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When deformed beyond their elastic limits, crystalline solids flow plastically via
particle rearrangements localized around structural defects. Disordered solids also
flow, but without obvious structural defects. We link structure to plasticity in
disordered solids via a microscopic structural quantity, “softness,” designed by
machine learning to be maximally predictive of rearrangements. Experimental results
and computations enabled us to measure the spatial correlations and strain response
of softness, as well as two measures of plasticity: the size of rearrangements and
the yield strain. All four quantities maintained remarkable commonality in their values
for disordered packings of objects ranging from atoms to grains, spanning seven
orders of magnitude in diameter and 13 orders of magnitude in elastic modulus. These
commonalities link the spatial correlations and strain response of softness to
rearrangement size and yield strain, respectively.

D
isordered materials such as metallic glas-
ses have desirable properties such as high
strength and stiffness, ultrasmooth sur-
faces, corrosion resistance, and ultralow
mechanical dissipation (1–5). Their wide-

spread use is limited because they tend to fail
in a catastrophic, brittle fashion (6–9). Brittle
failure likewise hinders applications of amor-
phous carbon (10), functional nanoparticle films

(11, 12), and colloidal packings (13). These com-
plex failure modes also limit our understand-
ing of granular systems and symptoms of failure
modes such as avalanches and earthquakes
(2, 14–16).
In many cases, the failure process starts with

plastic deformation characterized by rearrange-
ments of constituent atoms or particles. Rear-
rangements can occur at any strain, even when
the material response appears nominally elas-
tic, but they do not begin to play a prominent
role in relaxing stress until the strain reaches the
macroscopically evident yield strain. In crystal-
line solids, rearrangements at defects such as dis-
locations typically allow for plastic flow even at
strains well above the yield strain, leading to a
ductile response. In disordered solids, by con-
trast, initially localized and homogeneously dis-
tributed rearrangements often proliferate rapidly
above the yield strain, coalescing to form shear
bands (6, 17). This process is considered the cul-
prit behind unpredictable and often catastrophic
failure.
Here, we focus on the structural underpin-

nings of the size of rearrangements at low strains,
where rearrangements are localized and homo-
geneously distributed, and the magnitude of
the yield strain. In crystals, most rearrange-
ments occur at dislocations, rendering the task
of linking these measures to structure relative-
ly straightforward. For disordered solids, struc-
tural fingerprints of rearrangements are subtle.
We exploit a recently introduced, machine-
learned microscopic structural quantity, “soft-
ness,” which has been shown to be strongly

predictive of rearrangements in disordered
solids (18) and has expanded our conceptual
understanding of glassy liquids (19, 20) and
aging glasses (21). We link the spatial correla-
tions of softness to the size of rearrangements,
and we link the strain response of softness to
the yield strain.
We conducted experiments and simulations

on a range of materials including amorphous
carbon, silica, metallic glasses, small-molecule
and oligomeric glasses, nanoparticle packings,
colloidal systems, aqueous foams, and granu-
lar packings (22) (see figs. S2 to S4, S6, S7, and
S10 to S12). In many of these systems, the in-
terparticle interactions are purely repulsive,
whereas in others there is metallic, covalent,
or van der Waals bonding. Some of the sys-
tems are two-dimensional (2D), but most are
3D. Moreover, the rearrangements have dif-
fering origins. In packings of atoms, molecules,
and smaller colloids, thermal fluctuations can
induce rearrangements even in the absence
of any mechanical load. Under applied load,
both the incurred stress and the temperature
can contribute to rearrangements. In aque-
ous foams, which are disordered packings of
air bubbles, some of the rearrangements are
induced by load while others are caused by
the coarsening process, in which large bub-
bles grow at the expense of smaller ones. In
larger colloids and granular packings, all of
the rearrangements are induced by the applied
load. We consider a variety of loading geom-
etries including indentation, uniaxial loading
of pillars under extension or tension, and sim-
ple shear.

