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Abstract

Real-world lighting often consists of multiple illuminants
with different spectra. Separating and manipulating these
illuminants in post-process is a challenging problem that
requires either significant manual input or calibrated scene
geometry and lighting. In this work, we leverage a flash/no-
flash image pair to analyze and edit scene illuminants based
on their spectral differences. We derive a novel physics-
based relationship between color variations in the observed
flash/no-flash intensities and the spectra and surface shad-
ing corresponding to individual scene illuminants. QOur
technique uses this constraint to automatically separate an
image into constituent images lit by each illuminant. This
separation can be used to support applications like white
balancing, lighting editing, and RGB photometric stereo,
where we demonstrate results that outperform state-of-the-
art techniques on a wide range of images.

1. Introduction

Real-world lighting often consists of multiple illumi-
nants with different spectra. For example, outdoor illumina-
tion — both sunlight and skylight — differ in color tempera-
ture from indoor illuminants like incandescent, fluorescent,
and LED lights. These variations in illuminant spectra man-
ifest as color variations in captured images that are often a
nuisance for vision-based analysis and photography.

In this work, we address the problem of explicitly sepa-
rating an image into multiple images, each of which is lit by
only one of the illuminants in the scene (see Figure 1(b)).
Source separation of this form can enable a number of im-
age editing and scene analysis applications. For example,
we can change the illumination in the image by editing each
illuminant image, or use the multiple images for scene anal-
ysis tasks like photometric stereo.

However, source separation is a highly ill-posed inverse
problem and is especially hard from a single photograph;
each pixel observation in the image combines the effect
of the unknown mixture of illuminants and the unknown
scene reflectance. Previous attempts at addressing these
challenges either use calibrated acquisition systems [ 15, 14]
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or rely on extensive user input [8, 7, 9], making it difficult
to apply them at large-scale.

In this paper, we take a step towards source separation by
making use of flash photography, i.e., two photographs ac-
quired with and without the use of the camera flash. The key
insight behind our technique is that flash photography pro-
vides an image under a single illuminant, thereby enabling
us to infer the reflectance spectra up to a per-pixel scale.
Based on this, we derive a novel reflectance-invariant —
the Hull Constraint — that relates light source spectra and
their relative per-pixel shading to the observed intensities in
the no-flash photograph. We use the Hull Constraint to sep-
arate the no-flash photograph into multiple images — each
corresponding to the lighting of a unique spectra. This, in
turn, enables a wide-range of capabilities including white-
balancing under complex mixed illumination, the editing of
the color and brightness of the separated illuminants, cam-
era spectrum response editing and photometric stereo. The
Hull constraint is independent of scene and lighting geom-
etry; it applies equally to point and area sources as well as
near and distant lighting. Figure 1 showcases our technique
for a real-world sample.

Contributions. We propose a flash photography-based
technique to analyze spatially-varying, mixed illumination.
In particular, we make the following contributions:

1. We introduce a novel reflectance-invariant property of
Lambertian scenes that relates illuminant spectra to ob-
served pixel intensities.

2. We propose an algorithm to separate an image into its
single-illuminant components, and present an analysis of
its robustness and limitations.

3. We leverage these separated images to enable a wide
variety of applications including white balancing, light
editing, camera response editing and photometric stereo.

2. Related Work

In this section, we review previous works on illumination
analysis as well as prior applications of flash photography.



(a) No-flash / flash images

2.1. Lighting analysis

Active illumination. Active illumination methods use
controlled illumination to probe and infer scene proper-
ties. Controlled capture setups like a light stage [15] cap-
ture images of a person or a scene under all lighting di-
rections and re-render photorealistic images under arbitrary
illumination [17, 37]. Another class of techniques rely on
projector-camera systems to probe and separate light trans-
port in a scene [34]. While active techniques can enable
high-quality illumination analysis and editing, these sys-
tems are complex and expensive. In contrast, we propose
a simple capture process that uses a camera flash, available
on most cameras and mobile devices, to enable a number of
illumination analysis, editing and reconstruction tasks.

