Concentrated Differentially Private Gradient Descent with
Adaptive per-Iteration Privacy Budget

Jaewoo Lee
University of Georgia
Athens, GA
jwlee@cs.uga.edu

ABSTRACT

Iterative algorithms, like gradient descent, are common tools for
solving a variety of problems, such as model fitting. For this reason,
there is interest in creating differentially private versions of them.
However, their conversion to differentially private algorithms is
often naive. For instance, a fixed number of iterations are chosen,
the privacy budget is split evenly among them, and at each iteration,
parameters are updated with a noisy gradient.

In this paper, we show that gradient-based algorithms can be
improved by a more careful allocation of privacy budget per iter-
ation. Intuitively, at the beginning of the optimization, gradients
are expected to be large, so that they do not need to be measured
as accurately. However, as the parameters approach their optimal
values, the gradients decrease and hence need to be measured more
accurately. We add a basic line-search capability that helps the al-
gorithm decide when more accurate gradient measurements are
necessary.

Our gradient descent algorithm works with the recently intro-
duced zCDP version of differential privacy. It outperforms prior
algorithms for model fitting and is competitive with the state-of-
the-art for (e, §)-differential privacy, a strictly weaker definition
than zCDP.

CCS CONCEPTS

« Security and privacy — Data anonymization and sanitization,
» Theory of computation — Convex optimization;

KEYWORDS
Differential privacy, ERM, Gradient descent

ACM Reference Format:

Jaewoo Lee and Daniel Kifer. 2018. Concentrated Differentially Private
Gradient Descent with Adaptive per-Iteration Privacy Budget. In KDD ’18:
The 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, August 19-23, 2018, London, United Kingdom. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3219819.3220076

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 18, August 19-23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08... $15.00
https://doi.org/10.1145/3219819.3220076

Daniel Kifer

Penn State University
University Park, PA
dkifer@cse.psu.edu

1 INTRODUCTION

Iterative optimization algorithms are designed to find a parameter
vector w* € R that minimizes an objective function f. They start
with an initial guess wo and generate a sequence of iterates {w; }; >0
such that w; tends to w* as t — oo. At iteration ¢, information
about the objective function f(w;), such as the gradient V f(w;),
is computed and used to obtain the next iterate w;41. In the case of
gradient (or stochastic gradient) descent, updates have a form like:

wir1 = Wi — ar(Vf(wy)), o))

where a; is a carefully chosen step size that often depends on the
data (for example, through a line search [15]) or based on previous
gradients.

When designing a such algorithm under various versions of
differential privacy, the update steps typically have the following
form [1, 19]:

w1 = Wy —ap(V(wy) + 1), (2)

where Y; is an appropriately scaled noise variable (e.g., Laplace
or Gaussian) for iteration ¢, and the gradient may be computed
on some or all of the data. It is important to note that the noisy
gradients V f(w;) + Y; might not be descent directions even when
computed on the entire dataset.

In prior work (e.g., [2, 20, 22, 24]), the total number of iterations
T is fixed a priori, and the desired privacy cost, say €, is split across
the iterations: € = €1 + - - - + er. For any iteration ¢, the variance
of Y; is a function of 1/¢; and depends on which version of dif-
ferential privacy is being used (e.g., pure differential privacy [8],
approximate differential privacy [7], or zero-mean concentrated
differential privacy [4]). Furthermore, in prior work, the privacy
budget is evenly split across iterations, so €y = -+ = e = €/T.

There are two drawbacks to this approach. First, accuracy heav-
ily depends on the pre-specified number of iterations T — if T is too
small, the algorithm will stop well short of the optimum; if T is too
large, the privacy budget €; for each iteration is small, so that large
amounts of noise must be added to each gradient, thus swamping
the signal provided by the gradient. Second, at the beginning of
the optimization, gradients are expected to be large, so that an
algorithm can find good parameter updates even when the gradient
is not measured accurately. However, as the current parameters w;
approach the optimal values, the gradients start to decrease and
need to be measured more accurately in order for the optimization
to continue making progress (e.g., continue to minimize or approx-
imately minimize f). This means that an adaptive privacy budget
allocation is preferable to a fixed allocation (as long as the total
privacy cost is the same).

KDD ’18, August 19-23, 2018, London, United Kingdom

t L IVFwllz | 1Vf(wWe) + Yell2 \/E[IIY:IIS] f(we)

0 | 072558 0.91250 0.50119 0.69315
1 |0.20550 0.52437 0.50119 0.53616
2 | 0.15891 0.54590 0.50119 0.46428
3 | 0.11864 0.49258 0.50119 0.43678
4 | 0.09715 0.50745 0.50119 0.41852
5 | 0.14050 0.52271 0.50119 0.41122
6 | 0.12380 0.48218 0.50119 0.38903
7 | 0.06237 0.53640 0.50119 0.38175
8 | 0.05717 0.47605 0.50119 0.37865
9 | 0.05625 0.55129 0.50119 0.37814
10 | 0.05241 0.51636 0.50119 0.37542

Table 1: Objective function value and true gradient vs. noisy
gradient magnitude.

In this paper, we propose an adaptive gradient descent strategy
for zero-mean Concentrated Differential Privacy [4] (zCDP) where
each iteration has a different share ¢; of the overall privacy budget
€. It uses a smaller share of the privacy budget (more noise) for gra-
dients with large norm and a larger share (less noise) for gradients
with small norm. Thus, if there are many steps with large gradients,
the algorithm will be able to run for more iterations, while if there
are many steps with small gradients, it will run for fewer iterations
but make sure that each noisy gradient is accurate enough to help
decrease the objective function (instead of performing a completely
random walk over the parameter space). To the best of our knowl-
edge, our work is the first to adaptively choose €; depending on
the previous iterate and the utility of noisy statistic for the current
iteration.

