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ABSTRACT

We consider the problem of privately releasing a class of
queries that we call hierarchical count-of-counts histograms.
Count-of-counts histograms partition the rows of an input
table into groups (e.g., group of people in the same house-
hold), and for every integer j report the number of groups of
size j. Hierarchical count-of-counts queries report count-of-
counts histograms at different granularities as per hierarchy
defined on an attribute in the input data (e.g., geographical
location of a household at the national, state and county
levels). In this paper, we introduce this problem, along with
appropriate error metrics and propose a differentially private
solution that generates count-of-counts histograms that are
consistent across all levels of the hierarchy.
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INTRODUCTION

The publication of differentially private tables is an im-
portant area of study with applications to statistical govern-
ment agencies, like the U.S. Census Bureau, that collect and
publish economic and demographic data about the popula-
tion. Most work has focused on ordinary histograms — for
example, generating counts of how many people are in each
combination of age, state, and business sector.

However, an important class of queries that has been
under-studied are hierarchical count-of-counts histograms,
which are used to study the skewness of a distribution. The
2010 Decennial Census published 33 tables related to such
queries [7], but these tables were truncated because formal
privacy methods for protecting such tables did not exist. To
get a count-of-counts histogram, one first aggregates records
in a table R into groups (e.g., A=SELECT groupid, COUNT (*)
AS size FROM R GROUPBY groupid) and then forms a his-
togram on the groups (H=SELECT size, COUNT(*) FROM A
GROUPBY size). Thus H can be treated as an array, where
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H{i] is the number of groups of size i. When there is a hierar-
chical attribute associated with each group such as location,
the goal is to estimate a histogram H for every element in
the hierarchy and enforce consistency: the sum of the his-
tograms at the children equals the histogram at the parent.
For example, consider a table Persons(person-id, group-id,
location), with hierarchy national/state/county on the lo-
cation attribute. A hierarchical count-of-counts histogram
on this table would ask: for each geographic region (na-
tional, state, county) and every j, how many households
(i.e. groups) in that region have j people.

Closely related to count-of-counts histograms are unattrib-
uted histograms (also known as frequency lists) [16, 6], which
are not hierarchical, and whose structure is not well-suited
to express hierarchical constraints on a secondary attribute
like location. Unattributed histograms report the number of
rows in the smallest group, followed by the number of rows
in the second smallest group, etc., i.e. Hy=SELECT COUNT (*)
AS size FROM R GROUPBY groupid ORDERBY size. One can
convert unattributed histograms into count-of-counts his-
tograms and vice-versa, so differentially private unattrib-
uted histograms [16, 20] could be used to generate differ-
entially private count-of-counts histograms (and vice versa,
see Section 4.2).

However, the main focus of our work is hierarchies in
which every group (e.g., household) belongs to exactly one
leaf (e.g., county).! Such hierarchies are natural and impor-
tant for count-of-counts histograms — all of the queries in
the 2010 Census were hierarchical (by location). However,
they are not well supported by existing methods. Currently,
the only known way to get consistent differentially private
count-of-counts or unattributed histograms at every level of
a hierarchy is to estimate them only at the leaves and then
aggregate them up the hierarchy. However, our experiments
show this approach introduces high error at non-leaf nodes
(like in other hierarchical problems [16, 24]).

An alternative is to separately obtain differentially private
estimates at every node in the hierarchy and then postpro-
cess them to be consistent (i.e. aggregating information from
the children should produce the corresponding histogram at
the parent). However, this is far

from trivial. To see why, suppose we g-id size loc.
aggregate the Persons table by group 1 4 a
id (g-id) to obtain the following ta- 2 2 b
ble. At the root, the count-of-counts 3 1 a
histogram is H'P = [2,1,0,1] (ie., L% 1 b

Thus group_id—location is a functional dependency.



2 groups of size one, 1 group of size two, 0 of size three,
1 group of size four) and the corresponding unattributed
histogram is H{°P [1,1,2,4]. At node a, the count-of-
counts histogram is H* = [1,0,0,1] and unattributed his-
togram is Hy = [1,4]; at node b they are H* = [1,1,0,0
and Hg = [1, 2], respectively.

The unattributed histogram is not additive: H ;°p #Hg+
H g , thus existing techniques for enforcing consistency in a
hierarchy[16, 24] do not apply. The count-of-counts his-
tograms are additive, but consistency is still nontrivial for
the following reasons. The standard approach is to formu-
late “consistency” as an optimization problem [16].> Generic
solvers are slow due to the number of variables involved so
fast specialized algorithms, like mean-consistency [16, 24],
have been proposed. However, mean-consistency cannot
solve our problem. First, it can produce negative and frac-
tional answers, both of which are invalid query answers (for
a full list of requirements, see Section 3).3 Second, it relies
on an estimate of query variances that are difficult to obtain.
Instead, we propose a different consistency algorithm based
on an efficient and optimal matching of groups at different
levels of the hierarchy.

Aside from consistency, there are other challenges for dif-
ferentially private hierarchical count-of-counts queries. One
such challenge is properly designing the error metric (this is
true even without a hierarchy). Standard measure like L; or
L, (sum-squared error) distance between the true count-of-
counts histogram H and the differentially private histogram
H are inapplicable. For instance, suppose the true data H
had 20 groups and all had size 1. Consider two different
estimates. Estimate Ha has 20 groups, all having size 2.
Estimate }AIB has 20 groups all having size 10. ﬁA and fIB
both have the same L error and L2 error, but clearly ﬁA
is better than fIB because its groups are closer in size to H.
Earth-mover’s distance [26] is more appropriate and turns
out to be efficient to compute for our problem.

Another challenge is obtaining the initial differentially pri-
vate count-of-counts estimates at each node of the hierarchy
(i.e. the initial estimates on which we will run consistency
algorithms). Naively adding noise to each element of H re-
sults in poor performance. However, we show that some
unattributed histogram algorithms [16, 20] can be adapted
for this task. Nevertheless, most of the time a different ap-
proach based on count-of-counts histograms works better
empirically.* To summarize, our contributions are:

e We introduce the hierarchical differentially private count-
of-counts histogram problem.

e We propose new and accurate algorithms for the non-
hierarchical version of this problem.

e For the hierarchical version, we propose algorithms that
force consistency between estimates at different levels of
the hierarchy.

2In this case, given differentially private estimates of count-
of-counts histograms, modify them as little as possible so
that children add up to their parents.

3Negative answers can be obtained from the final step of the
mean-consistency algorithm that subtracts a constant from
the counts at each node’s children.

4 Of course, one could also use generic tools like Pythia
[18] or the technique of Chaudhuri et al. [9] for selecting
between the two approaches for estimating count-of-count
histograms at each level in the hierarchy.
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e An evaluation on a combination of real and partially-
synthetic data validates our approach. The partially syn-
thetic data are used to extend a real dataset, in which
group sizes were truncated at a small value because, at
the time, it was not known how to publish full results
while protecting privacy.

