WRENCH: Workflow Management System
Simulation Workbench

Henri Casanova®, Suraj Pandey*, James Oeth$, Ryan Tanaka®*, Frédéric Sutert, Rafael Ferreira da Silva®
*Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA
§Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
IN2P3 Computing Center, CNRS, Villeurbanne, France
{henric,surajp,ryanyt} @hawaii.edu, {rafsilva,oeth} @isi.edu, frederic.suter@cc.in2p3.fr

Abstract—Scientific workflows are used routinely in numerous
scientific domains, and Workflow Management Systems (WMSs)
have been developed to orchestrate and optimize workflow
executions on distributed platforms. WMSs are complex software
systems that interact with complex software infrastructures. Most
WMS research and development activities rely on empirical
experiments conducted with full-fledged software stacks on actual
hardware platforms. Such experiments, however, are limited
to hardware and software infrastructures at hand and can be
labor- and/or time-intensive. As a result, relying solely on real-
world experiments impedes WMS research and development. An
alternative is to conduct experiments in simulation.

In this work we present WRENCH, a WMS simulation
framework, whose objectives are (i) accurate and scalable simula-
tions; and (ii) easy simulation software development. WRENCH
achieves its first objective by building on the SimGrid framework.
While SimGrid is recognized for the accuracy and scalability
of its simulation models, it only provides low-level simulation
abstractions and thus large software development efforts are
required when implementing simulators of complex systems.
WRENCH thus achieves its second objective by providing high-
level and directly re-usable simulation abstractions on top of
SimGrid. After describing and giving rationales for WRENCH’s
software architecture and APIs, we present a case study in
which we apply WRENCH to simulate the Pegasus production
WMS. We report on ease of implementation, simulation accuracy,
and simulation scalability so as to determine to which extent
WRENCH achieves its two above objectives. We also draw
both qualitative and quantitative comparisons with a previously
proposed workflow simulator.

Index Terms—Scientific Workflows, Workflow Management
Systems, Simulation, Distributed Computing

I. INTRODUCTION

Scientific workflows have become mainstream in support
of research and development activities in numerous scientific
domains [1]. Consequently, several Workflow Management
Systems (WMSs) have been developed [2]-[7] that allow
scientists to execute workflows on distributed platforms that
can accommodate executions at various scales. WMSs handle
the logistics of workflow executions and make decisions re-
garding resource selection, data management, and computation
scheduling, the goal being to optimize some performance
metric (e.g., latency [8], [9], throughput [10], [11], jitter [12],
reliability [13]-[15], power consumption [16], [17]). WMSs
are complex software systems that interact with complex
software infrastructures and can thus employ a wide range
of designs and algorithms.

In spite of active WMS development and use in production,
which has entailed solving important engineering challenges,
fundamental questions remain unanswered in terms of sys-
tem designs and algorithms. Although there are theoretical
underpinnings for most of these questions, theoretical results
often make assumptions that do not hold with production
hardware and software infrastructures. Further, the specifics of
the design of a WMS can impose particular constraints on what
solutions can be implemented effectively, and these constraints
are typically not considered in available theoretical results.
Consequently, current research that aims at improving and
evolving the state of the art, although sometimes informed by
theory, is mostly done via “real-world” experiments: designs
and algorithms are implemented, evaluated, and selected based
on experiments conducted for a particular WMS implemen-
tation with particular workflow configurations on particular
platforms. As a corollary, from the WMS user’s perspective,
quantifying accurately how a WMS would perform for a
particular workflow configuration on a particular platform
entails actually executing that workflow on that platform.

Unfortunately, real-world experiments have limited scope,
which impedes WMS research and development. This is
because they are confined to application and platform con-
figurations available at hand, and thus cover only a small
subset of the relevant scenarios that may be encountered
in practice. Furthermore, exclusively relying on real-world
experiments makes it difficult or even impossible to investigate
hypothetical scenarios (e.g., “What if the network had a
different topology?”, “What if there were 10 times more
compute nodes but they had half as many cores?”). Real-
world experiments, especially when large-scale, are often not
fully reproducible due to shared networks and compute re-
sources, and due to transient or idiosyncratic behaviors (main-
tenance schedules, software upgrades, and particular software
(mis)configurations). Running real-world experiments is also
time-consuming, thus possibly making it difficult to obtain
statistically significant numbers of experimental results. Real-
world experiments are driven by WMS implementations that
often impose constraints on workflow executions. Further-
more, WMSs are typically not monolithic but instead reuse
CyberInfrastructure (CI) components that impose their own
overheads and constraints on workflow execution. Exploring
what lies beyond these constraints via real-world executions,

e.g., for research and development purposes, typically entails
unacceptable software (re-)engineering costs. Finally, running
real-world experiments can also be labor-intensive. This is due
to the need to install and execute many full-featured software
stacks, including actual scientific workflow implementations,
which is often not deemed worthwhile for “just testing out”
an idea.

An alternative to conducting WMS research via real-world
experiments is to use simulation, i.e., implement a software
artifact that models the functional and performance behaviors
of software and hardware stacks of interest. Simulation is
used in many computer science domains and can address the
limitations of real-world experiments outlined above. Several
simulation frameworks have been developed that target the
parallel and distributed computing domain [18]-[34]. Some
simulation frameworks have also been developed specifically
for the scientific workflow domain [11], [35]-[40].

We claim that advances in simulation capabilities in the field
have made it possible to simulate WMSs that execute large
workflows on large-scale platforms accessible via diverse CI
services in a way that is accurate (via validated simulation
models), scalable (fast execution and low memory footprint),
and expressive (ability to describe arbitrary platforms, complex
WMSs, and complex software infrastructure). In this work,
we build on the existing open-source SimGrid simulation
framework [33], [41], which has been one of the drivers of
the above advances and whose simulation models have been
extensively validated [42]-[46], to develop a WMS simulation
framework called WRENCH [47]. More specifically, this work
makes the following contributions:

1) We justify the need for WRENCH and explain how it

improves on the state of the art.

2) We describe the high-level simulation abstractions pro-
vided by WRENCH that (i) make it straightforward to
implement full-fledged simulated versions of complex
WMS systems; and (ii) make it possible to instantiate
simulation scenarios with only few lines of code.

3) Via a case study with the Pegasus [2] production WMS,
we evaluate the ease-of-use, accuracy, and scalability of
WRENCH, and compare it with a previously proposed
simulator, WorkflowSim [35].

This paper is organized as follows. Section II discusses
related work. Section III outlines the design of WRENCH and
describes how its APIs are used to implement simulators. Sec-
tion IV presents our case study. Finally, Section V concludes
with a brief summary of results and a discussion of future
research directions.

II. RELATED WORK

Many simulation frameworks have been developed for par-
allel and distributed computing research and development.
They span domains such as HPC [18]-[21], Grid [22]-
[24], Cloud [25]-[27], Peer-to-peer [28], [29], or Volunteer
Computing [30]-[32]. Some frameworks have striven to be
applicable across some or all or the above domains [33],
[34]. Two conflicting concerns are accuracy (the ability to

capture the behavior of a real-world system with as little
bias as possible) and scalability (the ability to simulate large
systems with as few CPU cycles and bytes of RAM as
possible). The aforementioned simulation frameworks achieve
different compromises between these two concerns by using
various simulation models. At one extreme are discrete event
models that simulate the “microscopic” behavior of hardware/-
software systems (e.g., by relying on packet-level network
simulation for communication [48], on cycle-accurate CPU
simulation [49] or emulation for computation). In this case, the
scalability challenge can be handled by using Parallel Discrete
Event Simulation [50], i.e., the simulation itself is a parallel
application that requires a parallel platform whose scale is
at least commensurate to that of the simulated platform. At
the other extreme are analytical models that capture “macro-
scopic” behaviors (e.g., transfer time as data sizes divided by
bottleneck bandwidths, compute time as numbers of operations
divided by compute speeds). While these models are typically
more scalable, they must be developed with care so that they
are accurate. In previous work, it has been shown that several
available simulation frameworks use macroscopic models that
can exhibit high inaccuracy [43].

