Session 9C: Crypto 4

CCS’18, October 15-19, 2018, Toronto, ON, Canada

TACHYON: Fast Signatures from Compact Knapsack

Rouzbeh Behnia

Oregon State University
Corvallis, Oregon
behniar@oregonstate.edu

Attila A. Yavuz’
University of South Florida
Tampa, Florida
attilaayavuz@usf.edu

ABSTRACT

We introduce a simple, yet efficient digital signature scheme which
offers post-quantum security promise. Our scheme, named TACHYON,
is based on a novel approach for extending one-time hash-based
signatures to (polynomially bounded) many-time signatures, using
the additively homomorphic properties of generalized compact
knapsack functions. Our design permits TACHYON to achieve several
key properties. First, its signing and verification algorithms are the
fastest among its current counterparts with a higher level of security.
This allows TACHYON to achieve the lowest end-to-end delay among
its counterparts, while also making it suitable for resource-limited
signers. Second, its private keys can be as small as k bits, where x
is the desired security level. Third, unlike most of its lattice-based
counterparts, TACHYON does not require any Gaussian sampling
during signing, and therefore, is free from side-channel attacks
targeting this process. We also explore various speed and storage
trade-offs for TACHYON, thanks to its highly tunable parameters.
Some of these trade-offs can speed up TACHYON signing in exchange
for larger keys, thereby permitting TACHYON to further improve its
end-to-end delay.

KEYWORDS

Digital signatures; post-quantum security; authentication

ACM Reference Format:

Rouzbeh Behnia, Muslum Ozgur Ozmen, Attila A. Yavuz, and Mike Rosulek.
2018. TACHYON: Fast Signatures from Compact Knapsack. In CCS ’18:
2018 ACM SIGSAC Conference on Computer & Communications Security,
Oct. 15-19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 13 pages.
https://doi.org/https://doi.org/10.1145/3243734.3243819

“Work done in part while Attila A. Yavuz was at Oregon State University, Corvallis,
OR.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/https://doi.org/10.1145/3243734.3243819

1855

Muslum Ozgur Ozmen
Oregon State University
Corvallis, Oregon
ozmenmu@oregonstate.edu

Mike Rosulek
Oregon State University
Corvallis, Oregon
rosulekm@eecs.oregonstate.edu

1 INTRODUCTION

Ever since Shor [50] published polynomial-time quantum algo-
rithms for factoring and discrete logarithm, the threat of quantum
computation has loomed ominously over public-key cryptography.
Since traditional public-key cryptography is broken by quantum
attacks, alternative schemes with post-quantum (PQ) security must
be identified before quantum computers become practical.

Recently, the NSA has announced an advisory on the possibility
of transitioning to PQ-secure cryptography in the near future [43].
To avoid a hasty transition from current conventional cryptosys-
tems to PQ-secure systems, NIST has already initiated the first
round of standardizations for PQ cryptography!.

1.1 The State of the Art and Limitations

Lamport [33] proposed the first PQ-secure one-time signature
scheme based on the idea of committing to secret keys via one-
way functions. Later, Bos and Chaum [12] and Reyzin and Reyzin
[48] proposed different variants of Lamport’s signature with the
aim of minimizing the public key and signature size, respectively.
Today, digital signatures based on lattices, hash functions, codes,
multivariates and symmetric primitives are the leading practical
candidates with PQ security.

o Lattice-based Signatures: There are two main categories of lattice-
based signature schemes. One is focusing on hardness of worst-
case to average-case problems with standard lattices (e.g., [36, 46]).
While they provide a strong security, they suffer from very large
parameter sizes (in the orders of a few MBs). Another direction,
with more focus on efficiency, is based on ring analogs of standard
lattice problems (e.g., [1, 18, 19]). Most of these efficient schemes,
however, suffer from costly sampling operations with high precision
over some normal distribution (e.g., Gaussian sampling) during the
signing. Relaxation of this requirement, by only sampling over
integers, permitted more efficient constructions like BLISS [18],
which is based on the Fiat-Shamir transform [22]. Later, Ducas et al.
proposed a hash-and-sign signature scheme [20] that has a smaller
signature and key size than BLISS, but with slower signing due to
expensive discrete Gaussian sampling over a lattice.

Gaussian sampling not only incurs a performance penalty, but its
implementation is also prone to side-channel attacks. For instance,
BLISS [18] has been targeted with a number of side-channel attacks

Thttps:// csre.nist.gov/Projects/Post-Quantum-Cryptography

Session 9C: Crypto 4

[21, 25]. At the moment, avoiding such side channels in implemen-
tation is considered to be highly challenging and error-prone [19].

Recently, Ducas et al. proposed a new Fiat-Shamir-based scheme
called Dilithium [19], which avoids Gaussian sampling during sign-
ing. The security of Dilithium is based on the learning with errors
(LWE) and short integer solution (SIS) problems in ideal lattices.

qTESLA [11] is another lattice-based signature scheme proposed
to the first round of NIST standardization for PQ cryptography.
qTESLA is based on the decisional ring learning with errors (R-
LWE) problem. While similar to Dilithium [19] , qTESLA avoids
using Gaussian Sampling during signature generation, but it suffers
from a higher end-to-end delay.

pgNTRUSign [27] is an instantiation of modular lattice signa-
ture (over the NTRU lattice). Signatures can be generated using a
(bimodal) Gaussian or a uniform sampler. Similar to Dilithium [19],
pgNTRUSign employs rejection sampling to avoid the leakage of
the private key components. However, with the current suggested
parameters, the scheme suffers from a high signing time that is due
to the high rejection rate.

While other lattice-based primitives, such as key-exchange pro-
tocols, have undergone some real-world testing and evaluations
(e.g., [13]), the current precarious state of lattice-based approaches
has hindered the development of PQ-secure signatures.

o Hash-Based Signatures: Hash-based signatures can be proven se-
cure in the standard model under the very well-studied properties
of hash functions such as pre-image resistance. The combination of
Merkle trees [40] with early one-time hash-based signatures (e.g.,
Lamport [33]) results in very efficient stateful schemes which are se-
cure for a number of signatures. Traditional hash-based schemes are
stateful, to ensure that the signer does not reuse some of the private
key materials. Recently, stateless signatures (e.g., SPHINCS [10])
have been proposed. SPHINCS has a tight security reduction to the
security of its building blocks such as hash functions and PRNGs.
Unfortunately, these schemes have large signatures (~ 41 KB) and
very costly signature generation, especially on low-end devices [29].

o Code-Based Signatures: Code-based cryptography has been largely
affected by the Syndrome Decoding Problem [9]. Since McEliece
cryptosystem [39], which is based on binary Goppa codes, there
have been a lot of efforts in balancing security and efficiency of
such systems. The most well-studied and provably secure approach
to obtain signature schemes is applying the Fiat-Shamir transform
[22] on the identification scheme proposed by Véron [53] and Stern
[51]. pgsigRM [34] is a new code-based signature scheme based
on punctured Reed-Muller (RM) submitted to the first NIST post-
quantum standardization conference. pqsigRM can be considered
as a highly improved version of the scheme in [17], where most of
the improvements are due to the replacement of Goppa Codes in
[17] with punctured RM codes. While pqsigRM has significantly
improved the overall parameters sizes in [17], the key sizes are still
larger than its lattice-based and hash-based counterparts.

