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ABSTRACT

Advances in sensor technology have enabled the collection of large-

scale datasets. Such datasets can be extremely noisy and often

contain a significant amount of outliers that result from sensor

malfunction or human operation faults. In order to utilize such data

for real-world applications, it is critical to detect outliers so that

models built from these datasets will not be skewed by outliers.

In this paper, we propose a new outlier detection method that

utilizes the correlations in the data (e.g., taxi trip distance vs. trip

time). Different from existing outlier detection methods, we build

a robust regression model that explicitly models the outliers and

detects outliers simultaneously with the model fitting.

We validate our approach on real-world datasets against methods

specifically designed for each dataset as well as the state of the

art outlier detectors. Our outlier detection method achieves better

performances, demonstrating the robustness and generality of our

method. Last, we report interesting case studies on some outliers

that result from atypical events.
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1 INTRODUCTION

With the development in sensor technology, increasing amount of

data collected from sensors become publicly available. Analyzing

such data could benefit many applications such as smart city, trans-

portation, and sustainability. For example, New York City (NYC)

has released a massive taxi data set [2] including information such
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as pickup and dropoff locations and time, trip cost, and trip distance.

Such data have been used for studies such as characterizing urban

dynamics [21], detecting events in city [34], and estimating travel

time [28].

In these large-scale sensor datasets, there could be a significant

amount of outliers due to sensor malfunction or human operation

faults. For example, in NYC taxi data, we have observed trips with

extremely long moving distances but unreasonably low trip fares.

There are also trips with short displacements between pickup and

dropoff locations but have a long trip distance. In a recent work

on travel time estimation [28], Wang et al. found that such outliers

in the original datasets can break effective travel time estimation

methods.

Figure 1: Taxi trip example: suspicious outlying trip

There have been many methods proposed in literature on outlier

detection [10]. Typical outlier detection methods define a sample

as an outlier if it significantly deviates from other data samples.

However, such definition may not apply in our case. Consider an

example shown in Figure 1. There could be many interpretations

of what is an outlier in this figure. One possibility is point A is

an outlier while points B and C are more likely to be labeled as

normal points based on the spatial proximity of every datum to

its neighbors. However, another possibility is sample A could be a

long but normal trip because the ratio between travel distance and

L2 distance between end points is within the normal range. On the

other hand, sample B and sample C, even though being closer to

other data samples, could be outliers. Sample B could be a trip with

detour because the travel distance is much longer than L2 distance

between end points. Sample C has a nearly zero L2 distance (i.e.,

the same pickup and dropoff locations), which could be an outlier

due to sensor malfunction.

Motivated by the observations on real-world data, we detect

outliers based on empirical correlations of attributes, which is close

to the contextual outlier detection proposed by Song et. al. [24]. For

example, we expect correlations between attributes trip time and
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Figure 2: Biased Model Illustration

trip distance in taxi data, and between voltage and temperature

in CPU sensor data. If the attributes of a data sample significantly

deviate from expected correlations, this data sample is likely to be

an anomaly. Domain experts can specify correlation templates so

that the definition of an outlier can be customized to the application.

We propose a robust regression model that explicitly models the

non-outliers and outliers. We feed the algorithm domain knowledge

about correlations (e.g., the fact that trip time should be predictable

from trip distance & time of day) and it learns how to model them

(e.g., how to predict trip time from trip distance and time of day). The

model is robust (so outliers do not skew the model parameters) and

automatically generates a probability for each data sample being

as an outlier and also automatically generates a cut-off threshold

on probabilities for outliers.

In literature, there is a series of contextual outlier detection

methods that use the correlation between contextual attributes and

behavioral attributes to detect outliers [14, 19, 24]. One problem

with contextual outlier detection is that outliers can bias a model

that is learned from noisy data. To the best of our knowledge, prior

work on contextual outlier detection did not consider this issue.

The biased model could end up marking outliers as non-outliers

and non-outliers as outliers. Take Figure 2 as an example. The

blue line indicates a model that would have been learned if it was

trained on clean data. However, because clean data is not available,

contextual outlier detection trains on noisy data. The red line shows

the result. To address this problem, we propose a regression model

that explicitly models for outliers and non-outliers.

We conduct experiments on four real-world datasets and demon-

strate the effectiveness of our proposed method with comparison

to classical regression methods and five existing outlier detection

algorithms. With the help of our model, the root cause of outliers

can be identified. For example, in the taxi dataset, we found that

many outliers are from sensors produced by a certain manufac-

turer. We report case studies to support our detected outliers and

provide insights into the data that can then be used to study new

phenomena or devise ways to improve sensors reliability.

In summary, our key contributions are:

• We propose an outlier detection method that utilizes correlations

between attributes. Such correlations can be specified by domain

experts depending on the application. Different from existing

work, our method is a robust regression model that explicitly

considers outliers and automatically learns the probability for a

data sample being an outlier. It intrinsically generates the thresh-

olds for classification while being robust to parameter skewed

by outliers, which is a common problem with other approaches.

• We conduct rigorous experiments on real-world datasets. For

these datasets with missing ground truth, human annotation sys-

tem is used to obtain labels. We design the machine learning task

to show that outliers may bias the model trained on unsanitized

dataset. We also inject synthetic outliers to validate the model’s

robustness to different types of outliers.

