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ABSTRACT

Iterative algorithms, like gradient descent, are common tools for

solving a variety of problems, such as model fitting. For this reason,

there is interest in creating differentially private versions of them.

However, their conversion to differentially private algorithms is

often naive. For instance, a fixed number of iterations are chosen,

the privacy budget is split evenly among them, and at each iteration,

parameters are updated with a noisy gradient.

In this paper, we show that gradient-based algorithms can be

improved by a more careful allocation of privacy budget per iter-

ation. Intuitively, at the beginning of the optimization, gradients

are expected to be large, so that they do not need to be measured

as accurately. However, as the parameters approach their optimal

values, the gradients decrease and hence need to be measured more

accurately. We add a basic line-search capability that helps the al-

gorithm decide when more accurate gradient measurements are

necessary.

Our gradient descent algorithm works with the recently intro-

duced zCDP version of differential privacy. It outperforms prior

algorithms for model fitting and is competitive with the state-of-

the-art for (ϵ,δ )-differential privacy, a strictly weaker definition

than zCDP.
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1 INTRODUCTION

Iterative optimization algorithms are designed to find a parameter

vector w∗ ∈ Rp that minimizes an objective function f . They start

with an initial guessw0 and generate a sequence of iterates {wt }t ≥0
such that wt tends to w∗ as t → ∞. At iteration t , information

about the objective function f (wt ), such as the gradient ∇f (wt ),
is computed and used to obtain the next iteratewt+1. In the case of

gradient (or stochastic gradient) descent, updates have a form like:

wt+1 = wt − αt (∇f (wt )) , (1)

where αt is a carefully chosen step size that often depends on the

data (for example, through a line search [15]) or based on previous

gradients.

When designing a such algorithm under various versions of

differential privacy, the update steps typically have the following

form [1, 19]:

wt+1 = wt − αt (∇f (wt ) + Yt ) , (2)

where Yt is an appropriately scaled noise variable (e.g., Laplace

or Gaussian) for iteration t , and the gradient may be computed

on some or all of the data. It is important to note that the noisy

gradients ∇f (wt ) + Yt might not be descent directions even when

computed on the entire dataset.

In prior work (e.g., [2, 20, 22, 24]), the total number of iterations

T is fixed a priori, and the desired privacy cost, say ϵ , is split across

the iterations: ϵ = ϵ1 + · · · + ϵT . For any iteration t , the variance

of Yt is a function of 1/ϵt and depends on which version of dif-

ferential privacy is being used (e.g., pure differential privacy [8],

approximate differential privacy [7], or zero-mean concentrated

differential privacy [4]). Furthermore, in prior work, the privacy

budget is evenly split across iterations, so ϵ1 = · · · = ϵT = ϵ/T .
There are two drawbacks to this approach. First, accuracy heav-

ily depends on the pre-specified number of iterationsT Ð ifT is too

small, the algorithm will stop well short of the optimum; if T is too

large, the privacy budget ϵt for each iteration is small, so that large

amounts of noise must be added to each gradient, thus swamping

the signal provided by the gradient. Second, at the beginning of

the optimization, gradients are expected to be large, so that an

algorithm can find good parameter updates even when the gradient

is not measured accurately. However, as the current parameters wt

approach the optimal values, the gradients start to decrease and

need to be measured more accurately in order for the optimization

to continue making progress (e.g., continue to minimize or approx-

imately minimize f ). This means that an adaptive privacy budget

allocation is preferable to a fixed allocation (as long as the total

privacy cost is the same).
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t | |∇f (wt )| |2 | |∇f (wt ) + Yt | |2
√
E[| |Yt | |22] f (wt )

0 0.72558 0.91250 0.50119 0.69315

1 0.20550 0.52437 0.50119 0.53616

2 0.15891 0.54590 0.50119 0.46428

3 0.11864 0.49258 0.50119 0.43678

4 0.09715 0.50745 0.50119 0.41852

5 0.14050 0.52271 0.50119 0.41122

6 0.12380 0.48218 0.50119 0.38903

7 0.06237 0.53640 0.50119 0.38175

8 0.05717 0.47605 0.50119 0.37865

9 0.05625 0.55129 0.50119 0.37814

10 0.05241 0.51636 0.50119 0.37542

Table 1: Objective function value and true gradient vs. noisy

gradient magnitude.

In this paper, we propose an adaptive gradient descent strategy

for zero-mean Concentrated Differential Privacy [4] (zCDP) where

each iteration has a different share ϵt of the overall privacy budget

ϵ . It uses a smaller share of the privacy budget (more noise) for gra-

dients with large norm and a larger share (less noise) for gradients

with small norm. Thus, if there are many steps with large gradients,

the algorithm will be able to run for more iterations, while if there

are many steps with small gradients, it will run for fewer iterations

but make sure that each noisy gradient is accurate enough to help

decrease the objective function (instead of performing a completely

random walk over the parameter space). To the best of our knowl-

edge, our work is the first to adaptively choose ϵt depending on

the previous iterate and the utility of noisy statistic for the current

iteration.