Passive illumination. Passive illumination methods aim
to estimate scene properties from images captured as-is un-
der natural illumination. Barron and Malik [5, 6] estimate
shape, reflectance, and illumination for a single object cap-
tured under low-frequency distant lighting. Johnson and
Malik [3 1] use spectral variations in real-world illumination
to recover shape from shading information. Both methods
rely on scene priors that are often violated on real-world
scenes with complex geometry, reflectance, and spatially-
varying lighting. In contrast, we demonstrate that the use
of flash photography can lead to high-quality lighting (and
shape) estimates without the same restrictive assumptions.
Recently, deep learning-based methods have been proposed
to infer illumination [27, 23] from a single image. How-
ever, these methods do not support pixel-level image edit-
ing, which our method does by explicitly separating an in-
put image into its constituent components.

Color constancy. Color constancy — the problem of cor-
recting for the illuminant spectrum — is a closely re-
lated light analysis problem, and has been extensively stud-
ied [24]. Previous work models the effect of changing
the illumination spectral distribution as a (typically lin-
ear) transformation of the observed pixel intensities. The
seminal work of Finlayson et al. [21, 20] demonstrates
real-world reflectance and illumination spectra lie in low-

(b) Source separation results
Figure 1. The scene in (a) is lit by cool sky illumination from the window on the left and warm indoor lighting from the top. Given a pair
of no-flash/flash images, our method separates the no-flash image into two images lit by each of these illuminants (b) and estimates their
spectral distribution (insets in (b)). Using our illuminant estimates, we are able to edit the illumination in the photograph (c) by changing
the individual spectra of the light sources (insets in (c)).

(c) Illumination editing results

dimensional spaces, allowing for the use of a diagonal trans-
formation. Chong et al. [13] build on this to derive condi-
tions for the basis that can “best” support diagonal color
constancy. Current color constancy methods range from
physics/low-level feature-based methods [44, 16, 25] to
learning-based approaches [32, 11, 4] to user-driven inter-
active solutions [28, 9]. The vast majority of these methods
assume a single illuminant in the scene. While our approach
is built on top of diagonal color constancy techniques, we
can handle multiple illuminants and can go beyond color
constancy and separate the captured image into constituent
images lit by individual illuminants.

2.2. Flash photography

Flash photography refers to techniques that capture two
images of a scene — with and without flash illumination. It
has been used for image denoising [38, 18], deblurring [46],
artifact removal [18], non-photorealistic rendering [40],
foreground segmentation [42] and matting [43]. More re-
cently Hui et al. [29] propose a flash photography-based
white balancing method for mixed illumination. However,
the techniques in this paper are derived from a physically-
accurate image formation model and are based on a novel
reflectance-invariant, the Hull constraint, which enables ex-
plicit separation of the contribution of different light sources
at each pixel. Our analysis enables a number of applications
that are not possible with prior work [29], including light
editing, and two-shot photometric stereo.

3. The Hull Constraint

Given an image of a scene lit by a mixture of illuminants
— the no-flash image — our goal is to estimate the contri-
bution of each illuminant to the observed pixel intensities.
In this section, we set up the image formation model and de-
rive a novel constraint between the observed no-flash/flash
pixel intensities and the contributions of each scene illumi-
nant to the scene appearance.



3.1. Problem setup and image formation

We assume that the scene is Lambertian and is imaged
by a three-channel color camera. The intensity of the no-
flash image observed at a pixel p in the k-the color channel

(k€ {r,g,b})is
Ih(p) = A e (V)SE (Nl (A)dA, )

where pp, is the reflectance spectra, S * is the camera spec-
tral response for the k-th channel and ¢, (\) is the light spec-
tra at pixel p. When the scene is lit by /V light sources, the
light spectra at pixel p can be expressed as

N
() = D mPILO),

where ¢;()\) is the spectra of the i-th light source and 7, (p)
is the shading corresponding to the ¢-th source at pixel p.
The shading term 7;(p) is assumed to be non-negative.
Note that, by not modeling 7);(p) with an analytical expres-
sion, we can accommodate point, extended and area light
sources. Since the illumination spectra {¢1, ..., £y} are not
pixel dependent, any spatial light fall-off is captured in the
shading term. With this, (1) can be written as

