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Abstract—Millimeter-wave (mmWave) systems require a large
number of antennas at both base station and user equipment for
a desirable link budget. Due to time varying channel under user
mobility, up-to-date channel state information (CSI) is critical
to obtain the required beamforming gain. The mmWave sparse
multipath channel is commonly exploited in designing tracking
algorithms but practical angular spread is often overlooked. In
this work, we study the performance bound of tracking accuracy
in sparse mmWave channel that includes intra-cluster angular
spreads. Power gain from angle-steering-based beamforming
using tracked CSI is then analyzed. The theoretical study
provides a design guideline beam-width in angle-steering under
different intra-cluster angular spreads. We verify the results
with two common tracking algorithms including sector beam
tracking and maximum likelihood channel tracking.

I. INTRODUCTION

Millimeter-wave (mmWave) communications is a promis-
ing technology for future mobile networks due to abundant
bandwidth. The standardization organization 3GPP has in-
cluded mmWave communication in the fifth generation of
mobile networks, 5G New Radio (5G-NR) [1]. As shown in
both theory and practical testing, a mmWave system requires
beamforming with large antenna arrays at both base station
(BS) and user equipment (UE) to overcome severe propa-
gation loss [2]. The directional transmission and reception
require estimation and tracking of the wireless channel, so
that antenna arrays can effectively provide beamforming gain.

The mmWave channel tracking has been investigated in
[3]-[7]. In sector tracking, BS and UE track indices of sector
beams that provide highest gain. It is used in IEEE 802.11ad
[8] and was studied by [3] in mobile network. Works [4]-[7]
exploit mmWave sparse scattering, where CSI is tracked by
tracking angle of arrival (AoA), angle of departure (AoD),
and gain of multipath components. Such approach allows
a more precise angle steering than sector tracking, and it
supports advanced multiplexing precoding, ¢.g., eigenmode
transmission. However, these prior works design and evaluate
tracking algorithm in a sparse channel model formed by a
superposition of a few multipath rays. In a realistic mmWave
channel, multipaths exhibit clustered nature and there are
non-negligible angular spreads (AS) along the dominant
propagation directions [9]. Such behavior is better modeled
by a clustered sparsity model [10].
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In this work, we focus on a clustered sparse channel and
provide a theoretical analysis of channel tracking accuracy
and associated beamforming gain using angle steering. We
derive the lower bound of channel parameter tracking accu-
racy under clustered multipath model, and we verify it with
maximum likelihood (ML) based algorithm from literature.
We then provide analysis of beamforming gain of angle
steering with respect to beam-width, tracking error, and AS.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. Section III includes the
performance analysis in terms of accuracy of propagation
angle tracking and associated beamforming gain under intra-
cluster angular spread. We describe two existing tracking
algorithms in Section IV, and numerically verify our analysis
in Section V. Finally, Section VI concludes the paper.

Notations: Scalars, vectors, and matrices are denoted by
non-bold, bold lower-case, and bold upper-case letters, re-
spectively, e.g2. h, h and H. The element in i-th row and
j-th column in matrix H is denoted by {H}, ;. Transpose
and Hermitian transpose are denoted by ()T and ()M, re-
spectively. The ls-norm of a vector h is denoted by ||h]|.
diag(A) aligns diagonal elements of A into a vector, and
diag(a) aligns vector a into a diagonal matrix.

II. SYSTEM MODEL

We consider a system in the downlink (DL) with a BS
transmitter with Npx antenna and a UE receiver with Ngx
antennas. The multiple-input and multiple-output (MIMO)
channel consists of L multipath clusters, and each of them
have R intra-cluster rays [10] as shown in Fig. 1(a). We focus
on narrowband model in the azimuth plane, and the channel
matrix H is expressed as

1

H= —
VLR

L R
SN gt Virage(dn + Agr)alk (6 + A6 )
I=1r=1
6))