One of the challenges is to figure outwhether the amount of noise

added to a gradient is too much to be useful. This is far from trivial

as the noisy gradient can be a descent direction even when the norm

of the noise is much larger than the norm of the true gradient. For

example, consider the following run of the noisy gradient descent

algorithm to train logistic regression on the UCI Adult dataset

[13] with Gaussian noise vectors added to the gradient, as shown

in Table 1. Note that Gaussian noise is one of the distributions

that can achieve zero-Mean Concentrated Differential Privacy [4].

We see that the magnitude of the true gradient decreases from

approximately 0.7 to 0.05 while the norm of the noisy gradient

starts at 0.91 and only decreases to approximately 0.516 ś an order

of magnitude larger than the corresponding true gradient. Yet, all

this time the objective function keeps decreasing, which means that

the noisy gradient was still a descent direction despite the noise.

Our solution is to use part of the privacy budget allocated to

step t to compute the noisy gradient S̃t = ∇f (wt ) +Yt . We use the

remaining part of the privacy budget allocated to step t to select the

best step size. That is, we start with a predefined set of step sizes

Φ (which includes a step size of 0). Then, we use the differentially

private noisy min algorithm [9] to approximately find the α ∈ Φ for

which f (wt −αS̃t ) is smallest (i.e. we find which step size causes the

biggest decrease on the objective function). If the selected step sizeα

is not 0, then we setwt+1 = wt −αS̃t ; thus our algorithm supports

variable step sizes, which can help gradient descent algorithms

converge faster. On the other hand, if the selected step size is 0, it

is likely that the noise was so large that the noisy gradient is not a

descent direction and it triggers an increase in share of the privacy

budget that is assigned to subsequent steps.

This brings up the second problem. If the chosen step size α

is 0, it means two things: we should increase our current privacy

budget share from ϵt to some larger value ϵt+1. It also means we

should not use the current noisy gradient for a parameter update.

However, the noisy gradient still contains some information about

the gradient. Thus, instead of measuring the gradient again using

a privacy budget of ϵt+1 and discarding our previous estimate, we

measure it again with a smaller budget ϵt+1 − ϵt and merge the

result with our previous noisy gradient.

Our contributions are summarized as follows:

• We propose a gradient descent algorithm for a variation of differ-

ential privacy, called zCDP [4], that is weaker than ϵ-differential

privacy, but is stronger than (ϵ,δ )-differential privacy.
• To the best of our knowledge, this is the first private gradient-

based algorithm in which the privacy budget and step size for

each iteration is dynamically determined at runtime based on

the quality of the noisy statistics (e.g., gradient) obtained for the

current iteration.

• We perform extensive experiments on real datasets against other

recently proposed empirical risk minimization algorithms. We

empirically show the effectiveness of the proposed algorithm for

a wide range of privacy levels.

The rest of this paper is organized as follows. In Section 2, we re-

view related work. In Section 3, we provide background on differen-

tial privacy. Section 4 introduces our gradient averaging technique.

We present the approach for the dynamic adaptation of privacy

budget in Section 5. Section 6 contains the experimental results on

real datasets.

2 RELATED WORK

A typical strategy in statistical learning is the empirical risk mini-

mization (ERM), in which a model’s averaged error on a dataset is

minimized. There have been several efforts [2, 6, 11, 12, 17, 20ś24]

to develop privacy-preserving algorithms for convex ERM problems

using variations of differential privacy. A number of approaches

have been proposed in the literature. The simplest approach is to

perturb the output of a non-private algorithm with random noise

drawn from some probability distribution. This is called output

perturbation [6, 8, 25]. In general, the resulting noisy outputs of

learning algorithms are often inaccurate because the noise is cali-

brated to the worst case analysis. Recently, Zhang et al. [25] used

algorithmic stability arguments to bound the L2 sensitivity of full

batch gradient descent algorithm to determine the amount of noise

that must be added to outputs that partially optimizes the objective

function. Although they achieve theoretical near optimality, this al-

gorithm has not been empirically shown to be superior to methods

such as [6].

One approach that has shown to be very effective is the objec-

tive perturbation method due to Chaudhuri et al. [6]. In objective

perturbation, the ERM objective function is perturbed by adding

a linear noise term to its objective function, and then the problem

is solved using a non-private optimization solver. Kifer et al. [12]
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improved the utility of the objective perturbation method at the

cost of using approximate instead of pure differential privacy. While

this approach is very effective, its privacy guarantee is based on the

premise that the problem is solved exactly. This is, however, rarely

the case in practice; most of time optimization problems are solved

approximately.

Another approach that has gained popularity is the iterative

gradient perturbation method [2, 23] and their variants [21, 22, 25].

Bassily et al. [2] proposed an (ϵ,δ )-differentially private version of

stochastic gradient descent (SGD) algorithm. At each iteration, their

algorithm perturbs the gradient with Gaussian noise and applies

the advanced composition [10] together with privacy amplification

result [3] to get an upper bound on the total privacy loss. Further,

they also have shown that their lower bounds on expected the

excess risk is optimal, ignoring multiplicative log factor for both

lipschitz convex and strongly convex functions. Later, Talwar et

al. [20] improved those lower bounds on the utility for LASSO

problem. In [21], gradient perturbation method has been combined

with the stochastic variance reduced gradient (SVRG) algorithm,

and the resulting algorithm has shown to be near-optimal with less

gradient complexity.