Common rearrangement size in
disordered solids

We begin by characterizing the size of rear-
rangements, which are the precursors to global
plasticity. Rearrangements (or the initial rear-
rangements in an avalanche) have been recog-
nized as being localized in systems such as
Lennard-Jones glasses (23), bubble rafts (24),
foams (25), and colloidal glasses (26). Frame-
works such as shear transformation zone theory
start with the assumption that rearrangements
are localized (23, 27). Nonetheless, a consist-
ent quantitative measure of their size has been
lacking. For systems in which we can obtain the
particle positions in real space as a function of
time, namely colloidal and granular packings
or computational models, it is essential to dis-
tinguish rearrangements from other types of
displacements without specifying the nature
of the rearrangement. To do so, we follow the
literature and evaluate the quantity D2

min be-
tween times t and t + Dt (23). This quantity cap-
tures the mean square deviation of a particle’s
position from the best-fit affine deformation
of its neighborhood,

D2
min ¼ 1

Mk

XMk

i

½rikðt þ DtÞ � JkðtÞrikðtÞ�2

ð1Þ
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and therefore measures the nonaffine motion
of particle k at time t (23). Here, rik(t) is the
displacement vector between particles i and
k at time t, Jk(t) is the “best-fit” local defor-
mation gradient tensor about particle k that
minimizes D2

minðk; tÞ, and the summation runs
over the Mk particles within a radius RD

c of
particle k.
To measure the spatial extent of rearrange-

ments, we consider the normalized correla-
tion function

hdD2
minð0ÞdD2

minðrÞi≡
hD2

minð0ÞD2
minðrÞi � hD2

mini2
h½D2

min�2i � hD2
mini2

ð2Þ

Note that the result depends on the time in-
terval Dt used to define D2

min. Many of the sys-
tems we study exhibit avalanches near yielding,
where an initial localized rearrangement can
trigger others, leading to a cascade. To focus
on the initial rearrangement, we calculateD2

min
at the value of Dt corresponding to the min-
imum of the correlation length xr (22) (see fig. S1).
It also depends on the size of the neighbor-
hood RD

c ; we find that xr is insensitive to R
D
c as

long as it lies somewhere between the first and
second peaks of the pair correlation function,
g(r) (22) (see fig. S1). Figure 1A demonstrates
the exponential decay of hdD2

minð0ÞdD2
minðrÞi

with r in units of the particle diameter d for
two different systems selected from our broader
study: a 3D melt of short polymer chains, in
which the diameter d corresponds to the size
of a monomer, and a 2D bidisperse granular
pillar, where d represents the diameter of the
larger particles. Indeed, for all of the exper-

imental and computational systems studied,
we find that the correlations are reasonably
well described by an exponential decay with a
correlation length xr (see figs. S2B, S3B, S5B, S8B,
and S9B). We therefore characterize the size of
rearrangements by x r. Note that this length scale
is distinct from that associated with dynam-
ical heterogeneities near the glass transition (28).
The first quantity is obtained from D2

min calcu-
lated over a microscopic time scale; the second
quantity is measured over a longer time period
and is considerably larger because an initial re-
arrangement of size xr can spread in avalanche
fashion (29).
In crystalline systems, rearrangements are

concentrated at crystalline defects and there-
fore reflect spatial correlations associated with
the dimensionality and spatial extent of the
specific defects. Planar defects such as grain
boundaries delineate crystal-crystal interfaces,
whereas linear defects such as dislocations can
take on complex and spatially extended con-
figurations with a multitude of characters (edge,
screw, or mixed). These details can vary enor-
mously from one crystalline system to another
and will inevitably affect xr. Furthermore, not
all crystalline defects can produce plastic strain
(e.g., immobile grain boundaries). We there-
fore do not expect any commonality in the
value of xr for crystalline systems.
Our analysis of disordered solids draws a

striking contrast. Overall we have studied 12
different systems. For six of these systems,
which span almost the entire range covered
by the 12 systems in terms of Young’s mod-
ulus, particle size, and particle interactions,
we have obtained the particle position versus
time data needed for the analysis of rear-
rangement size. Specifically, three of these

systems are computational disordered solids,
all in 3D [the van Beest, Kramer, and van Santen
(BKS) silica model (30), the Kob-Andersen model
of a Lennard-Jones glass (31), and oligomer glass
pillars (32)] and three are experimental dis-
ordered solids [3D colloidal pillars, 2D granular
pillars, and 2D poly(N-isopropyl acrylamide)
(PNIPAM) colloid glasses]. Figure 2A compiles
our results for xr versus particle diameter. The
results fall very close to the line of best fit, xr/d =
1.1 ± 0.2, where d is the effective particle diam-
eter (22). In the inset of Fig. 2A, we show the
ratio xr/d for the same systems on a log-linear
scale; this more unforgiving way of plotting our
results shows the adherence to a common value
of xr/d.