® Multivariate-Based Signatures : There are a number of multivariate-
based signatures submitted to the NIST standardization of PQ cryp-
tography. For instance, GeMSS [14] can be considered as an im-
provement of its predecessor QUARTZ [44], that is based on the

1856

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Hidden Field Equations cryptosystems. GeMSS enjoys from an effi-
cient verification algorithm and very compact signatures, however,
the signing algorithm is significantly slower than its hash-based
counterparts (e.g., SPHINCS+ [28]).

o Symmetric Key Based Signatures: PICNIC [15] is another novel
construction which is based on the problems related to symmetric
key cryptography. PICNIC is obtained by applying the Fiat-Shamir
transform on an efficient zero-knowledge proof which results in
very short public key and private key sizes. However, the scheme
suffers from large signature sizes with relatively slow (as compared
to lattice-based schemes) signing and verification algorithms.

1.2 Owur Contribution

We propose a simple and efficient PQ-secure signature scheme,
TACHYON, based on well-studied primitives. We outline a compari-
son between TACHYON and some of its other PQ-secure counterparts
in Table 2 (see Section 5), and further elaborate on its desirable prop-
erties below:

o New Algorithmic Design: TACHYON can be viewed as a novel modi-
fication of the HORS construction [48], which is based on one-way
functions. We harness the HORS approach with the generalized
compact knapsack (GCK) of Micciancio [41]. The additively ho-
momorphic property of GCK provides two benefits: It allows us to
compress the signature size as compared to one-time signatures,
and more importantly, it leads to a totally new paradigm for extend-
ing few-time hash-based signatures to stateless schemes supporting
polynomially-bounded number of signatures.

The security of our scheme is based on the one-wayness of GCK
function family. These properties reduce to the worst-case hardness
of problems in cyclic lattices [37, 41].

o Improved Side-Channel Resiliency: It has been shown that Gaussian
sampling is prone to side-channel attacks (e.g., [25, 47]). Since side
channels are a property of an algorithm’s implementation, they can
be somewhat mitigated with suitable implementation techniques.
However, the process of eliminating side channels in Gaussian sam-
pling algorithms (e.g., in BLISS [18]) is known to be arduous and
error-prone [19]. TACHYON does not require any variants of Gauss-
ian sampling. Instead, it uses uniform sampling over a bounded
domain, and rejection sampling to check for an outputted signature
to be in a safe range.

e Fast Verification: The verification algorithm of TACHYON is very
efficient, involving only two hash function calls, a GCK one-way
function call, and vector additions. This makes TACHYON the most
verifier computationally efficient alternative among its counterparts.
For example, using TACHYON with 256-bit security, it is possible to
verify 35,714 messages per second on commodity hardware (e.g.,
Intel 6th generation i7 processor), which is up to 3.7X faster than
Dilithium [19], one of its fastest alternatives.

e Fast Signing: Signature generation of TACHYON does not require
any costly operations (e.g., Gaussian sampling) but only a GCK
function call (which is demonstrated to be fast [38]), along with a
small constant number of pseudorandom function (PRF) calls and a

Session 9C: Crypto 4

small number of vector additions. This makes the signature genera-
tion of TACHYON the fastest as compared to its counterparts.

o Small Private Key: The private keys in TACHYON are as small as
k-bit, which is the smallest among existing PQ-secure schemes.
Furthermore, unlike some other schemes (e.g., [18]), the signer does
not need to store a pre-computed table to be used in the sampling
process. Along with the signer computational efficiency, this prop-
erty makes TACHYON a feasible alternative for low-end devices.

o Tunable Parameters: Our new algorithmic design allows us to
offer various speed and storage trade-offs based on the parameter
choices. For instance, one can pre-compute and store some inter-
mediate values at the signer’s side in exchange for a faster signing,
reduce the public key and/or signature size but with an increase in
the end-to-end delay, or increase the signature size to offer lower
rejection sampling rates for a faster signing. Some of these possible
trade-offs are further elaborated in Subsection 5.2.

Limitations: All of these desirable properties of TACHYON come
at the cost of a larger public key. For instance, the public key in
TACHYON-256 is as large as 2976 KB, whereas it is only 1760 bytes
in Dilithium[19]. Yet, we believe there are many use-cases where
storing a larger public key is tolerable. For instance, a resourceful
command center that verifies a large number of signatures from
sensors can store such a public key. However, if the verifier is strictly
memory-limited and cannot afford to store large public keys, then
schemes with a smaller public key, such as Dilithium, should be
considered.

2 PRELIMINARIES

Notation. We work over aring R = Zg4[x]/(f) (in this paper f(x) =
(xN + 1)), where N is a power of two, and ¢ is a prime such that
1 = g mod 2N. We denote vectors as bold letters (i.e., v), while

scalars are denoted as non-bold letters (i.e., u). x i S denotes that
x is being randomly selected from set S. |x| denotes the bit length
of a number x, ie., x| = log, x. AO1---On () denotes algorithm
A is provided with access to oracles O; ... Oy, For a vector w =
(w1, ...,wn) we define ||W||, = max{|w;|:i=1,...,N}

2.1 Digital Signatures

DEFINITION 2.1. A digital signature scheme is a tuple of three
algorithms SGN = (Kg, Sig, Ver) defined as follows.

- (sk, PK) « SGN.Kg(1%): Given the security parameter x, it
outputs a private/public key pair (sk, PK).
- 0 < SGN.Sig(M, sk): Given a message M and private key
sk, it outputs a signature o.
- {0,1} « SGN.Ver(M, o, PK): Given a message-signature
pair (M, o), and PK, it outputs b € {0, 1}.
We say that SGN is correct if for all (sk, PK) « SGN.Kg(1%),
SGN. Ver(M, SGN. Sig(M, sk), PK) = 1 holds.

We define security using the code-based games methodology
of Bellare & Rogaway [8]. A game G is a collection of stateful
oracles/functions. Given an adversary A, the interaction gﬂ refers
to the following: (1) the INTTIALIZE function of the game is run,

1857

CCS’18, October 15-19, 2018, Toronto, ON, Canada

and its output given as input to A. (2) A may invoke any of the
functions of G. (3) When A terminates, its output is given to the
FINALIZE function of G. The output of FINALIZE is the output of the
interaction G*.

Algorithm 1 EU-CMA game G[SGN] for a signature scheme SGN, in
the random oracle model. Algorithms of SGN are allowed to query
oracle H.

1: function INITIALIZE

2 (sk, PK) « SGN.Kg(1%)

3: return PK

4: function H(q)

5 if L[q] is not defined then

6: a (i {O, 1}K

7: Llg] < a

8: return L[q]

9: function Si6(M)

10: add M to set M

11: return SGN. Sig(M, sk)

12: function FINALIZE(M*, ™)
13: return [M* ¢ M] A [SGN.Ver(M*,c*, PK) = 1]

DEFINITION 2.2. Existential Unforgeability under Chosen Message
Attack (EU-CMA) [30] (in the random oracle model [7]) is defined in
terms of the game G[SGN] in Algorithm 1. The EU-CMA advantage
of A is defined as

Advggy A = Pr(G[seN 7t = 1]

We say that A (ta,qs, qH, €a)-breaks the EU-CMA of SGN if it
makes at most qs and qp signature and hash queries (respectively)

vggNC%A > e, and we say that

SGN is (ta, qs, qH, €7)-secure if no algorithm A (ta,qs, qH, €A)-
breaks it.

and runs in time at most t # where Ad

2.2 Forking Lemma

The security model of TACHYON is in Random Oracle Model (ROM) 7],
and also it relies on Generalized Forking Lemma (GFL) [6]. GFL is
a commonly used technique in the security proof of various well-
studied digital signature schemes (e.g., Schnorr [49]). Intuitively,
GFL states that if an adversary can successfully generate a forgery,
then it is possible to rewind the adversary, choose new random
oracle responses after a certain point, and the adversary will still
be able to generate a forgery with polynomially-related probability.