Zhang et al. [24] presented a genetic algorithm for differentially

private model fitting, called PrivGene, which has a different flavor

from other gradient-based methods. Given the fixed number of total

iterations, at each iteration, PrivGene iteratively generates a set of

candidates by emulating natural evolutions and chooses the one

that best fits the model using the exponential mechanism [9].

All of the iterative algorithms discussed above use predetermined

privacy budget sequences.

3 BACKGROUND

In this section, we provide background on differential privacy and

introduce important theorems.

3.1 Differential Privacy

Let D = {d1,d2, . . . ,dn } be a set of n observations, each drawn

from some domain D. A database D ′ ∈ Dn is called neighboring

to D if |(D \ D ′) ∪ (D ′ \ D)| = 1. In other words, D ′ is obtained
by adding or removing one observation from D. To denote this

relationship, we write D∼D ′. The formal definition of differential

privacy (DP) is given in Definition 3.1.

Definition 3.1 ((ϵ,δ )-DP [7, 8]). A randomized mechanism M
satisfies (ϵ,δ )-differential privacy if for every event S ⊆ range(M)
and for all D∼D ′ ∈ Dn ,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D ′) ∈ S] + δ .

When δ = 0,M achieves pure differential privacy which pro-

vides stronger privacy protection than approximate differential

privacy in which δ > 0.

To satisfy (ϵ , δ )-DP (for δ > 0), we can use the Gaussian mecha-

nism, which adds Gaussian noise calibrated to the L2 sensitivity of

the query function.

Definition 3.2 (L1 and L2 sensitivity). Let q : Dn → Rd be a

query function. The L1 (resp. L2) sensitivity of q, denoted by ∆1(q)

(resp., ∆2(q)) is defined as

∆1(q) = max
D∼D′

∥q(D) − q(D ′)∥1 , ∆2(q) = max
D∼D′

∥q(D) − q(D ′)∥2 .

The L1 and L2 sensitivities represent the maximum change in

the output value of q (over all possible neighboring databases in

Dn ) when one individual’s data is changed.

Theorem 3.3 (Gaussian mechanism [9]). Let ϵ ∈ (0, 1) be ar-
bitrary and q be a query function with L2 sensitivity of ∆2(q). The
Gaussian Mechanism, which returns q(D) + N (0,σ 2), with

σ ≥ ∆2(q)
ϵ

√
2 ln(1.25/δ ) (3)

is (ϵ , δ )-differentially private.

An important property of differential privacy is that its privacy

guarantee degrades gracefully under the composition. The most

basic composition result shows that the privacy loss grows linearly

under k-fold composition [9]. This means that, if we sequentially

apply an (ϵ,δ )-DP algorithm k times on the same data, the re-

sulting process is (kϵ,kδ )-differentially private. Dwork et al. [10]

introduced an advanced composition, where the loss increases sub-

linearly (i.e., at the rate of
√
k).

Theorem 3.4 (Advanced composition [10]). For all ϵ , δ , δ ′ ≥ 0,

the class of (ϵ,δ )-differentially private mechanisms satisfies (ϵ ′,kδ +
δ ′)-differential privacy under k-fold adaptive composition for ϵ ′ =√
2k ln(1/δ ′)ϵ + kϵ(eϵ − 1).

3.2 Concentrated Differential Privacy

Bun and Steinke [4] recently introduced a relaxed version of differ-

ential privacy, called zero-concentrated differential privacy (zCDP).

To define ρ-zCDP, we first introduce the privacy loss random vari-

able. For an output o ∈ range(M), the privacy loss random variable

Z of the mechanismM is defined as

Z = log
Pr[M(D) = o]
Pr[M(D ′) = o] .

ρ-zCDP imposes a bound on the moment generating function of

the privacy loss Z and requires it to be concentrated around zero.

Formally, it needs to satisfy

eDα (M(D) | |M(D′))
= E

[
e(α−1)Z

]
≤ e(α−1)αρ , ∀α ∈ (1,∞) ,

where Dα (M(D)| |M(D ′)) is the α-Rényi divergence. In this paper,

we use the following zCDP composition results.

Lemma 3.5 ([4]). Suppose two mechanisms satisfy ρ1-zCDP and

ρ2-zCDP, then their composition satisfies (ρ1 + ρ2)-zCDP.

Lemma 3.6 ([4]). The Gaussian mechanism, which returns q(D) +
N (0,σ 2) satisfies ∆2(q)2/(2σ 2)-zCDP.

Lemma 3.7 ([4]). IfM satisfies ϵ-differential privacy, themM
satisfies ( 12ϵ2)-zCDP.