In the above equation, agx(¢) € CV* and atx(#) € CN= are
spatial responses corresponding to AcA ¢ and AoD 6. In uni-
form linear array (ULA) with half-wavelength antenna spac-
ing, their k™ elements are {ar(0)}, = /™(F=1sn(9) and
{agg(9)}p = eI™(F—1sin(d)  respectively. Cluster-specific
parameters ¢;, 6;, and g; correspond to the AoA, AoD, and
path gain of /™ cluster, respectively. Ray-specific parameters
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Fig. 1. System model of tracking based mmWave system.

include intra-cluster angular offset (AO) in AoA A¢; , and
AoD A6, and complex gain e¥ir of the »™ ray in that
cluster, where ¢, is uniformly distributed within (-7, x].
Each of the AO is an independent and identically distributed
(i.i.d.) random variable with known probability density func-
tion (PDF) pao(.), with zero mean and variances U%AS and
03, for transmitter and receiver sides, respectively. We
define ogras and oras as angular spreads in AoA and AoD.
In this work, we focus on channel with L = 1 cluster! and
denote its cluster-specific parameters as ¢., ¢, ge, and ray-
specific parameters as Ag,, Ab,., .. We define vectors n, =
[bc, Oc, ge]" and . = [Ady, AOy, ¢y -+, Adpg, AOg,Pg]".
We focus on two phases in DL: 1) control phase with
channel tracking, and 2) data phase with beamformed data
communication using acquired CSI as shown in Fig. 1(b).
The DI. control phase contains A time slots every Time.
In the m™ slot (with fixed duration Tg), the transmitter
uses a training precoder f,, € CVx and the receiver’ uses a
training combiner w,,, € CMex, Both precoder and combiner
have unit power, ie., |[£.|| = [|[ww| = 1, Vm. Assuming
perfect synchronization, unit pilot symbol and channel does
not change during training, the received signal y € CM is

y = diag (W"HF) + n, )

where F = [f;, .- fy;] and W = [wy, - ,wy| are
training beamformers at the BS and UE, respectively. We
denote thermal noise power at each receiver antenna as o2,
and the post-combining noise n € CY is Gaussian random
vector®, i.e., n € CN(0,0215r).

Additionally, with practical period Thame, €.8., ~10ms, we
assume the ray-specific parameter 7, lose time coherence,
and their realizations are independent in data phase slots.
However, the cluster-specific parameters 7, are slow varying
within Thame, and we assume they are close to i, from the

I'We consider both line-of-sight (LOS) and non-LOS (NLOS) cluster. The
former has zero AS and one ray while the latter has non-zero AS. The results
would apply to channels with L > 1 clusters due to the decoupling [11].

2We focus on UE receiver with single RF-chain, i.e., analog beamforming
receiver, as typically considered for cost concern. We also assume that analog
combiner has both phase and magnitude control capability [12].

3Noise in independent in different time slots.

previous time frame”*. For mathematical tractability, we study
data phase gain with ideal angle-steering patterns gey, (d|e)
and ge,, (0]0,) pointing at ¢, 0. with beam-width Og, and
O1x, respectively. The ideal pattern is defined by rectangular
gain envelope and unit power in angular domain, i.e.,

N\ T/Orxs | — ol < Oe/2
S <¢|¢C) - {07 otherwise

The average beamforming gain is

&)

2
g®Rx (bC + A¢T|¢C)9®Rx(0 + Ao |0 )

“4)

In this work, our goal is to:

+ Determine the error bound in tracking propagation di-
rections, i.e., Var( ) and var(¢. ), where 6. = 0, — 6,
and 0. = ¢, — qbc with respect to AS.

« Determine the average gain GG from data phase beam-
forming and its relationship with angle estimation error
¢, O, beam-widths and AS.

+ Compare the gain obtained from two practical angle
tracking algorithms (ML channel tracking algorithm and
sector tracking) with respect to different beam-widths.

ITI. TRACKING PERFORMANCE ANALYSIS
In this section, we provide Cramer-Rao lower bound
(CRLB) of the angle estimators ¢, and 6., which are lower
bounds of variance of ¢. and #. with unbiased estimators.
We also provide theoretical analysis of beamforming gain G.