This paper is organized as follows. We review related work
in Section 2. We formally define the problem and notation
in Section 3. We propose algorithms for the non-hierarchical
version of the problem in Section 4. We show how to ob-
tain consistency in the hierarchical version in Section 5. We
present experiments in Section 6. We discuss conclusions
and future work in Section 7.

2. RELATED WORK

Differentially private histograms have been the main fo-
cus of private query answering algorithms. Starting with
the simplest application, adding Laplace noise to each count
[12], these methods have progressively become more sophis-
ticated and data aware to the point where they take advan-
tage of structure in the data (such as clusters) to improve
accuracy (eg., [3, 19, 30, 28]). Extensions for optimizing
various count queries have also been proposed [19, 8, 15].

Ordinary histograms have also been extended with hierar-
chies. The addition of hierarchies makes data release prob-
lems more challenging as well as more applicable to real-
world uses. One of the earliest examples of hierarchical his-
tograms was introduced by Hay et al. [16], in which the data
consist of a one-dimensional histogram that is converted to
a tree, where each node represents a range and stores one
value (count of the data points in that range) and the value
at a node must equal the sum of the values stored by the
children. Qardaji et al. [24] determined a method to com-
pute the fanout of the tree that is approximately optimal
for answering range queries. Other, more flexible, partition-
ing of the data have also been studied (e.g., [29, 10, 27]).
Ding et al. [11] provided extensions to lattices in order to
answer data cube queries instead of just range queries. In
our setting, the hierarchies are already provided and the
goal is to get consistent count-of-counts histograms at each
level of the hierarchy. The algorithms used for consistency
in ordinary histograms do not satisfy the requirements of
count-of-counts histograms (as explained in Sections 3 and
5), and so new consistency algorithms are needed.

The work most closely related to our problem are un-
attributed histograms [16, 6] which are often used to study
degree sequences in social networks [20, 17]. Unattributed
histograms are the duals of count-of-counts queries (they
count people rather than groups) and can be used to answer
queries such as “what is the size of the k' largest group?”
They are much more accurate than the naive strategy of
adding noise to each group and selecting the k' largest
noisy group [16]. Although unattributed histograms do not
have a hierarchical component, our techniques solve the hi-
erarchical version of this problem because count-of-counts
histograms can be converted to unattributed histograms.

3. PROBLEM DEFINITION

Consider a database D consisting of these 3 tables: En-
tities(entity_id, group-id), Groups(group-id, region_id), and



Hierarchy(region-id, levely, levels,. .., levely), where the en-
tity_id and group.id are randomly generated unique num-
bers. Every entity belongs to a group and every group is in
aregion. Regions are organized into a hierarchy (as encoded
by the table Hierarchy), where level 0 is the root contain-
ing all regions, level 1 subdivides level 0 into a disjoint set
of subregions, and, recursively, level i 4+ 1 subdivides the
regions in level ¢. For example, level 0 can be an entire
country, level 1 can be the set of states, and level 2 can
be the set of counties. We let I' represent the hierarchy
and we will use 7 to denote a node in the hierarchy. For
each region ¢, we let Level;(£) denote its ancestor in level
j. For example, if £ is a region corresponding to Fairfax
County, then Level; (¢) =“Virginia” and Level, (¢) =“Fairfax
County.” We add the restriction that a group cannot span
multiple leaves of the region hierarchy (i.e. each group is
completely within the boundaries of a leaf node).

We now consider what information is public and what
information is private.

e Hierarchy — this table only defines region boundaries and
so is considered public.

Groups — the group id is a random number so the only
information this table provides is how many groups are
in each region. We consider this table to be public to
be consistent with real world applications such as at the
U.S. Census Bureau, where the number of households
and group quarters facilities in each Census block is as-
sumed (by the Bureau) to be public knowledge because
it is easy to obtain by inspection.®

Entities — this table contains information about which
entities (e.g., people) are in the same group. We treat it
as private.

For example, in Census data, groups can be housing facilities
(households and group quarters) and entities are people. In
taxi data, groups could correspond to taxis and entities to
pick-ups of passengers.

Each node 7 in the hierarchy I'" has an associated group-
size histogram 7.H (or simply H when 7 is understood from
the context). 7.H[i] is the number of groups, in the region
associated with 7, that have i entities in them. We also use
7.G to represent the (public) number of groups in 7 since
that can be derived from the public Groups table. There are
two other convenient representations of the count-of-counts
histogram 7.H:

e 7.H.: This is the cumulative sum histogram, defined as
T.Hcli] = > %, 7.H[j], which is the number of groups of
size less than or equal to . Note that the last element of
7.H, is therefore 7.G (the total number of groups in 7).
For example, if 7.H = [0,2,1,2] then 7.H. = [0,2, 3, 5].

7.Hg: This is the unattributed histogram. 7.Hgli] is the
size of the i*" smallest group in 7. Thus the dimension-

ality of 7.H, is 7.G. Note that 7.H, is an unattributed

SIf one wishes to make the Groups table private, our meth-
ods can be extended. The most straightforward approach
is to first estimate the number of groups in each region by
adding Laplace noise to each count. These estimates can
be made consistent by solving a nonnegative least squares
optimization problem. Since there is only one number per
region, it is a relatively small problem that can be solved
with off-the-shelf optimizers. Once the counts are generated
they can be used with our algorithm.
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histogram in the terminology of Hay et al. [16]. For ex-
ample, if 7. H = [0,2,1,2] then 7.H, = [1,1, 2, 3, 3] (since
there are two groups of size 1, one of size 2, and two of
size 3).

The conversion in representation from H to Hy to H. (and
vice versa) is straightforward and is omitted.

The privacy definition we will be using is e-differential
privacy [12] applied at the entity level. More specifically:

DEFINITION 1 (DIFFERENTIAL PRIVACY). Given a pri-
vacy loss budget € > 0, a mechanism M satisfies e-differential
privacy if, for any pair of databases D1, D2 that contain the
public Hierarchy and Groups tables, and differ by the pres-
ence or absence of one record in the Entities table, and for
any possible set S of outputs of M, the following is true:

P(M(D1) € S) <eP(M(D2) € S)

Thus the differentially private hierarchical count-of-counts
problem can be defined as:

PrROBLEM 1. LetT" be a hierarchy such that each node T €
I' has an associated count-of-counts histogram 17.H. Develop
rH : 1€ I‘}
while satisfying e-differential privacy along with the follow-
ing desiderata:

an algorithm to release a set of estimates {

o [Integrality]: 7.H][i] is an integer for all i and T € T
e [Nonnegativity|: Tf[[z] >0 for alli and 7 € T.
o [Group Size]: ). r.H[i) = 7.G for all T €T.

e [Consistency]: T.H[i]= S c.H[i] for and 7 €T, i.
c€children(T)

These constraints ensure that the count-of-counts histograms
satisfy all publicly known properties of the original data.