A number of simulators have been developed that target
scientific workflows. Some of them are stand-alone simula-
tors [11], [35]-[37]. Others are integrated with a particular
WMS to promote more faithful simulation and code re-
use [38], [39] or to execute simulations at runtime to guide
on-line scheduling decisions made by the WMS [40].

The authors in [39] conduct a critical analysis of the state-
of-the-art of workflow simulators. They observe that many
of these simulators do not capture the details of underlying
infrastructures and/or use naive simulation models. This is the
case with custom simulators such as that in [36], [37], [40].
But it is also the case with workflow simulators built on top of
generic simulation frameworks that provide convenient user-
level abstractions but fail to model the details of the underlying
infrastructure, e.g., the simulators in [11], [35], [38], which
build on the CloudSim [25] or GroudSim [24] frameworks.
These frameworks have been shown to lack in their network
modeling capabilities [43]. As a result, some authors readily
recognize that their simulators are likely only valid when
network effects play a small role in workflow executions (i.e.,
when workflows are not data-intensive).

To overcome the above limitations, in [39] the authors have
improved the network model in GroudSim and also use a
separate simulator, DISSECT-CF [27], for simulating cloud
infrastructures accurately. Both [39] and [27] acknowledge
that the popular SimGrid [33], [41] simulation framework
offers compelling capabilities, both in terms of scalability
and simulation accuracy. But one of their reasons for not
considering SimGrid is that, because it is low-level, using
it to implement a simulator of a complex system such as
a WMS and the CI services it uses would be too labor-
intensive. In this work, we address this issue by developing a
simulation framework that provides convenient, reusable, high-
level abstractions but that builds on SimGrid so as to benefit

from its scalable and accurate simulation models. Furthermore,
unlike [38], [39], we do not focus on integrating the simulator
within any specific WMS. The argument in [39] is that stand-
alone simulators, such as that in [35], are disconnected from
real-world WMSs because they abstract away much of the
complexity of these systems. Instead, our proposed framework
does capture low-level system details (and simulates them well
thanks to SimGrid), but provides high-level enough abstrac-
tions to implement faithful simulations of complex WMSs
with minimum effort, which we demonstrate via a case study
with the Pegasus WMS [2].

Also related to this work is previous research that has not
focused on providing simulators or simulation frameworks per
se, but instead on WMS simulation methodology. In particular,
several authors have investigated methods for injecting realistic
stochastic noise in simulated WMS executions [35], [51].
These techniques can be adopted by most of the aforemen-
tioned frameworks, including the one proposed in this work.

III. WRENCH: A WORKFLOW SIMULATION WORKBENCH
A. Objective and Intended Users

WRENCH’s objective is to make it possible to study WMSs
in simulation in a way that is accurate (faithful modeling of
real-world executions), scalable (low computation and memory
footprints on a single computer), and expressive (ability to
simulate arbitrary WMS, workflow, and platform scenarios
with minimal software engineering effort). WRENCH is not a
simulator but a C++ library that provides high-level reusable
abstractions for developing simulated WMS implementations
and simulators for the execution of these implementations.
There are two categories of WRENCH users:

1. Users who implement simulated WMSs — These users
are engaged in WMS research and development activities
and need an “in simulation” version of their current or
intended WMS. Their goals typically include evaluating
how their WMS behaves over hypothetical experimental
scenarios and comparing competing algorithm and system
design options. For these users, WRENCH provides the
WRENCH Developer API (described in Section III-D)
that eases WMS development by removing the typical
difficulties involved when developing, either in real-world
or in simulated implementations, a system comprised of
distributed components that interact both synchronously
and asynchronously. To this end, WRENCH makes it
possible to implement a WMS as a single thread of
control that interacts with simulated CI services via high-
level APIs and must react to a small set of asynchronous
events.

2. Users who execute simulated WMSs — These users sim-
ulate how given WMSs behave for particular workflows
on particular platforms. Their goals include comparing
different WMSs, determining how a given WMS would
behave for various workflow configurations, comparing
different platform and resource provisioning options, de-
termining performance bottlenecks, engaging in peda-
gogic activities centered on distributed computing and

r r ¢
{r | f————
i 1 Simulator for

Simulator Simulator Distributed
for Workflow | for WMS Compuiti
Research Development OmpaLng

| Education

Simulated 1
L

: e b N
D'O({Llrli(dm)” ={ Makeflow * T Research Prototype |
S - o
prototype < Moteur ‘ | Research Prototype
WMSs Pegasus [Research Prototype |
= J X
. Network Data
Computation Storage Menitering Location
2k Ak aan e
) | L - 1 2
Simulated :{ Cloud ‘[Fre *(vivaldi | * [Replica
core Cl n () 49 ,
ot Batch | | [HTTP | | [pery | | Catalosg
D ' o
[Rack J P2P ‘ lSONAR
) —
Simulated
core (@
software/ SII\A
hardware)
»)

stacks

Fig. 1: The four layers in the WRENCH architecture from bot-
tom to top: simulation core, simulated core services, simulated
WMS implementations, and simulators.

workflow issues, etc. These users can develop simulators
via the WRENCH User API (described in Section III-E),
which makes it possible to build a full-fledged simulator
with only a few lines of code.

Users in the first category above often also belong to
the second category. That is, after implementing a simulated
WMS these users typically instantiate simulators for several
experimental scenarios to evaluate their WMS.

B. Software Architecture Overview

Figure 1 depicts WRENCH’s software architecture. At the
bottom layer is the Simulation Core, which simulates low-level
software and hardware stacks using the simulation abstractions
and models provided by SimGrid (see Section III-C). The next
layer implements simulated CI services that are commonly
found in current distributed platforms and used by production
WMSs. At the time of this writing, WRENCH provides ser-
vices in 4 categories: compute services that provide access to
compute resources to execute workflow tasks; storage services
that provide access to storage resources for storing workflow
data; network monitoring services that can be queried to
determine network distances; and data registry services that
can be used to track the location of (replicas of) workflow data.
Each category includes multiple service implementations, so
as to capture specifics of currently available CI services used
in production. For instance, in its current version WRENCH
provides a “batch-scheduled cluster” compute service, a a
“cloud” compute service, and a “bare-metal” compute service.

The above layer in the software architecture are simulated
WMS, that interact with CI services using the WRENCH De-
veloper API (see Section III-D). These WMS implementations,
which can simulate production WMSs or correspond to WMS
research prototypes, are not included as part of the WRENCH
distribution, but implemented as stand-alone projects. One
such project is the simulated Pegasus implementation for our
case study in Section IV. Finally, the top layer consists of
simulators that configure and instantiate particular CI services
and particular WMSs on a given simulated hardware plat-
form, to launch the simulation, and to analyze the simulation
outcome. These simulators use the WRENCH User API (see
Section III-E). Here again, these simulators are not part of
WRENCH, but implemented as stand-alone projects.