One of the challenges is to figure out whether the amount of noise
added to a gradient is too much to be useful. This is far from trivial
as the noisy gradient can be a descent direction even when the norm
of the noise is much larger than the norm of the true gradient. For
example, consider the following run of the noisy gradient descent
algorithm to train logistic regression on the UCI Adult dataset
[13] with Gaussian noise vectors added to the gradient, as shown
in Table 1. Note that Gaussian noise is one of the distributions
that can achieve zero-Mean Concentrated Differential Privacy [4].
We see that the magnitude of the true gradient decreases from
approximately 0.7 to 0.05 while the norm of the noisy gradient
starts at 0.91 and only decreases to approximately 0.516 — an order
of magnitude larger than the corresponding true gradient. Yet, all
this time the objective function keeps decreasing, which means that
the noisy gradient was still a descent direction despite the noise.

Our solution is to use part of the privacy budget allocated to
step t to compute the noisy gradient S; = Vf(w;) + Y;. We use the
remaining part of the privacy budget allocated to step ¢ to select the
best step size. That is, we start with a predefined set of step sizes
® (which includes a step size of 0). Then, we use the differentially
private noisy min algorithm [9] to approximately find the ¢ € ® for
which f(w; —aS;) is smallest (i.e. we find which step size causes the
biggest decrease on the objective function). If the selected step size a
is not 0, then we set w41 = w; — aSy; thus our algorithm supports
variable step sizes, which can help gradient descent algorithms

J. Lee and D. Kifer

converge faster. On the other hand, if the selected step size is 0, it
is likely that the noise was so large that the noisy gradient is not a
descent direction and it triggers an increase in share of the privacy
budget that is assigned to subsequent steps.

This brings up the second problem. If the chosen step size a
is 0, it means two things: we should increase our current privacy
budget share from €; to some larger value €;41. It also means we
should not use the current noisy gradient for a parameter update.
However, the noisy gradient still contains some information about
the gradient. Thus, instead of measuring the gradient again using
a privacy budget of €;41 and discarding our previous estimate, we
measure it again with a smaller budget €;4+1 — €; and merge the
result with our previous noisy gradient.

Our contributions are summarized as follows:

e We propose a gradient descent algorithm for a variation of differ-
ential privacy, called zCDP [4], that is weaker than e-differential
privacy, but is stronger than (e, §)-differential privacy.

e To the best of our knowledge, this is the first private gradient-
based algorithm in which the privacy budget and step size for
each iteration is dynamically determined at runtime based on
the quality of the noisy statistics (e.g., gradient) obtained for the
current iteration.

o We perform extensive experiments on real datasets against other
recently proposed empirical risk minimization algorithms. We
empirically show the effectiveness of the proposed algorithm for
a wide range of privacy levels.

The rest of this paper is organized as follows. In Section 2, we re-
view related work. In Section 3, we provide background on differen-
tial privacy. Section 4 introduces our gradient averaging technique.
We present the approach for the dynamic adaptation of privacy
budget in Section 5. Section 6 contains the experimental results on
real datasets.

2 RELATED WORK

A typical strategy in statistical learning is the empirical risk mini-
mization (ERM), in which a model’s averaged error on a dataset is
minimized. There have been several efforts [2, 6, 11, 12, 17, 20-24]
to develop privacy-preserving algorithms for convex ERM problems
using variations of differential privacy. A number of approaches
have been proposed in the literature. The simplest approach is to
perturb the output of a non-private algorithm with random noise
drawn from some probability distribution. This is called output
perturbation [6, 8, 25]. In general, the resulting noisy outputs of
learning algorithms are often inaccurate because the noise is cali-
brated to the worst case analysis. Recently, Zhang et al. [25] used
algorithmic stability arguments to bound the L; sensitivity of full
batch gradient descent algorithm to determine the amount of noise
that must be added to outputs that partially optimizes the objective
function. Although they achieve theoretical near optimality, this al-
gorithm has not been empirically shown to be superior to methods
such as [6].

One approach that has shown to be very effective is the objec-
tive perturbation method due to Chaudhuri et al. [6]. In objective
perturbation, the ERM objective function is perturbed by adding
a linear noise term to its objective function, and then the problem
is solved using a non-private optimization solver. Kifer et al. [12]

Private Gradient Descent with Adaptive per-lteration Privacy Budget

improved the utility of the objective perturbation method at the
cost of using approximate instead of pure differential privacy. While
this approach is very effective, its privacy guarantee is based on the
premise that the problem is solved exactly. This is, however, rarely
the case in practice; most of time optimization problems are solved
approximately.

Another approach that has gained popularity is the iterative
gradient perturbation method [2, 23] and their variants [21, 22, 25].
Bassily et al. [2] proposed an (e, §)-differentially private version of
stochastic gradient descent (SGD) algorithm. At each iteration, their
algorithm perturbs the gradient with Gaussian noise and applies
the advanced composition [10] together with privacy amplification
result [3] to get an upper bound on the total privacy loss. Further,
they also have shown that their lower bounds on expected the
excess risk is optimal, ignoring multiplicative log factor for both
lipschitz convex and strongly convex functions. Later, Talwar et
al. [20] improved those lower bounds on the utility for LASSO
problem. In [21], gradient perturbation method has been combined
with the stochastic variance reduced gradient (SVRG) algorithm,
and the resulting algorithm has shown to be near-optimal with less
gradient complexity.

Zhang et al. [24] presented a genetic algorithm for differentially
private model fitting, called PrivGene, which has a different flavor
from other gradient-based methods. Given the fixed number of total
iterations, at each iteration, PrivGene iteratively generates a set of
candidates by emulating natural evolutions and chooses the one
that best fits the model using the exponential mechanism [9].

All of the iterative algorithms discussed above use predetermined
privacy budget sequences.

3 BACKGROUND

In this section, we provide background on differential privacy and
introduce important theorems.

