
WRENCH: Workflow Management System

Simulation Workbench

Henri Casanova∗, Suraj Pandey∗, James Oeth§, Ryan Tanaka∗, Frédéric Suter‡, Rafael Ferreira da Silva§

∗Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA
§Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA

‡IN2P3 Computing Center, CNRS, Villeurbanne, France

{henric,surajp,ryanyt}@hawaii.edu, {rafsilva,oeth}@isi.edu, frederic.suter@cc.in2p3.fr

Abstract—Scientific workflows are used routinely in numerous
scientific domains, and Workflow Management Systems (WMSs)
have been developed to orchestrate and optimize workflow
executions on distributed platforms. WMSs are complex software
systems that interact with complex software infrastructures. Most
WMS research and development activities rely on empirical
experiments conducted with full-fledged software stacks on actual
hardware platforms. Such experiments, however, are limited
to hardware and software infrastructures at hand and can be
labor- and/or time-intensive. As a result, relying solely on real-
world experiments impedes WMS research and development. An
alternative is to conduct experiments in simulation.

In this work we present WRENCH, a WMS simulation
framework, whose objectives are (i) accurate and scalable simula-
tions; and (ii) easy simulation software development. WRENCH
achieves its first objective by building on the SimGrid framework.
While SimGrid is recognized for the accuracy and scalability
of its simulation models, it only provides low-level simulation
abstractions and thus large software development efforts are
required when implementing simulators of complex systems.
WRENCH thus achieves its second objective by providing high-
level and directly re-usable simulation abstractions on top of
SimGrid. After describing and giving rationales for WRENCH’s
software architecture and APIs, we present a case study in
which we apply WRENCH to simulate the Pegasus production
WMS. We report on ease of implementation, simulation accuracy,
and simulation scalability so as to determine to which extent
WRENCH achieves its two above objectives. We also draw
both qualitative and quantitative comparisons with a previously
proposed workflow simulator.

Index Terms—Scientific Workflows, Workflow Management
Systems, Simulation, Distributed Computing

I. INTRODUCTION

Scientific workflows have become mainstream in support

of research and development activities in numerous scientific

domains [1]. Consequently, several Workflow Management

Systems (WMSs) have been developed [2]–[7] that allow

scientists to execute workflows on distributed platforms that

can accommodate executions at various scales. WMSs handle

the logistics of workflow executions and make decisions re-

garding resource selection, data management, and computation

scheduling, the goal being to optimize some performance

metric (e.g., latency [8], [9], throughput [10], [11], jitter [12],

reliability [13]–[15], power consumption [16], [17]). WMSs

are complex software systems that interact with complex

software infrastructures and can thus employ a wide range

of designs and algorithms.

In spite of active WMS development and use in production,

which has entailed solving important engineering challenges,

fundamental questions remain unanswered in terms of sys-

tem designs and algorithms. Although there are theoretical

underpinnings for most of these questions, theoretical results

often make assumptions that do not hold with production

hardware and software infrastructures. Further, the specifics of

the design of a WMS can impose particular constraints on what

solutions can be implemented effectively, and these constraints

are typically not considered in available theoretical results.

Consequently, current research that aims at improving and

evolving the state of the art, although sometimes informed by

theory, is mostly done via “real-world” experiments: designs

and algorithms are implemented, evaluated, and selected based

on experiments conducted for a particular WMS implemen-

tation with particular workflow configurations on particular

platforms. As a corollary, from the WMS user’s perspective,

quantifying accurately how a WMS would perform for a

particular workflow configuration on a particular platform

entails actually executing that workflow on that platform.

Unfortunately, real-world experiments have limited scope,

which impedes WMS research and development. This is

because they are confined to application and platform con-

figurations available at hand, and thus cover only a small

subset of the relevant scenarios that may be encountered

in practice. Furthermore, exclusively relying on real-world

experiments makes it difficult or even impossible to investigate

hypothetical scenarios (e.g., “What if the network had a

different topology?”, “What if there were 10 times more

compute nodes but they had half as many cores?”). Real-

world experiments, especially when large-scale, are often not

fully reproducible due to shared networks and compute re-

sources, and due to transient or idiosyncratic behaviors (main-

tenance schedules, software upgrades, and particular software

(mis)configurations). Running real-world experiments is also

time-consuming, thus possibly making it difficult to obtain

statistically significant numbers of experimental results. Real-

world experiments are driven by WMS implementations that

often impose constraints on workflow executions. Further-

more, WMSs are typically not monolithic but instead reuse

CyberInfrastructure (CI) components that impose their own

overheads and constraints on workflow execution. Exploring

what lies beyond these constraints via real-world executions,

e.g., for research and development purposes, typically entails

unacceptable software (re-)engineering costs. Finally, running

real-world experiments can also be labor-intensive. This is due

to the need to install and execute many full-featured software

stacks, including actual scientific workflow implementations,

which is often not deemed worthwhile for “just testing out”

an idea.

An alternative to conducting WMS research via real-world

experiments is to use simulation, i.e., implement a software

artifact that models the functional and performance behaviors

of software and hardware stacks of interest. Simulation is

used in many computer science domains and can address the

limitations of real-world experiments outlined above. Several

simulation frameworks have been developed that target the

parallel and distributed computing domain [18]–[34]. Some

simulation frameworks have also been developed specifically

for the scientific workflow domain [11], [35]–[40].

We claim that advances in simulation capabilities in the field

have made it possible to simulate WMSs that execute large

workflows on large-scale platforms accessible via diverse CI

services in a way that is accurate (via validated simulation

models), scalable (fast execution and low memory footprint),

and expressive (ability to describe arbitrary platforms, complex

WMSs, and complex software infrastructure). In this work,

we build on the existing open-source SimGrid simulation

framework [33], [41], which has been one of the drivers of

the above advances and whose simulation models have been

extensively validated [42]–[46], to develop a WMS simulation

framework called WRENCH [47]. More specifically, this work

makes the following contributions:

1) We justify the need for WRENCH and explain how it

improves on the state of the art.

2) We describe the high-level simulation abstractions pro-

vided by WRENCH that (i) make it straightforward to

implement full-fledged simulated versions of complex

WMS systems; and (ii) make it possible to instantiate

simulation scenarios with only few lines of code.

3) Via a case study with the Pegasus [2] production WMS,

we evaluate the ease-of-use, accuracy, and scalability of

WRENCH, and compare it with a previously proposed

simulator, WorkflowSim [35].

This paper is organized as follows. Section II discusses

related work. Section III outlines the design of WRENCH and

describes how its APIs are used to implement simulators. Sec-

tion IV presents our case study. Finally, Section V concludes

with a brief summary of results and a discussion of future

research directions.

II. RELATED WORK

Many simulation frameworks have been developed for par-

allel and distributed computing research and development.