3.1 Error Measure

The error measure is an important aspect of the problem
as we would like to quantify the “distance” between 7.H and
r.H. Ideally, we would like to measure this distance as the
minimum number of people that must be added or removed
from groups in 7.H to get r.H.

The standard error measures of Manhattan distance ||7.H—
7.H||, or sum-squared error ||7.H — 7.H||3 do not capture
this distance measure. To see why, suppose H = [0, 100, 0,
0,0, 0] meaning that all 100 groups have size 1. Consider two
estimates H; = [0,0,100,0,0,0,0] (where all groups have
size 2) and H, = [0,0,0,0,0,100] (where all groups have
size 5). We see that ||[H — Hy||; = ||[H — Ha||; = 200 and
||[H — Hi|j3 = ||H — H,||3 = 20,000. However, we should
consider H to be closer to H than Hy is. The reason is that
if we add one extra person into each group in Hi, we would
obtain fh, On the other hand, to obtain ﬁz, we would need
to add 4 people to each group.

Thus, the appropriate way to measure distance between
H and H is the Earthmover’s distance (emd) as it precisely
captures the number of people that must be added to or
removed from groups in H in order to obtain H. Normally,
computing emd is not linear in the size of an array [26].
However, it can be computed in linear time for our problem
by using the cumulative histograms.



LEMMA 1 ([23]). The earthmover’s distance between H
and H can be computed as ||Hc—fICH1, where H. (resp., ﬁc)
is the cumulative histogram of H (resp., f]) It is the same
as the L1 norm in the Hy representation when the number
of groups is fixed.

Our algorithms optimize error according to this metric.

3.2 Privacy Primitives

We now describe the privacy primitives which serve as
building blocks of our algorithm. One important concept is
the sensitivity of a query.

DEFINITION 2. Given a query q (which outputs a vector),
the global sensitivity of q, denoted by A(q) is defined as:

Al) = max lla(D1) ~ a(D2)lls,

where the mazximum is taken over all databases D1, D2 that
contain the public Hierarchy and Groups tables, and differ
by the presence or absence of one record in the Entities table.

The sensitivity is used to calibrate the scale of noise needed
to achieve differential privacy. We can use the Geometric
Mechanism [13] instead of the Laplace Mechanism [12], be-
cause we want our final counts to be integers. The Geometric
mechanism is also preferable to the Laplace mechanism as
it has lower variance, and is not susceptible to side-channel
attacks when implemented in floating point arithmetic [22].

DEFINITION 3 (GEOMETRIC MECHANISM [13]). Given a
database D, a query q that outputs a vector, and a privacy
loss budget €, the geometric mechanism adds independent
noise to each component of q(D) using the following distri-
bution: P(X = k) = 1=i=e /29D (for | = 0,41, +2,
etc.). This distribution is known as the double-geometric
with scale A(q)/e.

LEMMA 2 ([12, 13]).
fies e-differential privacy.

The Geometric Mechanism satis-

4. THE BASE CASE:NON-HIERARCHICAL
COUNT-OF-COUNTS

In order to create consistent estimates of 7.H for all nodes
7 in the hierarchy I', we first create estimates of 7.H inde-
pendently and then post-process them for consistency. In
this section, we discuss how to generate a differentially pri-
vate estimate 7.H for a single node (i.e. temporarily ignoring
the hierarchy). In Section 5, we show how to combine the
estimates 7. H (for all 7 € T') to satisfy consistency.

In the rest of this section, we focus on a single node in
I', so to simplify notation we use the notation H instead
of 7.H. We first discuss a naive strategy for estimating H ,
along with 2 more robust strategies.

4.1 Naive Strategy

The naive strategy for estimating H is to use Definition 3
and add double-geometric noise with scale 2/¢ to each cell
of H. However, because the maximum group size is not
known, the length of H is private. Thus we must determine
a maximum non-private size K and make the following mod-
ifications to H. If all groups in H have less than K people,
then H is extended with 0’s until its length is K+ 1. If some

groups of H have size more than K, we change the sizes of
those groups to K. Call the resulting histogram H'. We
then add double-geometric noise with scale 2/¢ to each cell
of H'. This strategy satisfies e-differential privacy because
the sensitivity of H’ is 2:

LEMMA 3. The global sensitivity of H' is 2.

Proor. For any group size ¢ < K, adding a person to a
group of size i decreases H'[i] by one and increases H'[i + 1]
by one. When i > K, there is no change to H’. Similarly,
removing a person from a non-empty group of size i < K
increases H'[i — 1] by one and decreases H'[i] by one (for a
total change of 2). If i > K, there is no change to H'. [

Let H be the noisy version of H’. The numbers in H
can be negative. Thus we post-process H to obtain an esti-
mate H by solving the following problem (using a quadratic
program solver):

H = argmin ||H — H||3
H

st. Hli]>0foralli and ZITI[Z] =G

To get integers, we set 7 = G — >, | H[i]], round the cells
with the r largest fractional parts up, and round the rest
down.

This approach has several weakness. First, there are many
indexes i where H[i] = 0 and, after noise addition, many of
them (a ezf;fl fraction of indices) will have non-zero entries.
Then roughly half of them end up with positive counts due to
nonnegativity constraints. As a result, in our experiments,
this method had several orders of magnitude worse error
than the algorithms we describe next. Second, earthmover’s
distance is equivalent to measuring error between the cu-
mulative sums of the estimate H and the original data H:
2ol < ﬁ[]] — > ,<i H[j]|- Since noise is added to every
h

cell independently, the i*® component of the error depends
on the sum of ¢ random variables (whose total variance is
O(7)). Hence, if H has n components, one would expect the
error to be O(n?).

4.2 Unattributed Histograms #,

The next approach is to use algorithms for unattributed
histograms [16]. We can convert H into the representation
H,, where H,[i] is the size of the i™ smallest group. The
length of H, is G, so potentially this can be a very large
histogram. One of the properties of H, is that it is non-
decreasing. Hence we can achieve e-differential privacy by
adding independent double-geometric noise with scale 1/¢ to
each element of H, to obtain H g, because the sensitivity of
unattributed histograms is 1 [16]. However, fIg is no longer
non-decreasing (or even nonnegative), hence, following [16,
20], we post-process it by solving the following optimization
problem with either p =1 or p = 2:

ﬁg = argnlinllffg - ﬁg”i
g

sit. 0< Hyli) < Hyli4+ 1) fori=0,...,G —1

Then we round each entry of H, ¢ to the nearest integer. Since
the result was non-decreasing before rounding, it will remain
non-decreasing after rounding. Then from the resulting H,
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estimate, we convert it back to H by counting, for each i,
how many estimated groups have size i.