• We compare our approach against five recent outlier detectors

(including other contextual outlier detection algorithms). Our

method significantly outperformed competing methods and con-

tinues to perform well even in extremely noisy datasets (which

are common in big data obtained from sensor measurements).

The rest of the paper is organized as follows. Related work is

discussed in Section 2. Section 3 describes the system overview. We

present our outlier model in Section 4. We then empirically evaluate

our methods in Section 5. We present conclusions in Section 6.

2 RELATED WORK

We outline the progress related to two categories: unsupervised out-

lier detection for numerical datasets and contextual outlier detection.

2.1 Unsupervised Outlier Detection

Typical unsupervised outlier detection methods aim to find data

samples that are significantly different from other samples. Yaman-

ishi et al. [32] assume that data is generated from an underlying

statistical distribution. The notion of outlier is captured by a strong

deviation from the presumed data dependent probabilistic distri-

bution. In distance-based outlier work [17, 22, 25], they measure

the distance of a data point to its neighbors. The assumption is

that normal objects have a dense neighborhood, thus the outlier

is the one furthest from its neighbors. Similar approaches using

the spatial proximity are density-based [8, 16, 20]. These works

adopt the concept of neighbors by measuring the density around

a given datum as well as its neighborhood. Breunig et al. [8] in-

troduce a local outlier factor (LOF) for each object in the dataset,

indicating its degree of outlierness. The outlier factor is local in the

sense that the degree depends on how isolated the object is with re-

spect to only neighboring points. These outlier algorithms consider

different characteristics and properties of anomalous objects in a

dataset. These outlying properties can vary largely on the type of

data and the application domain for which the algorithm is being

developed. However, all these studies do not consider the outlying

behavior with respect to a given context, assuming every attribute

contributes equally to the feature vector.

2.2 Contextual Outlier Detection

Another line of works related to our correlation templates is contex-

tual/conditional outlier detection where one set of attributes defines

the context and the other set is examined for unusual behaviors.

Song et al. [24] propose conditional anomaly detection that takes

into account the user-specified environmental variables. Hong et



al. [14] model the data distribution by multivariate function and

transform the output space into a new unconditional space. Lang et

al. [19] model the relationship of behavioral attributes and contex-

tual attributes from local perspectives (i.e., contextual neighbors)

as well as global perspectives. However, none of these works build

their models under the awareness/assumption of outlier and thus

the training process is limited to clean data.

There are also contextual outlier detection for graphs [27, 29] and

categorical data [26]. Valko et al. [27] proposed a non-parametric

graph-based algorithm to detect conditional anomalies. However it

assumes the labeled training set is available.Wang et al. [29] address

the problem of detecting contextual outliers in graphs using random

walk. Tang et al. [26] identify contextual outliers on categorical

relational data by leveraging data cube computation techniques.

But they are not applicable to numerical data used in our work.

3 NOTATIONS AND SYSTEM OVERVIEW

A dataset I is a collection of n records {®z1, . . . , ®zn } where each ®zi
hasm attributes ®zi [1], . . . , ®zi [m].

A correlation template is a pair (j, S) where j is a behavior at-

tribute and S ⊆ {1, . . . ,m} is a set of contextual attributes. This

means that the value ®zi [j] can be predicted from attributes ®zi [s] for
s ∈ S .

To avoid heavy use of sub-subscripts, we will also use the follow-

ing renaming. For a correlation (j, S), we set yi to be ®zi [j] and ®xi to
be the vector of the attribute values in S (i.e. ®xi = [®zi [s] for s ∈ S]).

An overview of the outlier detector, called Doc, is shown in Fig. 3.

It contains an outlier detector that flags suspicious records.

The inputs to the outlier detector are I and a set Corr of C

correlation templatesCorr = {(jc , Sc )}Cc=1. In different applications,
some attributes j are usually associated with outlier behavior; but

if its relevant attributes S are not specified by domain experts, the

system will take the rest of attributes as S , serving as the context

of the behavior.

In the outlier detector, a filter is a model that learns how to

predict ®z[j] from the ®z[s] for s ∈ S . The goal of each filter is to

assign a score ti to every record indicating its estimated probability

that the record is an outlier (this is described in Section 4). Higher

score implies its higher probability of being an outlier. The expected

number of outliers K is the sum of these scores ti , and the top K

records are flagged as outliers by the filter. When using multiple

filters, a record is marked as an outlier if at least one filter marks

it as an outlier. We average outlier scores returned from multiple

filters as an overall outlier score of a record. The result is a dataset

Ĩ in which every record ®zi has a flag ℓi indicating whether it should
be considered an outlier (ℓi = 1) or not (ℓi = 0).

The summary of notations is in Table 1.

4 OUTLIER DETECTOR

The job of the outlier detector is to take each correlation template

(j, S) and learn a model that, for each record ®zi , can predict ®zi [j]
from the attributes ®zi [s] for s ∈ S . It then assigns an outlier score

ti to each record ®zi . This score is the estimated probability that the

record is an outlier and is based on how much the actual value ®zi
deviates from its prediction.