C. Simulation Core

WRENCH’s simulation core is implemented using Sim-
Grid’s S4U API, which provides all necessary abstractions
and models to simulate computation, I/O, and communication
activities on arbitrary hardware platform configurations. These
platform configurations are defined by XML files that specify
network topologies and endpoints, compute resources, and
storage resources [52].

At its most fundamental level, SimGrid provides a Con-
current Sequential Processes (CSP) model: a simulation con-
sists of sequential threads of control that consume hardware
resources. These threads of control can implement arbitrary
code, exchange messages via a simulated network, can perform
computation on simulated (multicore) hosts, and can perform
I/O on simulated storage devices. In addition, SimGrid pro-
vides a virtual machine abstraction that includes a migration
feature. Therefore, SimGrid provides all the base abstractions
necessary to implement the classes of distributed systems that
are relevant to scientific workflow executions. However, these
abstractions are low-level and a common criticism of SimGrid
is that implementing a simulation of a complex system requires
a large software engineering effort. A WMS executing a
workflow using several CI services is a complex system, and
WRENCH builds on top of SimGrid to provide high-level
abstractions so that implementing this complex system is not
labor-intensive.

We have selected SimGrid for WRENCH for the following
reasons. SimGrid has been used successfully in many dis-
tributed computing domains (cluster, peer-to-peer, grid, cloud,
volunteer computing, etc.), and thus can be used to simulate
WMSs that execute over a wide range of platforms. SimGrid
is open source and freely available, has been stable for many
years, is actively developed, has a sizable user community,
and has provided simulation results for over 350 research
publications since its inception. SimGrid has also been the
object of many invalidation and validation studies [42]-[46],
and its simulation models have been shown to provide com-
pelling advantages over other simulation frameworks in terms
of both accuracy and scalability [33]. Finally, most SimGrid
simulations can be executed in minutes on a standard laptop
computer, making it possible to perform large numbers of

Algorithm 1 Blueprint for a WMS execution

1: procedure MAIN(work flow)

2 Obtain list of available services

3: Gather static information about the services

4: while work flow execution has not completed/failed do
5: Gather dynamic service/resource information

6 Submit pilot jobs if needed

7 Make data/computation scheduling decisions

8: Interact with services to enact decisions

9: Wait for and react to the next event

10: end while
11: return

12: end procedure

simulations quickly with minimal compute resource expenses.
To the best of our knowledge, among comparable available
simulation frameworks (reviewed in Section II), SimGrid is
the only one to offer all the above desirable characteristics.

D. WRENCH Developer API

With the Developer API, a WMS is implemented as a single
thread of control that executes according to the pseudo-code
blueprint shown in Algorithm 1. Given a workflow to execute,
a WMS first gathers information about all the CI services
it can use to execute the workflow (lines 2-3). Examples
of such information include the number of compute nodes
provided by a compute service, the number of cores per node
and the speed of these cores, the amount of storage space
available in a storage service, the list of hosts monitored by a
network monitoring service, etc. Then, the WMS iterates until
the workflow execution is complete or has failed (line 4). At
each iteration it gathers dynamic information about available
services and resources if needed (line 5). Example of such
information include currently available capacities at compute
or storage services, current network distances between pairs of
hosts, etc. Then, if desired, the WMS can submit pilot jobs [53]
to compute services that support them, if any (line 6). Based on
resource information and on the current state of the workflow,
the WMS can then make whatever scheduling decisions it sees
fit (line 7). It then enacts these decisions by interacting with
appropriate services. For instance, it could decide to submit
a “job” to a compute service to execute a workflow task on
some number of cores at some compute service and copy all
produced files to some storage service, or it could decide to
just copy a file between storage services and then update a
data location service to keep track of the location of this new
file replica. At the end of the iteration, the WMS simply waits
for a workflow execution event to which it can react if need
be. Most common events are job completions/failures and data
transfer completions/failures.

The WRENCH Developer API provides a rich set of meth-
ods to interact with CI services. These methods were designed
based on current and envisioned capabilities of current state-
of-the-art WMSs. We refer the reader to the WRENCH Web
site [47] for more information on how to use this API and
for the full API documentation. The key objective of this
API is to make it straightforward to implement a complex

system, namely a full-fledged WMS that interact with diverse
CI services. We achieve this objective by providing simple
solutions and abstractions to handle well-known challenges
when implementing a complex distributed system (whether in
the real world or in simulation), as explained hereafter.

SimGrid provides simple point-to-point communication be-
tween threads of control via a mailbox abstraction. One of
the recognized strengths of SimGrid is that it employs highly
accurate and yet scalable network simulation models. How-
ever, unlike some of its competitors, it does not provide any
higher-level simulation abstractions meaning that distributed
systems must be implemented essentially from scratch, with
many message-based interactions. All message-based commu-
nication is abstracted away by WRENCH, and although the
simulated CI services exchange many messages with the WMS
and among themselves, the WRENCH Developer API only
exposes higher-level interaction with services (“run this job”,
”move this data”) and only requires that the WMS handle a few
events. The WMS developer thus completely avoids the need
to send and receive (and thus orchestrate) network messages.

Another challenge when developing a system like a WMS
is the need to handle asynchronous interactions. While some
service interactions can be synchronous (e.g., “are you up?”,
“tell me your current load”), most need to be asynchronous
so that the WMS retains control. The typical solution is to
maintain sets of request handles and/or to use multiple threads
of control. To free the WMS developer from these responsi-
bilities, WRENCH provides already implemented “managers”
that can be used out-of-the-box to take care of asynchronicity.
A WMS can instantiate such managers, which are independent
threads of control. Each manager transparently interacts with
CI services, maintains a database of pending requests, pro-
vides a simple API to check on the status of these requests,
and automatically generates workflow execution events. For
instance, a WMS can instantiate a “job manager” through
which it will create and submit jobs to compute services. It
can at any time check on the status of a job, and the job
manager interacts directly (and asynchronously) with compute
services so as to generate “job done” or “job failed” events
to which the WMS can react. In our experience developing
simulators from scratch using SimGrid, the implementation of
asynchronous interactions with simulated processes is a non-
trivial development effort, both in terms of amount of code to
write and difficulty to write this code correctly. We posit that
this is one of the reasons why some users have preferred using
simulation frameworks that provide higher-level abstractions
than SimGrid but offer less attractive accuracy and/or scalabil-
ity features. WRENCH provides such higher-level abstractions
to the WMS developers, and as a result implementing a WMS
with WRENCH can be straightforward.

Finally, one of the challenges when developing a WMS
is failure handling. It is expected that compute, storage, and
network resources, as well as the CI services that use them,
can fail through the execution of the WMS. SimGrid has the
capability to simulate arbitrary failures via availability traces.
Furthermore, failures can occur due to the WMS implementa-

tion itself, e.g., if it fails to check that the operations it attempts
are actually valid, if concurrent operations initiated by the
WMS work at cross purposes. WRENCH abstracts away all
these failures as actual C++ exceptions that can be caught by
the WMS implementation, or caught by a manager and passed
to the WMS as part of workflow execution events. Regardless,
each failure exposes a failure cause, which encodes a detailed
description of the failure. For instance, after initiating a file
copy from a storage service to another storage service, a “file
copy failed” event sent to the WMS would include a failure
cause that could specify that when trying to copy file from
storage service y to storage service z, storage service z did
not have sufficient storage space. Other example failure causes
could be that a network error occurred when storage service
y attempted to receive a message from storage service z, or
that service z was down. Failure handling capabilities afforded
to simulated WMSs in WRENCH can actually allow more
sophisticated failure tolerance strategies than currently done or
possible in real-world implementations. But more importantly,
the amount of code that needs to be written for failure handling
in a simulated WMS is straightforward and minimal.