3.1 Differential Privacy

Let D = {d1,d2,...,dn} be a set of n observations, each drawn
from some domain D. A database D’ € D" is called neighboring
to Dif (D \ D’) U (D’ \ D)| = 1. In other words, D’ is obtained
by adding or removing one observation from D. To denote this
relationship, we write D~D’. The formal definition of differential
privacy (DP) is given in Definition 3.1.

Definition 3.1 ((e,5)-DP [7, 8]). A randomized mechanism M
satisfies (e, §)-differential privacy if for every event S C range(M)
and for all D~D’ € D",

Pr[M(D) € S] < exp(e) Pr[M(D’) € S] + 6.

When § = 0, M achieves pure differential privacy which pro-
vides stronger privacy protection than approximate differential
privacy in which § > 0.

To satisfy (e, §)-DP (for & > 0), we can use the Gaussian mecha-
nism, which adds Gaussian noise calibrated to the L; sensitivity of
the query function.

Definition 3.2 (L1 and Ly sensitivity). Let ¢ : D" — R? be a
query function. The L; (resp. L) sensitivity of q, denoted by A1(q)

KDD ’18, August 19-23, 2018, London, United Kingdom

(resp., A2(q)) is defined as

A1(g) = max llg(D) —¢(D)ll;, Ax(g) = maxllg(D) - gD, -

The L; and L sensitivities represent the maximum change in
the output value of g (over all possible neighboring databases in
D™) when one individual’s data is changed.

THEOREM 3.3 (GAUSSIAN MECHANISM [9]). Let ¢ € (0, 1) be ar-
bitrary and q be a query function with Ly sensitivity of Aa(q). The
Gaussian Mechanism, which returns g(D) + N(0, 02), with

o> AZT@\/z In(1.25/0) (3)

is (e, 8)-differentially private.

An important property of differential privacy is that its privacy
guarantee degrades gracefully under the composition. The most
basic composition result shows that the privacy loss grows linearly
under k-fold composition [9]. This means that, if we sequentially
apply an (e, §)-DP algorithm k times on the same data, the re-
sulting process is (ke, kd)-differentially private. Dwork et al. [10]
introduced an advanced composition, where the loss increases sub-
linearly (i.e., at the rate of \/E)

THEOREM 3.4 (ADVANCED COMPOSITION [10]). Foralle, §,6" > 0,
the class of (e, 8)-differentially private mechanisms satisfies (¢/, kS +
&’)-differential privacy under k-fold adaptive composition for e’ =

V2kIn(1/8")e + ke(e€ — 1).

3.2 Concentrated Differential Privacy

Bun and Steinke [4] recently introduced a relaxed version of differ-
ential privacy, called zero-concentrated differential privacy (zCDP).
To define p-zCDP, we first introduce the privacy loss random vari-
able. For an output o € range(M)), the privacy loss random variable
Z of the mechanism M is defined as

. PrM(D) = o]
“ B M) = o]

p-zCDP imposes a bound on the moment generating function of
the privacy loss Z and requires it to be concentrated around zero.
Formally, it needs to satisfy

ePaMDIIMD)) _ g [e(“fl)z] < el@ VP yq e (1,00),

where Dy (M(D)||M(D")) is the a-Rényi divergence. In this paper,
we use the following zCDP composition results.

LEMMA 3.5 ([4]). Suppose two mechanisms satisfy p1-zCDP and
p2-zCDP, then their composition satisfies (p1 + p2)-zCDP.

LEMMA 3.6 ([4]). The Gaussian mechanism, which returns q(D) +
N(0, o?) satisfies Az(q)?/(262)-zCDP.

LEmMA 3.7 ([4]). If M satisfies e-differential privacy, them M
satisfies (%62)—ZCDP.

LEmMA 3.8 ([4]). If M is a mechanism that provides p-zCDP, then
M is (p + 2+/plog(1/6), §)-DP for any § > 0.

KDD ’18, August 19-23, 2018, London, United Kingdom

Algorithm 1: NoisyMax(Q, A1(f), €)

Input: Q: a set of candidates, A1(f): sensitivity of f, e:
privacy budget for pure differential privacy
1 Q={0; =v+Lap(Ai(f)/e) : v € Q,i € [|1Q[]}

2 return argmax je|q|] vj

3.3 NoisyMax

Let ¥ = {wy,...,ws} beasetof pointsin R? and f : R” — Rbea
function that implicitly depends on a database D. Suppose we want
to choose a point w; € ¥ with maximum f(w;; D). There exists an
(e, 0)-DP algorithm, called NoisyMax [9]. It adds independent noise
drawn from Lap(A1(f)/e€) to each f(w;), for i € [s], and returns
the index i of the largest value, i.e.,

i = argmax {f(w;) + Lap(Ar/e)},
Jjels]

where Lap(1) denotes a Laplace distribution with mean 0 and
scale parameter A, and the notation [s] is used to denote the set
{1,2,...,s}. Note that, when f is monotonic in D (i.e., adding a
tuple to D cannot decrease the value of f), noise can be drawn from
the exponential distribution with parameter €/A;(f), which yields
better utility. The NoisyMin algorithm is obtained by applying
NoisyMax to —f.