LEMMA 2.1. (General Forking Lemma [6]) Fix an integer qr >
1 and a set H of size hp > 2. Let A be a randomized algorithm
that returns a pair (J, o) where J € {0,..., th} and o is the side
output, on the input of (x, hq,..., th) . For IG as a randomized

input generator, the accepting probability of A (Acc) is defined as

the probability that] > 1 inx & 1G; (hy,. ... hgp) & H;(J,0) &
Alx, b1, ..., hgp).
The forking algorithm Forkpa associated with A is a randomized

algorithm that behaves as in Algorithm 2. For FRK = Pr[b =1:x &

1G: (b, 0.0") & Forka(x)]. then Frc > acc- (4 — L),

Session 9C: Crypto 4

Algorithm 2 Forking algorithm Forkp for the forking lemma.

1: Pick coins p for A at random.

2 (hy,.. . hgp) & H

3 (I,0) &« A(x, b1, ..., hgp: p)

: If I = 0 then return (0, 0, 0)
() EH

: (I’,O”)(—A(x,hl,...,hI_l,h},...,h:]F;p)
: IfI =1 and hy # h/, return (1,0, 0")

. Else, return (0,0, 0)

'S

® N o w»

2.3 Generalized Compact Knapsack

Our scheme uses the generalized compact knapsack (GCK) function
family, introduced by Micciancio [41].

DEFINITION 2.3 ([41]). For aring R, and a small integer i > 1, the
generalized compact knapsack function family is the set of functions
of the form Fp : R¥ — R, where:

H
Fa(by,...,by) = Zbi-ai
i=1

An instance of this family is specified by y fixed elements A =
(a1,...,ay) € RF. These elements are to be chosen randomly and
independently. The inputs by, ...,b, are polynomials over R where
IIbilleo < B fori € {1,...,u} and some positive integer f5.

For the detailed security analysis of GCK function, we refer an
interested reader to [37, 41, 42, 45]. We give the required parameters
to securely instantiate GCK function in TACHYON in Subsection 4.1.

2.4 Bos-Chaum signatures

Since TACHYON is inspired by the construction of Bos and Chaum
(BC) signature scheme which uses a bijective function S(-) and
a one-way function (OWF) f(-) [12], we briefly explain about a
simple generalization of their construction in the following.

DEFINITION 2.4. BC signature scheme consists of three algorithms
BC = (Kg, Sig, Ver) defined as follow.

- (sk, PK) « BC.Kg(1*) Given the security parameter 1% it
sets t,k and | and generate ¢t random [-bit values for the
private key (x1,. .., x;) and compute the public key com-
ponents (y;) as the image of the private key components x;
with respect to a one-way function f(-), i.e., y;i «— f(x;)
where i € {1,...,t}. Finally set sk « (x1,...,x;) and
PK — (t,k,{y1, ..., Yys))-

o « BC.Sig(M, sk): Given a b-bit message M and sk, inter-
pret M as an integer between 0 and 2° — 1 and set (i . . ., if.)
as the M—th k—element subset of set (1, 2,...,t), computed
as S(M). Output the signature as ¢ « (x;j,,...,xj,).

{0,1} « BC.Ver(M, o, PK): Given a message-signature pair
M, 0 =(x{,x],... ,xl’c)), interpret M as an integer between
0and 2® —1andset (i . . ., if) as the M—th k—element subset
of set (1,2,...,t), computed as S(M). It the checks if {y;;

f (x]’)}jjc holds, it outputs 1, else it outputs 0.

1858

CCS’18, October 15-19, 2018, Toronto, ON, Canada

3 PROPOSED SCHEME

3.1 TACHYON

Our conceptual starting point is the HORS construction [48], which
itself is a variant of the Bos and Chaum scheme [12]. The private
key consists of many random values x;, and the public key consists
of corresponding images y; = F(x;), where F is a one-way function.
Of course, the x; values can be derived from a small seed using a
PREF (this feature is preserved by TACHYON, and leads to a minimal
signing key). To sign a message M, the signer first computes Hz(M)
and interprets it as a sequence of indices (i1, . . ., i,). The signature
then consists of x;,,...,x;, . To verify, one can simply compare
F(x;) to the public key value yj, for each relevant j.

Our novel departure from this paradigm is to use an additively
homomorphic OWF F. Specifically, we choose the generalized
compact knapsack (GCK) function family of Micciancio [41]. This al-
lows the signature to be compressed, as follows. Instead of x;, , . . . , X,
the signature can contain only s = }}; x;;. The verifier can then
check that F(s) = ¥ ; yi;.

However, this approach leaks a linear combination of the secret
key material. After a moderate number of signatures, it would be
possible to solve for the entire secret key via a system of linear
equations. To thwart this, we add some “noise”. Specifically, the
signature consists of s = 3} x;; + 1’ for a suitably distributed r".

There are two challenges when adding this noise. First, we must
make sure the verifier can still verify such a signature. This can be
achieved by giving out F(r’) in the signature. Since the output of F
is long, we instead give out a short hash Hy(F(r")).

Second, the GCK-OWF is defined over some ring but can only
accept inputs that are “short” — i.e., the inputs come from a sub-
set of the ring that are not closed under the homomorphic opera-
tion. This makes it challenging to mask the sensitive sum 3}; x;;.
We use the following rejection-sampling approach proposed by
Lyubashevsky [35]. Sample the noise r’ from a suitable uniform
distribution, and restart the entire signing algorithm if the result
2jXi; + 1’ is “too large” or “too small”. More details about this
rejection sampling process are given in Subsection 3.2.

Finally, instead of choosing indices ii,...,i; as Ha(M) as in
HORS, we choose them as Hy(M||h) where h = Hy(F(r’)). Intu-
itively, this ensures that the value r’ is “committed” before the rest
of the signature is generated. This aspect of the scheme is used in
the security proof, specifically in our use of the generalized forking
lemma (Lemma 2.1). The rewinding argument of the forking lemma
implies that any adversary generating a forgery in our scheme can
be rewound to output two forgeries with the same h. From these
two forgeries, we can break the one-wayness of F.

Details. The formal description of the TACHYON scheme is given
in Algorithm 3.

Fp refers to the GCK one-way function discussed in Subsec-
tion 2.3. Its input is a vector from R* and its output is a vector
in R, where R is a suitable ring and y is a small integer. The GCK
function is parameterized by a public value A, which is to be cho-
sen randomly. The random choice of A ensures the one-wayness
of Fa [35, 41]. As such, it may be a global parameter (i.e., shared
among all users).

Session 9C: Crypto 4

Samp(y) samples a uniform distribution over vectors in RH with
all entries in the range [—y, y]. This function can easily be imple-
mented with a PRF or PRG, similar to other lattice-based construc-
tions that uses uniform sampling (e.g., Dilithium [19]).

PRF refers to a pseudorandom function whose output is inter-
preted as a binary (0/1) vector of R (i.e., an input to Fa).

& and p are parameters related to both the security of the GCK-
OWEF (controlling the weight of its inputs) as well as the probabili-
ties surrounding rejection sampling (discussed further in Subsec-
tion 3.2).

Hj is a random oracle with output length 1, used to commit the
signature to r’ before choosing the HORS indices. H» is a random
oracle with output length I, = k|t| used to choose HORS indices.
We write (i1]| - - - ||ig) < Hz2(M||h) to mean that the output of Hy
is interpreted as a sequence of k indices, each |¢| bits long.