This optimization problem is known as isotonic regression.
When p = 2 it can be solved in linear time using the min-
max algorithm [5], pool-adjacent violators (PAV) [4, 25], or
a commercial optimizer such as Gurobi [14]. When p = 1
it can be converted to a linear program but it runs much
slower. In our experiments, we used p = 2 because H, can
have length in the hundreds of millions. For these sizes, the
quadratic program is much faster to solve using PAV.

One observation we had is that this method is very good
at estimating large group sizes, and most of its error comes
from estimation errors of small group sizes (see Figure 1).

4.3 Cumulative Histograms .

Another strategy is to use H., the cumulative sum of H.
Since the cumulative sum is non-decreasing, we again can
add noise and use isotonic regression. As in the naive case,
we must determine a public upper bound® K on H and
modify H appropriately (as in Section 4.1) before computing
the cumulative sum. We saw in Section 3.1 that error in
estimation of count-of-counts histograms is measured as the
L, difference between cumulative size histograms. Thus it
makes sense to privatize these histograms directly.

LEMMA 4. The global sensitivity of H. is 1.

PRrROOF. Adding one person to a group of size i means
there is one less group of size i and one more group of size
i+ 1. Thus H.[i] decreases by one but H.[i + 1] remains
the same (i.e., number of groups < i + 1 does not change).
None of the other entries of H. change. Similarly, removing
a person from a group of size i means H.[¢ — 1] increases
by one and H.[i] does not change (and neither do any other
entries). Thus the overall change is 1. [

Thus we can satisfy differential privacy by adding indepen-
dent double-geometric noise with scale 1/€ to each cell of H.
to get H.. We then postprocess H. by solving the following
optimization problem (using p =1 or p = 2):

H, = argmin ||H, — He|[}
HC

s, 0< Heli] < HJi4+ 1) fori=0,..., K
and HK] =G

These problems can again be solved using PAV (in the case
of p = 2) or with a commercial optimizer (in the cases of
p=1or p=2). In our experiments, we found that the L
version of the problem (with p = 1) performs better than
the Lo version (with p = 2). This is consistent with prior
observations on unattributed histograms [20]. A Bayesian
post-processing is known to further reduce error, but we did

SRecall K is an upper bound on the maximum number of
people in a group. This method is not very sensitive to
K — in the experiments we used K = 100,000 on datasets
where the largest group had around 10,000 people — an order
of magnitude difference and still the estimated size of the
largest group ended up being around 10,000. Thus if we
have no prior knowledge, we can estimate K as follows. Set
aside a small privacy budget, since K does not need much

accuracy (e.g., € = 107%). Let X be the number of people

in the largest group. Estimate K as X+Laplace(1/¢€) + 5@

—i.e. add 5 standard deviations to a noisy estimate of X so
that P(K > X) > 0.9995
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Figure 1: Error visualization. z-axis: cumulative

sum of group size counts. y-axis: estimation error at
these sizes. Top: H, method (Section 4.2). Bottom
H. method (4.3). Errors from the H, method are
concentrated around small group sizes. Errors from
H. are more dense throughout the rest of the sizes.

not use it because it scales quadratically with the size of
the histogram (the sizes of our histograms make this pro-
hibitively expensive) [20]. Finally, we then round H, to
nearest integer and convert it back into a count-of-counts
histogram H. We found that the L; version of the problem
mostly returns integers, so rounding is minimal.

Unlike the Hy method, we found that this method is accu-
rate for small group sizes but less accurate for large groups.

S. HIERARCHICAL CONSISTENCY

Our overall algorithm for the hierarchical problem is shown
in Algorithm 1. The hierarchy I" has L + 1 levels (including
the root), so we use €¢/(L 4+ 1) budget for estimating r.H
for each 7 € T' (using either the H. method or H,; method
from Section 4). Then we run a consistency post-processing
algorithm to obtain new histograms 7.H' such that the his-
tograms at each parent equals the sum of the histograms at
its child nodes. N

Typically, for a hierarchy I" with noisy data 7.H at each
node, one would use the mean-consistency algorithm [16] to
get consistent estimates 7.H' with the property that the sum
of data at child nodes equals the data at the parent node. In
the group-size estimation problem, this algorithm will not
produce outputs satisfying the problem requirements (Sec-
tion 3). The reason is the following. The mean-consistency
algorithm solves the global optimization:

S llrH —7.H||3
EF} Tel

>

c€children(r)

min
{rﬁ’ :

{T.ﬁ/ T TE F} = arg

T

subject to T.H' = c.H

This algorithm does not meet the necessary requirements
for several reasons. First, it outputs real (and even neg-
ative7) numbers while our problem requires the conditions

that 7.H' is an integer, is nonnegative, and > . H'[i]

"The solution given by mean-consistency can be negative
even if all input numbers are positive. We verified this
phenomenon using that algorithm and also with commer-



Algorithm 1: Top-down Consistency

Input: privacy loss budget €, Hierarchy I' with root at

level 0
for {=0,...,L do
ee=¢/(L+1)

for each node T in level £ of T do
L 7.H «H, or Hy method(eg, 7.H,7.G) // Sec 4

convert 7.H to T.Hy

(3 B N

/* Consistency Step */

6 for every node 7 in I' do
7 L 7.Vy4 «EstVariance(r.Hy) // Section 5.1
8 root.H' = root.H; root.V, =root.Vy
9 for (=0,...,L—1do
10 for every mode T in level £ of T do
/* Matching alg in Section 5.2 */
11 My — Match(r.ﬁ,{c.f[ tcé€ children(T)}) for

each c € children(7) do /* Sec 5.3 */

12 L (c.}?[é, ¢.Vy) < Update(m-, c.Hy, cVy, T.ﬁ;, 7.Vy)

13 Convert T.ﬁ; to 7.H' for all leaf nodes 7
14 for (=L —1,...,0 do /* Back-Substitution */

7 7!
15 L TH = Zcechildren(f) cH

16 return {T.ﬁ’ 1 TE F}

7.G (the private estimator must match the publicly known
groups table). Second, it requires knowledge of variances
[24] — in our case, the variances of 7.H][i] for every T and i.
Not only is this variance different for every ¢ and 7, but it
has no closed form (because of the isotonic regression used
to generate 7.H).

Our proposed solution converts 7.H back into the un-
attributed histogram T.ﬁg. It estimates the variance of the
size of each group (Section 5.1); e.g., variance estimates for
T.ﬁg, not 7.H. It then finds a 1-to-1 optimal matching be-
tween groups at the child nodes and groups at the parent
node (Section 5.2). This means that each group has a size
estimate from the child and a size estimate from the par-
ent. It merges those two estimates (Section 5.3). The result
is a consistent set of estimates 7.H’ that satisfy all of the
constraints in our problem. The overall approach that puts
these pieces together is shown in Algorithm 1, while the
specifics are discussed next.