Given the above, WRENCH makes it possible to implement
a simulated WMS with very little code and effort. The example
WMS implementation provided with the WRENCH distribu-
tion, which is simple but functional, is under 200 lines of C++
(once comments have been removed). See more discussion of
the effort needed to implement a WMS with WRENCH in the
context of our Pegasus case study (Section IV).

E. WRENCH User API

With the User API one can quickly build a simulator, which
typically follows these steps:

1. Instantiate a platform based on a SimGrid XML platform

description file;

2. Create one or more workflows;

3. Instantiate services on the platform;

4. Instantiate one or more WMSs telling each what services
are at its disposal and what workflow it should execute
starting at what time;

5. Launch the simulation; and

6. Process the simulation outcome.

The above steps can be implemented with only a few lines of
C++. An example WRENCH simulator is shown in Figure 2,
which uses a WMS implementation (called SomewMS) that
has already been developed using the WRENCH Developer
API (see previous section). After initializing the simulation
(lines 5-6), the simulator instantiates a platform (line 8) and
a workflow (line 10-11). A workflow is defined as a set
of computation tasks and data files, with control and data
dependencies between tasks. Each task can also have a priority,
which can then be taken into account by a WMS for scheduling
purposes. Although the workflow can be defined purely pro-
grammatically, in this example the workflow is imported from
a workflow description file in the DAX format [54]. At line
13 the simulator creates a storage service with 1PiB capacity
accessible on host storage_host. This and other hostnames

1 #include <math.h>
2 #include <wrench.h>
3 int main(int argc, char x*argv) {
4 // Declare and initialize a simulation
5 wrench::Simulation simulation;
6 simulation.init (&argc, argv);
7 // Instantiate a platform
8 simulation.instantiatePlatform("my_platform.xml");
9 // Instantiate a workflow
10 wrench: :Workflow workflow;
11 workflow.loadFromDAX ("my_workflow.dax", "1000Gf");
12 // Instantiate a storage service
13 auto storage_service = simulation.add(
14 new wrench::SimpleStorageService ("storage_host", pow(2,50)));
15 // Instantiate a sompute service (a batch—scheduled 4—node cluster that uses the
16 // EASY backfilling algorithm and is subject to a background load)
17 auto batch_service = simulation.add(
18 new wrench::BatchService ("batch_login", {"nodel", "node2", "node3", "node4"}, pow(2,40),
19 {{wrench: :BatchServiceProperty: : SIMULATED_WORKLOAD_TRACE_FILE, "load.swf"},
20 {wrench: :BatchServiceProperty: :BATCH_SCHEDULING_ALGORITHM, "easy_bf"}}));
21 // Instantiate a compute service (a 4—host cloud platform that does not support pilot jobs)
22 auto cloud_service = simulation.add(
23 new wrench::CloudService ("cloud_gateway", {"hostl", "host2", "host3", "host4"}, pow(2,42),
24 {{wrench::CloudServiceProperty: :SUPPORTS_PILOT_JOBS, "false"}}));
25 // Instantiate a data registry service
26 auto data_registry_service = simulation.add (new wrench::FileRegistryService ("my_desktop"));
27 // Instantiate a network monitoring service
28 auto network_monitoring_service =
29 simulation.add (new wrench::NetworkProximityService (
30 "my_desktop", {"my_desktop", "batch_login", "cloud_gateway"},
31 {{wrench: :NetworkProximityServiceProperty: :NETWORK_PROXIMITY_SERVICE_TYPE,
32 "vivaldi"}});
33 // Stage a workflow input file at the storage service
34 simulation.stageFile (workflow.getFileByID ("input_file"), storage_service);
35 // Instantiate a WMS...
36 auto wms = simulation.add(
37 new wrench::SomeWMS ({batch_service, cloud_service}, {storage_service},
{network_monitoring_service}, {data_registry_service}, "my_desktop"));
38 // ... and assign the workflow to it, to be executed one hour in
39 wms—>addWorkflow (&workflow, 3600);
40 // Launch the simulation
41 simulation.launch () ;
42 /I Retrieve task completion events
43 auto trace = simulation.getOutput () .getTrace<wrench::SimulationTimestampTaskCompletion> () ;
44 // Determine the completion time of the last task that completed
45 double completion_time = trace[trace.size()-1]->getContent ()->getDate();
46 1}

Fig. 2: Example fully functional WRENCH simulator. Try-catch clauses are omitted.

are specified in the XML platform description file. At line 17
the simulator creates a compute service that corresponds to a
4-node batch-scheduled cluster. The physical characteristics of
the compute nodes (node [1-41]) are specified in the platform
description file. This compute service has a 1TiB scratch
storage space. Its behavior is customized by passing a couple
of property-value pairs to its constructor. It will be subject to
a background load as defined by a trace in the standard SWF
format [55], and its batch queue will be managed using the
EASY Backfilling scheduling algorithm [56]. The simulator
then creates a second compute service (line 22), which is a
4-host cloud service, customized so that it does not support
pilot jobs. Two helper services are instantiated, a data registry
service so that the WMS can keep track of file locations
(line 26) and a network monitoring service that uses the
Vivaldi algorithm [57] to measure network distances between
the two hosts from which the compute services are accessed

(batch_login and cloud_gateway) and the my_host host,
which is the host that runs these helper services and the
WMS (line 28). At line 34, the simulator specifies that the
workflow data file input_file is initially available at the
storage service. It then instantiates the WMS and passes to it
all available services (line 36), and assigns the workflow to it
(line 39). The crucial call is at line 41, where the simulation
is launched and the simulator hands off control to WRENCH.
When this call returns the workflow has either completed
or failed. Assuming it has completed, the simulator then
retrieves the ordered set of task completion events (line 43)
and performs some (in this example, trivial) mining of these
events (line 45).

For brevity, the example in Figure 2 does not show
try/catch clauses. Also, note that although the simulator
uses the new operator to instantiate WRENCH objects, the
simulation object takes ownership of these objects (using

unique or shared pointers), so that there is no memory deallo-
cation onus placed on the user. This example showcases only
the most fundamental features of the WRENCH User API,
and we refer the reader to the WRENCH Web site [47] for
more detailed information on how to use this API and for the
full API documentation.

IV. CASE STUDY: SIMULATING A PRODUCTION WMS

In this section, we present a WRENCH-based simulator
of a state-of-the-art WMS, Pegasus [2], as a case study for
evaluation and validation purposes.

Pegasus is being used in production to execute workflows
for dozens of high-profile applications in a wide range of
scientific domains [2]. Pegasus provides the necessary ab-
stractions for scientists to create workflows and allows for
transparent execution of these workflows on a range of com-
pute platforms including clusters, clouds, and national cyberin-
frastructures. During execution, Pegasus translates an abstract
resource-independent workflow into an executable workflow,
determining the specific executables, data, and computational
resources required for the execution. Workflow execution with
Pegasus includes data management, monitoring, and failure
handling, and is managed by HTCondor DAGMan [58]. In-
dividual workflow tasks are managed by a workload man-
agement framework, HTCondor [59], which supervises task
executions on local and remote resources.