We do this by modeling the prediction error as a mixture of light-

tailed distributions (for non-outliers) and heavy-tailed distributions

Figure 3: Doc System Overview

Table 1: Notations

(j, S) Correlation template taken by a filter

yi = ®zi [j] Behavioral attribute j value of record ®zi
®xi = Contextual attributes S of record ®zi[®zi [s] for s ∈ S]
ti

Outlier score of record zi provided

by a filter.

K # records flagged as outliers by a filter.

ℓi Outlier flag of record ®zi

(for outliers). Similar noise mixtures are used in robust statistics

[9, 15, 23, 30], and typically M-estimators or MCMC inference are

used to find model parameters. Instead, we specifically use a variant

of expectation-maximization (EM) [12] because it produces vari-

ables that, as explained in Section 4.1, can be interpreted as outlier

probabilities ti . Indeed, we are more interested in these ti than in

the model parameters themselves.

We provide an algorithm for linear models in Section 4.1. Lin-

ear models are popular because they are not as restrictive as they

initially seem ś features can be transformed (e.g., by taking logs,

square roots, etc.) so that they have an approximately linear rela-

tionship with the target. The ideas from Section 4.1 can be extended

to more complex models, such as generalized linear models, and

learnedwith variations of the expectation-maximization framework

(EM) [12].

Assuming records are independent, the expected number of

outliers K is the sum of the outlier probabilities of each record:

K = ⌊∑n
i=1 ti ⌋. This means we can take the records with the top

K outlier probabilities and flag them as outliers. Since the system

can accept many correlation templates as input, it will be learning

many models, and a record is labeled as an outlier if any of these

models flag it as an outlier.

4.1 Outlier Data Modeling

For the purpose of simplicity and clearness, we use the following

renaming in this section. For a correlation (j, S), we set yi to be

®zi [j] and ®xi to be the vector of the attribute values in S (i.e. ®xi =
[®zi [s] for s ∈ S]).

Linear models have a weight vector ®w , a noise random variable

ϵi , and the functional form

yi = ®w · ®xi + ϵi (1)



The noise distribution ϵi for record i is modeled as follows. We

assume that there is a probability p that a data point is an outlier.

Hence, the error ϵi is modeled as a mixture distribution ś with

probability 1−p it is a zero mean Gaussian with unknown variance

σ 2, and with probability p it is a Cauchy random variable. Note that

the Gaussian distribution has probability density

fG (ϵi ;σ 2) = 1
√
2πσ 2

exp(−
ϵ2i

2σ 2
)

The Cauchy distribution with scale parameter b is a heavy-tailed

distribution with undefined mean and variance, hence it is ideal

for modeling outliers. It is equivalent to the Student’s t distribution

with 1 degree of freedom [18].

A sample ϵi from this distribution can be obtained by first sam-

pling a value τi from the Gamma(0.5, b) distribution then sampling

ϵi from the Gaussian(0, 1/τi ) distribution [6]. The probability of

this joint sampling is

fC (ϵi ,τi ;b) =
b0.5

Γ(0.5)τi
0.5−1e−bτi

√
τi√
2π

exp(−
τiϵ

2
i

2
)

Given ®xi and yi , we introduce a latent indicator χi to denote where
the error of ®xi comes:

χi =

{

1 if the error of ®xi is generated from the Cauchy

0 if the error of ®xi is generated from the Gaussian

The expected value of χi is denoted by ti and is automatically

computed by the EM algorithm. With the model parameters ®w
and unknown noise parameters σ 2 (variance of non-outliers), p

(outlier probability), b (scale parameter of outlier distribution), the

likelihood function is:

L( ®w,σ 2
,p,b, ®χ , ®τ )

=

n
∏

i=1

[

(1 − p) 1
√
2πσ 2

exp(− (yi − ®w · ®xi )
2

2σ 2
)
]1−χi

×
[

p
b0.5

Γ(0.5)τi
0.5−1e−bτi

√
τi√
2π

exp(−τi (yi − ®w · ®xi )
2

2
)
] χi

(2)

We iteratively update the estimates of σ 2, p, b, τi and ti (the

expected value of χi ) using the EM framework as described below.

Note that the scale parameter b of the Cauchy distribution cannot

be estimated using maximum likelihood, so we update it using

the interquartile range (the standard technique for Cauchy [5]) as

explained below.

4.2 Model Parameters Learning

We employ EM algorithm [12] to solve the above likelihood function

L. We iteratively update parameters so we add a superscript (k ) to
parameters to denote their values at the kth iteration. The E and M

steps are described next.