5.1 [Initial Variance Estimation

The first part of our algorithm produces a differentially
private count-of-counts histogram r.H for every node 7. We
then convert it into the unattributed histogram T.fIg. For
each i, we need an estimate of the variance of the i*™® larg\est

group 7.Hy[i]. Now, the count-of-counts histogram 7.H is
obtained either from the H, method (Section 4.2) or the

cial optimizers. Intuitively, this happens because the mean-
consistency algorithm [16] has a subtraction step, in which a
constant number is subtracted from each child so that they
add up to the parent total. For children with small counts,
this subtraction gives negative numbers.

S 4 4 4
4 4 3 3
3 mp
2
0 I 0
. H, 7. H,
Figure 2: L2 Isotonic Regression converts a noisy
histogram that is no longer nondecreasing into a

nondecreasing histogram by partitioning and aver-
aging within each partition.

cumulative histogram H. method (Section 4.3) and so the
variance depends on which method was used.®

5.1.1 Variance estimation for the H, method

Recall that in the unattributed histogram method, we ob-
tained a noisy array (noise was added to 7.Hy) and per-

-~

formed isotonic regression on it to get 7.H,. Since we need
an estimate of the variance of T.}AIg [i], we can use the follow-
ing special properties of isotonic regression solutions [4]. As
shown in Figure 2, isotonic regression is equivalent to taking
a noisy 1-d array, partitioning the array, and assigning the
same value to each element within a partition. In the case of
Lo isotonic regression, this value is the average of the noisy
counts from the partition. In the case of Li, this value is
the median of the noisy counts in the partition. Thus the
variance of each cell in the resulting array depends on the
variance due to partitioning and the variance due to aver-
aging the noisy counts. We cannot quantify the variance
due to partitioning. However, the variance due to averaging
noisy counts can be estimated.

Each noisy count is generated by adding noise from the
double-geometric distribution with scale 1/e1. Its variance
can be approximated by the variance of the Laplace distri-
bution with the same scale. Namely, the variance is 2/¢7. In
a partition of size S (and L2 isotonic regression), the value
assigned to that partition is the average® of S noisy values
and so has variance 2/(Se?). The partitions that were cre-
ated by the solution of the isotonic regression are easy to
determine — they are simply the consecutive entries in the
solution that have the same value. R

Thus, our estimate of the variance for group ¢ in 7.H,
is computed as follows. Let S; be the number of groups
that were in the same partition as ¢ in the solution (i.e.
the number of entries in 7.H, that equal 7.H,[i]). Set the
variance estimate for the i*" largest group to be the following

in Line 7 of Algorithm 1: 7.V4[i] = \S-2| .
il€7

5.1.2  Variance for the cumulative histogram method

The cumulative histogram method also uses isotonic re-
gression, but uses it to create T.ﬁc while we need estimates
of the variance of T.ﬁg [¢]. Since the H, representation is a

8Generally, H. works well for all levels. Users preferring
fine-grained control can use generic algorithm selection tools
[18, 9].

%In the case of L) regression, the value assigned to the par-
tition is the median of S noisy values; the variance of the
median is difficult to compute, so we again estimate it as

2/(8¢)
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nonlinear transformation of the H. representation, we must
use a different way to estimate variance.

We know that before the isotonic regression in the H.
method, independent noise with scale 1/e; was added to
each cell of 7. H. so we (over)estimate the variance of T.ﬁc [7]
as 2/€7. The estimated number of groups of size j is r.H. 71—
7.H.[j — 1] so it would have variance 4/¢2. Dividing by the
number of estimated groups of size j, this gives 451’2/(7.1?[6 [7]
—7.H.[j — 1]) as the estimated variability in each group
whose size is estimated to be j. Thus we set our estimate of
the variance of the j*" largest group to be the following in
Line 7 of Algorithm 1:

7.V,li] = 4/(¢3 x number of estimated groups of size 7.H,][i])

5.2 Optimal Matching

Now, every group belongs to a node in each level of the
hierarchy (e.g., a household in Fairfax county is also a house-
hold in Virginia). Since group size distributions are esti-
mated independently at all levels of the hierarchy (lines 1 —
4 in Algorithm 1), this causes several problems. First, each
group has several size estimates (a household has a certain
estimated size from the Fairfax County estimates and an-
other estimated size from the Virginia estimate). Second,
from these separate estimates, we don’t know which group
in one level of the hierarchy corresponds to which group at
a different level of the hierarchy (e.g., is it possible that the
10274 largest household in Virginia, with estimated size 12
is the same as the 3" largest household in Fairfax County,
with estimated size 137).

Thus, to make the group size distribution estimates con-
sistent, we need to estimate a matching between groups in 7
and groups in the children of 7, as in Figure 3. For privacy
reasons, such a matching must only be done using the dif-
ferentially private data generated in Line 4 of Algorithm 1.
In this section we explain how to perform this matching and
in the next section we explain how to reconcile the different
size estimates.

Formally, a matching is a function m that inputs a node
7 and an index ¢ and returns a node ¢ and index j with the
semantics that the ¢*" smallest group in 7 is believed to be
the same as the 5™ smallest group in child ¢ of 7. We must
estimate this matching using only differentially private data
(e.g., 7.H for each node 7). We first convert each 7.H into
the unattributed representation 7.H,, where 7.H,[i] is the
size of the ‘" smallest group in 7.

For each node 7, we set up a bipartite weighted graph as
shown in Figure 3. There are 7.G nodes on the top half.
We label them as (7,1),(7,2),...,(r,7.G). Each node on
the bottom half has the form (c, j), where ¢ is a child of 7
and j is an index into ¢.H,. Between every node (r,4) and
(c,7) there is an edge with weight |7.H,[i] — c.H,[j]| which
measures the difference in estimated size between the i*®
smallest group in 7 and the j*® smallest group in c.

Our desired matching is then the least cost weighted match-
ing on this bipartite graph. Sophisticated matching algo-
rithms (e.g., based on network flows) can find an optimal
matching, but they have time complexity at least O(7.G)?
[21]. In our case, 7.G can be in the millions (e.g., there are
over 100 million households in the U.S.).