Ik(p) = A pp(X)S*(N) (Zmp)&(x)) . ()

Estimating the reflectance, shading and illumination pa-
rameters as well as separating the no-flash photograph into
N photographs — one for each of the N light sources
— are hard inverse problems. The parameters of interest,
namely p, and ¢;, are infinite-dimensional. Further, the
multi-linear encoding of the reflectance, shading and illumi-
nation parameters in the image intensities leads to a highly-
ambiguous solution space. To resolve these challenges, we
make two key assumptions.

Assumption 1 — Reflectance and illumination sub-
spaces. We assume that the reflectance and illumina-
tion spectra in the scene are well-approximated by low-
dimensional subspaces. Given a reflectance basis Br(\) =
[P1(N\)...pa, (N)] and an illumination basis Br(\) =

[Zl()\) A ()\)] , We can write

pp(A) = Br(A) ap,  £i(A) = BL(A) bi.

Here, a, € R are the reflectance coefficients at pixel p
and b; € RM2 are the illumination coefficients for the i-
th source. To resolve the ambiguity in the definition of the
shading, we assume that the lighting coefficients are unit-
norm, i.e., ||b;||2 = 1; hence, the illumination coefficients

are points on the 2D sphere. Given this, we write (2) as:
N
Li(p) = ag E* Y " mi(p)bi. 3)
i=1
Here, E* is the M7 x M> matrix defined as

EXGi,j) = / P (VSE T (),
A

and can be precomputed from a database of reflectance and
illumination spectra. Finally, as a consequence of having
3-color images, we will need to restrict M; = My = 3.
Real world reflectance and illumination spectra are known
to be well-approximated by low-dimensional subspace —
an insight that is used extensively in the color constancy [ 13,
21,20, 22]. We will discuss additional details on the choice
of basis in Section 5.

Assumption 2 — Availability of a flash photograph.
We resolve the multi-linearity of the unknown parameters
by having access to a flash photograph of the scene. In the
flash image It, the intensity observed at pixel p is given by:

I5(p) = I(p) + A e (NSF V@GN, @)

where 7¢(p) denotes the shading at p induced by the flash,
and the spectra of the flash /¢ is assumed to be known via a
calibration process. Further, under the reflectance and illu-
mination subspace modeling above, we can write

If(p) = Lyi(p) + ap E*ne(p)f, (5)

where f denotes the illumination coefficients for the flash
spectra. We now derive a novel constraint that encodes both
the illuminant spectra as well as their shadings at each pixel.

3.2. The Hull Constraint

The centerpiece of our approach is a novel reflectance-
invariant condition that we call the Hull Constraint. The
hull constraint is derived by performing the following three
operations (see Figure 2 for a visual guide).

Step 1 — Estimate the pure flash image. The pure-flash
image I is obtained by subtracting the no-flash image from
the flash image:

Ix(p) = If (p) — I}i(p) = ay E*ne(p)f.  (6)

Step 2 — Solve for reflectance coefficients. We now have
3 intensity measurements — one per color channel — at p,
and 3 unknowns for a, = 7¢(p)ap. This enables us to solve
for ap,, which corresponds to the reflectance coefficients up
to a per-pixel scale 7¢(p).
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Step 3 — Estimate I'(p).
substitute a to express (3) as:

k ag E al
I%(p) = ap] B S b @)

Jonll ) = 2=

As before, we are able to solve for B(p), defined as
N
B(p) = [lap| Zm(P)bi~ (®)
i=1

Normalizing B(p) gives us I'(p) = B(p)/||B(p)|| that is
invariant to the reflectance. We can now state the Hull con-

straint, which is the main contribution of this paper.

