
results in the next section show that the lower pg.j, the lower the error incurred
by our proposed approximation. In particular, our approximation outperforms
its competitors for all realistic pg.; values (i.e., pran < 0.001), and sometimes
even for unrealistically higher values.

5.4. Approzimation Error Results

In this section we show relative error results, relative to expected makespans
computed using the Monte Carlo method. Negative values denote an under-
estimation, while positive values denote an overestimation. All figures use a
logarithmic scale on the vertical axis.
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Figure 4: Sample DAGGEN1 DAG
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Table 1: pg,;) values and corresponding processor MTBF values assuming a 100, 000-processor
platform.

Prail processor MTBF
0.01 17.3 days
0.001 173.5 days

0.0001 4.7 years
0.00001 | 47.5 years
0.000001 | 475.6 years
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5.4.1. Linear algebra DAGs

Figures 5, 6, and 7 show relative error vs. graph size for Cholesky graphs and
for pgan = 0.01,0.001, and 0.0001, respectively. The data set has 5 graphs rep-
resenting the Cholesky factorization of a k x k tiled matrix for k& = 4, 6, 8, 10, 12,
as described in Section 5.2.1, which correspond to graphs with 20, 56, 120, 220
and 364 nodes. For pgi = 0.01, we see that First Order leads to the lowest
relative error for graphs sizes below 10, and that Normal leads to the lowest
relative error for larger graphs. Dodin leads to the largest relative error, but
for the smallest graph size. Considering the largest graph size, First Order has
1.9% relative error while Normal has 0.3% relative error and Dodin has 8.7% rel-
ative error. For pg,y = 0.001, First Order leads to dramatically lower error than
its competitors (at least one order of magnitude lower). For instance, for the
largest graph, First Order has 0.03% relative error, compared to 5.8% for Dodin
and 0.9% for Normal. These results are even more striking for pg,;; = 0.0001.
In this case, still for the largest graph, First Order has -0.0006% relative error,
compared to 3.7% for Dodin and 0.4% for Normal. In this case, First Order is
an underestimation of the expected makespan.

Figures 8, 9, and 10 show similar results for LU DAGs. The data set has
5 graphs representing the QR factorization of a k X k tiled matrix for k =
4,6,8,10,12, as described in Section 5.2.1, which correspond to graphs with
30, 91, 204, 385 and 650 nodes. The overall message from these results is
the same, meaning that First Order leads to drastically lower error than its
competitors as pg.; decreases. Here again Dodin leads to the largest errors
overall. For pg; = 0.01, out approach leads to similar errors of the same order
of magnitude as the errors for Normal (and in this case Normal is most often
an underestimation while First Order is an overestimation).

Finally, Figures 11, 12, and 13 show results for QR DAGs and similar trends
are observed. The data set has 5 graphs representing the QR factorization
of a k x k tiled matrix for £k = 4,6,8,10,12, as described in Section 5.2.1,
which correspond to graphs with 30, 91, 204, 385 and 650 nodes. First Order
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Figure 9: LU (k = 4,6, 8,10, 12), psa;; = 0.001
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Figure 11: QR (k =4,6,8,10,12), pg,; = 0.01
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Figure 13: QR (k = 4, 6,8, 10, 12), pa;; = 0.0001
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Figure 14: Results on the 4 assembly trees, pf,;) = 0.01

drastically improves on Dodin and Normal for pg; = 0.001 and pga;; = 0.0001.
For pgi = 0.01, First Order leads to similar or lower error than Normal. Here
again, Dodin leads to the highest errors across the board.

5.4.2. Assembly tree DAGs

Figures 14 to 18 show results for our Assembly tree DAGs described in
Section 5.2.2. These results confirm the general observations from the previous
set of results. Here again, Normal always outperforms Dodin. For the low
values of pr.y First Order leads to an overestimation of the makespan, while
its competitors lead to underestimations, but the magnitude of the estimation
errors are comparable. As soon as pgy < 0.01, First Order leads to better
results that its competitors, and for pg;; < 0.0001 this improvement is by orders
of magnitude (but for the metis.Li.li trees for which its margin of improvement
over its competitors is smaller). Overall, we conclude that First Order leads to
similar or lower error than Normal (and Dodin), with drastic improvements for
lower, more realistic, pga; values.

5.4.8. Randomly generated DAGs

Figure 19 to 23 show results for randomly generated DAGs described in
Section 5.2.3. We observe similar trends as for the two previous sets of DAGs.
Normal outperforms Dodin across the board. For low values of pg.j1, First Order
leads to error comparable to that of Normal and Dodin. For p; < 0.0001
error, it leads to orders of magnitude improvements over its competitors. Our
overall conclusion is that our proposed approximation approach improves over
previously proposed approaches in terms of accuracy, and drastically so for
realistically low pgaj values.

5.5. Scalability Results

To assess the scalability of the three approximation methods, we run ex-
periments with & = 20 for the LU DAG, i.e., 2,870 tasks, and pg; = 0.0001.