There exists a well-known 2-approximation algorithm for
matching, which adds edges to the matching in order of in-

Parent t

©H,[0] wH'] wH'[2 «H'[B w4 «h5]

A0 4 O
O ¢ oo O O

61.1?;[0] 51.171;[1] 51.171;[2] cZ.FI;[O] cZ.FI;[l] cZ.FI;[Z]

Child ¢, Child c,

Figure 3: Consistency Matching Illustration

Algorithm 2: Matching

Input: 7.H, and c.H, for ¢ € children(r)

// Unmatched nodes from top of bipartite graph
Top «+ {i : i=1,...,7.G}

// Unmatched nodes from the bottom
Bot < {(¢,4) : c € children(r);i=1,...
while Top# 0 do

// Smallest unmatched group size in Top

4 St < min {T.ﬁg[i] NS Top}

=

N

,¢.G}

w

// Smallest unmatched group size in Bot
5 $p < min {cl’?[c[z] ¢ (¢0) € Bot}

// All groups from Top with min size

6 | Gi+ {z € Top : 7.H,[i] = st}

// All groups from Bot with min size
Gy + {(c, i) € Bot : c.Hyli] = sb}

8 if |G| > |G| then

~

// all nodes in G, can be matched now
9 For each i € Gy, assign it arbitrarily to a unique
(¢,7) € Gy
10 Remove 4 from Top and (¢, j) from Bot
11 else
// Some nodes in (G, can be matched now
12 num|c]  # records in G, belonging to child c.
13 for each child ¢ of T do
14 assign |Gt|% of the nodes in G; to
arbitrary nodes in G} from child ¢
15 Remove matched nodes from Top and Bot

16 return the matching

creasing weight [21]. However on our graph it would run
in O(1.G?log 7.G) time as there are 7.G* edges and they
need to be sorted. Instead, we take advantage of the special
weight structure of our edges to produce an optimal match-
ing algorithm with time complexity O(7.G log 7.G).

5.2.1 Optimal Matching Algorithm

The algorithm is shown in Algorithm 2. To achieve the
desired time complexity, we sort the groups in 7 in increasing
order and do the same to the set of all of groups in all
of the children (hence the O(7.Glog7.G) cost). We then
proceed by matching the smallest unmatched group in 7 to
the smallest unmatched group among any of its children.

Normally there are many groups from r.H ¢ with the same
size and many child nodes with the same size that they can
match to. For example, there can be 300 groups of size 1 in
T.ﬁg and the child nodes together can have 200 groups of
size 1. Thus we can match 200 of the groups from the parent
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with the 200 groups at the children. The specifics of which
group of size 1 in the parent matches which group of size 1
in the children is completely unimportant (since the groups
of size 1 at the parent are completely indistinguishable from
each other) and hence can be done arbitrarily as in Line 9 in
Algorithm 2. After this matching, the remaining 300-200=
100 groups of size 1 in the parent will then be matched with
groups of size 2 in the child nodes, etc.

Sometimes, not all of the groups in the children can be
matched at once. For example, the parent may have 300
groups of size 1, but there are 3 children with child ¢; hav-
ing 200 groups of size 1, c2 having 100 groups of size 1, and
cs having 100 groups of size 1. In this case, the assignments
are done proportionally:'® 50% of the parent’s groups of size
1 are matched to the corresponding groups in C1, 256% are
matched to the corresponding groups at c2, and the remain-
ing 25% are matched to the groups in c3 (e.g., line 14 in
Algorithm 2). In this situation, all of the size 1 groups in
the parent will have been matched, but there will be some
size 1 groups in the children that are not yet matched. The
next iteration of the algorithm will try to match them to
size 2 groups in the parent.

LEMMA 5. If the weight between edges of the form (r,1)
and (c,j) equals |T.Hy[i] — c.Hy[j]|, then Algorithm 2 finds
the optimal least-cost perfect matching.

PrOOF. We say that two matchings m; and ms have a
trivial difference at edge (a,b) if all of the following hold:

1.
2.

m1 matches a to b.

there are nodes d, ¢ such that ms matches a to ¢ and d
to b.

if ms is modified to match a to b and d to ¢, then the
cost of my doesn’t change.

3.

Two matchings m1 and ms have a non-trivial difference at
edge (a,b) if (a,b) is part of matching m1 but not ms, and
it is not a trivial difference.

Let m be the matching returned by Algorithm 2. Assume,
by way of contradiction, that m is not optimal. In this
case, there will always be optimal matchings with no trivial
differences with m (i.e. all differences will be nontrivial).
This is because we can make trivial differences at an edge
(a,b) disappear by performing the modification discussed
above which doesn’t cause the cost to change.

When examining the order in which pairs of matched
nodes are added to m by Algorithm 2, for any optimal
matching m’ with no trivial differences, there is a first time
at which m and m’ have a non-trivial difference, e.g., they
agree on the first n matchings but disagree on the n + 1st.
Let m* be an optimal matching that has no trivial differ-
ences, and has the largest possible time for its first non-
trivial difference. Let the edge on which m and m* first
differ be ((7,1%), (¢,5)). This means that m™ matches (7,7)
to some (c*,j*) and matches some (7,i%) to (c, 7).

By construction of the algorithm, the following are true:
and

TH[]<TH[] cH[]<cH[}

108ometimes the proportions tell us that the r groups at the
parent should be matched with r1 groups at child c;, r2 at
child ¢z, etc. (with 7 = r1 + 72 +...) but the r; are real
numbers instead of integers. In this case we find the unique
k such that rounding up the r; with the k largest fractional
parts and rounding the rest down gives integers that sum
up to r.
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otherwise either node (c¢*, ;") would have been matched by
the algorithm before (c, ), triggering a non-trivial difference
earlier, or (7,4") would have been matched by the algorithm
before (7,1), causing a non-trivial difference earlier; in either
case, this would contradict the fact that ((7,%), (¢, J)) is the
first non-trivial difference.

Now there are only four possible cases:

1. 7.Hy[i] < 7.H,[i*] < c.Hy[j] < ¢*.Hy[j*]
2. T.Hyli] < c.H,[j] < 7. H,[i*] < ¢*.Hy[j*]
3. ijg[ﬂ < C*;\Hg[j*] < ;\Hg[i] < T~I:\Ig[i*}
4. c.H,lj) < r.H,[i] < ¢*.Hy[j*] < 7.H,[i*]

Cases 1 and 3 are symmetric (they involve interchanging
the top and bottom of the bipartite graph) and Cases 2 and
4 are also symmetric in the same way. Thus the same proof
technique for Case 1 will apply to Case 3, and the same
technique for Case 2 will apply to Case 4.

Case 1: 7.Hy[i] < 7.H,[i*] < c.Hy[j] < ¢*.H,[j*].
on this ordering, we first list a few identities:

Based

T o 1| — T gl =T H[i*]]
|T'H9[Z] CHQ[.]H +|r.Hgli]—c.Hyl5]| (1)
SN TR -*_\THq[z] eyl
|T'HQ[Z ] c Hg[] ” +le. Hq[] *Hgli*]| (2)
~ ok |7'Hg[] A;q\[ 1l
|T.Hgi] — " Hglj"]| = +Ir. ng e-Hy ]| (3)
+le- Hg[] L Hg[57]
7. Hy (i) — . Hol]] = |.Hy i ]—cH bl @

Now we see that the sum of Equations 1 and 2 equals
the sum of Equations 3 and 4. Thus we can change the
optimal matching m* by matching (7,%) to (¢, j) (instead of
the original connection (7,7) to (¢*,j*)) and match (,4")
o (c*,j) and the cost of the matching will stay the same
(contradicting the choice of m™ — that it is not supposed to
have trivial differences from m; in fact, such reassignment
of edges is how trivial differences are removed).
Case 2: 7.H,[i] < c.H,[j] < 7.H,[i*] < ¢*.H,[j*]

From this ordering it is clear that:

H []—cﬁ 11 + I Hyli") = ¢ Hy 5]

ali] = ¢ Hylj"]]
Hyli] = ¢ Hy[j"]| + |7 Hq[i"] — c.H[J]]

\/\\‘

|7.H,
<|r.H
Thus we can change the optimal matching m* by match-
ing (7,4) to (c¢,7) (instead of the original connection (7,7)
to (¢*,4")) and match (7,i*) to (c*,7) and the cost of the
matching will either decrease (contradicting optimality of

m™) or stay the same (contradicting the choice of m* — that
it is not supposed to have trivial differences from m).