A. CRLB of angle tracking accuracy

We define n = [n!,n!]" that contains both cluster-specific
and ray-specific parameters. The error bound of 7 is

Eyn{m—mn-a"}=J,", Q)

where J,, is the Fisher information matrix (FIM) of param-
eters, and it is defined as
2

e,
Jn = _Ey,n {W lnf(y7n)} . (6)

The likelihood function is f(y,n) = f(y|n)fo(n) which
contains a-priori probability of n, i.e., f,(n), and conditional
probability f(y|n) from thermal noise. The FIM is the sum
of the FIM from observation Jy and the FIM from a-priori
of parameters J, [13]

Iy =5+ T (7

The elements of J,, are defined as

abmn =By {% {8(_121;?'")) (= lnai(yln))} }

o Jc Jc,r
- |:J£r Jr:| ’ (8)

4In 1.OS with 50m between BS and UE, 60mile/hr speed results in 0.6°
change. In NLOS with scatterers 5 meter from UE, 2m/s speed results in
0.4° AoA change. Rotation of UE may result in a higher angle change.
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where 7,, and 1,, are the m™ and »™ element of vector
7. The exact expression is shown in the Appendix A. The
elements of J, are defined as

d(=In fo(m)) (= In fi'(n))
b 2R

{Io}mn =Eqp {8‘%

Due to independent assumption among all parameters, J;, is a
diagonal matrix. By using the knowledge of a-priori probabil-

ity of AOS, fp(A(br) = pAO(A(br) and fp(AOT) = pAo(Aor),
the matrix J, becomes

—2 (0 O 2 |0 0
Ty = ogas {0 EJJFUTAZS {0 EJ

where E; = Ip ® diag([1,0,0]") and E; = Iz ®
diag([0, 1,0]"). The operator ® is the Kronecker product.
Note that we use the definition of the equivalent FIM
(EFIM) [13] in order to express the FIM as a block matrix
of 17, and mr. It allows us to determine the CRLB of cluster-
specific parameter, and the CRLBs of AoA and AoD are

var(¢.) > {3501}1,17V3I(éc) > {3,300, (11)

—1

(10)

_ _ -1
and chl _ (JC — Jgr (Jr + astEl + O-TAZSEQ) var)

B. Data phase beamforming gain with angle steering

In this subsection, we study the impact of angle tracking
errors ¢, 6. and beam-widths Ogy, O on beamforming gain
in the data phase.

Proposition 1: The average data phase gain is

G = GTX(OE)GRX((bE)

where the average receiver and transmitter gain Grx and Gy
are convolutions between the beam pattern and a PDF of
corresponding angular spread pas(z), where « € {¢, 0}

Grx(9) =g, (6]0) * pas(¢)
Grx(0) =gd,, (010) * pas(0).

(12)

(13)

Proof: See Appendix B.

The above proposition reveals the relationship of beam-
forming gain with cluster angle estimation error and steering
beam-width.

IV. PRACTICAL ANGLE TRACKING ALGORITHMS

In this section, we study two tracking algorithms from
literature.

ML Channel Tracking: The first group of algorithms which
intend to track propagation angle [5]. The key idea is to
refine channel gain g, and angle estimates ¢, and €, in each
tracking frame. Denote the estimated channel parameter in
n tracking frame as gé"), 3" and 4. The estimation

5Although AO is typically modeled as Laplacian distribution, we use
Gaussian distribution for mathematical convenience.

steps for complex gain g and propagation angles are given
by

R 2

60 = arg min |y — g Wihag (40"~ V)al(6"~)F |
R . 2

(607,667 = argain [y — 42 Wy 9)ad (O)F |

assuming initial estimates gé“, A§O>, and éé“ are known. In

each tracking frame, the CSI is iteratively refined.

Sector Tracking: In sector tracking, the BS and UE steer
sector beams adjacent to the previously used sector beams in
order to measure signal strength of transmitter and receiver
beam pairs. The tracking algorithm tends to find the best
beam pairs that results in the highest SNR and keep on
updating the information. Sector size is typically chosen to
accommodate beam-width supported by antenna array.