Linking softness to rearrangements

Mounting evidence has shown that rearrange-
ments across a wide array of disordered mate-
rials depend on local structure and energetics
(33–37). It has been shown that local yield stress
is an excellent predictor of rearrangements in
athermal glasses (37). However, calculation of
local yield stress requires knowledge of interpar-
ticle interactions; this is often difficult to ob-
tain in experimental systems such as colloidal
and granular packings, which are naturally poly-
disperse. Several of us (19, 21) have shown that
local structure alone can be used to develop a
predictive description of dynamics in glassy liq-
uids (19) and aging glasses (21). Central to the
approach is the introduction of “softness,” a
particle-based quantity that depends only on
the local structural environment of the particle.
Thus, softness can be determined from any static
picture (or snapshot) of the structure along de-
formation, time, or temperature trajectories. Soft-
ness is essentially a weighted integral over the
local pair correlation function gi(r) (20). Using a
machine-learning approach akin to linear regres-
sion (22), the weighting function is designed to
optimize the prediction accuracy for rearrange-
ments (19). In Lennard-Jones glasses (19) and
oligomer glasses (38), it has been shown that
the energy barrier that must be surmounted
for the particle to rearrange decreases linearly
with increasing softness. Thus, rearrangements
are exponentially more likely to involve particles
with high softness. Note that just as not all dis-
locations contribute to plasticity in crystals, not
all high-softness particles participate in rear-
rangements; like particles surrounding dislo-
cations, soft particles are simply more likely to
rearrange than others.
Because high-softness particles are much

more likely to rearrange, one would expect the
size of a rearrangement to be limited by the
spatial extent of high-softness regions. In anal-
ogy to the previous discussion of D2

min, we quan-
tify the size of structural heterogeneities by
considering the normalized spatial correlation
function,

hdSð0ÞdSðrÞi≡ hSð0ÞSðrÞi � hSi2
hS2i � hSi2 ð3Þ
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Fig. 1. Spatial correlations in D2
min and softness fields. (A and B) Spatial correlations in

the D2
min field (A) and softness field (B) for two very different systems: a 3D short-chained

polymer pillar studied by molecular dynamics simulation (circles) and a 2D bi-dispersed
granular pillar studied experimentally (triangles). Here, d is the diameter of a single monomer
for the polymer pillar and of a large particle for the granular pillar, and r is the radial
distance. The dashed lines are fits to exp(–r/xr) in (A) and to exp(–r/xs) in (B), defining the size
of rearrangements, xr, and of soft regions, xs. Similar exponential decays hold for all other
systems studied (22).
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As with D2
min, we find that hdS(0)dS(r)i decays ap-

proximately exponentially with the correlation
length xs, as shown in Fig. 1B for the short-chain
polymer glass and granular pillar. Similar plots
for the other four systems studied are shown
in figs. S2B, S3B, S5A, S8A, and S9A. Thus, xs
is a good measure of the size of high-softness
regions that are more likely to rearrange. We
find that the emergent correlations of S are
nearly universal: Fig. 2B shows that like the
rearrangement size xr, the spatial correlation
length for softness (the size of soft regions),
xs, falls on a common line xs/d = 1.1 ± 0.2 for
all systems studied. Thus, xr and xs are strongly
correlated. We now ask whether xs is compa-
rable to the size of rearrangements, xr. In Fig.
2C we show the ratio of the size of rearrange-
ments to the size of soft regions, xr/xs. Indeed,
we find xr/xs = 0.97 ± 0.07, with a scatter in
xr/xs that is significantly smaller than for xr/d
or xs/d, even while xr and xs individually vary
by more than seven orders of magnitude. Our
multiscale analysis provides compelling evidence
that the size of rearrangements, xr, is encoded
in the size of correlated soft regions in the sys-
tem, xs, independent of the nature and even
the sign of interactions, the dimensionality of
the system, and how the rearrangements were
induced.

Common yield strain in
disordered solids

We next asked whether commonality of plas-
ticity is observed only in microscopic mea-
sures (i.e., rearrangement size and softness
correlation length) or whether it is also present
in macroscopic measures, such as the strain
at the onset of yielding. In crystalline sys-
tems, the yield strain is strongly dependent
on microstructural details. Only in the limit
of ideal strength (the theoretical upper limit)
is a constant yield strain expected, as a result
of the cooperative crystal shearing mecha-
nism needed in this extreme. In crystalline
engineering materials, preexisting defects
are plentiful and thus the yield strain depends
strongly on processing. A common practice
in selection of materials for engineering de-
sign is to populate a plot of yield strength
versus Young’s modulus E. Slopes drawn on
such an “Ashby chart” give one measure of
the yield strain. As a basis for comparison, we
examined values for crystalline systems cat-
egorized by material class, represented in Fig. 3
as clouds. The yield strength of crystalline
metals varies by nearly four orders of mag-
nitude despite a relatively small variation
in E. Semicrystalline polymers, on the other
hand, show a relatively small variation in
yield strength yet can exhibit large differ-
ences in E. Clearly, there is no universality in
the onset of yielding in crystalline systems,
either within a particular material class or
overall.
In contrast, it is known that certain classes