Proposition 1 (The Hull Constraint). The term I'(p) lies in
the conic hull of the coefficients {b1,...,bn}, ie.,

B(p

') = 15(p

) N
)|‘=Zzi(p)bi7 z(p) > 0.| 9
i=1

The relative shading term z;(p) is defined as

) o 7:(p)
4(P) = = @b

This term captures the fraction of the shading at a scene
pixel that comes from one light source, relative to all the
light sources, hence the term relative shading. Further, I'(p)
belongs to S? space since it is unit-norm.

The key insight of the Hull constraint is that I'(p), a
quantity that can be estimated from the no-flash/flash image
pair, provides an encoding of the illumination coefficients
as well as the relative shading. We can hence derive these
parameters as well as perform source separation by study-
ing properties of I'(p) over the entire image.

(10)

4. Source Separation with the Hull Constraint

Recall, from Proposition 1, that T'(p) lies in the conic
hull formed by the lighting coefficients {by,...,by}. We
now describe methods to estimate the illuminant spectrum
as well as perform source separation from the set § =
{T'(p); Vp}. Our methods rely on fitting the tightest conic
hull to the set G and identifying the corners of the estimated
hull. Additionally, we derive sufficient/necessary condi-
tions when the resulting estimates are meaningful. We be-
gin by discussing the conditions for the identifiability of a
light source.

4.1. Identifiability of a light source

We observe that a light source is identifiable only if its
coefficients lie outside the conic hull of the coefficients of

: -

No-flash/flash images ~ Pure flash image

b R
- :

Image of T

Separated images

Figure 2. Visualization of our processing pipeline. From the input
image pair, we compute the pure flash image as well as values of
the o and T at each pixel. We visualize a/||e|| and I" as 3-color
images by integrating them with the reflectance and illumination
bases, respectively, and the camera spectral response. Note that
a/||e|| encodes the scene’s reflectance while I, being reflectance-
invariant, encodes the shading and illumination. The histogram of
I" over the sphere provides an estimate of the illumination spectra
as well as the separated images.

Image of oy

the remaining light sources. If this were not the case, then
its contribution to a scene point can be explained by the
remaining lights. Hence, only light sources whose coeffi-
cients lie at corners of the conic hull of {by,..., by} are
identifiable given the flash/no-flash image pair. Without any
loss in generality, we assume that all light sources are iden-
tifiable. Therefore, if we can identify the conic hull of the
light sources £ = conic-hull{by,..., by}, we can esti-
mate the light source coefficients as the corner points of this
set. While we do not have an a-priori estimate of £, we can
estimate it from the set G = {I'(p); Vp}. Recall that, from
Proposition 1, G C L. We next explore sufficient condi-
tions under which the conic hull of G is equal to £; when
this happens, we can estimate the light source coefficients
as the corner points of the conic hull of G.

Proposition 2 (Presence of “pure” pixels). Under ideal
imaging conditions (absence of noise, non-Lambertian sur-
faces, etc.), the conic hull of G is equal to L if, for each light
source, there exists a pixel that is purely illuminated by that
light source, or, equivalently,

Vb e {bi,...,by}, IT(p') =b.

When there are pure pixels for each light source, then the
set G will include the illuminant coefficients which are also
the corners of the conic hull £. Therefore, the conic hull of
G will be identical to £. Note that pure pixels can be found
in shadow regions since shadows indicate the absence of
light source(s). The pure pixel assumption is thus satisfied
when the scene geometries are sufficiently complex to ex-
hibit a wide array of cast and attached shadows. The more
complex the scene geometry, the more likely it is that we
satisfy the condition in Proposition 2.



In addition to pure pixels or corners, we can also fit the
hull by identifying its edges. Edges of the cone correspond
to points that are in the shadow of all but two sources. As
with pure pixels, shadows play a pivotal role in recovering
the hull from its edges.