Lemma 3.8 ([4]). IfM is a mechanism that provides ρ-zCDP, then

M is (ρ + 2
√
ρ log(1/δ ),δ )-DP for any δ > 0.
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Algorithm 1: NoisyMax(Ω,∆1(f ), ϵ)
Input: Ω: a set of candidates, ∆1(f ): sensitivity of f , ϵ :

privacy budget for pure differential privacy

1 Ω̃ = {ṽi = v + Lap(∆1(f )/ϵ) : v ∈ Ω, i ∈ [|Ω |]}
2 return argmax j ∈[ |Ω |] ṽj

3.3 NoisyMax

Let Ψ = {w1, . . . ,ws } be a set of points in Rp and f : Rp → R be a

function that implicitly depends on a database D. Suppose we want

to choose a point wi ∈ Ψ with maximum f (wi ;D). There exists an
(ϵ, 0)-DP algorithm, called NoisyMax [9]. It adds independent noise

drawn from Lap(∆1(f )/ϵ) to each f (wi ), for i ∈ [s], and returns

the index i of the largest value, i.e.,

i = argmax
j ∈[s]

{ f (wj ) + Lap(∆f /ϵ)} ,

where Lap(λ) denotes a Laplace distribution with mean 0 and

scale parameter λ, and the notation [s] is used to denote the set

{1, 2, . . . , s}. Note that, when f is monotonic in D (i.e., adding a

tuple to D cannot decrease the value of f ), noise can be drawn from

the exponential distribution with parameter ϵ/∆1(f ), which yields

better utility. The NoisyMin algorithm is obtained by applying

NoisyMax to −f .
NoisyMaxwas originally intended toworkwith pure ϵ-differential

privacy. To get it to work with ρ-zCDP, we use the conversion re-

sult in Lemma 3.7: an ϵ-differentially private algorithm satisfies
ϵ 2

2 − zCDP . Therefore, when using zCDP, if we wish to allocate ρ ′

of our zCDP privacy budget to NoisyMax, we call NoisyMax with

ϵ =
√
2ρ ′.

4 GRADIENT AVERAGING FOR ZCDP

One of the components of our algorithm is recycling estimates

of gradients that weren’t useful for updating parameters. In this

section, we explain how this is done. Suppose at iteration t , we

are allowed to use ρt of the zCDP privacy budget for estimating

a noisy gradient. If ∆2(∇f ) is the L2 sensitivity of the gradient of

f then, under zCDP we can measure the noisy gradient as St =

∇f (wt ) + N (0, ∆2(∇f )2
2ρt

).
If our algorithm decides that this is not accurate enough, it will

trigger a larger share of privacy budget ρt+1 > ρt to be applied at

the next iteration. However, instead of discarding St , we perform

another independent measurement using ρt+1 − ρt privacy budget:

S ′t = ∇f (wt ) + N (0, ∆2(∇f )2
2(ρt+1−ρt ) ).

We combine St and S
′
t in the following way:

Ŝt =
ρtSt + (ρt+1 − ρt )S ′t
ρt + (ρt+1 − ρt )

Simple calculations show that

E[Ŝt ] = ∇f (wt )

Var (Ŝt ) =
(
ρ2t

∆2(∇f )2
2ρt

+

∆2(∇f )2
2(ρt+1 − ρt )

(ρt+1 − ρt )2
)
/ρ2t+1

=

∆2(∇f )2
2ρt+1

Notice that computing St , then computing S ′t and obtaining the

final estimate of the noisy gradient Ŝt uses a total privacy budget

cost of ρt+1 and produces an answer with variance
∆2(∇f )2
2ρt+1

. On

the other hand, if we had magically known in advance that using

a privacy budget share ρt would lead to a bad gradient and pre-

emptively used ρt+1 (instead of ρt ) to measure the gradient, the

privacy cost would be ρt+1 and the variance would still be
∆2(∇f )2
2ρt+1

.

5 ALGORITHM

In this section, we provide a general framework for private ERM

that automatically adapts per-iteration privacy budget to make each

iteration progress toward an optimal solution. LetD = {d1, . . . ,dn }
be an input database of n independent observations. Each obser-

vation di = (xi ,yi ) consists of xi ∈ Rp and y ∈ R. We consider

empirical risk minimization problem of the following form:

minimize
w∈C

f (w;D) := 1

n

n∑

i=1

ℓ(w;di ) , (4)

where ℓ is a loss function and C is a convex set. Optionally, one

may add a regularization term (e.g., λ2 ∥w∥
2
2) into (4) with no change

in the privacy guarantee. Note that the regularization term has no

privacy implication as it is independent of data.

Algorithm 2 shows each step of the proposed differentially pri-

vate adaptive gradient descent algorithm (DP-AGD). The algorithm

has three main components: private gradient approximation, step

size selection, and adaptive noise reduction.

Gradient approximation. At each iteration, the algorithm com-

putes the noisy gradient g̃ = ∇f (wt )+N(0,σ 2I) using the Gaussian
mechanism with variance σ 2. The magnitude of noise σ 2 is depen-

dent on the maximum influence one individual can have on gt , mea-

sured by ∆2(д). To bound this quantity, many prior works [6, 12]

assume that ∥x∥ ≤ 1. Instead, we use the gradient clipping tech-

nique of [1]: compute the gradient ∇ℓ(wt ;di ) for i = 1, . . . ,n, clip

the gradient in L2 norm by dividing it by max(1, ∥∇ℓ(wt ;di ) ∥2
Cgrad

), com-

pute the sum, add Gaussian noise with variance C2
grad
/2ρng, and

finally normalize it to a unit norm. This ensures that the L2 sensi-

tivity of gradient is bounded by Cgrad, and satisfies ρng-zCDP by

Lemma 3.6.