A. Implementing Pegasus with WRENCH

Since Pegasus relies on HTCondor, first we have imple-
mented the HTCondor services as simulated core CI services,
which together form a new Compute Service that exposes the
WRENCH Developer API. This makes HTCondor available
to any WMS implementation that is to be simulated using
WRENCH, and will be included in the next WRENCH release
as part of the growing set of simulated core CI services
provided by WRENCH.

HTCondor is composed of six main service daemons
(startd, starter, schedd, shadow, negotiator, and
collector). In addition, each host on which one or more of
these daemons is spawned must also run a master daemon,
which controls the execution of all other daemons (including
initialization and completion). The bottom part of Figure 3
depicts the components of our simulated HTCondor imple-
mentation, where daemons are shown in red-bordered boxes.
In our simulator we implement the 3 fundamental HTCon-
dor services, implemented as particular sets of daemons, as
depicted in the bottom part of Figure 3 in borderless white
boxes. The Job Execution Service consists of a startd
daemon, which adds the host on which it is running to the
HTCondor pool, and of a starter daemon, which manages
task executions on this host. The Central Manager Service
consists of a collector daemon, which collects information
about all other daemons, and of a negotiator daemon, which
performs task/resource matchmaking. The Job Submission
Service consists of a schedd daemon, which maintains a
queue of tasks, and of several instances of a shadow daemon,

WRENCH Pegasus Simulator

scheduler
DAGMan

Job Submission Service

HTCondor DAGMan Pegasus

[master J [schedd J [shadow J
Central Manager Service

{ master J [negotiator } [collector }
Job Execution Service

[master } [startd] [starter }

Fig. 3: Overview of the WRENCH Pegasus simulation com-
ponents, including components for DAGMan and HTCondor
frameworks. Red boxes denote Pegasus services developed
with WRENCH’s Developer API, and white boxes denote
WRENCH reused components.

each of which corresponds to a task submitted to the Condor
pool for execution.

Given the simulated HTCondor implementation above, we
then implemented the simulated Pegasus WMS, including the
DAGMan workflow engine, using the WRENCH Developer
API. This implementation instantiates all services and parses
the workflow description file, the platform description file, and
a Pegasus-specific configuration file. DAGMan orchestrates the
workflow execution (e.g., a task is marked as ready for execu-
tion once all its parent tasks have successfully completed), and
monitors the status of tasks submitted to the HTCondor pool
using a pull model, i.e., task status is fetched from the pool
at regular time intervals. The top part of Figure 3 depicts the
components of our simulated Pegasus implementation (each
shown in a red box).

By leveraging WRENCH’s high-level simulation abstrac-
tions, implementing HTCondor as a reusable core WRENCH
service required only 613 lines of code. Similarly, imple-
menting a simulated version of Pegasus, including DAGMan,
was done with only 666 lines of code (127 of which are
merely parsing simulation configuration files). These numbers
include both header and source files, but exclude comments.
We argue that the above corresponds to minor simulation
software development efforts when considering the complexity
of the system being simulated.

Service implementations in WRENCH are all parameteri-
zable. For instance, as services use message-based commu-
nications it is possible to specify all message payloads in
bytes (e.g., for control messages). Other parameters encom-
pass various overheads, either in seconds or in computation
volumes (e.g., task startup overhead on a compute service).
In WRENCH, all service implementations come with default
values for all these parameters, but it is possible to pick
custom values upon service instantiation. The process of
picking parameter values so as to match a specific real-world

Experimental Scenario Avg. Makespan

Task Submissions Tasks completions

Workflow Platform Error (%) p-value distance p-value distance
1000Genome ExoGENI 1.10 +0.28 0.06 £0.01 0.21 +0.04 0.72 +0.06 0.12 +0.01
Montage-1.5 AWS-t2 xlarge 4.25 +1.16 0.08 £0.01 0.16 +0.03 0.12 +0.05 0.21 +0.02
Montage-2.0 AWS-mS5 xlarge 3.37 £0.46 0.11 £0.03 0.06 +0.02 0.10 £0.01 0.11 £0.01

TABLE I: Average simulated makespan error (%), and p-values and Kolmogorov-Smirnov (KS) distances for task submission
and completion dates, computed for 5 runs of each of our 3 experimental scenarios.

system is referred to as simulation calibration. We calibrated
our simulator by measuring delays observed in event traces
of real-world executions for workflows on hardware/software
infrastructures (see Section IV-B).

The simulator code, details on the simulation calibration
procedure, and experimental scenarios used in the rest of this
section are all publicly available online [60].

B. Experimental Scenarios

We consider experimental scenarios defined by particular
workflow instances to be executed on particular platforms. Due
to the lack of publicly available detailed workflow execution
traces (i.e., execution logs that include data sizes for all files,
all execution delays, etc.), we have performed real workflow
executions with Pegasus and collected raw, time-stamped event
traces from these executions. These traces form the ground
truth to which we can compare simulated executions. We
consider these workflow applications:

e 1000Genome [61]: A data-intensive workflow that iden-
tifies mutational overlaps using data from the 1000
genomes project in order to provide a null distribution
for rigorous statistical evaluation of potential disease-
related mutations. We consider a 1000Genome instance
that comprises 71 tasks.

o Montage [2]: A compute-intensive astronomy workflow
for generating custom mosaics of the sky. For this ex-
periment, we ran Montage for processing 1.5 and 2.0
square degrees mosaic 2MASS. We thus refer to each
configuration as Montage-1.5 and Montage-2.0, respec-
tively. Montage-1.5, resp. Montage-2.0, comprises 573,
resp. 1,240, tasks.

We use these platforms, deploying on each a submit node
(which runs Pegasus, DAGMan, and HTCondor’s job submis-
sion and central manager services), four worker nodes (4 cores
per node), and a data node in the WAN:

o ExoGENI: A widely distributed networked infrastructure-
as-a-service testbed representative of a “bare metal” plat-
form. Each worker node is a 4-core 2.0GHz processor
with 12GiB of RAM. The bandwidth between the data
node and the submit node was ~0.40 Gbps, and the
bandwidth between the submit and worker nodes was
~1.00 Gbps.

o AWS: Amazon’s cloud platform, on which we use two
types of virtual machine instances: t2.xlarge and
m5.xlarge. The bandwidth between the data node and
the submit node was ~0.44 Gbps, and the bandwidth

between the submit and worker nodes on these instances
were ~0.74 Gbps and ~1.24 Gbps, respectively.

C. Simulation Accuracy

To evaluate the accuracy of our simulator, we consider 3
particular experimental scenarios: 1000Genome on ExoGENI,
Montage-1.5 on AWS-t2.xlarge, and Montage-2.0 on AWS-
mb5.xlarge. Each execution is repeated 5 times and the overall
workflow execution times, or makespans, are recorded.