Algorithm 3 TACHYON signature scheme

TACHYON . Kg(1%):

sk & qo,1)F
: Xj < PRF(sk,i),fori=1,...,t
. yi & Fa(xj), fori=1,...,¢
: return sk, PK « (t,k,(y1, .-

R N

)

TACHYON. Sig(M, sk):

o1’ & Samp(€ — 1), r « Fa(r")

. h « Hy(r)

o (il - llig) < Ha(M][h)

CXi; PRF(sk,ij),forj=1,...,k
D8 — (Z}‘zl xj;) + 1’

6: if ||s]lco = (€ — p) then goto step 1
7. return o < (s, h)

F S R N

«

TACHYON. Ver(M, o, PK):
: parse o as (s, h), and PK as (t, k, (y1, - .
. if [|s]|e = (£ — p) then return 0
o inll - llig) < Ha(M][h)
L F e Fals) - X5,y
. if H1(f) = h then return 1 else return 0.

)

L R

Correctness: TACHYON algorithm is correct in the sense that a
signature generated via TACHYON. Sig(-) will always be verified by
TACHYON. Ver(-). This can be shown as follows:

Given a message-signature pair (M, o = (s, h)), due to the deter-
ministic property of the hash oracle Hy(+) the indexes created in
TACHYON. Sig(-) by computing (ii|| - - - [|ig) < H2(M||h) are identi-
cal to those created in TACHYON. Ver(-). Therefore, given the public

1859

CCS’18, October 15-19, 2018, Toronto, ON, Canada

S ye)
k k k
Fa(s) - Z Vi, = FA((Z xi;) +1') - Z Yi;
j=1 j= =

k k
= FA() | xi,) + FA(t') =)" Fa(xiy)
j=1 j=1

key PK « (t,k, (y1,..

= FA(r')
Therefore, for a valid message-signature pair (M, o = (s, h)), Step
5 in Algorithm 3 will always return 1.

3.2 Rejection Sampling

The idea of rejection sampling in lattices was first proposed by
Lyubashevsky [35] in the construction of identification schemes. In
our scheme, we need to mask the summation of secret keys (3 x;;)
with a random r’. If ’ is uniform over the entire ring (on which
the summation is defined), then clearly all information about the
summation is hidden. However, the verifier must use s = 3} ; x;; + r’
as input to Fa, which is only possible if s is small. Hence, r’ must
be chosen from some bounded distribution. We now discuss how
that distribution is determined.

The x; vectors are chosen with coefficients from {0, 1}. One can
easily compute a bound p such that

Pr [for all subsets S with [S| < k: |2 ;es Xilleo < p]

is very high, over the choice of the x; values. The rest of the analysis
conditions on this highly likely event, and we assume that each
coefficient a of }; x;; is in the range a € [-(p — 1), p — 1].

Now we choose r’ uniformly with each coefficient in the range
[-(£-1),{-1]andsets = }; x;, + r’. This causes each coefficient
of s to be uniform in a range [a — (¢ — 1),a + £ — 1] for some a €
[-(p—1), p—1], which depends on the signing key. No matter what a
is, the range [a—(£—1), a+&—1] always contains [-(é—p—1), E—p—1]
as a subrange. Therefore if we condition on all coefficients falling
in this subrange, the resulting value is uniform and independent
of the signing key. We can achieve this conditioning by rejection
sampling, and simply retrying if ||s|| > &€ — p.

The parameter & must be chosen carefully, since larger & leads to
larger signatures, but smaller ¢ leads to more failures/retries during
rejection sampling. We can compute the probability of rejection
by considering each component of s in isolation. The coefficient is
chosen uniformly from some range [a — (& — 1), a+ & — 1], which has
2 —1values. The “permissible” outcomes are [-(§—p—1), E—p—1],a

range of 2(£—p)—1 values. Hence the probability that this coefficient
% =1- 22—‘:1. With uN coefficients in s,
the sampling success probability is therefore

2
(1__P

is permissible is

UN
) ~ e Nuplé

4 SECURITY ANALYSIS

In the random oracle model [7], we prove that TACHYON is EU-CMA
in Theorem 4.1 below. Note that in our proof, we ignore terms that
are negligible in terms of our security parameter.

THEOREM 4.1. In the random oracle model, if there exists an ad-
versary A that can (t 7, qs, qy, €a)-break the EU-CMA security of

Session 9C: Crypto 4

TACHYON, then one can build another algorithm B, that can break the
one-wayness of the GCK function family (as defined in Definition 2.3)
with success probability of at least

1 qu(qs +qu)\ (€a qs+qu 1
; eﬂ_z—ll T T T

and running in time at most

quk!
2k

O (2t + t(trnG + tFy) + qs(2tRNG + tF, + kiagq) + qHIRNG)

where tpNG, taqgq and tg, are the running time of a random number
generator, vector addition and Fa function, respectively.

The intuition behind the reduction is as follows. The reduction
algorithm receives a value y* and attempts to find a preimage of y*
under Fa. The reduction algorithm plays the role of the challenger
(EU-CMA game) against A, and uses y* as one of the public-key
components y =, for random index j*. It chooses all other public-key
components y; honestly.

The reduction algorithm does not know the entire signing key
(it does not know x;+), so it uses its ability to program the random
oracle to generate simulated signatures. Specifically, it chooses the
signature (s, h) uniformly at random, and then programs H; and
Hj so that the signature verifies.

Suppose A successfully constructs a forgery (s, k). Consider
rewinding the adversary to the point where it made the query
Hj(M||h), then continuing with independent randomness. The fork-
ing lemma states that, with good probability, the adversary will
output a forgery (s’, h) in this case as well. Importantly, the new
forgery will include the same h, hence:

h=Hy[Fa(s) = Yy | = Hi | FaGs) = D yj
jel jer
Note that the two summations are over different multisets I, I’ of
indices.
Conditioning on the absence of a collision in Hy, we have

FA(S) = Dy = Fas) = D ¥j

jel Jjer
Say that I and I’ are compatible if there is some index that appears
with multiplicity exactly once in I U I’. Our reduction conditions
on the fact that I and I’ are always compatible. With independent
probability 1/¢, we have that I and I’ are actually compatible with
respect to our special index j*. Compatibility implies that we can
solve for y*. Let’s say j* € I \ I, then:

Y =FAG)-FAG)+ D yi- DY)
JeN{*} Jjer
The reduction algorithm knows the preimages to all y; terms on the
right-hand side. It is therefore possible to apply the homomorphic
property of Fa and write the right-hand side as Fa applied to a value
known to the reduction algorithm. In other words, the reduction
can compute a preimage of y*.

Compatible index sets. Before describing the reduction in more
detail, we clarify the properties of compatible index sets.

Definition 4.2. Let I, I’ be strings which encode multisets in the
natural way as I = (i1]| - - - ||ix), etc. We say that [and I’ are com-
patible with respect to i if i appears with multiplicity 1 in I and

1860

CCS’18, October 15-19, 2018, Toronto, ON, Canada

multiplicity 0 in I’ (or vice-versa). We say that I and I’ are com-
patible if they are compatible for some value i.

Each I encodes k indices. In the worst case there are at most k!
other strings that encode a multiset that is incompatible with I. If
we have one fixed string I* and q other uniformly chosen strings
I, ..., Iq (all strings with I bits)

Pr{I* i ible with all I, .. 1] = (1 - £1)" 51 4K
r[I” is compatible with all Iy, ..., I] > o] 21T
And hence:
" q- k!
Pr[I" is not compatible with all 1, .. ., I] < "
2

We abbreviate the latter probability as Pr[Compat(q, k, I2)].