NoisyMax was originally intended to work with pure e-differential
privacy. To get it to work with p-zCDP, we use the conversion re-
sult in Lemma 3.7: an e-differentially private algorithm satisfies
%2 — zCDP. Therefore, when using zCDP, if we wish to allocate p’
of our zCDP privacy budget to NoisyMax, we call NoisyMax with

¢ = \2p.
4 GRADIENT AVERAGING FOR ZCDP

One of the components of our algorithm is recycling estimates
of gradients that weren’t useful for updating parameters. In this
section, we explain how this is done. Suppose at iteration ¢, we
are allowed to use p; of the zCDP privacy budget for estimating
a noisy gradient. If Ay(Vf) is the Ly sensitivity of the gradient of
f then, under zCDP we can measure the noisy gradient as S; =

Vf(we) + N(o, 24V

If our algorithm decides that this is not accurate enough, it will
trigger a larger share of privacy budget p;+1 > p; to be applied at
the next iteration. However, instead of discarding S;, we perform

another independent measurement using p;+1 — p; privacy budget:
’_ Ag(Vf)
S; = Vf(w;)+ N(0, pi=pr)
We combine S; and Sj in the following way:

$ peSt + (pr+1 = p1)S;
pt + (pr+1 = pt)
Simple calculations show that

E[S;] = Vf(wy)

. Ay(V)2 Ay(Vf)?
Var(Sy) = p? zgpf) z(ptz+1 J_C)pt)(ptﬂ—,ﬂt)z /,D%+l
_ (VS
2p¢+1

J. Lee and D. Kifer

Notice that computing S;, then computing S; and obtaining the
final estimate of the noisy gradient S uses a total privacy budget
Do(VF):

2p1
the other hand, if we had magically known in advance that using

a privacy budget share p; would lead to a bad gradient and pre-

emptively used p;4+1 (instead of p;) to measure the gradient, the
2

privacy cost would be p;+1 and the variance would still be A;;%?.

cost of ps+1 and produces an answer with variance

5 ALGORITHM

In this section, we provide a general framework for private ERM
that automatically adapts per-iteration privacy budget to make each
iteration progress toward an optimal solution. Let D = {dy,...,dn}
be an input database of n independent observations. Each obser-
vation d; = (xj,y;) consists of x; € R? and y € R. We consider
empirical risk minimization problem of the following form:

. _1x
minimize f(w;D) = " ;KW,di), (@)

where ¢ is a loss function and C is a convex set. Optionally, one
may add a regularization term (e.g., % ||w||§) into (4) with no change
in the privacy guarantee. Note that the regularization term has no
privacy implication as it is independent of data.

Algorithm 2 shows each step of the proposed differentially pri-
vate adaptive gradient descent algorithm (DP-AGD). The algorithm
has three main components: private gradient approximation, step
size selection, and adaptive noise reduction.

Gradient approximation. At each iteration, the algorithm com-
putes the noisy gradient g = V f(w;)+N(0, 0I) using the Gaussian
mechanism with variance o2. The magnitude of noise ¢ is depen-
dent on the maximum influence one individual can have on g, mea-
sured by Az(g). To bound this quantity, many prior works [6, 12]
assume that ||x|| < 1. Instead, we use the gradient clipping tech-
nique of [1]: compute the gradient V&(w;d;) fori = 1,...,n, clip
the gradient in Ly norm by dividing it by max(1, HW(CZ%JHZ) com-
pute the sum, add Gaussian noise with variance ngra 4/2png, and
finally normalize it to a unit norm. This ensures that the Ly sensi-
tivity of gradient is bounded by Cg,q, and satisfies png-zCDP by
Lemma 3.6.

Step size selection. In non-private setting, stochastic optimization
methods also use an approximate gradient computed from a small
set of randomly selected data, called mini-batch, instead of an exact
gradient. For example, at iteration ¢, stochastic gradient descent
(SGD) randomly picks an index i; € [n] and estimates the gradient
V{(w¢;d;,) using one sample d;,. Consequently, each update direc-
tion —V{(w;; d;,) might not be a descent direction, but it is a descent
direction in expectation since E[V{(w;;d;,) | wi] = V f(wy).

In contrast, in private setting an algorithm cannot rely on a guar-
antee in expectation and need to use per-iteration privacy budget
more efficiently. To best utilize the privacy budget, we test whether
a given a noisy estimate g, of gradient is a descent direction using
a portion of privacy budget pnmax. First, the algorithm constructs
aset Q = {f(w; — ag,) : « € }, where each element of Q is the
objective value evaluated at w; —ag, and @ is the set of pre-defined
step sizes. Then it determines which step size yields the smallest

Private Gradient Descent with Adaptive per-lteration Privacy Budget

Algorithm 2: DP-AGD
Input: privacy budget pnmax. Pngs Etot Stot, budget increase
rate y, clipping thresholds Copj, Cgrag, data
{d1,...,dn}, objective function f(w) = X1, £(w;d;)
1 Initialize wy and ®
2 t « 0, p <« solve (5)for p // To compare to (e,8)-DP Algs
3 while p > 0 do

4 i—20

5 g — Xy (V[(w[;di)/max(l, Wé\(g%)llz))
6 g, < g, + N(o, (Cérad/ang)I)

7 | pep—png

8 8 — 8/1gll2

9 while i = 0 do

10 Q={f(w; —ag,): a € ®}

11 P < P — Pnmax

12 i «<-No1sYMax(-Q, Copj» V2Pnmax)

13 if i > 0 then

14 ‘ if p>0thenw;y; «— w; —a;g,;
15 else

16 Pold < Png

17 Png < (1 +¥)png

18 8: < GRADAVG(pods Png: 8¢» Brs Cgrad)
19 p < p—(png = Pold)

20 end

21 end

22 te—t+1

23 end

N}

4 return w;

1N}

5 Function GRADAVG(pold; PH 8 & Carad):
2

o ¢ rad
6 | G gt N(O,(m)l)
2 | G PoddHPHPoId)G2
. PH
28 return S
29 end

objective value using the NoisyMax algorithm. One difficulty in
using the NoisyMax is that there is no known a priori bound on
a loss function £. To bound the sensitivity of £, we apply the idea
of gradient clipping to the objective function f. Given a fixed clip-
ping threshold Cy;, we compute €é(w¢;d;) fori=1,...,n, clip the
values greater than Cgp;, and take the summation of clipped values.
Note that, unlike the gradient, we use unnormalized value as it
doesn’t affect the result of NoisyMax.