4.2.1 E step.

• τi update:

In Eq. (2), τi only appears in e−τi (b+0.5(yi− ®w · ®xi )
2) (after can-

cellation), which shows that τi (conditioned on the rest of the

variables) follows exponential distribution. The conditional

expected value of τi is

1

b + 0.5(yi − ®w · ®xi )2
By replacing τi with this expectation, the likelihood function

L in Eq. (2) is reduced to

L( ®w,σ 2
,p,b, ®χ )

=

n
∏

i=1

[

(1 − p) 1
√
2πσ 2

exp(− (yi − ®w · ®xi )
2

2σ 2
)
]1−χi

×
[

p

√
b
√
π
e−1

1
√
2π

] χi

(3)

• ti update (here sigmoid(z) = 1
1+e−z ):

t
(k+1)
i

=

sigmoid(log( p(k )

1 − p(k )
) + 0.5log(b

(k )σ 2(k )

πe2
) + (yi − ®w

(k ) · ®xi )2

2σ 2(k )
)

(4)

• b update: b(k+1) = 1

Median( ®ξ )
where ®ξ is the vector of abso-

lute error |yi − ®w(k ) · ®xi | for the top K records with highest

t
(k )
i values (note K = ⌊∑n

j=1 t
(k )
j ⌋).

4.2.2 M step. For each iteration before convergence, we update

the estimated outlier probability p, the variance of non-outliers σ 2,

and the coefficients ®w . The updated parameters are listed below.

• p update:

p(k+1) =
1

n

n
∑

i=1

ti
(k+1)

• σ 2 update:

σ 2(k+1)
=

∑n
i=1(1 − ti (k+1))(yi − ®w(k ) · ®xi )2

n −∑n
i=1 ti

(k+1)

• ®w update: ®w(k+1) is the solution to the weighted least square

problem where we give each (yi , ®xi ) a weight (1-t
(k+1)
i ).

Specifically, this weight (1-t
(k+1)
i ) tells how much the model

should rely on this datum. Thus, if one example has its t
(k+1)
i

as 1 (with probability 1 as an outlier), then it does not con-

tribute to the ®w(k+1) update coefficients.

The update for ®w(k+1) is a weighted least squares update:

®w(k+1) ←
[

X⋆TX⋆

]−1
X⋆T ®y⋆

where X⋆
= VX , ®y⋆ = V ®y andV is a n by n diagonal matrix

with Vii =

√

1 − t (k+1)i .

The algorithm will terminate when parameters ®w,σ ,p,b con-

verge. Since each iteration involves finding the median absolute

error in b update, the time complexity is O(n logn ·T ) where T is

the number of iterations.



4.3 Outlier Labeling

As mentioned before, every filter model assigns to every record i

a score ti indicating an estimated probability that it is an outlier

and an estimated fraction of outliers p. The filter then labels a

record an outlier if it has one of the top K values of ti where

K = ⌊∑n
i=1 ti ⌋ ≈ p × n.

Each filter model identifies different types of outliers. After the

data pass through i filters, each record receives i labels ℓ1, ℓ2, · · · ℓi
from i filters where ℓi = 1 indicates it is an outlier flagged by filter

i and ℓi = 0 otherwise. At the end, we add this record to the outlier

set if ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓi = 1.

5 EXPERIMENTS

The outlier detector was implemented using MapReduce. The rest

of experiments used a machine with 2.00GHz Intel(R) Xeon(R) CPU

and 48 GB RAM.

5.1 Datasets

We apply our filtering model to four real-world unlabeled datasets.

We assume that records in ElNino and Houses datasets are not

corrupted which is also an assumption in [19, 27], so we inject

synthetic outliers. Other datasets such as Bodyfat [? ] and Algae [?

] used in [27] exhibit correlations between attributes. However, we

do not consider them in our experiments because the data size is

too small.

5.1.1 NYC Taxi. A large-scale 22GB public New York City taxi

dataset [2] is collected from more than 14,000 taxis, which contains

173, 179, 771 taxi trips from 01/01/2013 to 12/31/2013. Each record

is a trip with attributes: medallion number (anonymized), hack

license (anonymized), vendor, rate code, store and forward flag,

pickup location, pickup datetime, drop off location, dropoff datetime,

passenger count, payment type, trip time, trip distance, fare amount,

tips, tax, tolls, surcharge, and total amount. We use the subset of

143,540,889 trips which are within the Manhattan borough (the

boundary is queried from wikimapia.org). We examine the outlying

behavior in the trip time, distance, and fare.

5.1.2 Intel Lab Sensor. This is a public Intel sensor dataset [1]

containing a log of about 2.3 million readings from 54 sensors

deployed in the Intel Berkeley Research lab between 02/28/2004 to

04/05/2004. Each record is a sensor readingwith date, time, sequence

number, sensor id, temperature (°C), humidity, light, voltage, and

the coordinates of sensors’ location. We consider two behavioral

attributes as humidity and temperature.

5.1.3 ElNino. This dataset is fromUCI repository [3]with 93,935

records after removing records with missing values. These readings

are collected from buoys positioned around equatorial Pacific. The

sea surface temperature is used as behavior variable while the rest

of the oceanographic and meteorological variables are contextual

variables.

5.1.4 Houses. This dataset is from UCI repository [4] with

20,640 observations on the housing in California. The house price

is used as behavioral attributes and other variables such as me-

dian income, housing median age, total rooms, etc. are contextual

attributes.
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Figure 4: Parameter sensitivity of one filter used for sensor

dataset.

5.2 Initial Parameters Setting and Sensitivity

We describe how we decide the initial value for p, b, σ 2, and ®w used

in the outlier detector.

• p = 0.05. We start with 5% as initial value. We observed that

the final converged value is not very sensitive to initial settings.