Case 3: c.H,[j] < ¢*.H,[j*] < 7.Hyli] < 7.H,[i*]. Sym-
metric to case 1, so omitted.
Case 4: c.Hy[j] < 7.Hyli] < ¢".Hyl[j*] < 7.Hy4[i*]. Sym-

metric to case 2, so omitted. [J

5.3 Merging Estimates

Given a node 7, the matching algorithm assigns one group
in 7 to one group in some child of 7 (i.e. it says that, for
every 4, the i*® smallest group in 7 matches the j*® smallest
group in child ¢ of 7). This means that for every group, we
have two estimates of its size: T.ffg [i] and c.H,[j] as well as
corresponding estimates of its variance 7.V [i] and ¢.Vy[j].
There are two possible ways of reconciling these estimates.



Naive strategy. The simplest way is to simply average
7.H,li] and c.H,[j]. This approach would be valid if the
variance estimates were not accurate — recall that it is not
possible to estimate the variances exactly, so they needed to
be approximated. However, as we show in our experiments,
a weighted averaging based on the estimated variance out-
performs this strategy.

Variance-based weighted strategy. If we have two

noisy estimates of the same quantity (e.g., 7.H,[i] and c.H, [j]),

along with their variances 7.H,[i] and c.H,[j], it is a well-
known statistical fact (e.g., see [16]) that the optimal linear
way of combining the estimates is to estimate the size as a
weighted average, where the weights are inversely propor-

tional to the variance:
1 1
) / (T.Vg[i] + c.Vg[j])

(

and the variance of this estimator is

( )

Thus we would update the size of the j*® largest group at
child ¢ using Equation 5 and its new variance as Equation
6. This estimator is preferable to the naive strategy when
the variance estimates are accurate.

The size estimates are then rounded. After the size es-
timates at the children are updated, the top-down algo-
rithm continues matching the groups in each child ¢ with the
groups at the children of c. Once the groups at the leaves
are updated, the resulting sizes at the leaves are treated as
the final estimates.

T.Hgyld]
7. Vyli]

4]
(4]

()

ol
+ c. Vg

1

T.Vyli]

(6)

5.4 Privacy

THEOREM 1. Algorithm 1 satisfies e-differential privacy.

PROOF. Privacy is easy to analyze because the algorithm
separates the differentially private data access from the post-
processing. Specifically, the only part of the algorithm that
touches the sensitive data occurs in Lines 1 through 4. It
uses sequential composition across levels of the hierarchy.
Thus each of the L 4 1 levels is assigned €¢/(L + 1) of the
privacy budget. Within each level there is parallel compo-
sition because adding or removing one person from a group
only affects the node that contains that group (and none
of the sibling nodes). The count-of-counts histograms pro-
duced at each node use either the method of Section 4.2 or
Section 4.3) with privacy budget ¢/(L + 1) and they scale
the noise correctly to the global sensitivity, as discussed in
those sections.

The rest of the top-down algorithm is completely based
on the differentially private results of of Lines 1 through
4. The conversions between 7.H g5 T.ﬁc, and 7.H are trivial
manipulations of the histogram format (they do not touch
the original data). The variance estimation is based on
T.ﬁg,T.ﬁc, and 7.H. The matching algorithm only uses
T.flg for each node, and the method for merging estimates
only uses 7.H, (for each node) and the associated variance

estimates (which were computed from 7.Hy, 7.H., and 7.H).
Since post-processing differentially private outputs still sat-
isfies differential privacy [12], the overall algorithm satisfies
differential privacy. [
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6. EXPERIMENTS

In this section, we present our experiments, which were
conducted on a machine with dual 8-core 2.1 GHz Intel(R)
Xeon(R) CPUs and 64 GB RAM.

6.1 Datasets

We used 4 large-scale datasets for evaluation.

Partially synthetic housing. Individuals live in house-
holds and group quarters. The number of individuals in each
facility is important but this information was truncated past
households of size 7 in the 2010 Decennial Census, Summary
File 1 [7]. Thus we created a partially synthetic dataset
that mirrors the published statistics, but adds a heavy tail
as would be expected from group quarters (e.g., dormito-
ries, barracks, correctional facilities). This was done for
each state by estimating the ratio # households of size 7/#
households of size 6, and then randomly sampling (with a
binomial distribution) the number of groups of size k > 8 so
that the same ratio holds (in expectation) between number
of groups of neighboring sizes. Then 50 outliers groups are
chosen with size uniformly distributed between 1 and 10,000.
The hierarchy in this levels are National and State (50 states
plus Puerto Rico and the District of Columbia). The third
level is County, which we obtained by randomly assigning
groups at the state to their counties (the assignment was
proportional to county size).

NYC taxi: We use 143,540,889 Manhattan taxi trips
from the 2013 New York City taxi dataset [2]. An anonymized
taxi medallion (e.g., a taxi) is considered a group and the
size of the group is the number of pickups it had in a region.
The region hierarchy is the following. Level 0: Manhattan;
level 1: upper/lower Manhattan; level 2: 28 neighborhoods
from NTA boundary [1].

Race distribution (white and Hawaiian): For each block,
based on 2010 Census data (in Summary File 1 [7]), we count
the number of whites and number of native Hawaiians that
live in the block. Hence block is treated as a group. The
hierarchy is National, State, and County. We performed
evaluations on all 6 major race categories recorded by the
Census, but omitted the rest due to space restrictions.

The statistics for our datasets are the following.

Data # groups | # people/trip | # unique size
Synthetic | 240,908,081 | 605,304,918 2352
White 11,155,486 226,378,365 1916
Hawaiian | 11,155,486 540,383 224
Taxi 360,872 130,962,398 3128
For some count-of-counts estimation methods, such as the

cumulative sum H. method, one needs to specify a public
maximum group size K. We set K = 100,000 as a con-
servative estimate (for example, in our partially synthetic
housing dataset, the true max size was around 10,000, an
order of magnitude smaller). For our 2-level hierarchy ex-
periments on Census related data, we used National/State.
For 3 level, we used West Coast/State/County. All numbers
plotted are averaged over 10 runs.