V. NUMERICAL EVALUATION

In this section, we evaluate the tracking performance.
In the simulation we use channel model in (1), where the
centroids of AocA and AoD are uniformly chosen from
[—7/2, w/2]. The angular offsets A¢, and Af, are zero mean
Gaussian random variables. In our simulations, we focus
on the AOA tracking and thus set variance of A, to be
o2ys = 0. The point-to-point SNR is defined in terms of
path gain, i.e., SNR = g2/o2. The CRLB is computed in a
deterministic manner except when a random beamformer is
used. For the random beamformer, i.e. when each element in
W and F is randomly chosen from {414 15} /+/2Ngx and
{£1 £ 15} /+/2Nrx, respectively [5], the CRLB is obtained
by averaging random matrices W and F in order to evaluate
the average performance. Both BS and UE has 32 antennas in
order to flexibly use different beam-width. Steering vectors
that adapt beam-width in the data phase follow the codebook
from (21) of [14].

In Fig. 2, we evaluate the root mean square error (RMSE)
of cluster AoA from the ML tracking approach and CRLB
from (11). Quasi-omni directional (random) training beam-
formers W and F are used for both simulation and compu-
tation of the CRLB. Our results show that the ML reaches
the CRLB in high SNR regime as expected. Without AS,
the cluster AoA estimation accuracy increases with SNR in
dB scale, and doubling the number of training slots provides
3dB SNR improvement. When AoA AS is present, the cluster
A0A accuracy bound is close to oras. Higher SNR and more
training slots provide marginal benefits.

In Fig. 3, the average receiver beamforming gain G from
(12) is presented as a function of angle steering error ¢..
When there are no AS and steering errors, narrower beams
always provide better beamforming gain. Since the steering
error is less troublesome according to results in Fig. 2, nar-
rower beams are preferred. However, channel with clustered
multipaths does not benefits from it. In dashed curves, angle
steering gain does not necessarily increases when beam-
width becomes narrower. Additionally, with steering error
associated with tracking in clustered multipaths, performance
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Fig. 2. RMSE of cluster AoA tracking as a function of point-to-point SNR.
Different AoA AS ogas and training length M are considered.
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Fig. 3. Average receiver gain as function of beam pointing error ¢e.
Different AoA AS ogras and beam-widths ©gy are considered.

difference between different beams becomes marginal, ¢.g.,
from 10° to 5°.

In Fig. 4(a), we evaluate AoA tracking accuracy of both
algorithms from Section IV. Without AS, the ML tracking
outperforms the sector tracking in terms of accuracy since
the precision of the latter is limited by the sector size. With
AS, tracking accuracy in both algorithms is degraded. The
reason is explained in Fig. 4(b) which shows angular power
profile over time. The angle tracking error in each frame is
associated with different realization of intra-cluster angular
offsets, and thus it cannot be improved by higher SNR or
longer training. In Fig. 4(c), we evaluate the complementary
cumulative distribution function (CCDF) of achieving a cer-
tain gain in the data phase by using these tracking algorithms,
and different beam-width in angle steering are considered.
For comparison, we also include a benchmark CCDF curve
for angle steering in the true cluster AoA. Without AS,
which corresponds to LOS, the benchmark has 30dB gain.
The ML tracking provides higher gain as compared to the
sector tracking due to better accuracy. Steering with 5° beam-
width has 3dB higher gain over using 10°. With AS that
corresponds to an NLOS path cluster, gain is not fixed due
to fading among intra-cluster rays. Both tracking algorithms
have worse performance than the benchmark curve due to the
error and angular spread. The advantage of ML over sector

Fig. 4.
simulation, UE moves with speed of [10,0]m/s in X/y axis and has - 50deg/s
rotational speed. In the second 0.5s, it moves with speed of [0,10]m/s and
has 25deg/s rotational speed. Point-to-point SNR is 0dB.
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(a) Simulated AoA tracking performance over 1s duration.
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(b) Simulated AoA angular power profile of channel over 1s duration.
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(c) CCDF of gain in data phase. Different AoA AS and beam-width are
considered.
Simulation example of channel tracking. In the first 0.5s of

tracking becomes marginal and steering narrow beams does
not improve the gain. Due to the relationship between the
number of antenna elements and the narrowest possible beam,

designer should take angular spread into account when the

number of UE antenna elements is considered.