Figure 4(a) gives an example of how p changes in the iterations

on NYC taxi dataset, with different starting points, to converge

to approximately the same value 0.114.

• σ 2
= 1. As σ 2 represents the variance of non-outliers, it is pre-

ferred to initially be a small number. In NYC taxi data, Figure 4(b)

shows the convergence path of σ 2 with different starting values

in [0.5, 2].
• ®w = (1, 0, · · · , 0). Let the feature variable be a j dimension vec-

tor ®x = (®x[1], ®x[2], · · · , ®x[j]) and the target variable y. Suppose

there is a linear relationship between variables ®x[1] and y. The
initial coefficient for ®x[1] is set to be 1, i.e., ®w[1] = 1. Others are

initialized as 0.

• b = πe2. The b value only affects ti . We choose this setting so

that the term 0.5log(bσ 2

πe2
) in the ti update in Equation 4 equals

0, and thus each data point’s ti value in the beginning of the

algorithm is dominated by the error (yi − ®w · ®xi ).

5.3 Outlier Detection Baselines

We evaluate Doc against the state-of-the-art algorithms including

traditional outlier detection, contextual outlier detection, regression

models and methods specifically designed for outliers in taxi data.

• density-based method. A widely referenced density-based al-

gorithm LOF [8] outlier mining. We implement this method and

adopt the commonly used settings for neighbor parameter k = 10.

• distance-based method. A recent distance-based outlier detec-

tion algorithm with sampling [25]. We use the provided code and

the default sample size s = 20.

• OLS. The linear regression with ordinary least square estima-

tion. The outlier score of record i is its Cook’s distance Di =



e2
i

s2p

[

hi
(1−hi )2

]

where ei is the error of the ith record, s2 is the

mean squared error of the ordinary linear regression model, p is

the dimension of feature vector ®xi and the leverage of record i is

hi = ®xi [XTX ]−1 ®x T
i .

• GBT. The gradient boosting tree regression model [13]. We select

parameters from a validation set. The outlier score is defined as

the absolute difference between the predicted value and the true

value.

• CAD [24]. Conditional Anomaly Detection. A Gaussian mixture

model U is used to model contextual attributes x where Ui de-

notes the i-th component. Another Gaussian mixture model V is

used to model behavioral attributes y with Vj . Then, a mapping

function p(Vj |Ui ) is used to compute the probability of Vj being

selected under the condition that its contextual variables are gen-

erated fromUj . We set the number of Gaussian components as

30. The outlier score is defined as an inverse of the probability

computed from this approach.

• ROCOD [19]. Robust Contextual Outlier Detection. An ensem-

ble of local expected behavior and global expected behavior is

used to detect outliers. For the local behavior, a neighbor-based

locality sensitive hashing is used to locate contextual neighbors

and an average of neighbors’ behavior attribute is considered as

expected local estimation. A linear ridge regression or non-linear

tree regression is chosen to model the global expected behavior.

We chose the non-linear model as its global estimation because it

is the best performance in Houses and Elnino datasets reported

in their work. The outlier score is computed as the absolute value

of a weighted average of global and local estimates minus the

true value.

• SOD [33]. Smarter Outlier Detection. A method specifically de-

signed for taxi dataset. SOD works by snapping the pickup and

dropoff locations to the nearest street segments. The trips which

fail to be mapped to the street are considered type I outliers.

Next, it computes the shortest path distance and compares that

to actual trip distance to detect outliers (called type II outliers). It

is worth noting that our outlier filtering model can also employ

road network for detecting outliers by simply using the shortest

path distance as an input feature. However, we do not do this

so that we can give SOD an advantage, while seeing how other

features in the data can be used to detect anomalies.

5.4 Experiments on Intel Sensor Data

We describe the filters and confirm detected outliers with Scorpion

[31], which also uses the sensor data for evaluation.

5.4.1 Sensor filters. In this dataset, the temperature is correlated

with voltage and humidity. We use 2 filters below. The first filter

marks 5.2% of total records as outliers (p = 0.052) while the second

filter marks 11.4% (p = 0.114). Among these marked records, 44%

are captured by both filters. Note that sensor’s age refers to the

days or weeks since these sensors were deployed.

(1) log(humidity) = w1 × log(temperature) + ®wa · ®ad + β1, where

®ad is sensor’s age measured in days.

(2) log(temperature) =w2 × log(voltage) + ®w ′a · ®aw + β ′1, where ®aw
is sensor’s age measured in weeks.

5.4.2 Method for Comparison. Because the dataset does not

contain ground truth, we validate our detected Intel sensor out-

liers with findings of Wu and Madden in the Scorpion system [31]

where they, using domain knowledge, manually identify one type

of outliers.

The problematic sensors claimed in Scorpion are temperature

readings ∈ (90°C, 122°C) generated from sensor 15 and sensor 18

and they account for 5.6% of records in the whole dataset. Approx-

imately 11% of records are flagged by our system Doc, including

manually identified outliers in the Scorpion paper. While those man-

ual annotations provide some ground truth (i.e. have high precision),

they may not have flagged all outliers (i.e. recall is unknown).