of disordered materials share a common value
of the yield strain (39–41) despite the hetero-

geneity of atomic or particle positions within
the material. A constant value of the yield strain
in shear of 2.7% was empirically shown for a set
of metallic glasses on the basis of mechanical
tests (39) and was further corroborated by at-

omistic simulations (40). Experiments on uni-
axially loaded colloidal pillars showed a similar
yield strain even though the elastic moduli were
smaller by as much as five orders of magni-
tude (41).
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Fig. 2. Microscopic analysis of dynamics and structure. Emergent properties of the D2
min and

softness fields for six different materials are shown, as indicated within (C). (A and B) The
correlation lengths of D2

min (A) and softness (B), xr and xs respectively, are plotted against particle
diameter d for each material on a log-log scale. The dashed lines in (A) and (B) represent the
proportionality relations xr/d = 1.1 ± 0.2 and xs/d = 1.1 ± 0.2, respectively. The insets show xr/d
and xs/d, respectively, versus d on a log-linear scale. (C) The ratio xr/xs is plotted against d for
each material on a log-linear scale. The average of this ratio is xr/xs = 0.97 ± 0.07 (dashed line).
(D) Snapshots of the D2

min and softness fields for the oligomer pillar simulation and the granular
pillar experiment.
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Here, we extend the Ashby chart for disordered
solids from five orders of magnitude (41) to more
than 13 orders of magnitude in elastic mod-
ulus. To do this, we have expanded the class of
disordered systems to include covalently bonded
amorphous solids (amorphous carbon) and sev-
eral different metallic glasses (see table S1) as
well as extremely weakly attracting or purely
repulsive systems (colloids, aqueous foams, and
granular materials; see tables S2 and S3). We
include experimental and computational results
for systems subjected to various loading condi-
tions (uniaxial compression/tension, indenta-
tion, and shear). Figure 3 shows our collated
results for yield strength versus E. Striking-
ly, the data collapse onto a single line on this
log-log plot with a linear relationship, corre-
sponding to a universal yield strain of ey = 2.9 ±
0.3%. Note that the data collapse is insensi-
tive to the specific definition of the yield strain,
as detailed for each system (22). We also in-
clude literature values for metallic glasses (39),
glassy polymers (42), and simulations of sil-
ica (43), which also collapse on the universal
curve. We note that although microscopic in-
formation is not available in all systems shown
in Fig. 3, four of the systems spanning nearly
the full range of E values appear in both
Figs. 2 and 3. The implication of this result is
that the macroscopic shape change (kinemat-
ics) needed for the onset of yield is essentially
universal in disordered materials, irrespec-
tive of the nature of the interparticle or atomic
interactions.

Linking softness to yield strain

To draw a link between the yield strain and mi-
croscopic structure as quantified by softness,
we draw insight from results for glass-forming
liquids by noting an analogy between the yield
strain ey and the glass transition temperature
Tg. They respectively mark the strain and tem-
perature at which rearrangements relax the
system on the time scale of measurement. In
thermal glassy liquids, the average softness hSi
is controlled by temperature T; the higher T,
the higher hSi (19). Moreover, it has been shown
that there is a relation between relaxation time
and hS i; the higher hS i, the shorter the re-
laxation time (21). The shift in hSi with T thus
provides a structural measure that tells us
about the sensitivity of the relaxation time to
temperature.
We suggest that the sensitivity of hSi to

strain e provides a way of understanding the
common value of the yield strain across sys-
tems. We consider a neighborhood around
particle k that is larger than the neighbor-
hood required to calculate softness, and apply
an affine uniaxial extension at fixed volume
(pure shear) of magnitude e to the neigh-
borhood. We then recalculate softness for
particle k. The result averaged over all par-
ticles is hS(e)i; we also calculate the standard
deviation of the softness distribution in the
absence of strain,sS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS2i � hSi2

p
. The quan-

tity DS(e) ≡ [hS(e)i − hS(0)i]/sS measures the
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Fig. 3. Macroscopic mechanical response. An Ashby chart shows yield stress sy versus
Young’s modulus E for a variety of experimental and simulated disordered systems. We also
include literature values for metallic glass experiments (39), glassy polymer experiments
(42), and BKS silica simulations (43). The data collapse onto a single curve, implying a
universal yield strain of ey = 2.9 ± 0.3% (dashed line). In contrast, crystalline metals
(red cloud) show a large variation in strength with little change in E, and semicrystalline
polymers (blue cloud) show a wide variation in E with little change in strength. Previously
reported crystalline material clouds were generated using Materials Property CES
Selector software by Granta Design.