Step size selection. In non-private setting, stochastic optimization

methods also use an approximate gradient computed from a small

set of randomly selected data, called mini-batch, instead of an exact

gradient. For example, at iteration t , stochastic gradient descent

(SGD) randomly picks an index it ∈ [n] and estimates the gradient

∇ℓ(wt ;dit ) using one sample dit . Consequently, each update direc-

tion−∇ℓ(wt ;dit )might not be a descent direction, but it is a descent

direction in expectation since E[∇ℓ(wt ;dit ) | wt ] = ∇f (wt ).
In contrast, in private setting an algorithm cannot rely on a guar-

antee in expectation and need to use per-iteration privacy budget

more efficiently. To best utilize the privacy budget, we test whether

a given a noisy estimate g̃t of gradient is a descent direction using

a portion of privacy budget ρnmax. First, the algorithm constructs

a set Ω = { f (wt − α g̃t ) : α ∈ Φ}, where each element of Ω is the

objective value evaluated atwt −α g̃t and Φ is the set of pre-defined

step sizes. Then it determines which step size yields the smallest
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Algorithm 2: DP-AGD

Input: privacy budget ρnmax, ρng, ϵtot,δtot, budget increase

rate γ , clipping thresholds Cobj,Cgrad, data

{d1, . . . ,dn }, objective function f (w) = ∑n
i=1 ℓ(w;di )

1 Initialize w0 and Φ

2 t ← 0, ρ ← solve (5) for ρ // To compare to (ϵ,δ )-DP Algs

3 while ρ > 0 do

4 i ← 0

5 gt ←
∑n
i=1

(
∇ℓ(wt ;di )/max(1, ∥∇ℓ(wt ) ∥2

Cgrad
)
)

6 g̃t ← gt + N (0, (C2
grad
/2ρng)I)

7 ρ ← ρ − ρng
8 g̃t ← g̃t /∥g̃t ∥2
9 while i = 0 do

10 Ω = { f (wt − α g̃t ) : α ∈ Φ}
11 ρ ← ρ − ρnmax

12 i ←NoisyMax(-Ω,Cobj,
√
2ρnmax)

13 if i > 0 then

14 if ρ > 0 then wt+1 ← wt − αi g̃t
15 else

16 ρold ← ρng

17 ρng ← (1 + γ )ρng
18 g̃t ← GradAvg(ρold, ρng, gt , g̃t ,Cgrad)
19 ρ ← ρ − (ρng − ρold)
20 end

21 end

22 t ← t + 1

23 end

24 return wt

25 Function GradAvg(ρold, ρH , g, g̃, Cgrad):

26 g̃2 ← g + N (0, (
C2
grad

2(ρH−ρold) )I)

27 S̃ ← ρoldд̃+(ρH−ρold)д̃2
ρH

28 return S̃

29 end

objective value using the NoisyMax algorithm. One difficulty in

using the NoisyMax is that there is no known a priori bound on

a loss function ℓ. To bound the sensitivity of ℓ, we apply the idea

of gradient clipping to the objective function f . Given a fixed clip-

ping threshold Cobj, we compute ℓ(wt ;di ) for i = 1, . . . ,n, clip the

values greater than Cobj, and take the summation of clipped values.

Note that, unlike the gradient, we use unnormalized value as it

doesn’t affect the result of NoisyMax.

In our implementation, the first element of Φ is fixed to 0, so

that Ω always includes the current objective value f (wt ). Let i be
the index returned by the NoisyMax. When i > 0, the algorithm

updates wt using the chosen step size αi . When i = 0, it is likely

that −g̃t is not a descent direction, and hence none of step sizes in

Φ leads to a decrease in objective function f .

Adaptive noise reduction. When the direction−g̃t (obtained using
the Gaussian mechanism with parameter σ ) is determined to be

a bad direction by the NoisyMax, DP-AGD increases the privacy

budget for noisy gradient approximation ρng by a factor of 1 + γ .

Since the current gradient was measured using the previous budget

share, ρold, we use ρng − ρold privacy budget with the gradient

averaging technique to increase the accuracy of that measured

gradient. The new direction is checked by the NoisyMax again. This

procedure is repeated until the NoisyMax finds a descent direction

(i.e., until it returns a non-zero index).

Composition. The two main tools used in DP-AGD achieves dif-

ferent versions of differential privacy; NoisyMax satisfies (ϵ, 0)-DP
(pure) and ϵ 2

2 -zCDP, while Gaussian mechanism can be used to

provide zCDP. However, to compare our method to other algo-

rithms that use approximate (ϵ,δ )-differential privacy, we need to

use conversion tools given by Lemmas 3.7 and 3.8.

Given the fixed total privacy budget (ϵtot,δtot), the algorithm
starts by converting (ϵtot,δtot)-DP into ρ-zCDP using Lemma 3.8.

This is done by solving the following inequality for ρ:

ϵtot ≥ ρ + 2
√
ρ log(1/δtot) . (5)

Given the resulting total privacy budget ρ for zCDP, the algorithm

dynamically computes and deducts the amount of required privacy

budget (lines 19, 12, 7) whenever it needs an access to the data-

base during the runtime, instead of allocating them a priori. This

guarantees that the entire run of algorithm satisfies ρ-zCDP.