Reduction algorithm. Given an adversary A, we define the reduc-
tion algorithm/game B in Algorithm 4. B takes y* (an Fa-output)
as input, as well as a list { of random oracle responses that it will
use to program Hp. This interface is necessary for our usage of the
forking lemma.

B proceeds to simulate the EU-CMA game against A, implanting
y* within the public key and generating simulated signatures as
described above.

If A is successful in generating a forgery, then B outputs it, as
well as the index of the hash call corresponding to Ha(M*||h*). This
indicates to the forking lemma that we wish to rewind to this query
and resume with fresh randomness.

2
.
CraiM 1. Pr[FORGERY] > eg — ‘M‘IZST(]H

negligible quantity is from the security of PRF.

+ negl(x), where the

Proor. First, we compare the view of A in the reduction to its
view in the standard EU-CMA game. The only differences are:

(1) The x; values are chosen uniformly rather than pseudoran-
domly. This changes the adversary’s view by a negligible
amount.

(2) The signature is generated in “reverse order”. From the dis-
cussion in Subsection 3.2, real signatures are distributed uni-
formly, hence this difference has no effect on the adversary’s
view.

Overall, we see that the adversary’s view is indistinguishable.

The only other difference between the reduction and EU-CMA
game is that the reduction may abort in the event of BAD1 or BADz.
BAD1 happens when the reduction needs to program the random
oracles but they have already been queried on the desired point.
On line 21, the values T and h are uniform, each with at least [; bits
of entropy. Hence the probability that such a prior query has been
made is at most qg/ 2l Taking a union bound over all gg calls to
S1G, the overall probability of BAD1 is bounded by qsqr/ 2l

BAD2 happens when a collision is found in Hy. This probability
is bounded by qi[/zll, O

Forking lemma. Now, we can consider invoking the forking
lemma (Lemma 2.1) with 87, The result is an algorithm Forkg
that has probability at least

Pr[FORGERY] 1

Pr[FORGERY| 0
2

qH

Session 9C: Crypto 4

Algorithm 4 Reduction algorithm 5.

1: function INtTIALIZE(Y™, H)

e L

3: yjr —y"

4 X; i Samp(1), forie {1,...,t} \ {i*}

5: yi « Fa(xj),forie {1,...,t}\ {i*}
6: return PK « (¢, k,(y1,...,¥t))

7: function Hi(q)
8 if £L1[q] is not defined then
$
9 Li[q] < {0,1}h

return £[q]
11: function Hz(q)

12: if £[q] is not defined then
13: L2[q] < next unused value from H
14: return £[q]

15: function S16(M)

16: add M to set M

17: s ﬁ Samp(é —p—1)

s k& {o,13h

19: I={(]l...|lix) < next unused value from H

200 FeFals)- X5,y

21: if L1[f] or L[M||h] are defined then BAD1 < 1; abort
22: Li[f] < h

23: Lo[M||h] T

24: return (s, h)

25: function FINALIZE(M™, o™ = (s*, h"))

26: if there is a duplicate value in £; then BAD2 «— 1; abort
27: if [M* ¢ M] A [SGN.Ver(M*,c*, PK) = 1] then

28: FORGERY «— 1

29: let v be the index such that Ly[M*||h*] = H|[v]

30: return (v, ¢*)

31 else

32 return (0, 0)

of producing two forgeries. Note that these forgeries must be with
respect to the same M* and h* values because of the way that 8
computes the index v of the “special” oracle query, and the fact
that the forking lemma ensures that this index is the same in both
“forks” Each forgery verifies with respect to a different value of
Hy(M*||1").

Cram 2. Let o] = (s],h") and a5 = (s, h*) be the two forgeries
output by Forkg, for message M*. Let I; be the value of Hy(M*||h*)
in the first “fork” and I be its value in the second “fork.” When I
and I are compatible with respect to j*, a preimage of y* can be
computed efficiently.

Proor. Following the high-level discussion, we can solve for a
preimage of y*. Write I} = (i§1)|| - ||i§<l)) and I, = (i§2)|| - ||i§€2)).

1861

CCS’18, October 15-19, 2018, Toronto, ON, Canada

By symmetry, suppose j* appears in I; but not I;. From the
verification equation for these signatures we have:

k k
B = Hi | Fa(s)) =)y, | = Hi[Fa(s5) = Dy
=1’ j=t 7
Since B aborts if a collision was found in H; (BAD2 event), we have

k k
Fa(s]) - Z Y,-ﬁ}) = Fa(s}) — Z; yi5_2>
=

Jj=1

Isolating y;+ = y* (which appears in the left summation but not
the right one) and using the homomorphic property of Fp gives:

k k
Y = FAGD = FAG) = D v+ D e
j=1 Jj=1

(1),
i#j
k k
= FA(s}) = FA(s)) = > FaGx) + Y FA(x,a)
j=1 S ’
S(1) s
i #j
k k
=Fals]—s;— Z X, + in(z)
j=t 7 =1
(1), o
i#

The final argument to Fa is a value that can be computed from
known values, and it is a preimage of y*. O

Proor oF THEOREM 4.1. Given an adversary A breaking EU-
CMA security as stated, we first construct the reduction algo-
rithm/game B (Algorithm 4). From Claim 1, the game produces a
forgery with probability (ignoring negligible terms related to the
PRF):

qHAs + 04

Pr[FORGERY] > €7 — "
1

We then apply the forking lemma (Lemma 2.1) to 87 The result is
an algorithm Fork g that generates two forgeries with probability
at least:

Pr[FORGERY] 1

Pr[FORGERY] o
2

q9H
In the event that Forkg outputs two forgeries, define I; to be the
value of Hy(M*||h*) in the first “fork” and I, to be its value in
the second “fork” Looking ahead, we would like to bound the
probability that I; and I; are compatible. However, we run into
a problem because I is not distributed independently of Forkg’s
success. Intuitively, the adversary gets to “choose” whether the
second fork succeeds after seeing I,.

On the other hand, let H’ be the set of oracle responses that are
re-sampled uniformly during the second “fork” Importantly, H” is
distributed independently of I;, so we can bound the probability
that I; is compatible with all elements of H". Since I (if it exists) is
guaranteed to be an element of H’, this allows us to reason about
the compatibility of I; and I.

Session 9C: Crypto 4

From these observations, we obtain:

Pr[preimage of y* is found]

= Pr[Forkg outputs 2 forgeries and Iy, I; are compatible wrt j*]

1
n Pr[Forkg outputs 2 forgeries and I3, I; are compatible]

\

1
n Pr[Forkg outputs 2 forgeries and I;, H’ are compatible]

1 —
> n (Pr[Forkg outputs 2 forgeries] — Pr[Compat(qg, k, lg)])
1 P 1 k!
> - [PI[FORGERY] (M - —) _4H }
t qH 2k 2h
Y[, _aulgs+an)) (ea _gs+qm _ 1) _ quk!
e |\ 2h qH 2h 2k 2k

Note that the third line follows from the fact that the adversary’s
view in 87 is independent of j*.

The running time of B is that of A to output two forgery sig-
natures with an overwhelming probability plus the time it takes
for the simulation processes. For the sake of convenience, we do
not consider the negligible processes. The setup process takes
t - (tRNG + tr,), where t is the HORS parameter, for generating
private keys and the corresponding public keys. Each signing pro-
cess would require 2tgNG to generate r’ and I = (iy,. .., i;) one
tr, and k - t4 4. Each hash query would require a g nG. Therefore,
the total running time of B is upper-bounded by

O (2t + t(trNG + tFy) + qs(2tRNG + tr, + kiagq) + qHIRNG)

This completes the proof.

4.1 Parameters

In this section, we discuss parameter choices for our construction
as shown in Table 1.