The third column in Table I shows average relative differ-
ences between actual and simulated makespans. We see that
simulated makespans are close to actual makespans across the
board (average relative error is below 5%). One of the key
advantages of building WRENCH on top of SimGrid is that
WRENCH simulators benefit from the high-accuracy network
models in SimGrid, e.g., these models capture many features
of the TCP protocol. And indeed, when comparing real-world
and simulated executions we observe average relative error
below 3% for data movement operations. The many processes
involved in a workflow execution with Pegasus interact by
exchanging (typically small) control messages. Our simulator
simulates these interactions. For instance, each time an output
file is produced by a task a data registry service is contacted so
that a new entry can be added to its database of file replicas,
which incurs some overhead due to a message exchange. When
comparing real-world to simulated executions we observe
average relative simulation error below 1% for these data
registration overheads.

To draw comparisons with a state-of-the-art simulator,
we repeated the above simulations using WorkflowSim [35].
WorkflowSim does not provide a detailed simulated HTCondor
implementation, does not offer the same simulation calibra-
tion capabilities as WRENCH, and is built on top of the
CloudSim simulation framework [25]. Nevertheless, we have
painstakingly calibrated our WorkflowSim simulator so that
it models the hardware and software infrastructures of our
experimental scenarios as closely as possible. For each of
the 3 experimental scenarios, we find that the relative average
makespan percentage error is 12.09 +2.84, 26.87 £+6.26, and
13.32 +1.12, respectively, i.e., from 4x up to 11x larger than
the error values obtained with our WRENCH-based simulator.
The reasons for the discrepancies between WorkflowSim and
real-world results are twofold. First, WorkflowSim uses the
simplistic network models in CloudSim (see discussion in
Section II) and thus suffers from simulation bias w.r.t. data
transfer times. Second, WorkflowSim does not capture all
the relevant details of the system and its execution. With

WRENCH, implementing a fully detailed simulator can be
done in a few hundred lines of code.

In our experiments we also record the submission and com-
pletion dates of each task, thus obtaining empirical cumulative
density functions (ECDFs) of these times, for both real-world
executions and simulated executions. To further validate the
accuracy of our simulation results we apply Kolmogorov-
Smirnov goodness of fit tests (KS tests) with null hypotheses
(Hp) that the real-world and simulation samples are drawn
from the same distributions. The two-sample KS test results in
a miss if the null hypothesis (two-sided alternative hypothesis)
is rejected at 5% significance level (p-value < 0.05). Each
test for which the null hypothesis is not rejected (p-value
> 0.05), indicates that the simulated execution statistically
matches the real-world execution. Table I shows p-value and
KS test distance for both task submission times and task
completion times. The null hypothesis is not rejected, and we
thus conclude that simulated workflow task executions statis-
tically match real-world executions well. These conclusions
are confirmed by visually comparing ECFDs. For instance,
Figure 4 shows real-world and simulated ECDFs for sample
runs of Montage-2.0 on AWS-m5.xlarge, with task submission,
resp. completion, date ECDFs on the left-hand, resp. right-
hand, side. We observe that the simulated ECDFs (“wrench”)
track the real-world ECDFs (“pegasus”) closely. We repeated
these simulations using WorkflowSim, and found that the null
hypothesis is rejected for all 3 simulation scenarios. This is
confirmed visually in Figure 4, where the ECDFs obtained
from the WorkflowSim simulation (“workflowsim”) are far
from the real-world ECDFs.

Although KS tests and ECDFs visual inspections validate
that the WRENCH-simulated ECDFs match the real-world
ECDFs statistically, these results do not distinguish between
individual tasks. In fact, there are some discrepancies between
real-world and simulated schedules. For instance, Figure 5
shows Gantt charts corresponding to the workflow executions
shown in Figure 4, with the real-world execution on the left-
hand side (“pegasus”) and the simulated execution on the right-
hand side (“wrench”). Each task is shown as a line segment
along the horizontal time axis. Different task types, i.e.,
different executables, are shown with different colors. In this
workflow, all tasks of the same type are independent and have
the same priority. We see that the shapes of the, for example,
yellow regions, vary between the two executions. These vari-
ations are explained by implementation-dependent behaviors
of the workflow scheduler. In many instances throughout
workflow execution several ready tasks can be selected for
execution, e.g., sets of independent tasks in the same level
of the workflow. When the number of available compute
resources, n, is smaller than the number of ready tasks, the
scheduler picks n ready tasks for immediate execution. In
most WMSs, these tasks are picked as whatever first n tasks
are returned when iterating over data structures in which task
objects are stored. Building a perfectly faithful simulation
of a WMS would thus entail implementing/using the exact
same data structures as that in the actual implementation.

A 100 B 100
™ m

£ 0754 < 0751
Py Py
ke ©

& 0501 2 0501
5
£ :
o

@ 0.25 Q 0.251
L e

0.00 0.00

2000 3000

1000
Workflow Makespan (s)

0 1000 2000 3000 0
Workflow Makespan (s)

—— pegasus ---- wrench ——- workflowsim

Fig. 4: Empirical cumulative distribution function of task sub-
mit times (left) and task completion times (right) for sample
real-world (“pegasus”) and simulated (“wrench” and “work-
flowsim”) executions of Montage-2.0 on AWS-m5.xlarge.

A pegasus B wrench

Tasks
Tasks

0 1000 2000 3000 0 1000 2000 3000
Makespan (s) Makespan (s)

Fig. 5: Task execution Gantt chart for sample real-world (“pe-
gasus”) and simulated (“wrench”) executions of the Montage-
2.0 workflow on the AWS-m5.xlarge platform.

This could be labor intensive or perhaps not even possible
depending on which data structures, languages, and/or libraries
are used in that implementation. In the context of this Pegasus
case study, the production implementation of the DAGMan
scheduler uses a custom priority list implementation to store
ready tasks, while our simulation version of it stores workflow
tasks in a std: :map data structure indexed by task string
IDs. Consequently, when the real-world scheduler picks the
first n ready tasks it typically picks different tasks than those
picked by its simulated implementation. This is the cause the
discrepancies seen in Figure 5.

D. Simulation Scalability

Table I shows average simulated makespans and simulation
execution times for our 3 experimental scenarios. Simulations
are executed on a single core of a MacBook Pro 3.5 GHz Intel
Core 17 with 16GiB of RAM. For these scenarios, simulation
times are more than 100x and up to 2500x shorter than real-
world workflow executions. This is because SimGrid simu-
lates computation and communication operations as delays

Experimental Scenario Avg. Workflow Avg. Simulation

Workflow Platform Makespan (s) Time (s)
1000Genome ExoGENI 761.0 £7.93 0.3 £0.01
Montage-1.5 AWS-t2.xlarge 1,784.0 +137.67 8.3 £0.09
Montage-2.0 AWS-mS5.xlarge 2,911.8 +48.80 28.1 +£0.52

TABLE II: Simulated workflow makespans and simulation
times averaged over 5 runs of each of our 3 experimental
scenarios.

2500 1 2500

—— memory usage
2000 ===+ simulation time I/ 2000
= workflowsim

15004 — wrench I - 1500

Time (s)

10001 - 1000

[an] Alowsy

5001 500

N O L N N O
S § N § S §
O S S N S &
workflow tasks

Fig. 6: Average simulation time (in seconds. left vertical axis)
and memory usage (maximum resident set size, right vertical
axis) in MiB vs. workflow size.

computed based on computation and communication volumes
using simulation models with low computational complexity.