They span domains such as HPC [18]–[21], Grid [22]–

[24], Cloud [25]–[27], Peer-to-peer [28], [29], or Volunteer

Computing [30]–[32]. Some frameworks have striven to be

applicable across some or all or the above domains [33],

[34]. Two conflicting concerns are accuracy (the ability to

capture the behavior of a real-world system with as little

bias as possible) and scalability (the ability to simulate large

systems with as few CPU cycles and bytes of RAM as

possible). The aforementioned simulation frameworks achieve

different compromises between these two concerns by using

various simulation models. At one extreme are discrete event

models that simulate the “microscopic” behavior of hardware/-

software systems (e.g., by relying on packet-level network

simulation for communication [48], on cycle-accurate CPU

simulation [49] or emulation for computation). In this case, the

scalability challenge can be handled by using Parallel Discrete

Event Simulation [50], i.e., the simulation itself is a parallel

application that requires a parallel platform whose scale is

at least commensurate to that of the simulated platform. At

the other extreme are analytical models that capture “macro-

scopic” behaviors (e.g., transfer time as data sizes divided by

bottleneck bandwidths, compute time as numbers of operations

divided by compute speeds). While these models are typically

more scalable, they must be developed with care so that they

are accurate. In previous work, it has been shown that several

available simulation frameworks use macroscopic models that

can exhibit high inaccuracy [43].

A number of simulators have been developed that target

scientific workflows. Some of them are stand-alone simula-

tors [11], [35]–[37]. Others are integrated with a particular

WMS to promote more faithful simulation and code re-

use [38], [39] or to execute simulations at runtime to guide

on-line scheduling decisions made by the WMS [40].

The authors in [39] conduct a critical analysis of the state-

of-the-art of workflow simulators. They observe that many

of these simulators do not capture the details of underlying

infrastructures and/or use naive simulation models. This is the

case with custom simulators such as that in [36], [37], [40].

But it is also the case with workflow simulators built on top of

generic simulation frameworks that provide convenient user-

level abstractions but fail to model the details of the underlying

infrastructure, e.g., the simulators in [11], [35], [38], which

build on the CloudSim [25] or GroudSim [24] frameworks.

These frameworks have been shown to lack in their network

modeling capabilities [43]. As a result, some authors readily

recognize that their simulators are likely only valid when

network effects play a small role in workflow executions (i.e.,

when workflows are not data-intensive).

To overcome the above limitations, in [39] the authors have

improved the network model in GroudSim and also use a

separate simulator, DISSECT-CF [27], for simulating cloud

infrastructures accurately. Both [39] and [27] acknowledge

that the popular SimGrid [33], [41] simulation framework

offers compelling capabilities, both in terms of scalability

and simulation accuracy. But one of their reasons for not

considering SimGrid is that, because it is low-level, using

it to implement a simulator of a complex system such as

a WMS and the CI services it uses would be too labor-

intensive. In this work, we address this issue by developing a

simulation framework that provides convenient, reusable, high-

level abstractions but that builds on SimGrid so as to benefit

The above layer in the software architecture are simulated

WMS, that interact with CI services using the WRENCH De-

veloper API (see Section III-D). These WMS implementations,

which can simulate production WMSs or correspond to WMS

research prototypes, are not included as part of the WRENCH

distribution, but implemented as stand-alone projects. One

such project is the simulated Pegasus implementation for our

case study in Section IV. Finally, the top layer consists of

simulators that configure and instantiate particular CI services

and particular WMSs on a given simulated hardware plat-

form, to launch the simulation, and to analyze the simulation

outcome. These simulators use the WRENCH User API (see

Section III-E). Here again, these simulators are not part of

WRENCH, but implemented as stand-alone projects.

C. Simulation Core

WRENCH’s simulation core is implemented using Sim-

Grid’s S4U API, which provides all necessary abstractions

and models to simulate computation, I/O, and communication

activities on arbitrary hardware platform configurations. These

platform configurations are defined by XML files that specify

network topologies and endpoints, compute resources, and

storage resources [52].

At its most fundamental level, SimGrid provides a Con-

current Sequential Processes (CSP) model: a simulation con-

sists of sequential threads of control that consume hardware

resources. These threads of control can implement arbitrary

code, exchange messages via a simulated network, can perform

computation on simulated (multicore) hosts, and can perform

I/O on simulated storage devices. In addition, SimGrid pro-

vides a virtual machine abstraction that includes a migration

feature. Therefore, SimGrid provides all the base abstractions

necessary to implement the classes of distributed systems that

are relevant to scientific workflow executions. However, these

abstractions are low-level and a common criticism of SimGrid

is that implementing a simulation of a complex system requires

a large software engineering effort. A WMS executing a

workflow using several CI services is a complex system, and

WRENCH builds on top of SimGrid to provide high-level

abstractions so that implementing this complex system is not

labor-intensive.

We have selected SimGrid for WRENCH for the following

reasons. SimGrid has been used successfully in many dis-

tributed computing domains (cluster, peer-to-peer, grid, cloud,

volunteer computing, etc.), and thus can be used to simulate

WMSs that execute over a wide range of platforms. SimGrid

is open source and freely available, has been stable for many

years, is actively developed, has a sizable user community,

and has provided simulation results for over 350 research

publications since its inception. SimGrid has also been the

object of many invalidation and validation studies [42]–[46],

and its simulation models have been shown to provide com-

pelling advantages over other simulation frameworks in terms

of both accuracy and scalability [33]. Finally, most SimGrid

simulations can be executed in minutes on a standard laptop

computer, making it possible to perform large numbers of

Algorithm 1 Blueprint for a WMS execution

1: procedure MAIN(workflow)
2: Obtain list of available services
3: Gather static information about the services
4: while workflow execution has not completed/failed do
5: Gather dynamic service/resource information
6: Submit pilot jobs if needed
7: Make data/computation scheduling decisions
8: Interact with services to enact decisions
9: Wait for and react to the next event

10: end while
11: return
12: end procedure

simulations quickly with minimal compute resource expenses.

To the best of our knowledge, among comparable available

simulation frameworks (reviewed in Section II), SimGrid is

the only one to offer all the above desirable characteristics.

D. WRENCH Developer API

With the Developer API, a WMS is implemented as a single

thread of control that executes according to the pseudo-code

blueprint shown in Algorithm 1. Given a workflow to execute,

a WMS first gathers information about all the CI services

it can use to execute the workflow (lines 2-3). Examples

of such information include the number of compute nodes

provided by a compute service, the number of cores per node

and the speed of these cores, the amount of storage space

available in a storage service, the list of hosts monitored by a

network monitoring service, etc. Then, the WMS iterates until

the workflow execution is complete or has failed (line 4). At

each iteration it gathers dynamic information about available

services and resources if needed (line 5). Example of such

information include currently available capacities at compute

or storage services, current network distances between pairs of

hosts, etc. Then, if desired, the WMS can submit pilot jobs [53]

to compute services that support them, if any (line 6). Based on

resource information and on the current state of the workflow,

the WMS can then make whatever scheduling decisions it sees

fit (line 7). It then enacts these decisions by interacting with

appropriate services. For instance, it could decide to submit

a “job” to a compute service to execute a workflow task on

some number of cores at some compute service and copy all

produced files to some storage service, or it could decide to

just copy a file between storage services and then update a

data location service to keep track of the location of this new

file replica. At the end of the iteration, the WMS simply waits

for a workflow execution event to which it can react if need

be. Most common events are job completions/failures and data

transfer completions/failures.