18



Normalized difference with Monte-Carlo

Normalized difference with Monte-Carlo

1074
1075
1078

I Dodin
I Normal
I First Order

Figure

amd.Li.li

Goodwin

metis.Li.li

15: Results on the 4 assembly trees, pga;; = 0.001

[ Dodin
[ Normal
I First Order

Figure 16:

amd.Li.li

Goodwin

19

metis.Li.li

Results on the 4 assembly trees, pga;; = 0.0001




Normalized difference with Monte-Carlo

Normalized difference with Monte-Carlo

—-10°°

I Dodin
I Normal
I First Order

FEMLAB

Figure 17:

amd.Li.li

Goodwin

metis.Li.li

Results on the 4 assembly trees, pga;; = 0.00001

[ Dodin
[ Normal
I First Order

amd.Li.li

Goodwin

metis.Li.li

Figure 18: Results on the 4 assembly trees, pg,;1 = 0.00001

20




Table 2: Results for a LU DAG with k = 20 (i.e., 2,870 tasks) and pg,; = 0.0001.

Dodin Normal First Order
Error —0.97 954 x 109 7x 1070
Execution time | ~ 2 minutes | ~ 20 minutes | < 1 second

I Dodin
I Normal
I First Order

Normalized difference with Monte-Carlo

daggenl daggen2 daggen3

Figure 19: Results on the 3 sets of randomly generated graphs (of size 1000 and various
shapes), pgay1 = 0.01

Results for other DAGs show similar relative ranking of the three approximation
results, and we picked this particular DAG for our scalability analysis because
it is from a real-world application, because it is large enough for a scalability
study, and because it is small enough that the Monte Carlo method (which pro-
vides our ground truth) can run in a reasonable amount of time. For this large
graph, we ran the Monte Carlo for ten hours, so as to ensure the accuracy of the
ground truth. Error (normalized difference with Monte Carlo) and execution
times are shown in Table 2. We see that for this large DAG, Dodin exhibits
very large error. First Order is roughly two orders of magnitude more accurate
than Normal. We also see that First Order can be computed in under a second,
while Normal requires about 20 minutes, i.e., about three orders of magnitude
longer. All these experiments are performed on one core of a 2.1GHz AMD
Opteron(TM) Processor 6272.

5.6. Summary of Results

Our results show that our proposed approximation, First Order, is accurate
as long as the probability of task failure is sufficiently low. In particular, the
realistically low probability of task failures it is more accurate that its two
competitors by orders of magnitude. When the task failure probability is high,
its accuracy is comparable to that of the Normal approximation. Across the
board the Dodin approximation leads to the largest error. This is because the
DAGs that we consider are far from being series-parallel. As a result, the series-
parallel graph constructed by Dodin is a poor approximation of the original
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Figure 20: Results on the 3 sets of randomly generated graphs (of size 1000 and various
shapes), pfaj1 = 0.001
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Figure 21: Results on the 3 sets of randomly generated graphs (of size 1000 and various
shapes), pgai1 = 0.0001
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Figure 22: Results on the 3 sets of randomly generated graphs (of size 1000 and various
shapes), pga;1 = 0.00001
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Figure 23: Results on the 3 sets of randomly generated graphs (of size 1000 and various
shapes), pgay1 = 0.000001
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DAG, hence the large errors. Finally, not only is First Order more accurate,
but it is also faster. Its computation for a large DAG with 2,870 tasks requires
more than three orders of magnitude less time that Dodin and Normal.

6. Conclusion

We have proposed an algorithm to compute a first-order approximation of
the expected makespan of a Directed Acyclic Graph (DAG) of tasks in which
tasks are subject to silent errors that may require task re-execution from scratch
due to corrupted results, which we term a failure. Our approximation can be
computed in O(V? + V.E) time for a DAG with V vertices and E edges. It is
exact in the first order and neglects second order O()\?) terms, where \ is the
exponential failure rate. This amounts to assuming that each task may need to
be re-executed at most once. The problem of computing the expected makespan
of a DAG of tasks with this assumption is actually a computationally difficult
problem (#P-complete). As a result, techniques to approximate the expected
makespan have been proposed in previous works [26, 24]. We have evaluated
our proposed approximation and these previously proposed techniques for three
sets of DAGs (linear algebra DAGs, assembly trees, and randomly generated
DAGs). In our evaluations we quantify the approximation error via comparison
to a ground truth computed using a brute-force Monte Carlo method.

Our results show that our proposed approximation is more accurate than
previously proposed approximations by several orders of magnitude for realis-
tically low failure rates. In addition, it can be computed much more quickly
that these previously proposed approximations, which is crucially important for
solving problems at scale. Overall, we have proposed a novel and improved
approximation of the expected makespan of probabilistic DAGs in which tasks
are subject to silent errors that mandate task re-executions.

A possible future research direction would to use our general approach to
compute a more complicated, but still tractable, second order approximation
(i.e., an approximation that does not neglect the O(\?) terms). While the im-
provement due to including the second order terms would be likely insignificant
for low failure rates, it may be significant for relatively high failure rates, such
as those observed for several recent systems [51, 52, 53]. These higher failure
rates, however, may not be relevant for the scale of current platforms and the
failure probabilities of their processors. A broader and more promising future
direction is to adapt existing list scheduling scheduling algorithms, or to develop
novel such algorithms, that rely on our proposed approximation to make sound
scheduling decisions.
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