In our implementation, the first element of ® is fixed to 0, so
that Q always includes the current objective value f(w;). Let i be
the index returned by the NoisyMax. When i > 0, the algorithm
updates w; using the chosen step size a;. When i = 0, it is likely
that —g, is not a descent direction, and hence none of step sizes in
® leads to a decrease in objective function f.

Adaptive noise reduction. When the direction —g, (obtained using
the Gaussian mechanism with parameter o) is determined to be
a bad direction by the NoisyMax, DP-AGD increases the privacy

KDD ’18, August 19-23, 2018, London, United Kingdom

budget for noisy gradient approximation png by a factor of 1 +y.
Since the current gradient was measured using the previous budget
share, po|d, We use png — pold privacy budget with the gradient
averaging technique to increase the accuracy of that measured
gradient. The new direction is checked by the NoisyMax again. This
procedure is repeated until the NoisyMax finds a descent direction
(i.e., until it returns a non-zero index).

Composition. The two main tools used in DP-AGD achieves dif-
ferent versions of differential privacy; NoisyMax satisfies (e, 0)-DP
(pure) and %Z-ZCDP, while Gaussian mechanism can be used to
provide zCDP. However, to compare our method to other algo-
rithms that use approximate (e, §)-differential privacy, we need to
use conversion tools given by Lemmas 3.7 and 3.8.

Given the fixed total privacy budget (€tot, Stot), the algorithm
starts by converting (€tot, Stot)-DP into p-zCDP using Lemma 3.8.
This is done by solving the following inequality for p:

€tot = p + 2+ plog(1/dtot) - (5

Given the resulting total privacy budget p for zCDP, the algorithm
dynamically computes and deducts the amount of required privacy
budget (lines 19, 12, 7) whenever it needs an access to the data-
base during the runtime, instead of allocating them a priori. This
guarantees that the entire run of algorithm satisfies p-zCDP.

Adjusting step sizes. For two reasons, we dynamically adjust the
range of step sizes in ®. First, the variance in private gradient es-
timates needs to be controlled. The stochastic gradient descent
algorithm with constant step sizes in general does not guarantee
convergence to the optimum even for a well-behaving objective
function (e.g., strongly convex). To guarantee the convergence (in
expectation), stochastic optimization algorithms typically enforce
the conditions }; @y = co and }; af < co on their step sizes [16],
which ensures that the variance of the updates reduces gradually
near the optimum. Although we adaptively reduce the magnitude
of privacy noise using gradient averaging, it still needs a way to
effectively control the variance of the updates. Second, in our algo-
rithm, it is possible that g, is actually a descent direction but the
NoisyMax fails to choose a step size properly. This happens when
the candidate step sizes in ® are all large but the algorithm can
only make a small move (i.e., when the optimal step size is smaller
than all non-zero step sizes in ®). To address these issues, we pro-
pose to monitor the step sizes chosen by NoisyMax algorithm and
adaptively control the range of step sizes in ®. We initialize ® with
equally spaced m points between 0 and amax. At every 7 iteration,
we update dmax = (1 + n) max(ats, &¢—1, . .., Ar—7r+1), Where a; de-
notes the step size chosen at iteration ¢. ! We empirically observe
that this allows DP-AGD to adaptively change the range of step
sizes based on the relative location of the current iterate to the
optimum.

Correctness of Privacy. The correctness of the algorithm depends
on p-zCDP composition (Lemma 3.5) and accounting for the privacy
cost of each primitive.

THEOREM 5.1. Algorithm 2 satisfies p-zCDP and (€tot, Stot)-differential

privacy.

n our experiments, we set m = 20, 7 = 10, and 77 = 0.1 and initialize amax = 2.

KDD ’18, August 19-23, 2018, London, United Kingdom

Dataset Size (n) Dime. Label
Adult 48,842 124 Is annual income > 50k?
BANK 45,211 33 Is the product subscribed?

IPUMS-US 40,000 58 Is annual income > 25k?
IPUMS-BR 38,000 53 Is monthly income > $300

KDDCup99 4,898,431 120 Is it a DOS attack?
Table 2: Characteristics of datasets

Proor. If no zCDP privacy budget p is given to the algorithm,
then the algorithm expects values for €0t and Stot. It then figures
out, in Line 2, the proper value of p such that p-zCDP also satisfies
the weaker (€tot, Otot)-differential privacy.

Then, the algorithm works in pure zCDP mode, subtracting
from its running budget the cost incurred by its three primitive
operations: measuring the noisy gradient (Line 7), performing a
noisy max (Line 12), and gradient averaging whenever necessary
(Line 19).

There are two checks that make sure the remaining privacy
budget p is above 0, Line 3 and Line 14. The most important check
is in Line 14 - it makes sure that any time we are updating the
weights, we have not exhausted our privacy budget. This is the
important step because the weights w; are the only results that
become visible outside the algorithm. For example, suppose the
weights w1 were updated and the remaining privacy budget p
is greater than 0, then it would be safe to release wy41. Let us
suppose now that the algorithm continues to the next iterations,
but the deduction from measuring the noisy gradient, or NoisyMax
or GradAvg causes the privacy budget p to be negative. In this
case, when we finally get to Line 14, we do not update the weights,
so we end up discarding the results of all of the primitives that
were performed after the safe value for w; 1 had been computed.
Subsequently, Line 3 will cause the algorithm to terminate. The
result would be w;41 which was already safe to release.

As these primitive operations use the correct share of the privacy
budget they are given, the overall algorithm satisfies p-zCDP. O

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of DP-AGD on 5 real
datasets: (i) Adult [5, 13] dataset contains 48,842 records of indi-
viduals from 1994 US Census. (ii) BANK [13] contains marketing
campaign related information about customers of a Portuguese
banking institution. (iii) IPUMS-BR and (iv) IPUMS-US datasets are
also Census data extracted from IPUMS-International [18], and
they contain 38,000 and 40,000 records, respectively. (v) KDDCup99
dataset contains attributes extracted from simulated network pack-
ets. Table 2 summarizes the characteristics of datasets used in our
experiments.