The WRENCH Developer API provides a rich set of meth-

ods to interact with CI services. These methods were designed

based on current and envisioned capabilities of current state-

of-the-art WMSs. We refer the reader to the WRENCH Web

site [47] for more information on how to use this API and

for the full API documentation. The key objective of this

API is to make it straightforward to implement a complex

system, namely a full-fledged WMS that interact with diverse

CI services. We achieve this objective by providing simple

solutions and abstractions to handle well-known challenges

when implementing a complex distributed system (whether in

the real world or in simulation), as explained hereafter.

SimGrid provides simple point-to-point communication be-

tween threads of control via a mailbox abstraction. One of

the recognized strengths of SimGrid is that it employs highly

accurate and yet scalable network simulation models. How-

ever, unlike some of its competitors, it does not provide any

higher-level simulation abstractions meaning that distributed

systems must be implemented essentially from scratch, with

many message-based interactions. All message-based commu-

nication is abstracted away by WRENCH, and although the

simulated CI services exchange many messages with the WMS

and among themselves, the WRENCH Developer API only

exposes higher-level interaction with services (“run this job”,

”move this data”) and only requires that the WMS handle a few

events. The WMS developer thus completely avoids the need

to send and receive (and thus orchestrate) network messages.

Another challenge when developing a system like a WMS

is the need to handle asynchronous interactions. While some

service interactions can be synchronous (e.g., “are you up?”,

“tell me your current load”), most need to be asynchronous

so that the WMS retains control. The typical solution is to

maintain sets of request handles and/or to use multiple threads

of control. To free the WMS developer from these responsi-

bilities, WRENCH provides already implemented “managers”

that can be used out-of-the-box to take care of asynchronicity.

A WMS can instantiate such managers, which are independent

threads of control. Each manager transparently interacts with

CI services, maintains a database of pending requests, pro-

vides a simple API to check on the status of these requests,

and automatically generates workflow execution events. For

instance, a WMS can instantiate a “job manager” through

which it will create and submit jobs to compute services. It

can at any time check on the status of a job, and the job

manager interacts directly (and asynchronously) with compute

services so as to generate “job done” or “job failed” events

to which the WMS can react. In our experience developing

simulators from scratch using SimGrid, the implementation of

asynchronous interactions with simulated processes is a non-

trivial development effort, both in terms of amount of code to

write and difficulty to write this code correctly. We posit that

this is one of the reasons why some users have preferred using

simulation frameworks that provide higher-level abstractions

than SimGrid but offer less attractive accuracy and/or scalabil-

ity features. WRENCH provides such higher-level abstractions

to the WMS developers, and as a result implementing a WMS

with WRENCH can be straightforward.

Finally, one of the challenges when developing a WMS

is failure handling. It is expected that compute, storage, and

network resources, as well as the CI services that use them,

can fail through the execution of the WMS. SimGrid has the

capability to simulate arbitrary failures via availability traces.

Furthermore, failures can occur due to the WMS implementa-

tion itself, e.g., if it fails to check that the operations it attempts

are actually valid, if concurrent operations initiated by the

WMS work at cross purposes. WRENCH abstracts away all

these failures as actual C++ exceptions that can be caught by

the WMS implementation, or caught by a manager and passed

to the WMS as part of workflow execution events. Regardless,

each failure exposes a failure cause, which encodes a detailed

description of the failure. For instance, after initiating a file

copy from a storage service to another storage service, a “file

copy failed” event sent to the WMS would include a failure

cause that could specify that when trying to copy file x from

storage service y to storage service z, storage service z did

not have sufficient storage space. Other example failure causes

could be that a network error occurred when storage service

y attempted to receive a message from storage service z, or

that service z was down. Failure handling capabilities afforded

to simulated WMSs in WRENCH can actually allow more

sophisticated failure tolerance strategies than currently done or

possible in real-world implementations. But more importantly,

the amount of code that needs to be written for failure handling

in a simulated WMS is straightforward and minimal.

Given the above, WRENCH makes it possible to implement

a simulated WMS with very little code and effort. The example

WMS implementation provided with the WRENCH distribu-

tion, which is simple but functional, is under 200 lines of C++

(once comments have been removed). See more discussion of

the effort needed to implement a WMS with WRENCH in the

context of our Pegasus case study (Section IV).

E. WRENCH User API

With the User API one can quickly build a simulator, which

typically follows these steps:

1. Instantiate a platform based on a SimGrid XML platform

description file;

2. Create one or more workflows;

3. Instantiate services on the platform;

4. Instantiate one or more WMSs telling each what services

are at its disposal and what workflow it should execute

starting at what time;

5. Launch the simulation; and

6. Process the simulation outcome.

The above steps can be implemented with only a few lines of

C++. An example WRENCH simulator is shown in Figure 2,

which uses a WMS implementation (called SomeWMS) that

has already been developed using the WRENCH Developer

API (see previous section). After initializing the simulation

(lines 5-6), the simulator instantiates a platform (line 8) and

a workflow (line 10-11). A workflow is defined as a set

of computation tasks and data files, with control and data

dependencies between tasks. Each task can also have a priority,

which can then be taken into account by a WMS for scheduling

purposes. Although the workflow can be defined purely pro-

grammatically, in this example the workflow is imported from

a workflow description file in the DAX format [54]. At line

13 the simulator creates a storage service with 1PiB capacity

accessible on host storage_host. This and other hostnames

1 #include <math.h>

2 #include <wrench.h>

3 int main(int argc, char **argv) {

4 // Declare and initialize a simulation

5 wrench::Simulation simulation;

6 simulation.init(&argc, argv);

7 // Instantiate a platform

8 simulation.instantiatePlatform("my_platform.xml");

9 // Instantiate a workflow

10 wrench::Workflow workflow;

11 workflow.loadFromDAX("my_workflow.dax", "1000Gf");

12 // Instantiate a storage service

13 auto storage_service = simulation.add(

14 new wrench::SimpleStorageService("storage_host", pow(2,50)));

15 // Instantiate a sompute service (a batch−scheduled 4−node cluster that uses the

16 // EASY backfilling algorithm and is subject to a background load)

17 auto batch_service = simulation.add(

18 new wrench::BatchService("batch_login", {"node1", "node2", "node3", "node4"}, pow(2,40),