4.1.1 Collision-freeness of GCK function. For TACHYON, N and p
are 256 and 8, respectively. As it has been shown in [37, 45], for
the family of GCK functions to admit a strong security reduction,

%, q > 4duN'>|N| for domain
D={geR:|glle < d} for some value d. Specifically, based on
the analysis in [37, 42, 45], with these parameters, finding collision
on average (when a;,j € Z4) with any non-negligible probability is
at least as hard as solving the underlying problem (i.e., SPPy (I) [37])
on certain kinds of point lattices, in the worst-case. We note that
our concrete parameter selection, as provided in the following,
meets the requirements stated above to allow for a strong security
reduction.

one needs to ensure that y >

4.1.2 Lattice Attacks. Given a uniformly random vector
a = (a1,...,ay) € R¥, the SIS problem over a ring asks to find
a non-zero vector X = (x1, .. .,xy) € Z[xl/(xN+1) such that

>

i=1

aixi =0 mod g, where ||x|| < f

An approach to estimate the hardness of this problem is by
measuring the run-time of lattice basis reduction algorithms. These

1862

CCS’18, October 15-19, 2018, Toronto, ON, Canada

reduction algorithms aim to find the nice bases which consist of rea-
sonably short and (nearly) orthogonal vectors. Gama and Nguyen
[23] show that such reduction algorithms for a lattice £ with di-

mension N can find vectors of length < N - det(L)% where §
is the Hermite delta. The BKZ algorithm [49] is the best known
algorithm for finding short (non-zero) vectors in lattices. The BKZ
algorithm starts by reducing a lattice basis using a Shortest Vector
Problem (SVP) oracle in a smaller dimension. As shown in [26], the
number of calls to the SVP oracle remains polynomial, however,
precisely computing the number of calls is an arduous task and
therefore, subject to heuristic approaches (e.g., BKZ 2.0 [16]). BKZ
2.0 requires solving the SVP problem in lattices with dimension at
most b < N, where b is called the block size. Therefore, BKZ 2.0
runs for multiple rounds to find the final output. Given the norm
bound S of an SIS instance, the corresponding § can be computed
asf=94 det(£)"N, then an estimate of the run time of BKZ 2.0 to
attain § is computed. Following [2, 24, 54], we use the following
relation to determine the smallest block size b to achieve §.

5o (b.(nb)é)z(b‘—n

2me
The most recent classical solver for SVP [5] runs in time ~ 20-292b
and the best known quantum solver for SVP [32] runs in time
~ 20-265b

In the following we discuss our estimation based on the works
in [2, 3, 19, 24].

We consider two types of adversary powers, namely, the classical
and post-quantum. For TACHYON, we proffer three parameter sets
(for three security levels) and analyze the security level of each for
the adversarial types mentioned above. In the classical model, for
our medium security instantiation, we set g = 227 _ 211 4 1 and
B = 219 to achieve § ~ 1.00339 with b = 502. We set g = 230218 +1
and B = 217 for recommended instantiation which achieves § ~
1.00271 with b = 682. We set ¢ = 231 —2° + 1 and § = 2!7 for
the high security instantiation with § ~ 1.00203 with b = 1007.
Therefore, based on the analysis in [3, 19], we achieve 146, 199 and
294 classical bit security for the medium, recommended and high
security instantiations of TACHYON against lattice attacks, respec-
tively. For post-quantum security against lattice attacks, we achieve
133, 180 and 266 bit security for the medium, recommended and
high security instantiations, respectively. Similar to Dilithium [19],
our parameter choices are conservative.

4.1.3 k-Element Combinatorial Problem. As captured in our secu-
rity proof; k, t parameters must be selected such that the probability

g
qlzilzk' is negligible. Considering that Iy = k|t| (since k indexes that
are |t|-bit long are selected with the hash output), this gives us
qH k!

- We further elaborate on some choices of (k, t) along with
their security/performance implications in Section 5.

4.1.4 Quantum Random Oracle Model (QROM). QROM considers
the scenario where the adversary has classical access to the signing
oracle and quantum access to the hash function oracle. TACHYON is
proven to be secure in the random oracle model and we do not
provide the proof for the security of TACHYON in QROM. This trend
is true for a wide range of "efficient” schemes (e.g., [19]), which
are mostly based on Fiat-Shamir framework, since their ROM is

Session 9C: Crypto 4

Table 1: Parameter Selection of TACHYON

Parameter || TACHYON-128 [TACHYON-192 | TACHYON-256

N 256 256 256

1 8 8 8

q 134215681 1073479681 | 2147483137

t 1024 2048 3072

k 18 25 32

A 256 bits 384 bits 512 bits

I 180 bits 275 bits 384 bits
RS Rate' 3.08 2.18 2.72

T RS Rate denotes Rejection Sampling Rate.

not "history free" due to the forking lemma in the reduction step.
Initial approaches (e.g., [52]) to obtain QROM security for schemes
based on Fiat-Shamir transformation resulted in considerably less
efficient signatures since they needed multiple execution of the
underlying identification scheme. However, recently, in line of pro-
viding QROM security for Dilithium [19], Kiltz et al. [31] provide a
tight reduction in the QROM which incurs less performance/stor-
age penalty as compared to directly applying the method in [52].
This generic framework [31] can be applied to the identification
schemes that admit lossy public keys. We believe it is possible to
prove the security of TACHYON in QROM and therefore, in the line
of Dilithium [19] and its QROM secure instantiation [31], we will
investigate the QROM security of TACHYON in our future work.

5 PERFORMANCE EVALUATION

We first present analytical performance analysis and some of the
potential performance/speed trade-offs for TACHYON. We then pro-
vide our evaluation metrics and experimental setup followed by
a detailed experimental comparison of TACHYON with the state-of-
the-art PQ-secure digital signature schemes.

5.1 Analytical Performance Analysis

We now describe the analytical performance of our scheme based on
the parameters. In the computational overhead analysis, we present
our runtime in terms of the total number of PRF, GCK function,
and vector addition calls. We omit the overhead of small-constant
number of hash calls.

o Signer Computation and Storage Overhead: TACHYON only requires

storing a k-bit random seed number as the private key, which is
used to deterministically generate the required x; components via
PRF calls, where each x; is p - N bits.

The signature generation cost is significantly affected by the
derivation and summation of k number of x;j. This requires k - PRF
calls, extracting the binary vectors from the PRF outputs and vector
additions (whose computational overhead is negligible). For each
PRF call, a k-bit input is extended to a iz - N bit output. In addition, a
Samp(& — 1) function is required. Samp(& — 1) generates a vector of
length p- N with components of length || bits. Therefore, Samp(& —
1) can be implemented with a PRF that extends a k-bit input to a
|€] - gt - N bit output. In total, these correspond to the generation of
(I€] + k) - i - N pseudorandom bits via a PRF. Another significant

1863

CCS’18, October 15-19, 2018, Toronto, ON, Canada

cost for signature generation is the GCK function call that is made
to compute the image of the randomness r’. A GCK call is basically
composed of two operations: Number Theoretic Transform (NTT)
calculation and a linear combination. In order to compute a GCK call,
p number of NTT calls and a single linear combination is necessary,
where both of these operations are based on simple multiplications
and additions under mod q. Therefore, in total, TACHYON signature
generation requires storing k-bit of private key, k PRF invocations,
k vector additions, a single Samp(& — 1) and a GCK function call to
compute a signature.

o Signature Size: The signature ¢ is comprised of the vector s and
a hash output h, where |h| = ;. Rejection sampling enforces s to
satisfy ||s|| < & — p. Since s consists of g - N components, this
vector can be represented with |€ — p| - 1 - N bits. The total size of
a signature is |€ — p| - p - N + I bits.