We also compare with linear regression model with ordinary

least squares estimatation (OLS). We apply the Cook’s distance

(D) to estimate the influence, or the combination of leverage and

residual values, of each record. Points with large Cook’s distance

are considered to have further examination. We flag outliers as

points with D > 4/n where n is the number of observations [7].

The result shows that 4.13% of records are flagged as outliers by

OLS. We do not choose other outlier detection methods listed in

Section 5.3 because none of them provides a threshold in outlier

score for users to flag outliers.

5.4.3 Evaluation Metric. We validate flagged outliers by ma-

chine learning tasks. In cases where ground truth is missing, it is

customary to divide data into training/testing sets. We run our out-

lier detector on the training set and use the flagged training records

to modify the training data (i.e., remove or downweight records sus-

pected of being outliers). Then we build various machine learning

models on the modified training data. The goal is to compare these

accuracy of the models on a common testing set. The main intuition

is that uncaught outliers will degrade the training of the models

and thus hurt testing accuracy; better outlier detection algorithms

are therefore more likely to result in good training datasets that

yield models to perform better on testing data.

To follow this intuition, we use 5-fold cross validation and design

prediction tasks with linear and non-linear regression models. The

evaluationmetrics aremean absolute error (MAE) andmean relative

error (MRE). Since there are also anomalous records in the testing

data, we also use the median absolute error (MedAE) and median

relative error (MedRE). In Table 2, we employ linear regression

(LR), support vector regression with quadratic error function (SVR),

and decision tree regression (DTR) and we put all attributes as

features for the prediction task1 ś predicting temperature where

temperature is the variable involved in 2 outlier detecting filters.

We train the models on four different training sets ś all training

set, all training set minus Scorpion outliers, all training set minus

Doc outliers, and all weighted training set. Note that we use the

scikit-learn [? ] implementation for the model LR, SVR and DTR.

5.4.4 Results. Results are presented in Table 2. In Task1 with

models LR and SVR, removing our detected outliers from training

set or down-weighting those outliers results in lower error. We

also conduct the Paired Student’s t-test and Wilcoxon signed rank

test to show that it is statistically significant that the MAE of our

modified training set (i.e., training set minus our detected outliers)

is lower than the MAE of Scorpion’s modified training set.



Figure 5: The average temperature readings sequence from

2/28/2004 to 4/5/2004

Figure 6: The average voltage readings sequence from

2/28/2004 to 4/5/2004

Note that with the DTR model, using all the training data gets

the lower mean absolute and relative error. However, because the

testing data does contain outliers, the mean can be skewed by them.

The median errors (MedAE, MedRE) are more robust measures of

performance and show that taking out outliers in training set (or

downweighting them) leads to more accurate prediction.

5.4.5 Case Study. 57.2% of flagged outliers are associated with

anomalous temperature reading in Week 3. Doc observes a general

sensor’s malfunction pattern as it is unlikely to be real temperature

in the lab ś fifty five out of total fifty eight sensors exhibit that the

temperature reading is increasing until it reaches around 122°C and

it keeps generating 122°C or above in Week 3 (as shown in Figure 5).

However, on Week 4, almost all sensors generate temperature ∈
[122.15, 175.68) ś hence that is the norm in the data for that week.

This is a very common pattern in the data that 92% of records

produced onweek 4 generates temperature ∈ [122.15, 175.68). Hence
they are classified as normal by Doc. Note that Scorpion refers to

sensors generating high temperature as problematic sensors.

In figure 6, we see that there is a decreasing trend in voltage for

this batch of sensors and this helps to justify the fact that records

with voltage ≥ 2.8 in Week 4 are identified as outliers by Doc.

5.5 Experiments on NYC Taxi

First we describe five filters we used to detect outliers. We validate

the results with human-annotated trips and compare with a method

called Smarter Outlier Detection (SOD) [33], which was specifically

designed for this dataset. In Section 5.5.5 we also compare against

the state of the art outlier detection algorithms.

5.5.1 Taxi filters. We used the following filtering models (where

wi is the coefficient and βi is offset).

(1) Trip time =w1×(dropoff time-pickup time)+β1
(2) Fare =w2×(total amount-tips-tax-toll-surcharge)+β2
(3) log(Trip time) =w3×log(Fare)+β3
(4) log(Trip distance) =w4×log(L2)+β4
(5) log(Trip time) = w5 × log(L2) + ®wt · ®ts + β5, where ®ts is the

vector of 24-dimension temporal features described below.

Filter 1 and 2 encode what should be functional dependencies.

However, they may differ due to software bugs, data entry er-

rors, or device miscalibration. For example, trip time might be

recorded by the taxi meter while pickup and drop-off times might

be recorded by a gps unit with a separate clock. In Filters 3, 4, 5, trip

time/distance/fare/L2-displacement are all positively correlated and

we expect their variance to grow proportionally with the length

of a trip. For this reason, we use logs (so that multiplicative error

becomes additive error). Also, trip time may depend on the time

of day (e.g., rush hour), so we include those components in Filter

5. We partition time of day into 2-hour time slots and separate out

weekends fromweekdays (this giving 12×2 = 24 temporal features).

We note that filters 3 and 5 did not have overlap in the records they

flagged as outliers, thus showing that correlated sensor readings

can fail in different ways.