Baselines. We compare DP-AGD ? against seven baseline algo-
rithms, namely, ObjPert [6, 12], OutPert [25], PrivGene [24], SGD-
Adv [2], SGD-MA [1], NonPrivate, and Majority. ObjPert is an
objective perturbation method that adds a linear perturbation term
to the objective function. OutPert is an output perturbation method

ZPython code for our experiments is available at https://github.com/ppmlguy/DP- AGD.

J. Lee and D. Kifer

that runs the (non-private) batch gradient descent algorithm for
a fixed number of steps and then releases an output perturbed
with Gaussian noise. PrivGene is a differentially private genetic
algorithm-based model fitting framework. SGD-Adv is a differ-
entially private version of SGD algorithm that applies advanced
composition theorem together with privacy amplification result.
SGD-MA is also a private SGD algorithm but it uses an improved
composition method, called moments accountant, tailored to the
Gaussian noise distribution. NonPrivate is an optimization algo-
rithm that does not satisfy differential privacy. In our experiments,
to get the classification accuracy of non-private method, we used
the L-BFGS algorithm [14]. Finally, Majority predicts the label by
choosing the class with larger count. For example, if the number of
tuples with the label y; = 1 in the training set is greater than n/2,
it predicts that y; = 1 for all tuples.

In our experiments, we report both classification accuracy (i.e.,
the fraction of correctly classified examples in the test set) and
final objective value (i.e., the value of f at the last iteration). All
the reported numbers are averaged values over 20 times repeated
5-fold cross-validation.

Parameter settings. When there are known default parameter
settings for the prior works, we used the same settings. Throughout
all the experiments the value of privacy parameter § is fixed to
10~8 for the Adult, BANK, IPUMS-US, and IPUMS-BR datasets and to
10712 for the KDDCup99 dataset. According to the common practice
in optimization, the sizes of mini-batches for SGD-Adv and SGD-
MA are set to y/n. Since KDDCup99 dataset contains approximately
5 million examples, directly computing gradients using the entire
dataset requires unacceptable computation time. To reduce the
computation time, at each iteration, we evaluate the gradient from
a random subset of data (called mini-batch). For KDDCup99 dataset,
we applied the mini-batch technique to both DP-AGD and PrivGene,
and fixed the mini-batch size to 40,000. We exclude OutPert from
the experiments on KDDCup99 dataset as its sensitivity analysis
requires using full-batch gradient.

OutPert method has multiple parameters that significantly affect
its performance. For example, the number of iterations T and step
size a. We heavily tuned the parameters T and « by running OutPert
on each dataset with varying T and a, and chose the one that led
to the best performance.

To determine the regularization coefficient values, we find a
fine-tuned value of A using an L-BFGS algorithm with grid search.
For SGD-Adv and SGD-MA, we used different coefficient values as
these two algorithms use mini-batched gradients.

6.1 Preprocessing

Since all the datasets used in our experiments contain both numeri-
cal and categorical attributes, we applied the following common
preprocessing operations in machine learning practice. We trans-
formed every categorical attribute into a set of binary variables by
creating one binary variable for each distinct category (i.e., one-hot
encoding), and then every numerical attribute is rescaled into the
range [0, 1] to ensure that all attributes have the same scale. Addi-
tionally, for ObjPert, we normalize each observation to a unit norm
(i.e., |Ixills = 1fori = 1,2,...,n) to satisfy its requirement.

Private Gradient Descent with Adaptive per-lteration Privacy Budget

6.2 Effects of Parameters

We first demonstrate the impact of internal parameter settings on
the performance of DP-AGD. For this set of experiments, we per-
form a logistic regression task on the Adult dataset. The proposed
algorithm has several internal parameters, and in this set of experi-
ments we show that in general its performance is relatively robust
to their settings.

In our experiments, to determine the initial privacy budget pa-
rameters pnmax and png, we first compute their corresponding
€namx and eng values as follows:

Etot
2 - splits

€nmax = €ng =

Then these values are converted back to pnmanx and png, respec-
tively, using Lemma 3.6 and 3.7. The intuition behind this setting is
that the value of splits roughly represents the number of iterations
under the naive (linear) composition. We fixed splits=60 for all ex-
periments. Figure 1a shows the impacts of splits on the algorithm’s
performance. From the figure, we see the performance of DP-AGD is
relatively less affected by the choice of splits when € is large. When
€ = 0.1, excessively small or large value of splits can degrade the
performance. When splits is set too small, the algorithm may not
have enough number of iterations to converge to the optimum. On
the other hand, when the value of splits is too large, the algorithm
may find it difficult to discover good search directions.

Figure 1b describes how classification accuracy and objective
value change with varying values of y. The parameter y controls
how fast the algorithm increases png when the gradient for the
current iteration is not a descent direction. As it can be seen from
the figure, when y > 0.2, the value of y almost has no impact on
the performance. On the other hand, when y = 0.1 or y = 0.2,
the performance is slightly affected by the setting. This is because,
when y is too small, the new estimate of gradient might be still too
noisy, and as a result the algorithm spends more privacy budget on
executing NoisyMax.

The algorithm has two threshold parameters, Cgrag and Cop;.-
These two parameters are used to bound the sensitivity of gradient
and objective value computation, respectively. If these parameters
are set to a too small value, it significantly reduces the sensitivity
but at the same time it can cause too much information loss in
the estimates. Conversely, if they are set too high, the sensitivity
becomes high, resulting in adding too much noise to the estimates.
In our experiments, both Cop; and Cgy,q are fixed to 3.0.