o Verifier Computation and Storage Overhead: The signature verifi-

cation requires only a single GCK call and k vector additions, which
makes it the most verifier computationally efficient scheme among
its current counterparts. On the other hand, the size of public key
is |q| - g+ N - t bits (i.e., t vectors of length u - N), which is relatively
larger than its counterparts.

o Improved Side-Channel Resiliency: TACHYON only requires a uni-

form sampling Samp(& — 1) in its signature generation. Since it does
not require Gaussian sampling, it has an improved side-channel
resiliency as compared to some of its lattice-based counterparts
(e.g., BLISS [18]). Moreover, the rejection sampling in BLISS is based
on iterated Bernoulli trials, that is prone to some attacks. As it is
shown in [21], this efficient rejection sampling technique has been
exposed to some side channel attacks. Although, TACHYON requires
rejection sampling to make sure the statistical distribution of the
signatures does not leak information about the private key compo-
nents, similar to [19], since our rejection sampling does not require
any Bernoulli trials, the attack does not apply to our rejection sam-
pling step.

5.2 Performance-vs-Storage Trade-offs

Our design allows several trade-offs between performance and stor-
age that may be suitable for different use-cases.

o Signer Pre-computation: With a basic implementation trick, one
can store the x;j’s instead of deterministically generating them at
the signature generation. This enables the signer to avoid the cost
of generating these values (k - PRF calls, and extracting the binary
vectors) during the signature generation. Since the signer must
store these x; vectors, this adds up to a private key of at least
t - p - N bits, that is larger than that of TACHYON. However, this
caching strategy offers a faster signature generation and therefore
can be preferred when the signer is able to store such vectors.
Signature generation speed advantages and required private key
size are further explained in Subsection 5.4.

e Selection of t,k: The parameter ¢ linearly impacts the size of
public key of TACHYON. The parameter k determines the number
of PRF calls, binary vectors to be extracted and vector additions
in TACHYON signing, and also the number of vector additions in

Session 9C: Crypto 4

TACHYON signature verification. Note that decreasing ¢ requires an
increase in k (or vice versa) to preserve the desired security level.
We selected (¢t = 1024, k = 18), (t = 2048, k = 25), and (¢t = 3072,
k = 32) to provide k = 128-bit, x = 192-bit, and x = 256-bit se-
curity, respectively. However, different parameters for the same
security levels are also possible. For instance t = 256, k = 26 would
also offer k = 128-bit security level and could be preferred (over
t = 1024, k = 18) for TACHYON medium level security instantiation.
This would provide a 4x smaller public key, where the signature
generation time would be increased.

® Rejection Sampling Parameters: Rejection sampling rate implies

how many times (on average) the signature generation should be
executed to output an “acceptable” signature. Therefore, the in-
crement of the acceptance probability has a linear effect on the
signature generation time. We discuss two parameters that can
be tuned to increase the acceptance probability of the outputted
signatures, (i) increasing £ — 1 (where £ — 1 = ||r’||), and (ii)
decreasing k. While tuning these parameters can result in signifi-
cantly decreasing the average signing time, there are trade-offs to
consider. Increasing £ — 1 causes an increase on the signature size.
Additionally, this increase incurs a security loss as it directly affects
the hardness of the lattice attacks discussed in Subsection 4.1. On
the other hand, as discussed above, decreasing k would require
increasing t to compensate for the security loss, that increases the
public key size.

5.3 Experimental Evaluation and Setup

We describe our experimental evaluation metrics and setup, wherein
our scheme and their counterparts are compared with each other.

o Evaluation Metrics: We have evaluated and compared TACHYON with
its counterparts in terms of signature generation and verification
times, private key, public key and signature sizes and end-to-end
cryptographic delay (i.e., the sum of signature generation and veri-
fication times, excluding the signature transmission time, as it is
network depended).

o Hardware Configurations: We used a laptop equipped with an
Intel i7 6th generation (Skylake) 2.6GHz processor and 12 GB of
RAM for our experiments.

o Implementation Details : Our parameter selection which is based

on [37] - ie., N is a power-of-two and 1 = ¢ mod (2N) - allows us
to use NTT to accelerate the GCK function computations. Similar
approach has been done in [19]. Then, to finalize the GCK function,
we computed the linear combination under mod g of input with
random and public matrix A. Since highest |g| selected is just 31,
we did not use any libraries for these calculations. We would like
to note that this operation can be performed very fast with some
assembly level optimizations. However, in this paper, we used a
conservative implementation.

We instantiated H; and Hy random oracles using BLAKE2b due
to its optimization for commodity hardware, in terms of speed and
security [4]. We used Intel intrinsics to implement our PRF function
and Samp(¢& — 1) (with AES in counter mode). Our implementation
is open-sourced in the following link.

1864

CCS’18, October 15-19, 2018, Toronto, ON, Canada

https://github.com/ozgurozmen/TACHYON

For our counterparts, we used the optimized codes (if available,
otherwise the reference codes) that are submitted to the NIST com-
petition and ran them on our processor. Note that among all the
schemes presented in Table 2, only BLISS is not a NIST competi-
tor. For this scheme, we used the open-sourced implementation
provided by the authors.

5.4 Performance Analysis and Comparison

Table 2 shows the experimental performances of TACHYON and its
state-of-the-art counterparts. We selected various schemes that are
submitted to the first NIST post-quantum cryptography standard-
ization conference (except BLISS [18], that is selected since it is
one of the fastest lattice-based signatures). These schemes include
lattice-based constructions (QTESLA [11], pgNTRUsign [27], and
Dilithium [19]), a hash-based construction (SPHINCS+ [28]), a code-
based construction (pqsigRM [34]), a symmetric key cryptography
based construction (PICNIC [15]) and a multivariate-based scheme
(GeMSS [14]).

Table 2 shows that TACHYON has the lowest end-to-end delay and
both its signature generation and verification are the fastest among
its counterparts, for every security level. For instance TACHYON-
192 has the fastest signature generation and the lowest end-to-end
delay among all the schemes with any security level. Moreover,
TACHYON offers the lowest possible private key size (that is the same
with symmetric key based PICNIC). TACHYON has a signature of
slightly more than 4 KB, that is comparable to its lattice-based
counterparts but larger than multivariate and code-based construc-
tions. TACHYON public key is significantly larger than most of their
counterparts (only smaller than GeMSS in high security levels).
Considering the overall efficiency of TACHYON, we believe it can be
preferred when the verifier can tolerate such a storage.

As discussed in Subsection 5.2, one can consider caching the
xj vectors as the private key instead of deterministically deriving
them with a k-bit seed. When this optimization is considered, it
provides a signature generation that is significantly faster than that
of TACHYON. With the verification being unchanged, this variant
can further improve the end-to-end delay (which is currently the
fastest). On the other hand, when these vectors are cached, the
private key size increases significantly (e.g., 256 — 768 KB), that
is only smaller than pqsigRM, for certain security levels. This can
make caching impractical for some applications where the signer
is memory-limited. In these cases, TACHYON without any caching
should be preferred.

We also dissected the cost of TACHYON, for future optimizations.
GCK function computation corresponds to the ~ 40% of the total
cost for TACHYON-128 signature generation, that slightly decreases
on higher security levels. The highest cost is identified as the PRF
calls and the extraction of the binary vectors from this PRF output,
made to deterministically generate the vectors (x;’s). This can be
further confirmed with the improvements observed by caching the
xj vectors, where this cost is eliminated and replaced with only
vector additions. For the signature verification, over 80% of the total
cost is due to the GCK function.