19 {{wrench::BatchServiceProperty::SIMULATED_WORKLOAD_TRACE_FILE, "load.swf"},

20 {wrench::BatchServiceProperty::BATCH_SCHEDULING_ALGORITHM, "easy_bf"}}));

21 // Instantiate a compute service (a 4−host cloud platform that does not support pilot jobs)

22 auto cloud_service = simulation.add(

23 new wrench::CloudService("cloud_gateway", {"host1", "host2", "host3", "host4"}, pow(2,42),

24 {{wrench::CloudServiceProperty::SUPPORTS_PILOT_JOBS, "false"}}));

25 // Instantiate a data registry service
26 auto data_registry_service = simulation.add(new wrench::FileRegistryService("my_desktop"));

27 // Instantiate a network monitoring service

28 auto network_monitoring_service =

29 simulation.add(new wrench::NetworkProximityService(

30 "my_desktop", {"my_desktop", "batch_login", "cloud_gateway"},

31 {{wrench::NetworkProximityServiceProperty::NETWORK_PROXIMITY_SERVICE_TYPE,

32 "vivaldi"}});

33 // Stage a workflow input file at the storage service

34 simulation.stageFile(workflow.getFileByID("input_file"), storage_service);

35 // Instantiate a WMS...

36 auto wms = simulation.add(

37 new wrench::SomeWMS({batch_service, cloud_service}, {storage_service},

{network_monitoring_service}, {data_registry_service}, "my_desktop"));

38 // ... and assign the workflow to it, to be executed one hour in

39 wms->addWorkflow(&workflow, 3600);

40 // Launch the simulation

41 simulation.launch();

42 // Retrieve task completion events

43 auto trace = simulation.getOutput().getTrace<wrench::SimulationTimestampTaskCompletion>();

44 // Determine the completion time of the last task that completed

45 double completion_time = trace[trace.size()-1]->getContent()->getDate();

46 }

Fig. 2: Example fully functional WRENCH simulator. Try-catch clauses are omitted.

are specified in the XML platform description file. At line 17

the simulator creates a compute service that corresponds to a

4-node batch-scheduled cluster. The physical characteristics of

the compute nodes (node[1-4]) are specified in the platform

description file. This compute service has a 1TiB scratch

storage space. Its behavior is customized by passing a couple

of property-value pairs to its constructor. It will be subject to

a background load as defined by a trace in the standard SWF

format [55], and its batch queue will be managed using the

EASY Backfilling scheduling algorithm [56]. The simulator

then creates a second compute service (line 22), which is a

4-host cloud service, customized so that it does not support

pilot jobs. Two helper services are instantiated, a data registry

service so that the WMS can keep track of file locations

(line 26) and a network monitoring service that uses the

Vivaldi algorithm [57] to measure network distances between

the two hosts from which the compute services are accessed

(batch_login and cloud_gateway) and the my_host host,

which is the host that runs these helper services and the

WMS (line 28). At line 34, the simulator specifies that the

workflow data file input_file is initially available at the

storage service. It then instantiates the WMS and passes to it

all available services (line 36), and assigns the workflow to it

(line 39). The crucial call is at line 41, where the simulation

is launched and the simulator hands off control to WRENCH.

When this call returns the workflow has either completed

or failed. Assuming it has completed, the simulator then

retrieves the ordered set of task completion events (line 43)

and performs some (in this example, trivial) mining of these

events (line 45).

For brevity, the example in Figure 2 does not show

try/catch clauses. Also, note that although the simulator

uses the new operator to instantiate WRENCH objects, the

simulation object takes ownership of these objects (using

unique or shared pointers), so that there is no memory deallo-

cation onus placed on the user. This example showcases only

the most fundamental features of the WRENCH User API,

and we refer the reader to the WRENCH Web site [47] for

more detailed information on how to use this API and for the

full API documentation.

IV. CASE STUDY: SIMULATING A PRODUCTION WMS

In this section, we present a WRENCH-based simulator

of a state-of-the-art WMS, Pegasus [2], as a case study for

evaluation and validation purposes.

Pegasus is being used in production to execute workflows

for dozens of high-profile applications in a wide range of

scientific domains [2]. Pegasus provides the necessary ab-

stractions for scientists to create workflows and allows for

transparent execution of these workflows on a range of com-

pute platforms including clusters, clouds, and national cyberin-

frastructures. During execution, Pegasus translates an abstract

resource-independent workflow into an executable workflow,

determining the specific executables, data, and computational

resources required for the execution. Workflow execution with

Pegasus includes data management, monitoring, and failure

handling, and is managed by HTCondor DAGMan [58]. In-

dividual workflow tasks are managed by a workload man-

agement framework, HTCondor [59], which supervises task

executions on local and remote resources.

A. Implementing Pegasus with WRENCH

Since Pegasus relies on HTCondor, first we have imple-

mented the HTCondor services as simulated core CI services,

which together form a new Compute Service that exposes the

WRENCH Developer API. This makes HTCondor available

to any WMS implementation that is to be simulated using

WRENCH, and will be included in the next WRENCH release

as part of the growing set of simulated core CI services

provided by WRENCH.

HTCondor is composed of six main service daemons

(startd, starter, schedd, shadow, negotiator, and

collector). In addition, each host on which one or more of

these daemons is spawned must also run a master daemon,

which controls the execution of all other daemons (including

initialization and completion). The bottom part of Figure 3

depicts the components of our simulated HTCondor imple-

mentation, where daemons are shown in red-bordered boxes.

In our simulator we implement the 3 fundamental HTCon-

dor services, implemented as particular sets of daemons, as

depicted in the bottom part of Figure 3 in borderless white

boxes. The Job Execution Service consists of a startd

daemon, which adds the host on which it is running to the

HTCondor pool, and of a starter daemon, which manages

task executions on this host. The Central Manager Service

consists of a collector daemon, which collects information

about all other daemons, and of a negotiator daemon, which

performs task/resource matchmaking. The Job Submission

Service consists of a schedd daemon, which maintains a

queue of tasks, and of several instances of a shadow daemon,

Job Submission Service

WRENCH Pegasus Simulator

pegasus-run

P
e
g

a
s
u

s
D

A
G

M
a
n

H
T

C
o

n
d

o
r

master schedd shadow

Central Manager Service

configuration

scheduler
DAGMan

monitor

master negotiator collector

Job Execution Service

master startd starter

Fig. 3: Overview of the WRENCH Pegasus simulation com-

ponents, including components for DAGMan and HTCondor

frameworks. Red boxes denote Pegasus services developed

with WRENCH’s Developer API, and white boxes denote

WRENCH reused components.

each of which corresponds to a task submitted to the Condor

pool for execution.