5.5.2 Taxi Outlier Detection Method Comparison. In total, Doc

flagged 7% of records as outliers (the dataset is known to be noisy).

The code for SOD was not available, so we reproduced it with a

different software package.1 We discarded trips whose end points

are not on roads. The dataset can be categorized into four disjoint

sets: MS̃ - records flagged as outliers by Doc but not SOD, M̃S

- records flagged as outliers by SOD but not Doc, MS - records

flagged as outliers by both methods, and M̃S̃ - records not flagged

by any method.

5.5.3 Evaluation Metric. We designed a human labeling system

for experienced taxi riders to determine outlier trips and to provide

reasons to support their judgements. We provided the labelers with

the taxi fare rate information from the NYC Taxi & Limousine

Commission. Each trip is labeled by three people and we take the

majority votes as the ground truth.

To provide a quantitative evaluation, each time the labeling

webpage randomly selects 10 trips from each of the 4 sets for a

person to label.

5.5.4 Results. In all, 6517 trips were labeled and the results are

shown in Table 3. In setMS̃ , 92% of trips were labeled by humans

as outliers and these are consistent with our approach.

In set M̃S , humans only labeled 16% of the records as outliers.

Thus, when Doc and SOD disagreed, humans tended to agree with

1http://project-osrm.org



Table 2: Performance with/without Outlier

Model LR SVR DTR DTR (test set without outlier)

Train Set MAE MRE MAE MRE MAE MRE MedAE MedRE MAE MRE MedAE MedRE

Task1: temperature prediction

all train 11.94 0.66 14.10 0.75 3.53 0.21 1.12 0.05 2.15 0.1 1.13 0.05

- Scorpion 11.94 0.66 11.23 0.65 3.54 0.21 1.12 0.05 2.15 0.1 1.14 0.05

- OLS 9.8 0.6 14.83 0.74 3.75 0.38 1.1 0.05 1.88 0.09 1.11 0.05

- Doc 9.56 0.53 9.49 0.54 5.7 0.36 0.9 0.04 1.18 0.05 0.87 0.04

weighted 9.56 0.53 6.91 0.46 5.66 0.37 0.9 0.04 1.19 0.05 0.87 0.04

the classification provided by Doc. ForMS and M̃S̃ , both our method

and SOD get the accuracy of 98% and 94% respectively.

Table 3: 4 Sets of Labeled Trips

Seti % trips in

Seti

# labeled

trips

# labeled outliers
# labeled trips in Seti

MS̃ 6.6% 1739 92%

M̃S 0.093% 1698 16%

MS 0.416% 1570 98%

M̃S̃ 90.27% 1510 6%

We use the following evaluation criteria for overall outlier de-

tection performance: detection rate (DR = T P
T P+FN , i.e., fraction of

outliers that are successfully detected as outliers), false positive rate

(FPR = F P
FP+T N , i.e., fraction of normal records that are predicted to

be outlier), precision (Precision = T P
T P+F P , i.e., fraction of detected

outlier that are real outlier), true negative rate (TNR = T N
TN+F P , i.e.,

fraction of non-outlier that are detected as non-outlier).

Note that we use the labeled sampled trips to estimate the ground

truth statistics for entire dataset. The estimation approach is as

follow: suppose, in set i , the total number of trips is u; the number

of sampled trips labeled is v; out of labeled trips v the outliers

account for ϕ %. Hence u × ϕ is the estimated outliers for set i . The

evaluation on both the labeled trips (denoted as on labeled) and

estimated results for all trips (denoted as on all) are presented in

Table 4. From the results it is clear that Doc achieves much better

detection rates for slightly larger false positive rates.

Table 4: Outlier Detection Performance

Our method Doc Competitor SOD

on all on labeled on all on labeled

DR 0.55 0.89 0.035 0.52

FPR 0.006 0.057 0.001 0.484

Precision 0.924 0.94 0.83 0.55

TNR 0.99 0.942 0.99 0.515

5.5.5 Outlier Detection Methods Comparison. We evaluate Doc

against traditional outlier detection and contextual outlier detection

approaches described in Section 5.3. We also adopt the following

statistical-based method as baseline.

statistical-based method. Since we observe some detour trips

in the taxi data. We fit the ratio of travel distance and L2 distance

between end points into Gaussian distribution. The outlier score of

point x is 1 − p(x) where p(x) is the gaussian density function.
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Evaluation metrics. We randomly sampled 22,463 trips as in-

put data to these outlier detectors which give the outlier rank to

every trip. The labeling process uses the same type of methodol-

ogy mentioned in Section 5.5.3. Given the outlier rank of the trips,

we first select every 5 trips to be labeled (i.e., 5th , 10th . . . ). Thus

we get a rough idea of the approximate number of outliers in this

sampled dataset. We label the top 1400 trips for each method and

use the following metrics for evaluation.