Adjusting step sizes. For two reasons, we dynamically adjust the

range of step sizes in Φ. First, the variance in private gradient es-

timates needs to be controlled. The stochastic gradient descent

algorithm with constant step sizes in general does not guarantee

convergence to the optimum even for a well-behaving objective

function (e.g., strongly convex). To guarantee the convergence (in

expectation), stochastic optimization algorithms typically enforce

the conditions
∑
t αt = ∞ and

∑
t α

2
t < ∞ on their step sizes [16],

which ensures that the variance of the updates reduces gradually

near the optimum. Although we adaptively reduce the magnitude

of privacy noise using gradient averaging, it still needs a way to

effectively control the variance of the updates. Second, in our algo-

rithm, it is possible that g̃t is actually a descent direction but the

NoisyMax fails to choose a step size properly. This happens when

the candidate step sizes in Φ are all large but the algorithm can

only make a small move (i.e., when the optimal step size is smaller

than all non-zero step sizes in Φ). To address these issues, we pro-

pose to monitor the step sizes chosen by NoisyMax algorithm and

adaptively control the range of step sizes in Φ. We initialize Φ with

equally spacedm points between 0 and αmax. At every τ iteration,

we update αmax = (1 + η)max(αt ,αt−1, . . . ,αt−τ+1), where αt de-
notes the step size chosen at iteration t . 1 We empirically observe

that this allows DP-AGD to adaptively change the range of step

sizes based on the relative location of the current iterate to the

optimum.

Correctness of Privacy. The correctness of the algorithm depends

on ρ-zCDP composition (Lemma 3.5) and accounting for the privacy

cost of each primitive.

Theorem 5.1. Algorithm 2 satisfies ρ-zCDP and (ϵtot,δtot)-differential
privacy.

1In our experiments, we setm = 20, τ = 10, and η = 0.1 and initialize αmax = 2.
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Dataset Size (n) Dime. Label

Adult 48,842 124 Is annual income > 50k?

BANK 45,211 33 Is the product subscribed?

IPUMS-US 40,000 58 Is annual income > 25k?

IPUMS-BR 38,000 53 Is monthly income > $300

KDDCup99 4,898,431 120 Is it a DOS attack?

Table 2: Characteristics of datasets

Proof. If no zCDP privacy budget ρ is given to the algorithm,

then the algorithm expects values for ϵtot and δtot. It then figures

out, in Line 2, the proper value of ρ such that ρ-zCDP also satisfies

the weaker (ϵtot,δtot)-differential privacy.
Then, the algorithm works in pure zCDP mode, subtracting

from its running budget the cost incurred by its three primitive

operations: measuring the noisy gradient (Line 7), performing a

noisy max (Line 12), and gradient averaging whenever necessary

(Line 19).

There are two checks that make sure the remaining privacy

budget ρ is above 0, Line 3 and Line 14. The most important check

is in Line 14 ś it makes sure that any time we are updating the

weights, we have not exhausted our privacy budget. This is the

important step because the weights wt are the only results that

become visible outside the algorithm. For example, suppose the

weights wt+1 were updated and the remaining privacy budget ρ

is greater than 0, then it would be safe to release wt+1. Let us

suppose now that the algorithm continues to the next iterations,

but the deduction from measuring the noisy gradient, or NoisyMax

or GradAvg causes the privacy budget ρ to be negative. In this

case, when we finally get to Line 14, we do not update the weights,

so we end up discarding the results of all of the primitives that

were performed after the safe value for wt+1 had been computed.

Subsequently, Line 3 will cause the algorithm to terminate. The

result would be wt+1 which was already safe to release.

As these primitive operations use the correct share of the privacy

budget they are given, the overall algorithm satisfies ρ-zCDP. □

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of DP-AGD on 5 real

datasets: (i) Adult [5, 13] dataset contains 48,842 records of indi-

viduals from 1994 US Census. (ii) BANK [13] contains marketing

campaign related information about customers of a Portuguese

banking institution. (iii) IPUMS-BR and (iv) IPUMS-US datasets are

also Census data extracted from IPUMS-International [18], and

they contain 38,000 and 40,000 records, respectively. (v) KDDCup99

dataset contains attributes extracted from simulated network pack-

ets. Table 2 summarizes the characteristics of datasets used in our

experiments.

Baselines. We compare DP-AGD 2 against seven baseline algo-

rithms, namely, ObjPert [6, 12], OutPert [25], PrivGene [24], SGD-

Adv [2], SGD-MA [1], NonPrivate, and Majority. ObjPert is an

objective perturbation method that adds a linear perturbation term

to the objective function.OutPert is an output perturbation method

2Python code for our experiments is available at https://github.com/ppmlguy/DP-AGD.

that runs the (non-private) batch gradient descent algorithm for

a fixed number of steps and then releases an output perturbed

with Gaussian noise. PrivGene is a differentially private genetic

algorithm-based model fitting framework. SGD-Adv is a differ-

entially private version of SGD algorithm that applies advanced

composition theorem together with privacy amplification result.

SGD-MA is also a private SGD algorithm but it uses an improved

composition method, called moments accountant, tailored to the

Gaussian noise distribution. NonPrivate is an optimization algo-

rithm that does not satisfy differential privacy. In our experiments,

to get the classification accuracy of non-private method, we used

the L-BFGS algorithm [14]. Finally,Majority predicts the label by

choosing the class with larger count. For example, if the number of

tuples with the label yi = 1 in the training set is greater than n/2,
it predicts that yi = 1 for all tuples.