In Figure 1c, to see the impact of Cg;,q on the performance, we
fix the objective clipping threshold Cyp,; to our default value 3.0 and
vary Cgrad from 1.0 to 16.0. The figure illustrates how the accuracy
and the final objective value change with varying values of Cgyag-
We observe that excessively large or small threshold values can
degrade the performance. As explained above, this is because of
the trade-off between high sensitivity and information loss.

Figure 1d shows how C,,; affects the accuracy and the final
objective value. As it was the case for Cg;,4, too large or small values
have a negative effect on the performance, while the moderate
values (2 < Cop; < 8) have little impact on the performance.

KDD ’18, August 19-23, 2018, London, United Kingdom

6.3 Logistic Regression and SVM

We applied our DP-AGD algorithm to a regularized logistic regres-
sion model in which the goal is

13 A
m“i,n - ; log(1 + exp(—y;iwTx;)) + 5||W||% R

where x; € RP*L, yi € {-1,+1}, and A > 0 is a regularization
coefficient.

The top row in Figure 2 shows the classification accuracies of
logistic regression model on 4 different datasets. The result on
KDDCup99 dataset is shown in Figure 4. The proposed DP-AGD
algorithm consistently outperforms or performs competitively with
other algorithms on a wide range of € values. Especially, when € is
very small (e.g., € = 0.05), DP-AGD outperforms all other methods
except on the BANK dataset. This is because other algorithms tend
to waste privacy budgets by obtaining extremely noisy statistics
and blindly use them in their updates without checking whether
it can lead to a better solution (i.e., they perform many updates
that do not help decrease the objective value). On the other hand,
DP-AGD explicitly checks the usefulness of the statistics and only
use them when they can contribute to decreasing the objective
value.

The bottom row of Figure 2 illustrates how the final objective
value achieved by each algorithm changes as the value of € increases.
As it was observed in the experiments on classification accuracy,
DP-AGD gets close to the best achievable objective values for a
wide range of € values considered in the experiments.

It should be emphasized that the accuracies of SGD-Adv and
SGD-MA are largely dependent on the total number of iterations
T. In all of the baseline algorithms, the value of T needs to be
determined before the execution of the algorithms. To get the best
accuracy for the given value of ¢, it requires tuning the value of T
through multiple interactions with a dataset (e.g., trial and error),
which also should be done in a differentially private manner and
hence it requires a portion of privacy budget. In PrivGene, the
number of iterations is heuristically set to T = ¢ - (n - €), where ¢
is a tuning parameter and n is the number of observations in D.
However, T still requires a careful tuning as it depends on c.

SGD-MA outperforms all other algorithms when e > 0.8. This is
because SGD-MA can afford more number of iterations resulting
from tight bound on the privacy loss provided by the moments ac-
countant, together with privacy amplification effect due to subsam-
pling. However, it is hard to use the moments accountant method
under high privacy regime (i.e., when € is small) because the bound
is not sharp when there are small number of independent random
variables (i.e., when the number of iterations is small). With § fixed
to 1078, we empirically observe that, under the moments accoun-
tant, one single iteration of SGD update can incur the privacy cost
of € ~ 0.5756. This renders the moments accountant method im-
practical when high level of privacy protection is required.

Support vector machine (SVM) is one of the most effective tools
for classification problems. In this work, we only consider the linear
SVM (without kernel) for simplicity. The SVM classification problem

KDD ’18, August 19-23, 2018, London, United Kingdom

J. Lee and D. Kifer

o —®—.9.— 0 —8

84.5 7 —4—c=01
o« £ e=02
84.0 _o8=—--B-—g| 038 . c-08
g
835 ’ &

Accuracy(%)
Obj. value
o
@
&

Accuracy(%)

Obj. value

83.0 1 of ~~ge—dr—eg -1
=01 034 0 0.34

825 =02 SNo—.g.—. 0. —0—.—0
& c=08 0.32

82.0 082

T r r r T T r r r r T r T T T T T
20 40 60 80 100 120 20 40 60 80 100 120 0.1 0.2 0.4 0.8 16
splits splits € €

(a) Effect of splits (left: accuracy, right: obj. value)

0.55
84

82

Obj. value

80

Accuracy(%)

78

76

Accuracy(%)

84

82

80

78

76

4.0
Cyrad

1.0 2.0

(c) Effect of Cgaq (left: accuracy, right: obj. value)

(d) Effect of C,,; (left: accuracy, right: obj. value)

Figure 1: Effects of parameters

~—4— DP-AGD =i}~ ObjPert

PrivGene

= % QutPert =—#= SGD-Adv =#= SGD-MA == NonPrivate

= = =+ Majority

75 »
70 _70
= =
g 65 ges
3 3
2 60 £ 60
55 55 1
50 50 42
075 0.75
070 0.70
° © 065 o 0657
205 E E
g S 060 < 0.60
o O 055 O 055 4
04
0.50 0.50 |
03 0.45 0.45 4
005 0.1 0.2 04 08 1.6 005 0.1 02 04 08 16 005 01 0.2 04 08 1.6 005 0.1 02 04 08 16
€ € € €
(a) Adult (b) BANK (c) IPUMS-US (d) IPUMS-BR

Figure 2: Logistic regression by varying e (Top: classification accuracies, Bottom: objective values)

is formulated as an optimization problem:
Ao o 1y
min —||lw||5+ — max{l —y;wTx;,0},
in 7 [[wll3 nz; {1-yiwTx;,0}

where x; € RP*! and y; € {-1,+1} for i € [n].

Figure 3 compares the performance of DP-AGD on SVM task
with other baseline algorithms. As it was shown in the experiments
on logistic regression, DP-AGD achieves the competitive accuracies
on a wide range of values for €.

DP-AGD showed an unstable behavior when performing SVM
task on BANK dataset: its accuracy can degrade even though we
use more privacy budget. For example, the accuracy when € = 0.4

is lower than that when € = 0.1. However, we observe that its
objective value consistently decreases as the value of ¢ is increased.