Given the simulated HTCondor implementation above, we

then implemented the simulated Pegasus WMS, including the

DAGMan workflow engine, using the WRENCH Developer

API. This implementation instantiates all services and parses

the workflow description file, the platform description file, and

a Pegasus-specific configuration file. DAGMan orchestrates the

workflow execution (e.g., a task is marked as ready for execu-

tion once all its parent tasks have successfully completed), and

monitors the status of tasks submitted to the HTCondor pool

using a pull model, i.e., task status is fetched from the pool

at regular time intervals. The top part of Figure 3 depicts the

components of our simulated Pegasus implementation (each

shown in a red box).

By leveraging WRENCH’s high-level simulation abstrac-

tions, implementing HTCondor as a reusable core WRENCH

service required only 613 lines of code. Similarly, imple-

menting a simulated version of Pegasus, including DAGMan,

was done with only 666 lines of code (127 of which are

merely parsing simulation configuration files). These numbers

include both header and source files, but exclude comments.

We argue that the above corresponds to minor simulation

software development efforts when considering the complexity

of the system being simulated.

Service implementations in WRENCH are all parameteri-

zable. For instance, as services use message-based commu-

nications it is possible to specify all message payloads in

bytes (e.g., for control messages). Other parameters encom-

pass various overheads, either in seconds or in computation

volumes (e.g., task startup overhead on a compute service).

In WRENCH, all service implementations come with default

values for all these parameters, but it is possible to pick

custom values upon service instantiation. The process of

picking parameter values so as to match a specific real-world

Experimental Scenario Avg. Makespan Task Submissions Tasks completions
Workflow Platform Error (%) p-value distance p-value distance

1000Genome ExoGENI 1.10 ±0.28 0.06 ±0.01 0.21 ±0.04 0.72 ±0.06 0.12 ±0.01
Montage-1.5 AWS-t2.xlarge 4.25 ±1.16 0.08 ±0.01 0.16 ±0.03 0.12 ±0.05 0.21 ±0.02
Montage-2.0 AWS-m5.xlarge 3.37 ±0.46 0.11 ±0.03 0.06 ±0.02 0.10 ±0.01 0.11 ±0.01

TABLE I: Average simulated makespan error (%), and p-values and Kolmogorov-Smirnov (KS) distances for task submission

and completion dates, computed for 5 runs of each of our 3 experimental scenarios.

system is referred to as simulation calibration. We calibrated

our simulator by measuring delays observed in event traces

of real-world executions for workflows on hardware/software

infrastructures (see Section IV-B).

The simulator code, details on the simulation calibration

procedure, and experimental scenarios used in the rest of this

section are all publicly available online [60].

B. Experimental Scenarios

We consider experimental scenarios defined by particular

workflow instances to be executed on particular platforms. Due

to the lack of publicly available detailed workflow execution

traces (i.e., execution logs that include data sizes for all files,

all execution delays, etc.), we have performed real workflow

executions with Pegasus and collected raw, time-stamped event

traces from these executions. These traces form the ground

truth to which we can compare simulated executions. We

consider these workflow applications:

• 1000Genome [61]: A data-intensive workflow that iden-

tifies mutational overlaps using data from the 1000

genomes project in order to provide a null distribution

for rigorous statistical evaluation of potential disease-

related mutations. We consider a 1000Genome instance

that comprises 71 tasks.

• Montage [2]: A compute-intensive astronomy workflow

for generating custom mosaics of the sky. For this ex-

periment, we ran Montage for processing 1.5 and 2.0

square degrees mosaic 2MASS. We thus refer to each

configuration as Montage-1.5 and Montage-2.0, respec-

tively. Montage-1.5, resp. Montage-2.0, comprises 573,

resp. 1,240, tasks.

We use these platforms, deploying on each a submit node

(which runs Pegasus, DAGMan, and HTCondor’s job submis-

sion and central manager services), four worker nodes (4 cores

per node), and a data node in the WAN:

• ExoGENI: A widely distributed networked infrastructure-

as-a-service testbed representative of a “bare metal” plat-

form. Each worker node is a 4-core 2.0GHz processor

with 12GiB of RAM. The bandwidth between the data

node and the submit node was ∼0.40 Gbps, and the

bandwidth between the submit and worker nodes was

∼1.00 Gbps.

• AWS: Amazon’s cloud platform, on which we use two

types of virtual machine instances: t2.xlarge and

m5.xlarge. The bandwidth between the data node and

the submit node was ∼0.44 Gbps, and the bandwidth

between the submit and worker nodes on these instances

were ∼0.74 Gbps and ∼1.24 Gbps, respectively.

C. Simulation Accuracy

To evaluate the accuracy of our simulator, we consider 3

particular experimental scenarios: 1000Genome on ExoGENI,

Montage-1.5 on AWS-t2.xlarge, and Montage-2.0 on AWS-

m5.xlarge. Each execution is repeated 5 times and the overall

workflow execution times, or makespans, are recorded.

The third column in Table I shows average relative differ-

ences between actual and simulated makespans. We see that

simulated makespans are close to actual makespans across the

board (average relative error is below 5%). One of the key

advantages of building WRENCH on top of SimGrid is that

WRENCH simulators benefit from the high-accuracy network

models in SimGrid, e.g., these models capture many features

of the TCP protocol. And indeed, when comparing real-world

and simulated executions we observe average relative error

below 3% for data movement operations. The many processes

involved in a workflow execution with Pegasus interact by

exchanging (typically small) control messages. Our simulator

simulates these interactions. For instance, each time an output

file is produced by a task a data registry service is contacted so

that a new entry can be added to its database of file replicas,

which incurs some overhead due to a message exchange. When

comparing real-world to simulated executions we observe

average relative simulation error below 1% for these data

registration overheads.

To draw comparisons with a state-of-the-art simulator,

we repeated the above simulations using WorkflowSim [35].

WorkflowSim does not provide a detailed simulated HTCondor

implementation, does not offer the same simulation calibra-

tion capabilities as WRENCH, and is built on top of the

CloudSim simulation framework [25]. Nevertheless, we have

painstakingly calibrated our WorkflowSim simulator so that

it models the hardware and software infrastructures of our

experimental scenarios as closely as possible. For each of

the 3 experimental scenarios, we find that the relative average

makespan percentage error is 12.09 ±2.84, 26.87 ±6.26, and

13.32 ±1.12, respectively, i.e., from 4x up to 11x larger than

the error values obtained with our WRENCH-based simulator.

The reasons for the discrepancies between WorkflowSim and

real-world results are twofold. First, WorkflowSim uses the

simplistic network models in CloudSim (see discussion in

Section II) and thus suffers from simulation bias w.r.t. data

transfer times. Second, WorkflowSim does not capture all

the relevant details of the system and its execution. With

WRENCH, implementing a fully detailed simulator can be

done in a few hundred lines of code.