Precision @κ =
# trips whose rank ≤ κ and label = Outlier

κ

Fig. 7 shows that our method outperforms others. The top outlier

trips detected by density-based and distance-based methods are

long trips such as trips from upper to lowermanhattan. Even though

they have less neighbors than shorter trips, their trip information

is considered as reasonable by the labeled outcome. In contrast,

our top outlier trips are mainly from device error and thus it could

be obviously identified by people. For the linear and non-linear

regression model as well as the existing contextual outlier detection

(CAD & ROCOD), they can identify extreme outliers in their top

100 outliers. But their precision drops with more false positives

which is due to the biased prediction. We find that trips with rank

greater than 1200 are mostly labeled as non-outliers. Hence the

precision @κ drops around κ = 1000.

5.5.6 Case Study. We describe the anomalous trips and inter-

esting findings. First, we point out the payment systems and trip

time tracking systems provided by Creative Mobile Technologies

(CMT) are programmed differently from those provided by Verifone

(VTS). We expect that the travel time should be consistent with the



duration of dropoff time subtracted by pickup time. Our identified

outliers show that this is not always the case and the discrepancies

are almost always associated with vendor CMT. Similarly, the sum

of cost fields (i.e.,Tip, Tax, Surcharge, Toll, Fare) should equal to

total amount (Total). Those inconsistent cost related fields are all

produced by the VTS payment system.

Second, we identify a type of outliers ranked lower as compared

to those extreme corrupted records. These records contain trip fare

< $3. The metered fare regulated by Taxi & Limousine Commission

(TLC) initially charges $2.5 once a passenger gets in taxis and plus

$0.5 per 0.2 mile or $0.5 per minute in slow traffic. We believe these

records are outliers as they are even less than minimum taxi fare.

Last, 1% of detected anomalous records are trips with almost the

same GPS coordinates from pickup to dropoff location. To investi-

gate this further, we found the park-cemetery manhattan neighbor-

hood and bridges linking manhattan to nearby boroughs (where

gps signal might be weak) are highly correlated with these trips.

5.6 Experiments on Synthetic Outlier Data

For the Elnino and Houses datasets, we inject synthetic outliers into

the original clean data. One perturbation scheme used in [19, 24] is

that they first randomly select a sample ®zi = ( ®xi ,yi ) then, from k

data points of the entire dataset, select another sample ®zj = ( ®x j ,yj )
where the difference betweenyi andyj is maximized. This new data

point ( ®xi ,yj ) is added as an outlier. We do not follow this scheme for

several reasons. First, swapping the attribute values may not always

obtain desired outliers. It is likely that most of the swaps could result

in normal data. Second, as we observe many extreme outliers in the

real-world datasets, swapping values between samples in a clean

data is less likely to produce this extreme difference between yi
and yj . Here we present another way to generate outliers and we

explore different types of outliers where we give controls to where

and how many outliers are injected or its degree of outlierness.

5.6.1 Perturbation Scheme. To injectq×N outliers into a dataset

with N data samples, we randomly select q×N records ®zi = ( ®xi ,yi )
to be perturbed. Let yi be the target attribute for perturbation.

Let ®xi be the rest of attributes. For all selected records, a random

number from (0, α ) is added up to yi as y
′
i . Then we add new

sample ®z ′ = ( ®xi ,y ′i ) into the original dataset and flag it as outlier.

Note that original N data samples are flagged as non-outlier. In

the experiments, we standardized the target attribute to range (18,

30) which are the min and max value of the behavioral attribute in

Elnino dataset. Set α as 50 by default.

5.6.2 Evaluation Metric. Since all these outlier detection ap-

proaches considered in Section 5.3 give rank to each record accord-

ing to outlier score, the Precision-Recall curve (PRC) is obtained

by Precision @κ and Recall @κ for all possible κ where the first κ

ranked records are determined to be outlier. The evaluation metric

we use here is the Area Under the Curve (AUC) of the Precision-

Recall curve instead of the Receiver Operating Characteristic (ROC)

as it is less informative in imbalanced class problem [11].

5.6.3 Results. As up to 6% of records in Sensor dataset are

flagged as outliers due to sensor malfunction, we vary the per-

turbation ratio q from 0.01 to 0.15 to see if our model is robust in

the presence of a large fractions of anomalies. The performance in

terms of AUC is shown in the following tables.

Table 5 presents the results when we perturb behavioral at-

tributes to generate outliers. Doc consistently perform the best

and its difference compared to other methods becomes significant

when more outliers are involved (q > 0.05). Another type of syn-

thetic outliers is produced by adding noise to contextual attributes.

To see how it affects the performance, we select features with high-

est Pearson correlation to behavioral attribute for perturbation. In

Table 6, we observe that a small fraction of outliers in contextual

attribute could hurt the performance considerably for the other

methods, especially for the tree-based approaches such as ROCOD

and GBT on these two datasets. However, our method is robust and

resistant to the fraction of outliers.

We next investigate degree of outlierness of the injected anom-

alies. As α increases, larger magnitude of noise will have more

chance to be added to the original value. Consequently, there are

more extreme outliers and our performance is increased as expected

in Table 7.

6 CONCLUSIONS

Motivated by a real-world problem, we develop a system Docwhich

aims to detect outliers and explicitly considers outliers effect in

modeling. It is a robust outlier detector as compared to the ex-

isting algorithms built on all the data records where their model

parameters are skewed by outliers. Our method could potentially

facilitate the public or research use of large-scale data collected

from a network of sensors.
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