6.2 Evaluation

Evaluation metric. For each level of the hierarchy, we
evaluate Earthmover’s distance (emd) as discussed in Sec-
tion 3.1, per node in the level, in order to see error at each
level. We do not aggregate error across all levels of the hier-
archy as there is no principled way of, for example, weighting
the importance of error at the state level compared to the
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Figure 4: Merging estimates using weighted average vs. normal average. x-axis: privacy budget per level.

national level. Each error measure is averaged across 10
runs. The standard deviation of the average is then the em-
pirical standard deviation (which gives std for one random
run) divided by /10 (which then gives the std for the mean
of 10 runs). We plot 1 std error bars on each figure.

Algorithm selection. We evaluate a variety of choices
for generating hierarchical count-of-counts histograms. For
example, we can use the H,; method to generate estimates at
national level but H. at state level and H. again at county
level, which we would denote as Hy x H. x H. and compare
it against Hy X Hy X H,. In general, using the H. method
at each level gives best results except on the partially syn-
thetic data, thus we recommend it as the default choice.
However, as is true with all data-dependent, no algorithm is
expected to dominate on all datasets [18]. For fine-grained
algorithm selection, one could use Pythia [18] or the ap-
proach of Chaudhuri et al. [9]. As these are well-established
techniques, they are outside the scope of the paper.

Interpreting error. How can we interpret the error
numbers of the algorithms? I.e., what is a good error? We
suggest comparison against the following “omniscient” al-
gorithm. Given an €, the omniscient algorithm will know
which group sizes exist in which node in the hierarchy and
reduce it to the problem of estimating a simple histogram of
known group size by location. Thus it will split its privacy
budget per level of the hierarchy and will add Laplace(1/¢)
noise (with standard deviation of v/2/¢) only to those groups
that exist. Meanwhile, the e-differentially private algorithms
must effectively estimate which group sizes exist and also
estimate their sizes, along with which nodes in the hier-
archy the groups belong to. The error for the omniscient
algorithm is then expected to be [#distinct group sizes x
v2/e x #levels]. For example, in Figure 4, at privacy bud-
get 0.1 per level and the partially synthetic housing data at
the national level, there are 2,352 groups and so the omni-
scient algorithm will have expected error around 3.3 x 10%,
which is in line with the results for the best differentially
private method in that figure.

6.2.1 Ruling out the naive method

The naive strategy adds noise to 7.H directly (Section
4.1). Its average error with e = 1 is in the billions, as shown
in the following table confirming the analysis in Section 4.1.

Synthetic White Hawaiian Taxi

4,462,728,374 | 4,809,679,734 | 4,027,891,692 | 208,977,518
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This error is several orders of magnitude larger than the
other methods (e.g. Figure 4), so is not considered further.

6.2.2 Comparison to bottom-up aggregation

The Bottom-Up (BU) baseline allocates all privacy budget
to the leaves and then sets the count-of-counts histogram of
a parent to be the sum of the histograms at the leaves. As
mentioned earlier, it is expected to have very low error at
the leaves but higher error everywhere else (an observation
that is true in general for hierarchical problems [24, 16]). In
the following table we examine the error at each level of BU
compared to the consistency algorithm that uses H. at each
level. Both approaches use a total privacy budget of e = 1.0.

| Part. Synth. | White [ Hawailan [ Taxi |

Level 0

BU 78,459.0 | 448,909.0 | 13,968.0 | 20,731.0

H, 32,480.0 | 17,000.0 1,381.0 | 10,547.0
Level 1

BU 1,512.2 8,722.0 270.1 | 10,405.5

H. 1,000.3 | 1,511.8 117.7 | 5,431.5
Level 2

BU 24.9 152.3 4.3 772.8

H, 80.1 363.8 21.6 | 1,601.8

The results are as expected, with significant improvements
at the higher level nodes in exchange for a small increase in
error at the leaves.

6.2.3 Weighted Average Estimation Comparison
Next we evaluate the merging strategy for groups that are

matched across different levels of the hierarchy (as described

in Section 5.3). There are two choices. If a group from one
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Figure 5: 2-level consistency at each level. x-axis

level of the hierarchy (e.g., a household at the state level) is
matched to a group at a different level (e.g., at the national
level), we can either average the two group size estimates, or
use a weighted average based on their estimated variances
from Section 5.1. If the variance estimates are accurate, we
expect such a merging to result in improved histogram error
when compared to normal averaging (see Figure 4).

We estimate two levels of the hierarchy for each dataset
(partially synthetic, Hawaiian race distribution, White race
distribution are shown due to space limitations) and con-
sider various methods for the initial group size estimates in
each of the two levels (Section 4); for example H. X H, means
that the H. method was used for the top level and H, for
the second level. We see that the weighted average method
consistently produces large reductions in error (compared
to normal averaging) at the top level for every privacy bud-
get and combination of methods (Hy/H.), and consistently
produces modest improvements in error at the second level.
Hence we conclude that our variance estimates, which are
used in the merging procedure, are useful approximations.
The only method missing from these graphs is the combi-
nation Hy x Hy. On these datasets, the error of normal
average was so large that it would visually skew the results.
Due to the superiority of weighted averaging, all following
experiments use this method of merging estimates.

6.2.4 2-Level Hierarchy Results

We next show our results for the case when 2 levels of the
hierarchy need to be estimated, in Figure 5. Due to space
limitations, we present the consistency result for Hy x Hy
and H. X H. using weighted averaging to merge estimates.
One thing to notice is that the best performing method is
comparable to the omniscient baseline and generally the H.
method is the one that performs best. Typically, we expect
the H. method to dominate for “dense” data. For example,
white population data contains many groups from size 0 to
size 3000. On the other hand, the partially synthetic housing

0.15

budget
(e) white (state)
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average emd

budget
(f) hawaiian (state)

0.1

0.5

: privacy budget per level.

data is more sparse at the national level, with many small
groups (e.g., sizes 1-12) followed by large gaps between group
sizes. In such cases, methods based on H, work better.

6.2.5 3-Level Hierarchy Results

We next show the results when three levels of the hierar-
chy need to be estimated. Because there are over 3,000 coun-
ties (hence 3,000 isotonic regressions), for computational
reasons we limit the hierarchy to the west coast (for the
partially synthetic housing data as well as the race distri-
bution data.). Of these two alternatives Hy x Hy x Hy and
H. x H. x H. on synthetic, race and taxi at each level in
Figure 6. The taxi data uses its full geography. In general,
we see that no method dominates the other, but group size
estimation methods based on H. generally perform better
than Hy and so are a good default choice.

7. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the differentially private hier-
archical count-of-counts histogram problem and presented a
solution based on isotonic regression and optimal weighted
matchings. This problem is motivated by a variety of tables
that are published in truncated form in Summary File 1 of
the 2010 U.S. Decennial Census. The actual tables include
additional demographic characteristics that are attached to
the household sizes at each level of geography. Such addi-
tional information greatly expands the dimensionality of the
problem and is an area of future work.
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