In our experiments we also record the submission and com-

pletion dates of each task, thus obtaining empirical cumulative

density functions (ECDFs) of these times, for both real-world

executions and simulated executions. To further validate the

accuracy of our simulation results we apply Kolmogorov-

Smirnov goodness of fit tests (KS tests) with null hypotheses

(H0) that the real-world and simulation samples are drawn

from the same distributions. The two-sample KS test results in

a miss if the null hypothesis (two-sided alternative hypothesis)

is rejected at 5% significance level (p-value ≤ 0.05). Each

test for which the null hypothesis is not rejected (p-value

> 0.05), indicates that the simulated execution statistically

matches the real-world execution. Table I shows p-value and

KS test distance for both task submission times and task

completion times. The null hypothesis is not rejected, and we

thus conclude that simulated workflow task executions statis-

tically match real-world executions well. These conclusions

are confirmed by visually comparing ECFDs. For instance,

Figure 4 shows real-world and simulated ECDFs for sample

runs of Montage-2.0 on AWS-m5.xlarge, with task submission,

resp. completion, date ECDFs on the left-hand, resp. right-

hand, side. We observe that the simulated ECDFs (“wrench”)

track the real-world ECDFs (“pegasus”) closely. We repeated

these simulations using WorkflowSim, and found that the null

hypothesis is rejected for all 3 simulation scenarios. This is

confirmed visually in Figure 4, where the ECDFs obtained

from the WorkflowSim simulation (“workflowsim”) are far

from the real-world ECDFs.

Although KS tests and ECDFs visual inspections validate

that the WRENCH-simulated ECDFs match the real-world

ECDFs statistically, these results do not distinguish between

individual tasks. In fact, there are some discrepancies between

real-world and simulated schedules. For instance, Figure 5

shows Gantt charts corresponding to the workflow executions

shown in Figure 4, with the real-world execution on the left-

hand side (“pegasus”) and the simulated execution on the right-

hand side (“wrench”). Each task is shown as a line segment

along the horizontal time axis. Different task types, i.e.,

different executables, are shown with different colors. In this

workflow, all tasks of the same type are independent and have

the same priority. We see that the shapes of the, for example,

yellow regions, vary between the two executions. These vari-

ations are explained by implementation-dependent behaviors

of the workflow scheduler. In many instances throughout

workflow execution several ready tasks can be selected for

execution, e.g., sets of independent tasks in the same level

of the workflow. When the number of available compute

resources, n, is smaller than the number of ready tasks, the

scheduler picks n ready tasks for immediate execution. In

most WMSs, these tasks are picked as whatever first n tasks

are returned when iterating over data structures in which task

objects are stored. Building a perfectly faithful simulation

of a WMS would thus entail implementing/using the exact

same data structures as that in the actual implementation.

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)

F
(S

u
b

m
it
te

d
 T

a
s
k
s
)

A

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)

F
(C

o
m

p
le

te
d

 T
a

s
k
s
)

B

pegasus wrench workflowsim

Fig. 4: Empirical cumulative distribution function of task sub-

mit times (left) and task completion times (right) for sample

real-world (“pegasus”) and simulated (“wrench” and “work-

flowsim”) executions of Montage-2.0 on AWS-m5.xlarge.

0 1000 2000 3000

Makespan (s)

T
a
s
k
s

pegasusA

0 1000 2000 3000

Makespan (s)

T
a
s
k
s

wrenchB

Fig. 5: Task execution Gantt chart for sample real-world (“pe-

gasus”) and simulated (“wrench”) executions of the Montage-

2.0 workflow on the AWS-m5.xlarge platform.

This could be labor intensive or perhaps not even possible

depending on which data structures, languages, and/or libraries

are used in that implementation. In the context of this Pegasus

case study, the production implementation of the DAGMan

scheduler uses a custom priority list implementation to store

ready tasks, while our simulation version of it stores workflow

tasks in a std::map data structure indexed by task string

IDs. Consequently, when the real-world scheduler picks the

first n ready tasks it typically picks different tasks than those

picked by its simulated implementation. This is the cause the

discrepancies seen in Figure 5.

D. Simulation Scalability

Table II shows average simulated makespans and simulation

execution times for our 3 experimental scenarios. Simulations

are executed on a single core of a MacBook Pro 3.5 GHz Intel

Core i7 with 16GiB of RAM. For these scenarios, simulation

times are more than 100x and up to 2500x shorter than real-

world workflow executions. This is because SimGrid simu-

lates computation and communication operations as delays

Experimental Scenario Avg. Workflow Avg. Simulation
Workflow Platform Makespan (s) Time (s)

1000Genome ExoGENI 761.0 ±7.93 0.3 ±0.01
Montage-1.5 AWS-t2.xlarge 1,784.0 ±137.67 8.3 ±0.09
Montage-2.0 AWS-m5.xlarge 2,911.8 ±48.80 28.1 ±0.52

TABLE II: Simulated workflow makespans and simulation

times averaged over 5 runs of each of our 3 experimental

scenarios.

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

workflow tasks

T
im

e
 (

s
)

M
e

m
o

ry
 [M

B
]

memory usage

simulation time

workflowsim

wrench

Fig. 6: Average simulation time (in seconds. left vertical axis)

and memory usage (maximum resident set size, right vertical

axis) in MiB vs. workflow size.

computed based on computation and communication volumes

using simulation models with low computational complexity.

To evaluate the scalability of our simulator, we use a

workflow generator [62] to generate representative randomized

configurations of the Montage workflow with from 1, 000 up

to 10, 000 tasks. We generate 5 workflow instances for each

number of tasks, and simulate the execution of these generated

workflow instances on 128 cores (AWS-m5.xlarge with 32 4-

core nodes). Figure 6 shows simulation time (left vertical axis)

and maximum resident set size (right vertical axis) vs. the

number of tasks in the workflow. Each sample point is the

average over the 5 workflow instances (error bars are shown

as well). As expected, both simulation time and memory

footprint increase as workflows become larger. The memory

footprint grows linearly with the number of tasks (simply due

to the need to store more task objects). The simulation time

grows faster initially, but then linearly beyond 7,000 tasks. We

conclude that the simulation scales well, making it possible

to simulate very large 10,000-task Montage configurations in

under 40 minutes on a standard laptop computer.

Figure 6 also includes results obtained with WorkflowSim.

We find that WorkflowSim has a larger memory footprint than

our WRENCH-based simulator (by a factor ∼1.48 for 10,000-

task workflows). However, WorkflowSim is faster than our

WRENCH-based simulator (by a factor ∼1.81 for 10,000-

task workflows), with roughly similar trends. The reason why

WorkflowSim is faster is because it simply does not simulate

many aspects of the execution. The downside, as seen in the

previous section, is that its simulation results are inaccurate.

V. CONCLUSION

In this paper we have presented WRENCH, a simulation

framework for building simulators of Workflow Management

Systems. WRENCH implements high-level simulation abstrac-

tions on top of the SimGrid simulation framework, so as

to make it possible to build simulators that are accurate,

that can run scalably on a single computer, and that can be

implemented with minimal software development effort. Via a

case study for the Pegasus production WMS we have demon-

strated that WRENCH achieves these objectives, and that it

favorably compares to a recently proposed workflow simulator.