To evaluate the scalability of our simulator, we use a
workflow generator [62] to generate representative randomized
configurations of the Montage workflow with from 1,000 up
to 10,000 tasks. We generate 5 workflow instances for each
number of tasks, and simulate the execution of these generated
workflow instances on 128 cores (AWS-m5.xlarge with 32 4-
core nodes). Figure 6 shows simulation time (left vertical axis)
and maximum resident set size (right vertical axis) vs. the
number of tasks in the workflow. Each sample point is the
average over the 5 workflow instances (error bars are shown
as well). As expected, both simulation time and memory
footprint increase as workflows become larger. The memory
footprint grows linearly with the number of tasks (simply due
to the need to store more task objects). The simulation time
grows faster initially, but then linearly beyond 7,000 tasks. We
conclude that the simulation scales well, making it possible
to simulate very large 10,000-task Montage configurations in
under 40 minutes on a standard laptop computer.

Figure 6 also includes results obtained with WorkflowSim.
We find that WorkflowSim has a larger memory footprint than
our WRENCH-based simulator (by a factor ~1.48 for 10,000-
task workflows). However, WorkflowSim is faster than our
WRENCH-based simulator (by a factor ~1.81 for 10,000-
task workflows), with roughly similar trends. The reason why
WorkflowSim is faster is because it simply does not simulate
many aspects of the execution. The downside, as seen in the
previous section, is that its simulation results are inaccurate.

V. CONCLUSION

In this paper we have presented WRENCH, a simulation
framework for building simulators of Workflow Management
Systems. WRENCH implements high-level simulation abstrac-
tions on top of the SimGrid simulation framework, so as
to make it possible to build simulators that are accurate,
that can run scalably on a single computer, and that can be
implemented with minimal software development effort. Via a
case study for the Pegasus production WMS we have demon-
strated that WRENCH achieves these objectives, and that it
favorably compares to a recently proposed workflow simulator.
The main finding is that with WRENCH one can implement
an accurate and scalable simulator of a complex real-world
system with a few hundred lines of code. WRENCH is open
source and welcomes contributors. Version 1.0 was released in
June 2018 and we refer the reader to http://wrench-project.org
for software, documentation, and links to related projects.

Although WRENCH is currently being used for several
research projects, an obvious and short-term development di-
rection is to use WRENCH to simulate the execution of current
production WMSs (as was done for Pegasus in Section IV). Al-
though we have designed WRENCH with knowledge of these
WMSs and with the intent of making their implementations
with WRENCH feasible, we expect that WRENCH APIs and
abstractions will need to evolve once we set out to realize
these implementations. Another key future direction is that of
automated simulation calibration. As seen in our Pegasus case
study, even when using validated simulation models, the values
of a number of simulation parameters must be carefully chosen
in order to obtain accurate simulation results. This issue is
not confined to WRENCH, but is faced by all distributed
system simulators. In our case study we have calibrated these
parameters in manually manner by analyzing and comparing
simulated and real-world execution event traces. While, to the
best of our knowledge, this is the typical practice, what is
truly needed is an automated calibration method. Ideally, this
method would process a (small) number of (not too large) real-
world execution traces for “training scenarios”, and compute
a valid and robust set of calibration parameter values. Such
automated calibration would be a contribution well beyond
the scope of the WRENCH project. An important research
question will then be to understand to which extent these
automatically computed calibrations can be composed and
extrapolated to scenarios beyond the training scenarios.

Acknowledgments. This work is funded by NSF contracts
#1642369 and #1642335, “SI2-SSE: WRENCH: A Simulation
Workbench for Scientific Worflow Users, Developers, and
Researchers”, and by CNRS under grant #PICS07239. We
thank Martin Quinson, Arnaud Legrand, and Pierre-Frangois
Dutot for their valuable help.

REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for
e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated, 2014.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a Workflow Management System for Science Automation,”
Future Generation Computer Systems, vol. 46, pp. 17-35, 2015.

T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong et al., “Askalon: A
development and grid computing environment for scientific workflows,”
in Workflows for e-Science. Springer, 2007, pp. 450-471.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633-652, 2011.

K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, 1. Dunlop, A. Nenadic, P. Fisher et al.,
“The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic acids research,
p. gkt328, 2013.

1. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific
workflows,” in Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on. IEEE, 2004, pp. 423—
424.

M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Ist ACM SIGMOD Workshop on Scalable Workflow Execution En-
gines and Technologies. ACM, 2012, p. 1.

N. Vydyanathan, U. V. Catalyurek, T. M. Kurc, P. Sadayappan, and
J. H. Saltz, “Toward optimizing latency under throughput constraints
for application workflows on clusters,” in Euro-Par 2007 Parallel
Processing. Springer, 2007, pp. 173-183.

A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Optimizing latency and
reliability of pipeline workflow applications,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on.
IEEE, 2008, pp. 1-10.

Y. Gu and Q. Wu, “Maximizing workflow throughput for streaming
applications in distributed environments,” in Computer Communications
and Networks (ICCCN), 2010 Proceedings of 19th International Con-
ference on. IEEE, 2010, pp. 1-6.

M. Malawski, G. Juve, W. Deelman, and J. Nabrzyski, “Algorithms for
cost- and deadline-constrained provisioning for scientific workflow en-
sembles in IaaS clouds,” Future Generation Computer Systems, vol. 48,
pp. 1-18, 2015.

J. Chen and Y. Yang, “Temporal dependency-based checkpoint selection
for dynamic verification of temporal constraints in scientific workflow
systems,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 3, p. 9, 2011.

G. Kandaswamy, A. Mandal, D. Reed e al., “Fault tolerance and
recovery of scientific workflows on computational grids,” in Cluster
Computing and the Grid, 2008. CCGRID’08. 8th IEEE International
Symposium on. 1EEE, 2008, pp. 777-782.

R. Ferreira da Silva, T. Glatard, and F. Desprez, “Self-healing of
workflow activity incidents on distributed computing infrastructures,”
Future Generation Computer Systems, vol. 29, no. 8, pp. 2284-2294,
2013.

W. Chen, R. Ferreira da Silva, E. Deelman, and T. Fahringer, “Dynamic
and fault-tolerant clustering for scientific workflows,” IEEE Transactions
on Cloud Computing, vol. 4, no. 1, pp. 49-62, 2016.

H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A
multi-objective approach for workflow scheduling in heterogeneous
environments,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). 1EEE
Computer Society, 2012, pp. 300-309.

L. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and R. Sakel-
lariou, “Energy-constrained provisioning for scientific workflow ensem-
bles,” in Cloud and Green Computing (CGC), 2013 Third International
Conference on. 1EEE, 2013, pp. 34-41.

M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “PSINS: An
Open Source Event Tracer and Execution Simulator for MPI Applica-
tions,” in Proc. of the 15th Intl. Euro-Par Conf. on Parallel Processing,
ser. LNCS, no. 5704. Springer, Aug. 2009, pp. 135-148.

T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proc. of the ACM
Workshop on Large-Scale System and Application Performance, Jun.
2010, pp. 597-604.

[20]

(21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

G. Zheng, G. Kakulapati, and L. Kalé, “BigSim: A Parallel Simulator
for Performance Prediction of Extremely Large Parallel Machines,” in
Proc. of the 18th Intl. Parallel and Distributed Processing Symposium
(IPDPS), Apr. 2004.

R. Bagrodia, E. Deelman, and T. Phan, “Parallel Simulation of Large-
Scale Parallel Applications,” IJHPCA, vol. 15, no. 1, pp. 3-12, 2001.
W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies,” IJHPCA, vol. 17, no. 4, pp. 403-416, 2003.