4.2. Estimating illuminant coefficients

Given the set G, the number of identifiable light sources
is simply the number of corners in the tightest conic hull.
Hence, we expect the set G to be concentrated about a point
when there is a single light source, an arc with two sources,
and so on (see Figure 3). We can use specialized techniques
to estimate the parameters in each case (see detailed pseudo-
code in the supplemental material).

e N = 1 — While not particularly interesting in the con-
text of source separation, we use the robust mean of G as
the coefficients of the single light source.

e N = 2 — We use RANSAC to robustly estimate the
arc on S? with maximum inliers. The end points of this
arc are associated with the illuminant coefficients; this
estimate will correspond to the true coefficients if there
were “pure pixels” in the no-flash photograph for each of
the light sources.

e N = 3 — We project the set G onto the tangent plane
at its centroid and fit the triangle with least area onto the
projected points. Fitting polyhedra onto planar points has
been extensively studied in computational geometry [35,
19, 3, 33, 36]. We use the method in Parvu et al. [36] to
determine the triangle and the associated vertices.

e N > 4 — The procedure used for three light sources
can potentially be applied to higher number of sources.
However, as we will see next, even if we can estimate the
lighting coefficients, source separation with a three-color
camera cannot be performed when N > 4.

For the results in the paper, we manually specify the
number of light sources (typically, 2 or 3) and use the cor-
responding algorithm to extract the corners. Given the esti-
mated lighting coefficients {Bl, ...,b N}, We can estimate
the relative shading at each pixel.

4.3. Estimating the relative shading

Given T'(p) and estimates of the lighting coefficients
{Bl, ...,b ~ }» we simply solve the linear equations in (9)
under non-negativity constraints to estimate the relative
shading {z;(p),7 = 1,..., N}. Itis easily shown that there
is a unique solution when I'(p) € conic-hull{gl, e EN}
and N < 3 (see supplemental material). When N > 3,
we can obtain multiple solutions to the relative shading —
a limitation that stems from using 3-color cameras.

Figure 3. Visualization of G as a histogram on S? for different
numbers of sources. The histogram takes progressively complex
shapes as the number of sources increase (from 1, top left, to 4,
bottom right).

4.4. Lighting separation

_Once we have the illumination coefficients
{by,...,by} and the relative shading {Z;(p)}, we
can separate the no-flash photograph into /N photographs.
Specifically, for the j-th light source, we would like to
estimate

Ik

sep,J = agEknj (p)bJ .

An estimate of this image is obtained as
=~ -
Isep,j(p) = ”lB(p)Ha;EkZJ(p)bJ (11)

5. Evaluation and Applications

We characterize the performance of the proposed meth-
ods by evaluating light separation and showcasing its poten-
tial in a number of applications.

Capture setup for real data. The flash/no-flash images
were captured using a Nikon D800 and a Speedlight SB-
800 flash, with the camera mounted on a tripod and operated
under aperture-priority mode. The images were captured in
raw format and demosaiced under a linear response using
DCRaw [1]. Finally, the flash spectrum was assumed to be
flat, i.e., £7 () in (4) was assumed to be a constant.

Selection of reflectance and illumination bases. We
used the measured database for reflectance [26] and illu-
mination [2] to learn two three-dimensional subspaces, one
each for reflectance and illumination. All the results in this
paper were obtained with the same pair of bases, which we
learned using a weighted PCA model, with the camera spec-
tral response providing the weights. We observed that this
technique outperformed an unweighted PCA as well as the
joint learning of subspaces [13]. The supplemental mate-
rial provides a detailed evaluation on synthetic scene with
comparisons to alternate strategies.



(b) Matrix factorization  (c) Hsu et al. [28] (d) Our results

SNR 16.96 dB SNR 10.13 dB SNR 20.43 dB
Figure 4. We separate a no-flash image (a) into two components and compare with matrix-factorization (b) and Hsu et al. [28] (c). Compared
to the ground truth images, we can see that matrix factorization produces noisy colors (see the painting on the left), while Hsu et al. [28]

(a) Input images (e) Ground truth

produce an incorrect estimate of light color and shading. Our result (d) closely mimics the actual captured results.

Pruning G. To reduce effects of measurement noise and
model mismatch, we build a histogram of G by dividing the
sphere into 100 x 100 bins and counting the occurrence of
I'(p) in each bin. We remove points in sparsely populated
regions; typically, points in bins that have less than 100 pix-
els are removed from G.