The main finding is that with WRENCH one can implement

an accurate and scalable simulator of a complex real-world

system with a few hundred lines of code. WRENCH is open

source and welcomes contributors. Version 1.0 was released in

June 2018 and we refer the reader to http://wrench-project.org

for software, documentation, and links to related projects.

Although WRENCH is currently being used for several

research projects, an obvious and short-term development di-

rection is to use WRENCH to simulate the execution of current

production WMSs (as was done for Pegasus in Section IV). Al-

though we have designed WRENCH with knowledge of these

WMSs and with the intent of making their implementations

with WRENCH feasible, we expect that WRENCH APIs and

abstractions will need to evolve once we set out to realize

these implementations. Another key future direction is that of

automated simulation calibration. As seen in our Pegasus case

study, even when using validated simulation models, the values

of a number of simulation parameters must be carefully chosen

in order to obtain accurate simulation results. This issue is

not confined to WRENCH, but is faced by all distributed

system simulators. In our case study we have calibrated these

parameters in manually manner by analyzing and comparing

simulated and real-world execution event traces. While, to the

best of our knowledge, this is the typical practice, what is

truly needed is an automated calibration method. Ideally, this

method would process a (small) number of (not too large) real-

world execution traces for “training scenarios”, and compute

a valid and robust set of calibration parameter values. Such

automated calibration would be a contribution well beyond

the scope of the WRENCH project. An important research

question will then be to understand to which extent these

automatically computed calibrations can be composed and

extrapolated to scenarios beyond the training scenarios.

Acknowledgments. This work is funded by NSF contracts

#1642369 and #1642335, “SI2-SSE: WRENCH: A Simulation

Workbench for Scientific Worflow Users, Developers, and

Researchers”, and by CNRS under grant #PICS07239. We

thank Martin Quinson, Arnaud Legrand, and Pierre-François

Dutot for their valuable help.

REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for

e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated, 2014.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a Workflow Management System for Science Automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[3] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong et al., “Askalon: A
development and grid computing environment for scientific workflows,”
in Workflows for e-Science. Springer, 2007, pp. 450–471.

[4] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel

Computing, vol. 37, no. 9, pp. 633–652, 2011.

[5] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher et al.,
“The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic acids research,
p. gkt328, 2013.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific
workflows,” in Scientific and Statistical Database Management, 2004.

Proceedings. 16th International Conference on. IEEE, 2004, pp. 423–
424.

[7] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in 1st ACM SIGMOD Workshop on Scalable Workflow Execution En-

gines and Technologies. ACM, 2012, p. 1.

[8] N. Vydyanathan, U. V. Catalyurek, T. M. Kurc, P. Sadayappan, and
J. H. Saltz, “Toward optimizing latency under throughput constraints
for application workflows on clusters,” in Euro-Par 2007 Parallel

Processing. Springer, 2007, pp. 173–183.

[9] A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Optimizing latency and
reliability of pipeline workflow applications,” in Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on.
IEEE, 2008, pp. 1–10.

[10] Y. Gu and Q. Wu, “Maximizing workflow throughput for streaming
applications in distributed environments,” in Computer Communications

and Networks (ICCCN), 2010 Proceedings of 19th International Con-

ference on. IEEE, 2010, pp. 1–6.

[11] M. Malawski, G. Juve, W. Deelman, and J. Nabrzyski, “Algorithms for
cost- and deadline-constrained provisioning for scientific workflow en-
sembles in IaaS clouds,” Future Generation Computer Systems, vol. 48,
pp. 1–18, 2015.

[12] J. Chen and Y. Yang, “Temporal dependency-based checkpoint selection
for dynamic verification of temporal constraints in scientific workflow
systems,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 20, no. 3, p. 9, 2011.

[13] G. Kandaswamy, A. Mandal, D. Reed et al., “Fault tolerance and
recovery of scientific workflows on computational grids,” in Cluster

Computing and the Grid, 2008. CCGRID’08. 8th IEEE International

Symposium on. IEEE, 2008, pp. 777–782.

[14] R. Ferreira da Silva, T. Glatard, and F. Desprez, “Self-healing of
workflow activity incidents on distributed computing infrastructures,”
Future Generation Computer Systems, vol. 29, no. 8, pp. 2284–2294,
2013.

[15] W. Chen, R. Ferreira da Silva, E. Deelman, and T. Fahringer, “Dynamic
and fault-tolerant clustering for scientific workflows,” IEEE Transactions

on Cloud Computing, vol. 4, no. 1, pp. 49–62, 2016.

[16] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A
multi-objective approach for workflow scheduling in heterogeneous
environments,” in Proceedings of the 2012 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE
Computer Society, 2012, pp. 300–309.

[17] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and R. Sakel-
lariou, “Energy-constrained provisioning for scientific workflow ensem-
bles,” in Cloud and Green Computing (CGC), 2013 Third International

Conference on. IEEE, 2013, pp. 34–41.

[18] M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “PSINS: An
Open Source Event Tracer and Execution Simulator for MPI Applica-
tions,” in Proc. of the 15th Intl. Euro-Par Conf. on Parallel Processing,
ser. LNCS, no. 5704. Springer, Aug. 2009, pp. 135–148.

[19] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proc. of the ACM

Workshop on Large-Scale System and Application Performance, Jun.
2010, pp. 597–604.

[20] G. Zheng, G. Kakulapati, and L. Kalé, “BigSim: A Parallel Simulator
for Performance Prediction of Extremely Large Parallel Machines,” in
Proc. of the 18th Intl. Parallel and Distributed Processing Symposium

(IPDPS), Apr. 2004.

[21] R. Bagrodia, E. Deelman, and T. Phan, “Parallel Simulation of Large-
Scale Parallel Applications,” IJHPCA, vol. 15, no. 1, pp. 3–12, 2001.

[22] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies,” IJHPCA, vol. 17, no. 4, pp. 403–416, 2003.

[23] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing,” Concurrency and Computation: Practice and

Experience, vol. 14, no. 13-15, pp. 1175–1220, Dec. 2002.

[24] S. Ostermann, R. Prodan, and T. Fahringer, “Dynamic Cloud Provision-
ing for Scientific Grid Workflows,” in Proc. of the 11th ACM/IEEE Intl.

Conf. on Grid Computing (Grid), 2010, pp. 97–104.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–
50, Jan. 2011.

[26] A. Nez, J. Vzquez-Poletti, A. Caminero, J. Carretero, and I. M. Llorente,
“Design of a New Cloud Computing Simulation Platform,” in Proc. of

the 11th Intl. Conf. on Computational Science and its Applications, June
2011, pp. 582–593.