R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing,” Concurrency and Computation: Practice and
Experience, vol. 14, no. 13-15, pp. 1175-1220, Dec. 2002.

S. Ostermann, R. Prodan, and T. Fahringer, “Dynamic Cloud Provision-
ing for Scientific Grid Workflows,” in Proc. of the 11th ACM/IEEE Intl.
Conf. on Grid Computing (Grid), 2010, pp. 97-104.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23—
50, Jan. 2011.

A. Nez, J. Vzquez-Poletti, A. Caminero, J. Carretero, and I. M. Llorente,
“Design of a New Cloud Computing Simulation Platform,” in Proc. of
the 11th Intl. Conf. on Computational Science and its Applications, June
2011, pp. 582-593.

G. Kecskemeti, “DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds,” Simulation Modelling Practice and
Theory, vol. 58, no. 2, pp. 188-218, 2015.

A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator,” in
Proc. of the 9th Intl. Conf. on Peer-to-Peer, Sep. 2009, pp. 99-100.

I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proc. of the 10th IEEE Global
Internet Symposium. 1EEE, May 2007, pp. 79-84.

M. Taufer, A. Kerstens, T. Estrada, D. Flores, and P. J. Teller, “SimBA:
A Discrete Event Simulator for Performance Prediction of Volunteer
Computing Projects,” in Proc. of the 21st Intl. Workshop on Principles
of Advanced and Distributed Simulation, 2007, pp. 189-197.

T. Estrada, M. Taufer, K. Reed, and D. P. Anderson, “EmBOINC: An
Emulator for Performance Analysis of BOINC Projects,” in Proc. of the
Workshop on Large-Scale and Volatile Desktop Grids (PCGrid), 2009.
D. Kondo, “SimBOINC: A Simulator for Desktop Grids and Volunteer
Computing Systems,” Available at http://simboinc.gforge.inria.fr/, 2007.
H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899-2917, 2014.

C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A High-Performance,
Low Memory, Modular Time Warp System,” in Proc. of the 14th
ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,
pp. 53-60.

W. Chen and E. Deelman, “WorkflowSim: A Toolkit for Simulating
Scientific Workflows in Distributed Environments,” in Proc. of the Sth
IEEE Intl. Conf. on E-Science, 2012, pp. 1-8.

A. Hirales-Carbajal, A. Tchernykh, T. Rblitz, and R. Yahyapour, “A
Grid simulation framework to study advance scheduling strategies for
complex workflow applications,” in In Proc. of IEEE Intl. Symp. on
Parallel Distributed Processing Workshops (IPDPSW), 2010.

M.-H. Tsai, K.-C. Lai, H.-Y. Chang, K. Fu Chen, and K.-C. Huang,
“Pewss: A platform of extensible workflow simulation service for work-
flow scheduling research,” Software: Practice and Experience, vol. 48,
no. 4, pp. 796-819, 2017.

S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, and R. Prodan,
“Integration of an Event-Based Simulation Framework into a Scientific
Workflow Execution Environment for Grids and Clouds,” in In proc. of
the 4th ServiceWave European Conference, 2011, pp. 1-13.

G. Kecskemeti, S. Ostermann, and R. Prodan, “Fostering Energy-
Awareness in Simulations Behind Scientific Workflow Management
Systems,” in Proc. of the 7th IEEE/ACM Intl. Conf. on Utility and Cloud
Computing, 2014, pp. 29-38.

J. Cao, S. Jarvis, S. Saini, and G. Nudd, “GridFlow: Workflow Manage-
ment for Grid Computing,” in Proc. of the 3rd IEEE/ACM Intl. Symp.
on Cluster Computing and the Grid (CCGrid), 2003, pp. 198-205.
“The SimGrid Project,” Available at http://simgrid.org/, 2018.

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

(571
[58]

[59]

[60]

[61]

[62]

P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,
M. Quinson, M. Stillwell, F. Suter, and B. Videau, “Toward Better
Simulation of MPI Applications on Ethernet/TCP Networks,” in Prod.
of the 4th Intl. Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, 2013.

P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the
Validity of Flow-level TCP Network Models for Grid and Cloud
Simulations,” ACM Transactions on Modeling and Computer Simulation,
vol. 23, no. 4, 2013.

P. Velho and A. Legrand, “Accuracy Study and Improvement of Network
Simulation in the SimGrid Framework,” in Proc. of the 2nd Intl. Conf.
on Simulation Tools and Techniques, 2009.

K. Fujiwara and H. Casanova, “Speed and Accuracy of Network Sim-
ulation in the SimGrid Framework,” in Proc. of the Ist Intl. Workshop
on Network Simulation Tools, 2007.

A. Lebre, A. Legrand, F. Suter, and P. Veyre, “Adding Storage Simula-
tion Capacities to the SimGrid Toolkit: Concepts, Models, and APL” in
Proc. of the 8th IEEE Intl. Symp. on Cluster Computing and the Grid,
2015.

“The WRENCH Project,” http://wrench-project.org, 2018.

“The ns-3 Network Simulator,” Available at http://www.nsnam.org.

E. Ledn, R. Riesen, A. Maccabe, and P. Bridges, “Instruction-Level
Simulation of a Cluster at Scale,” in Proc. of the Intl. Conf. for High
Performance Computing and Communications (SC), Nov. 2009.

R. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30-53, 1990.

R. Matha, S. Ristov, and R. Prodan, “Simulation of a workflow execution
as a real Cloud by adding noise,” Simulation Modelling Practice and
Theory, vol. 79, pp. 37-53, 2017.

L. Bobelin, A. Legrand, D. A. G. Mirquez, P. Navarro, M. Quinson,
F. Suter, and C. Thiery, “Scalable Multi-Purpose Network Representation
for Large Scale Distributed System Simulation,” in Proceedings of the
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), Ottawa, Canada, May 2012, pp. 220-227.

M. Turilli, M. Santcroos, and S. Jha, “A Comprehensive Perspective on
Pilot-Job Systems,” ACM Comput. Surv., vol. 51, no. 2, pp. 43:1-43:32,
2018.

“Pegasus’ DAX Workflow Description Format,” https:/pegasus.isi.edu/
documentation/creating_workflows.php, 2018.

“The Standard Workload Format,” http://www.cs.huji.ac.il/labs/parallel/
workload/swf.html, 2018.

D. Lifka, “The ANL/IBM SP Scheduling System,” in Proc. of the Ist
Workshop on Job Scheduling Strategies for Parallel Processing, LCNS,
vol. 949, 1995, pp. 295-303.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in Proc. of SIGCOMM, 2004.

J. Frey, “Condor dagman: Handling inter-job dependencies,” University
of Wisconsin, Dept. of Computer Science, Tech. Rep, 2002.

D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323-356, 2005.

“The WRENCH Pegasus Simulator,” https://github.com/wrench-project/
pegasus, 2018.

R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M.
Overton, and M. Atkinson, “Using simple pid controllers to prevent and
mitigate faults in scientific workflows,” in 11th Workflows in Support of
Large-Scale Science, ser. WORKS’16, 2016, pp. 15-24.

R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman,
“Community resources for enabling and evaluating research on scientific
workflows,” in 10th IEEE International Conference on e-Science, ser.
eScience’ 14, 2014, pp. 177-184.