In our experiments, we report both classification accuracy (i.e.,

the fraction of correctly classified examples in the test set) and

final objective value (i.e., the value of f at the last iteration). All

the reported numbers are averaged values over 20 times repeated

5-fold cross-validation.

Parameter settings. When there are known default parameter

settings for the prior works, we used the same settings. Throughout

all the experiments the value of privacy parameter δ is fixed to

10−8 for the Adult, BANK, IPUMS-US, and IPUMS-BR datasets and to

10−12 for the KDDCup99 dataset. According to the common practice

in optimization, the sizes of mini-batches for SGD-Adv and SGD-

MA are set to
√
n. Since KDDCup99 dataset contains approximately

5 million examples, directly computing gradients using the entire

dataset requires unacceptable computation time. To reduce the

computation time, at each iteration, we evaluate the gradient from

a random subset of data (called mini-batch). For KDDCup99 dataset,

we applied the mini-batch technique to both DP-AGD and PrivGene,

and fixed the mini-batch size to 40,000. We exclude OutPert from

the experiments on KDDCup99 dataset as its sensitivity analysis

requires using full-batch gradient.

OutPertmethod has multiple parameters that significantly affect

its performance. For example, the number of iterations T and step

sizeα .We heavily tuned the parametersT andα by runningOutPert

on each dataset with varying T and α , and chose the one that led

to the best performance.

To determine the regularization coefficient values, we find a

fine-tuned value of λ using an L-BFGS algorithm with grid search.

For SGD-Adv and SGD-MA, we used different coefficient values as

these two algorithms use mini-batched gradients.

6.1 Preprocessing

Since all the datasets used in our experiments contain both numeri-

cal and categorical attributes, we applied the following common

preprocessing operations in machine learning practice. We trans-

formed every categorical attribute into a set of binary variables by

creating one binary variable for each distinct category (i.e., one-hot

encoding), and then every numerical attribute is rescaled into the

range [0, 1] to ensure that all attributes have the same scale. Addi-

tionally, for ObjPert, we normalize each observation to a unit norm

(i.e., ∥xi ∥2 = 1 for i = 1, 2, . . . ,n) to satisfy its requirement.
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6.2 Effects of Parameters

We first demonstrate the impact of internal parameter settings on

the performance of DP-AGD. For this set of experiments, we per-

form a logistic regression task on the Adult dataset. The proposed

algorithm has several internal parameters, and in this set of experi-

ments we show that in general its performance is relatively robust

to their settings.

In our experiments, to determine the initial privacy budget pa-

rameters ρnmax and ρng, we first compute their corresponding

ϵnamx and ϵng values as follows:

ϵnmax = ϵng =
ϵtot

2 · splits .

Then these values are converted back to ρnmanx and ρng, respec-

tively, using Lemma 3.6 and 3.7. The intuition behind this setting is

that the value of splits roughly represents the number of iterations

under the naive (linear) composition. We fixed splits=60 for all ex-

periments. Figure 1a shows the impacts of splits on the algorithm’s

performance. From the figure, we see the performance of DP-AGD is

relatively less affected by the choice of splitswhen ϵ is large. When

ϵ = 0.1, excessively small or large value of splits can degrade the

performance. When splits is set too small, the algorithm may not

have enough number of iterations to converge to the optimum. On

the other hand, when the value of splits is too large, the algorithm

may find it difficult to discover good search directions.

Figure 1b describes how classification accuracy and objective

value change with varying values of γ . The parameter γ controls

how fast the algorithm increases ρng when the gradient for the

current iteration is not a descent direction. As it can be seen from

the figure, when γ > 0.2, the value of γ almost has no impact on

the performance. On the other hand, when γ = 0.1 or γ = 0.2,

the performance is slightly affected by the setting. This is because,

when γ is too small, the new estimate of gradient might be still too

noisy, and as a result the algorithm spends more privacy budget on

executing NoisyMax.

The algorithm has two threshold parameters, Cgrad and Cobj.

These two parameters are used to bound the sensitivity of gradient

and objective value computation, respectively. If these parameters

are set to a too small value, it significantly reduces the sensitivity

but at the same time it can cause too much information loss in

the estimates. Conversely, if they are set too high, the sensitivity

becomes high, resulting in adding too much noise to the estimates.

In our experiments, both Cobj and Cgrad are fixed to 3.0.

In Figure 1c, to see the impact of Cgrad on the performance, we

fix the objective clipping thresholdCobj to our default value 3.0 and

vary Cgrad from 1.0 to 16.0. The figure illustrates how the accuracy

and the final objective value change with varying values of Cgrad.

We observe that excessively large or small threshold values can

degrade the performance. As explained above, this is because of

the trade-off between high sensitivity and information loss.

Figure 1d shows how Cobj affects the accuracy and the final

objective value. As it was the case forCgrad, too large or small values

have a negative effect on the performance, while the moderate

values (2 ≤ Cobj ≤ 8) have little impact on the performance.