[27] G. Kecskemeti, “DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds,” Simulation Modelling Practice and

Theory, vol. 58, no. 2, pp. 188–218, 2015.

[28] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator,” in
Proc. of the 9th Intl. Conf. on Peer-to-Peer, Sep. 2009, pp. 99–100.

[29] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proc. of the 10th IEEE Global

Internet Symposium. IEEE, May 2007, pp. 79–84.

[30] M. Taufer, A. Kerstens, T. Estrada, D. Flores, and P. J. Teller, “SimBA:
A Discrete Event Simulator for Performance Prediction of Volunteer
Computing Projects,” in Proc. of the 21st Intl. Workshop on Principles

of Advanced and Distributed Simulation, 2007, pp. 189–197.

[31] T. Estrada, M. Taufer, K. Reed, and D. P. Anderson, “EmBOINC: An
Emulator for Performance Analysis of BOINC Projects,” in Proc. of the

Workshop on Large-Scale and Volatile Desktop Grids (PCGrid), 2009.

[32] D. Kondo, “SimBOINC: A Simulator for Desktop Grids and Volunteer
Computing Systems,” Available at http://simboinc.gforge.inria.fr/, 2007.

[33] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

[34] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A High-Performance,
Low Memory, Modular Time Warp System,” in Proc. of the 14th

ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,
pp. 53–60.

[35] W. Chen and E. Deelman, “WorkflowSim: A Toolkit for Simulating
Scientific Workflows in Distributed Environments,” in Proc. of the 8th

IEEE Intl. Conf. on E-Science, 2012, pp. 1–8.

[36] A. Hirales-Carbajal, A. Tchernykh, T. Rblitz, and R. Yahyapour, “A
Grid simulation framework to study advance scheduling strategies for
complex workflow applications,” in In Proc. of IEEE Intl. Symp. on

Parallel Distributed Processing Workshops (IPDPSW), 2010.

[37] M.-H. Tsai, K.-C. Lai, H.-Y. Chang, K. Fu Chen, and K.-C. Huang,
“Pewss: A platform of extensible workflow simulation service for work-
flow scheduling research,” Software: Practice and Experience, vol. 48,
no. 4, pp. 796–819, 2017.

[38] S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, and R. Prodan,
“Integration of an Event-Based Simulation Framework into a Scientific
Workflow Execution Environment for Grids and Clouds,” in In proc. of

the 4th ServiceWave European Conference, 2011, pp. 1–13.

[39] G. Kecskemeti, S. Ostermann, and R. Prodan, “Fostering Energy-
Awareness in Simulations Behind Scientific Workflow Management
Systems,” in Proc. of the 7th IEEE/ACM Intl. Conf. on Utility and Cloud

Computing, 2014, pp. 29–38.

[40] J. Cao, S. Jarvis, S. Saini, and G. Nudd, “GridFlow: Workflow Manage-
ment for Grid Computing,” in Proc. of the 3rd IEEE/ACM Intl. Symp.

on Cluster Computing and the Grid (CCGrid), 2003, pp. 198–205.

[41] “The SimGrid Project,” Available at http://simgrid.org/, 2018.

[42] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,
M. Quinson, M. Stillwell, F. Suter, and B. Videau, “Toward Better
Simulation of MPI Applications on Ethernet/TCP Networks,” in Prod.

of the 4th Intl. Workshop on Performance Modeling, Benchmarking and

Simulation of High Performance Computer Systems, 2013.
[43] P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the

Validity of Flow-level TCP Network Models for Grid and Cloud
Simulations,” ACM Transactions on Modeling and Computer Simulation,
vol. 23, no. 4, 2013.

[44] P. Velho and A. Legrand, “Accuracy Study and Improvement of Network
Simulation in the SimGrid Framework,” in Proc. of the 2nd Intl. Conf.

on Simulation Tools and Techniques, 2009.
[45] K. Fujiwara and H. Casanova, “Speed and Accuracy of Network Sim-

ulation in the SimGrid Framework,” in Proc. of the 1st Intl. Workshop

on Network Simulation Tools, 2007.
[46] A. Lèbre, A. Legrand, F. Suter, and P. Veyre, “Adding Storage Simula-

tion Capacities to the SimGrid Toolkit: Concepts, Models, and API,” in
Proc. of the 8th IEEE Intl. Symp. on Cluster Computing and the Grid,
2015.

[47] “The WRENCH Project,” http://wrench-project.org, 2018.
[48] “The ns-3 Network Simulator,” Available at http://www.nsnam.org.
[49] E. León, R. Riesen, A. Maccabe, and P. Bridges, “Instruction-Level

Simulation of a Cluster at Scale,” in Proc. of the Intl. Conf. for High

Performance Computing and Communications (SC), Nov. 2009.
[50] R. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM,

vol. 33, no. 10, pp. 30–53, 1990.
[51] R. Matha, S. Ristov, and R. Prodan, “Simulation of a workflow execution

as a real Cloud by adding noise,” Simulation Modelling Practice and

Theory, vol. 79, pp. 37–53, 2017.
[52] L. Bobelin, A. Legrand, D. A. G. Márquez, P. Navarro, M. Quinson,

F. Suter, and C. Thiery, “Scalable Multi-Purpose Network Representation
for Large Scale Distributed System Simulation,” in Proceedings of the

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), Ottawa, Canada, May 2012, pp. 220–227.
[53] M. Turilli, M. Santcroos, and S. Jha, “A Comprehensive Perspective on

Pilot-Job Systems,” ACM Comput. Surv., vol. 51, no. 2, pp. 43:1–43:32,
2018.

[54] “Pegasus’ DAX Workflow Description Format,” https://pegasus.isi.edu/
documentation/creating workflows.php, 2018.

[55] “The Standard Workload Format,” http://www.cs.huji.ac.il/labs/parallel/
workload/swf.html, 2018.

[56] D. Lifka, “The ANL/IBM SP Scheduling System,” in Proc. of the 1st

Workshop on Job Scheduling Strategies for Parallel Processing, LCNS,
vol. 949, 1995, pp. 295–303.

[57] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in Proc. of SIGCOMM, 2004.

[58] J. Frey, “Condor dagman: Handling inter-job dependencies,” University

of Wisconsin, Dept. of Computer Science, Tech. Rep, 2002.
[59] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in

practice: the condor experience,” Concurrency and computation: prac-

tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.
[60] “The WRENCH Pegasus Simulator,” https://github.com/wrench-project/

pegasus, 2018.
[61] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M.

Overton, and M. Atkinson, “Using simple pid controllers to prevent and
mitigate faults in scientific workflows,” in 11th Workflows in Support of

Large-Scale Science, ser. WORKS’16, 2016, pp. 15–24.
[62] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman,

“Community resources for enabling and evaluating research on scientific
workflows,” in 10th IEEE International Conference on e-Science, ser.
eScience’14, 2014, pp. 177–184.