5.1. Evaluation of lighting separation

We report the performance of our source separation tech-
nique on a wide-range of real-world scenes. The accom-
panying supplementary material contains additional results
and comparisons.

Synthetic experiments. The supplemental material also
provides rigorous evaluation of the source separation tech-
nique on realistically-rendered scenes using the MITSUBA
rendering engine [30]. As a summary, for the two light
sources scenario, the normalized mean square error in sep-
arated images is less than 10~3 when the light sources co-
efficients are more than 10° apart.

Scenes with two lights. In Figure 4, we demonstrate our
technique on the scene with two lights sources and com-
pare with ground truth captures. Ground truth photographs
were obtained by turning off the indoor light sources to ob-
tain the outdoor illuminated scene and then subtracting this
from the no-flash image to obtain the photograph with re-
spect to the indoor illumination. We also compare against
a simple non-negative matrix factorization (NNMF) as well
as the technique proposed in Hsu et al. [28]. Naively apply-
ing NNMF to the no-flash image leads to the loss of the col-
ors. Hsu et al. [28] use the no-flash photograph to estimate
the relative contribution of the light sources by introducing
restrictive assumptions on the scene as well as the colors of
the illuminants; while we manually selected the light col-
ors to guide the reconstruction of this technique, there are
numerous visual artifacts due to the use of strong scene pri-
ors. In contrast, our technique produces results that closely

(a) No-flash image  (b) Flash image

(c) Our estimated separated images (SNR: 13.16dB)

(d) Captured photographs
Figure 5. We evaluate our technique on scenes with mixtures of
three lights and compare with the ground truth image. Our tech-
nique is able to capture both the color and the shading for each of
these sources and produce results similar to the ground truth.

resemble the actual captured photographs, indicating its ro-
bustness and effectiveness.

Scenes with three lights. The proposed technique is, to
our knowledge, the first to demonstrate three light source
separation. In Figure 5, we compare our technique to the
ground truth on scenes with three lights. The scene is il-
luminated under warm indoor lighting, a green fluorescent
lamp and cool skylight. Our lighting separation scheme pro-
duces visually pleasing results with shadows and shadings
that are consistent with those observed in the ground truth.
Figure 6 showcases separation on two additional scenes.
For the scene in the top row, our technique for estimating
lighting coefficients fails due to lack of shadows; to obtain
the separation, we had to manually pick the corners of G to
estimate the illumination coefficients.



(a) No-flash images (b) Flash images

(c) Estimated separated images

Figure 6. We evaluate our technique on scenes with three lights. (top row) We capture an image under warm indoor LED lights and two
LED lights with red and blue filter, respectively. Our technique is able to estimate separated results that capture this complex light transport.
(bottom row) We image a scene under warm indoor lighting, a green fluorescent lamp and cool skylight. Our separation results capture

both the color and the shading for each of these sources.

Frame 16

Frame 40 (pure flash)
Figure 7. Sun- and Sky-light separation. We use photo on a cloudy day as the pure flash image. Note that the Sun being a directional light
source casts sharp shadows onto the scene, while the Sky being an area light does not induce shadows. As can be seen from the separated
images, our algorithm is able to produce good results with convincing color and shading attributes for both sources in the scene.

5.2. Applications

Source separation of the form proposed is invaluable in
many applications. We consider five distinct applications:
white balancing under mixed illumination, manipulation of
camera spectral response, post-capture editing of illuminant
spectrum and brightness, sun/sky-light separation and two-
shot photometric stereo. Due to space constraints, we cover
white balancing and camera response manipulation in the
supplemental material.

Sunlight and skylight separation. An interesting appli-
cation of two-light source separation is in outdoor time
lapse videos where it is often necessary to separate direct
sunlight from indirect skylight. Figure 7 showcases the per-
formance of light separation technique on an outdoor scene.
We identify a photograph with cloudy sky, where there is
no direct sunlight and the entire scene is lit only by the sky-
light, as a pure flash photograph. Since our technique does
not make any assumptions about the nature of the flash il-
lumination, we use skylight in place of the flash light. Also
note that skylight changes its color and intensity signifi-
cantly during the course of the day. Given this pure flash
photograph, our separation scheme is able to produce the re-

Prinet et al. [39]

Our results

sults closely resemble to the manner of the sky and the sun
illumination. We compare our method with the video-based
work of Prinet et al. [39] on the time-lapse video sequence.
While the method by Prinet et al. does not require the pure
flash image, it assumes that the colors of the illuminants will
not change which leads to artifacts in the separated images.