Fig. 4. Response of softness to
affine strain.The response of the
mean softness to an affine uniaxial
extension, e, for six different
materials is quantified using
DS(e) = [hS(e)i − hS(0)i]/sS, where
hS(e)i is the mean softness at a
strain of e and sS is the standard
deviation of softness at a strain
of e = 0. These data were
obtained by applying a uniaxial
extension of magnitude e
to the neighborhood about
each particle larger than the
one used to calculate softness
in each material. The softness
field for the strained material was
calculated using the original
hyperplane and then averaged.
The dashed line denotes the universal
value of yield strain for disordered
materials, ey. The inset shows values of DS(ey) versus particle diameter d for all six systems. These
values are all similar, suggesting that the universality of the yield strain of disordered materials
reflects a common response of softness to strain.
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change of softness due to applied strain in
units of the standard deviation of the softness
distribution.
Figure 4 shows that DS(e) increases with

strain e, indicating an increased likelihood
of rearrangements with strain, as expected. A
value of DS(e) = 1 would correspond to a shift
of the average softness equal to the standard
deviation of the softness distribution. Note
that the shift in average softness is an order
of magnitude smaller than the standard de-
viation for all systems over the range of strains
studied. The response of softness to strain is
characterized by a smooth function that is
quite similar quantitatively for all six systems
up to (and even beyond) the onset of macro-
scopic yielding. The inset of Fig. 4 shows the
value of DS(e) at the common value of the
yield strain ey as determined from Fig. 3, dem-
onstrating commonality across length scales.
This quantitative similarity of the response
of softness to strain for all systems studied
provides strong evidence that commonality
of yield strain has an underlying structural
origin.

Discussion

Figures 2, 3, and 4 provide evidence of uni-
versality of spatial correlations in the micro-
scopic dynamics and structure connected to
plasticity, as well as universality in the onset
of macroscopic yielding and in the response
of microscopic structure to strain in disor-
dered solids. These quantitative commonali-
ties transcend the details of constituent size
and interactions.
The observed universality lends quantitative

credence to the use of model disordered solids
as analogs of atomic glasses—for instance, in
sheared bubble rafts (24) and colloidal solids
(26). Commonalities in the statistics of slip in-
termittency just above yield among various
disordered solids (44, 45) suggest additional
universality near yield. One corollary of com-
monality of yield strain is that one cannot easily
increase the strain at the onset of yielding of a
disordered solid. A more promising route to in-
creasing the toughness of disordered solids may
be tomanipulate the evolution of rearrangements
above the yield strain, thereby increasing the
window of plastic flow between the yield strain
and failure. The success of the softness frame-
work in explaining two properties of plasticity
near yield suggests that it may also provide a
fruitful approach for studying shear band for-
mation in systems beyond yield.
The universal behaviors that we observe

are all the more striking because there is no
sign of universality in the microscopic pack-
ing structure itself. For each system, the de-
finition of softness is different. Universality
only becomes apparent once the softness of
the constituent particles is considered, where
we see emergent commonality in the proper-
ties of softness.
In crystals, on the other hand, there is uni-

versality in themicroscopic structure, in the sense

that there is a universal definition of a dislocation
independent of constituent size, interactions, or
crystal structure.However, the spatial correlations
of dislocations vary enormously from one crystal-
line system to another—a direct consequence of
the extended nature of these linear defects. As a
result, the emergent properties of crystalline de-
fects are not universal. There is no commonality
in the spatial correlations of dislocations, so we
expect no commonality in the spatial size of re-
arrangement events. Likewise, there is no com-
monality in the yield strain among material
classes (Fig. 3). Indeed, most efforts in the mod-
eling of crystal plasticity focus on incorporating
specific features of thematerial under study (e.g.,
dislocation density and character of dislocations)
and the prevailing notion is that no unifying
theory is tractable.
The essential differences between plastic-

ity in crystals and plasticity in disordered
materials can be summarized as follows. In
crystals, there is universality in the defini-
tion of the microscopic structural features
correlated with rearrangements, but in dis-
ordered solids there is not. On the other
hand, in disordered solids there is emergent
universality in the properties of those features,
but in crystals there is not. The origin of this
universality is not yet understood. Our results,
however, point to the possibility of a unifying
framework and a vast simplification of our
understanding of plasticity in disordered sol-
ids, which paradoxically may not be possible
for crystals.
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