6.3 Logistic Regression and SVM

We applied our DP-AGD algorithm to a regularized logistic regres-

sion model in which the goal is

min
w

1

n

n∑

i=1

log(1 + exp(−yiw⊺xi )) +
λ

2
∥w∥22 ,

where xi ∈ Rp+1, yi ∈ {−1,+1}, and λ > 0 is a regularization

coefficient.

The top row in Figure 2 shows the classification accuracies of

logistic regression model on 4 different datasets. The result on

KDDCup99 dataset is shown in Figure 4. The proposed DP-AGD

algorithm consistently outperforms or performs competitively with

other algorithms on a wide range of ϵ values. Especially, when ϵ is

very small (e.g., ϵ = 0.05), DP-AGD outperforms all other methods

except on the BANK dataset. This is because other algorithms tend

to waste privacy budgets by obtaining extremely noisy statistics

and blindly use them in their updates without checking whether

it can lead to a better solution (i.e., they perform many updates

that do not help decrease the objective value). On the other hand,

DP-AGD explicitly checks the usefulness of the statistics and only

use them when they can contribute to decreasing the objective

value.

The bottom row of Figure 2 illustrates how the final objective

value achieved by each algorithm changes as the value of ϵ increases.

As it was observed in the experiments on classification accuracy,

DP-AGD gets close to the best achievable objective values for a

wide range of ϵ values considered in the experiments.

It should be emphasized that the accuracies of SGD-Adv and

SGD-MA are largely dependent on the total number of iterations

T . In all of the baseline algorithms, the value of T needs to be

determined before the execution of the algorithms. To get the best

accuracy for the given value of ϵ , it requires tuning the value of T

through multiple interactions with a dataset (e.g., trial and error),

which also should be done in a differentially private manner and

hence it requires a portion of privacy budget. In PrivGene, the

number of iterations is heuristically set to T = c · (n · ϵ), where c
is a tuning parameter and n is the number of observations in D.

However, T still requires a careful tuning as it depends on c .

SGD-MA outperforms all other algorithms when ϵ > 0.8. This is

because SGD-MA can afford more number of iterations resulting

from tight bound on the privacy loss provided by the moments ac-

countant, together with privacy amplification effect due to subsam-

pling. However, it is hard to use the moments accountant method

under high privacy regime (i.e., when ϵ is small) because the bound

is not sharp when there are small number of independent random

variables (i.e., when the number of iterations is small). With δ fixed

to 10−8, we empirically observe that, under the moments accoun-

tant, one single iteration of SGD update can incur the privacy cost

of ϵ ≈ 0.5756. This renders the moments accountant method im-

practical when high level of privacy protection is required.

Support vector machine (SVM) is one of the most effective tools

for classification problems. In this work, we only consider the linear

SVM (without kernel) for simplicity. The SVM classification problem
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Figure 1: Effects of parameters

DP-AGD ObjPert PrivGene OutPert SGD-Adv SGD-MA NonPrivate Majority

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

72

74

76

78

80

82

84

A
c
c
u
ra

c
y
(%

)

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

85

86

87

88

89

90

A
c
c
u
ra

c
y
(%

)

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

50

55

60

65

70

75

A
c
c
u
ra

c
y
(%

)

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

50

55

60

65

70

75

A
c
c
u
ra

c
y
(%

)

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

0.3

0.4

0.5

0.6

O
b
j.

va
lu

e

(a) Adult

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

0.30

0.35

0.40

0.45

0.50

0.55

O
b
j.

va
lu

e

(b) BANK

0.05 0.1 0.2 0.4 0.8 1.6

ǫ

0.45

0.50

0.55

0.60

0.65

0.70

0.75

O
b
j.

va
lu

e

(c) IPUMS-US
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Figure 2: Logistic regression by varying ϵ (Top: classification accuracies, Bottom: objective values)

is formulated as an optimization problem:

min
w

λ

2
∥w∥22 +

1

n

n∑

i=1

max{1 − yiw⊺xi , 0} ,

where xi ∈ Rp+1 and yi ∈ {−1,+1} for i ∈ [n].
Figure 3 compares the performance of DP-AGD on SVM task

with other baseline algorithms. As it was shown in the experiments

on logistic regression, DP-AGD achieves the competitive accuracies

on a wide range of values for ϵ .

DP-AGD showed an unstable behavior when performing SVM

task on BANK dataset: its accuracy can degrade even though we

use more privacy budget. For example, the accuracy when ϵ = 0.4

is lower than that when ϵ = 0.1. However, we observe that its

objective value consistently decreases as the value of ϵ is increased.

7 CONCLUSION

This paper has developed an iterative optimization algorithm for

differential privacy, in which the per-iteration privacy budget is

adaptively determined based on the utility of privacy-preserving

statistics. Existing private algorithms lack runtime adaptivity to

account for statistical utility of intermediate query answers. To

address this significant drawback, we presented a general frame-

work for adaptive privacy budget selection. While the proposed

algorithm has been demonstrated in the context of private ERM
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(d) IPUMS-BR

Figure 3: SVM by varying ϵ (Top: classification accuracies, Bottom: objective values)
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Figure 4: Classification task on KDDCup99 dataset (Left: logistic regression, right: SVM)

problem, we believe our approach can be easily applied to other

problems.
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