7 CONCLUSION

This paper has developed an iterative optimization algorithm for
differential privacy, in which the per-iteration privacy budget is
adaptively determined based on the utility of privacy-preserving
statistics. Existing private algorithms lack runtime adaptivity to
account for statistical utility of intermediate query answers. To
address this significant drawback, we presented a general frame-
work for adaptive privacy budget selection. While the proposed
algorithm has been demonstrated in the context of private ERM

Private Gradient Descent with Adaptive per-lteration Privacy Budget

KDD ’18, August 19-23, 2018, London, United Kingdom

== DP-AGD =il ObjPert =@ : PrivGene =3 OutPert =€= SGD-Adv =#= SGD-MA == NonPrivate ===+ Majority

Accuracy(%)

Accuracy(%)

Accuracy(%)

0.6

0.5

Obj. value
Obj. value
)

@

&

0.4

Obj. value

Obj. value

(a) Adult (b) BANK

(c) IPUMS-US (d) IPUMS-BR

Figure 3: SVM by varying ¢ (Top: classification accuracies, Bottom: objective values)

== DP-AGD =il ObjPert =@ : PrivGene =3+ OutPert =@= SGD-Adv =#= SGD-MA == NonPrivate === Majority

100 0.5 ; 100 i
1 1
95 04 : 95 1 :
S o S L} o
= 203 1 = 2 1
g 90+ E 1 g 9 | E 1
5 = 5 = 1
g 8 o2 8 1 8 |
< 85 —.1 < 85 : 1
0.1 e,
1 — 1
80 R o e LR PR Loveriennnns
. : . . . : 00 1 : . . : : : - - - :
005 01 02 04 08 16 005 01 02 04 08 16 005 01 02 04 08 16
e e e e

Figure 4: Classification task on KDDCup99 dataset (Left: logistic regression, right: SVM)

problem, we believe our approach can be easily applied to other
problems.

ACKNOWLEDGEMENT

This work was partially supported by NSF Awards CNS-1702760
and CNS-1228669.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 308-318.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private Empirical Risk

Minimization: Efficient Algorithms and Tight Error Bounds. In Proceedings of the

2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS ’14).

IEEE Computer Society, Washington, DC, USA, 464-473.

[3] Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim.
2014. Bounds on the sample complexity for private learning and private data
release. Machine learning 94, 3 (2014), 401-437.

[4] Mark Bun and Thomas Steinke. 2016. Concentrated differential privacy: Simpli-
fications, extensions, and lower bounds. In Theory of Cryptography Conference.
Springer, 635-658.

[5] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST) 2, 3
(2011), 27.

[6] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. 2011. Differen-
tially private empirical risk minimization. Journal of Machine Learning Research

[2

—

&

—

8

—

[o

[

(10]
(11]
(12]

(13]

12, Mar (2011), 1069-1109.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 486-503.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of Cryptography
Conference. Springer, 265-284.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3—4
(2014), 211-407.

C.Dwork, G. N. Rothblum, and S. Vadhan. 2010. Boosting and Differential Privacy.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. 51-60.
Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. 2012. Differentially
private online learning. In Conference on Learning Theory. 24-1.

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. 2012. Private convex empiri-
cal risk minimization and high-dimensional regression. In Conference on Learning
Theory. 25-1.

M. Lichman. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/
ml

[14] Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage.

Mathematics of computation 35, 151 (1980), 773-782.

[15] J. Nocedal and S. J. Wright. 2006. Numerical Optimization (2nd ed.). Springer,

[16]

[17]

New York.

Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951), 400-407.

Benjamin IP Rubinstein, Peter L Bartlett, Ling Huang, and Nina Taft. 2012. Learn-
ing in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning.
Journal of Privacy and Confidentiality 4, 1 (2012), 4.

KDD ’18, August 19-23, 2018, London, United Kingdom

[18]

[19]
[20]

[21]

[22]

Steven Ruggles, Katie Genadek, Ronald Goeken, Josiah Grover, and Matthew
Sobek. [n. d.]. Integrated Public Use Microdata Series, Minnesota Population
Center. http://international ipums.org.

S. Song, K. Chaudhuri, and A. D. Sarwate. 2013. Stochastic gradient descent with
differentially private updates. In GlobalSIP.

Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang. 2015. Nearly optimal
private lasso. In Advances in Neural Information Processing Systems. 3025-3033.
Di Wang, Minwei Ye, and Jinhui Xu. 2017. Differentially Private Empirical
Risk Minimization Revisited: Faster and More General. In Advances in Neural
Information Processing Systems 30. Curran Associates, Inc., 2719-2728.
Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. 2015. Privacy for free: Pos-
terior sampling and stochastic gradient monte carlo. In International Conference

[23

]

J. Lee and D. Kifer

on Machine Learning. 2493-2502.

Oliver Williams and Frank McSherry. 2010. Probabilistic inference and differential
privacy. In Proceedings of the 23rd International Conference on Neural Information
Processing Systems-Volume 2. Curran Associates Inc., 2451-2459.

[24] Jun Zhang, Xiaokui Xiao, Yin Yang, Zhenjie Zhang, and Marianne Winslett. 2013.

PrivGene: Differentially Private Model Fitting Using Genetic Algorithms. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’13). ACM, New York, NY, USA, 665-676.

[25] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. 2017. Efficient pri-

vate ERM for smooth objectives. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence. AAAI Press, 3922-3928.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Differential Privacy
	3.2 Concentrated Differential Privacy
	3.3 NoisyMax

	4 Gradient Averaging for zCDP
	5 Algorithm
	6 Experimental Results
	6.1 Preprocessing
	6.2 Effects of Parameters
	6.3 Logistic Regression and SVM

	7 Conclusion
	References