Post-capture manipulation of light color and brightness.
Given the separated results, we can adjust the brightness as
well as the spectrum of a particular light. Specifically, we
can produce the photograph

I=>3"18(p)ll2al E*Z;(p);b;, (12)
7

where Bj denotes the adjusted illumination coefficients and
; denotes the changes in the brightness. Figure 8 shows
an example of editing the light color and brightness for the
captured no-flash images. We experiment by adjusting the
parameters j¢; and b; in (12). The rendered photographs are
both visually pleasing and photo-realistic in their preserva-
tion of shading and shadows.

Flash/no-flash photometric stereo. Photometric
stereo [45, 41] methods aim to surface shape (usually



illuminant I illuminant 2

(a) No-flash image

JJ illuminant I illuminant 2

illuminant 1 illuminant 2

(b) Our light editing results

Figure 8. We separate no-flash images (a) into individual light components, and recolor them to create photo-realistic results with novel
lighting conditions (b). We show the novel spectral distribution as well as the CIE plots for the light sources. Note how our method changes
the color and brightness of each light while realistically retaining all shading effects.

(a) RGB (c) Our result (d) Ground truth
image pair normals
Figure 9. Results on two-shot captured photometric stereo of real
objects. We show estimated normal map for our technique as well
as that of single-shot method of Chakrabarti et al. [12]. We include
the mean of the angular errors for the estimated surface normals.

(b) Results of [12]

normals) of an object from images obtained from a static
camera under varying lighting. For Lambertian objects, this
requires a minimum of three images. Recently, techniques
have been proposed to do this from a single shot where the
object is lit by three monochromatic red, green, and blue,
directional light sources [10, 12]. However this estimation
is still ill-posed and requires additional priors. We propose
augmenting this setup by capturing an additional image
lit by a flash collocated with the camera. We use our
proposed technique for source separation to create three
images (plus the pure flash image), at which point we can
use standard calibrated Lambertian photometric stereo to
estimate surface normals. As shown in Figure 9 this leads
to results that are orders of magnitude more accurate than
the state-of-the-art technique [12]. More comparisons can
be seen in the supplementary material.

6. Discussions

In this paper, we have shown that capturing an additional
image of a scene under flash illumination, allows us to sep-
arate the no-flash image into image corresponding to illu-
minants with unique spectral distribution. This ability to
analyze and isolate lights in turn leads to state-of-the-art
results on white balancing, illumination editing, and color
photometric stereo. We believe that this is a significant step
towards true post-capture lighting control over images.

For completeness, it is worth discussing key limitations
of our work. These limitations stem from multiple sources.
1) Use of flash. Our technique requires that all the scene
points are well lit via the flash. In large scenes (especially

(a) No-flash

(b) Pure flash

(c) Separation results
Figure 10. Results on source separation for the outdoor scene. For
the large scene shown in (a), the flash light (b) cannot illuminate
far-away scene points, resulting in the noisy estimates as shown in
the insets in (c).

outdoors), this is often not feasible. An example is shown
in Figure 10. 2) Lack of shadows. Our separation technique
may fail to identify the correct illumination if there are no
shadows in the scenes. A true planar scene with even two
light sources can produce poor results in terms of source
separation. Our experience has been that while separated
images and illuminant colors are estimated incorrectly, re-
lighting the scene often looks visually pleasing (even if non-
realistic). 3) Shiny objects. Our methods will fail on opaque
objects that are extremely shiny (like mirrors). However, the
incorrect results will be localized to the objects since the
processing is largely per-pixel and the conic hull processing
is inherently robust to outliers via the use of RANSAC and
other pre-processing techniques. More discussions can be
found in the supplementary material.
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