VI. CONCLUSION

In this work, we study the performance bound of nar-
rowband channel tracking techniques under clustered sparse
channel. We provide the Cramer-Rao lower bound of angle
tracking error. Our study reveals that the non-clustered sparse
model degrades the angle tracking accuracy. With clustered
multipaths, the angle tracking accuracy is bounded by cluster
angular spread of propagation path and cannot be further
improved by increasing the signal strength or the training du-
ration. We also analyzed the beamforming gain using angle-
steering-based beamformer and showed that under angular
spread narrow beams do not necessarily provide better gain.
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APPENDIX
A. FIM expression of channel parameters

Likelihood function of y given 7 is multivariate Gaussian

PDF. We define the following terms dgx(¢) = %25@ and
dry(0) = 222 We further define agy(¢) — Whags (¢),

die(¢) = Widgy (¢), ar(0) = Flap (0) and dry(6) =
Fidr, (#). We also use the following definitions for clarity

Vaa, = diag [¢7V" gy (¢ + Agy) Ay (0c + AB,)],
Via,r = diag {ewram (e + Ag,)alk (6. + A8, } 7
T s (14)
Vg, = diag [V ag (6 1+ Ady)d ],
( )d

( )
(6. + A6,.)
Vaq,r = diag {ejlpTaRx de + Ay ( )

gu
Tx
gu
1 (0 1 A6, } .

. R R
Besides, we define va, = > | Vaar:Vda = 2,1 Vdar and

Vad = Zfilvaw. We then define the following notation
where = and y can be arbitrary parameters in 7

oy 9%In f(yln)
ym | 4.5

Tya = _7E dzdy

The clements in FIM J, € R3*3 are

Jz,y - :| b (15)

o |Jeete Jocbe Joeg
JC - 0__2 J€c7¢c J607€c J‘gmgc (16)
" J907¢c JQC700 ch 29c

where J¢C b — %{Vd an a} J@ b — %{Vadva d} J¢ 9 =
§R{Vd avad} Jg ¢ = 8:E{Vaavd a} Jg 0 = §R{Va avad} JOé a —
%{vgava,a}.

Next, we evaluate elements in FIM J, € R37*3R by the
following block division

(1,1) (1,R)
T T
Jrzp : : (17)
n Jr(R,R) Jr(R,R)
where
Iomitn Ao Iomn
Jr(m’n): J@m@n J€M7€n J9m7¢n (18)
Thmstn T Tmn
The specific expressions in (18) are Jy o =

R{ViamVaant, Jon0. = R{VGmVan} Jo,e. =
SCE{Vad mVdan), and Jo g = SCE{Vad mVadn -
The elements in FIM J ¢or are shown in block division

T
h I JO L TE (19)
O-Il
where
Jpote Jor6c Jprge
IO = oo Joo o (20)
Tprte Jpte g

The specific expressions in (20) are Jy . — %{vdarvd ats
Toon. = RVE Vol Jogo = RIVE vao}, Jo 00 =
R{Via,Vaats Jo,0. = R{Viy, Vaa}s Jo, 0. = R{Veg, Vel
and J@mg SCE{Vad +Vaal-

B. Average beamforming gain under angular spread
The average gain in (4) can be expressed as:

o Enr{ Z Z 6;(%— ry)

=1r2=1

QGTX(OC + Aerl |éC)g®Rx(¢C + A(brg |$C)9®Tx(00 + Ae’r’g |éc)}

I — IO ((bc + A(bm |(£c)

The expectation over 1, reduces the expression to

GEM{%MQ+A@@@EM{%am+Aw&@

Grx(6e) Grx(¢e)

since expectations are zero except for vy = ro. Using the
PDF of AO and definition of ideal beam pattern (3), the Rx
gain GRX((bE) is

w(60) — @RX/%

which is equivalent to [g2, (q§|0)*pAo( M|p=¢.. The Tx gain
is derived similarly, and then expression (12) is obtained.

eRx

pao(@)de
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