Discussions. The GCK function calculations can be further accel-
erated with assembly instructions on NTT function as in Dilithium

Session 9C: Crypto 4

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Table 2: Experimental Performance Comparison of TACHYON with Its Counterparts

Scheme Security Signatuj‘e Private Signature Signature Public End-to-End Gaussiané
Level (bit) Gen Time' (us) | Key (Byte) | Size (Byte) | Ver Time (ys) | Key (Byte) | Delay (us) Sampling*
128 14625 64 16976 617 32 15242
SPHINCS+ [28] 192 18580 96 35664 974 48 19554 N/A
256 42898 128 49216 1015 64 43913
128 3960 1382118 260 21 336804 3981
PgsigRM [34] 192 20260 334006 516 30 501176 20290 N/A
256 406 2105344 1028 138 2144166 544
128 252844 14208 39 417408 252883
GeMSS [14] 192 776330 39440 109 1304192 776439 N/A
256 1118542 82056 104 326 3603792 1118868
128 1966 16 34000 1335 32 3301
PICNIC [15] 192 6951 24 76740 4804 48 11755 N/A
256 13963 32 132824 9639 64 23602
128 141 256 717 28 896 169
BLISS [18] 160* 211 384 768 28 896 239 v
192* 392 384 813 31 896 423
128 650 1856 2720 133 2976 783
qTESLA [11] 192 2524 4160 5664 272 6176 2796 X
256 6793 4128 5920 334 6432 7127
PgNTRUsign [27] 128 14516 1024 576 304 1024 14820 X
100* 166 2800 2044 53 1184 219
Dilithium[19] 138* 272 3504 2701 76 1472 348 X
176* 219 3856 3366 103 1760 322
128 138 16 4416 18 884736 156
TACHYON 192 124 24 4672 21 1966080 145 X
256 198 32 4672 28 3047424 226

+ TACHYON requires rejection sampling in its signature generation (similar to BLISS [18], Dilithium [19]). The number of required signature
generation repetitions due to rejection sampling are 3.08, 2.18 and 2.72 for medium, recommended and high security levels, respectively.
1 Gaussian sampling requirement is same for the all security levels, and therefore, it is represented with a single value.

v'Denotes the scheme requires Gaussian sampling, that can be considered unfavorable due to the side-channel attacks.

* Denotes security level other than standard 128, 192, 256 bits.

[19]. In this paper, we presented our benchmark results with a ref-
erence implementation, without any assembly level instructions.
Therefore, we believe that there is still a significant room for perfor-
mance improvement for our scheme, especially in the verification
algorithm, where the dominative cost is the GCK function. On the
other hand, since we implemented the PRF functions of our scheme
using Intel intrinsics, TACHYON might face a performance penalty
on other platforms. Therefore, light-weight symmetric ciphers or
hash functions should be preferred to implement the PRF calls in
TACHYON on other platforms.

6 CONCLUSION

In this paper, we proposed a new digital signature scheme with a
post-quantum promise, which we refer to as TACHYON. Our unique
algorithmic design leverages the well-known HORS construction
and additively homomorphic GCK functions to extend one-time sig-
natures to (polynomially bounded) many-time signatures. TACHYON of-
fers several desirable properties: (i) It achieves the lowest end-to-end
delay with the fastest signature generation and verification among
its counterparts in every security level. (if) TACHYON has the smallest

1865

private key size (i.e., k-bit) among its counterparts. (iii) TACHYON has
highly tunable parameters, which offer various speed and storage
trade-offs. (iv) TACHYON does not require any Gaussian sampling,
and therefore it is immune to the side-channel attacks targeting
this function. All these desirable properties of TACHYON come with
a larger public key than most of its counterparts.

ACKNOWLEDGMENTS

The authors want to thank Chris Peikert, Vadim Lyubashevsky and
Daniele Micciancio for their comments and valuable suggestions.
The authors also thank Peter Rindal for his suggestions on the
implementation of the scheme. This work is supported by NSF
awards #1652389 and #1617197.

REFERENCES

[1] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Kridmer, and Gior-
gia Azzurra Marson. 2016. An Efficient Lattice-Based Signature Scheme with
Provably Secure Instantiation. In Progress in Cryptology — AFRICACRYPT 2016,
David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi (Eds.). Springer
International Publishing, 44-60.

Nabil Alkeilani Alkadri, Johannes Buchmann, Rachid El Bansarkhani, and Juliane
Kramer. 2017. A Framework to Select Parameters for Lattice-Based Cryptography.

—_
L,

Session 9C: Crypto 4

[10]

[11

[12]

[13]

[14]

[15

[16]

[17

(18]

[19]

[20]

[21]

Cryptology ePrint Archive, Report 2017/615. (2017). https://eprint.iacr.org/2017/
615.

Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe. 2016. Post-
quantum Key Exchange-A New Hope.. In USENIX Security Symposium. 327-343.
Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan.
2010. SHA-3 proposal BLAKE. Submission to NIST (Round 3). (2010). http:
//131002.net/blake/blake.pdf

Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. 2016. New Di-
rections in Nearest Neighbor Searching with Applications to Lattice Sieving. In
Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’16). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 10-24. http://dl.acm.org/citation.cfm?id=2884435.2884437

Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the Plain public-Key
Model and a General Forking Lemma. In Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS "06). ACM, New York, NY, USA,
390-399.

M. Bellare and P. Rogaway. 1993. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and Communications Security (CCS "93). ACM, NY, USA, 62-73.

Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs. In Advances in Cryptology -
EUROCRYPT 2006, Serge Vaudenay (Ed.). Springer Berlin Heidelberg, 409-426.
E.Berlekamp, R. McEliece, and H. van Tilborg. 1978. On the inherent intractability
of certain coding problems (Corresp.). IEEE Transactions on Information Theory
24, 3 (1978), 384-386.

Daniel J. Bernstein, Daira Hopwood, Andreas Hiilsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based Signatures. In
Advances in Cryptology — EUROCRYPT 2015: 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. Springer Berlin
Heidelberg, 368-397.

Nina Bindel, Sedat Akeylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Julaine Kramer, Patrick Longa, Harun
Polat, Jefferson E. Ricardini, and Gustavo Zanon. 2018. qTESLA. Sub-
mission to the NIST’s post-quantum cryptography standardization process.
(2018). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round- 1/submissions/qTESLA.zip.

Jurjen N. E. Bos and David Chaum. 1993. Provably Unforgeable Signatures. In
Advances in Cryptology — CRYPTO’ 92, Ernest F. Brickell (Ed.). Springer Berlin
Heidelberg, 1-14.

Matt Braithwaite. 2016. Experimenting with Post-Quantum Cryptography. (2016).
https://security.googleblog.com/2016/07/experimenting- with-post-quantum.
html

A. Casanova, J.-C. Faugere, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryck-
eghem. 2018. GeMSS. Submission to the NIST’s post-quantum cryptography
standardization process. (2018). https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round- 1/submissions/GeMSS.zip.
Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017.
Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primi-
tives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’17). ACM, New York, NY, USA, 1825-1842.
https://doi.org/10.1145/3133956.3133997

Yuanmi Chen and Phong Q. Nguyen. 2011. BKZ 2.0: Better Lattice Security
Estimates. In Advances in Cryptology — ASIACRYPT 2011, Dong Hoon Lee and
Xiaoyun Wang (Eds.). Springer Berlin Heidelberg, 1-20.

Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier. 2001. How to Achieve
a McEliece-Based Digital Signature Scheme. In Advances in Cryptology — ASI-
ACRYPT 2001, Colin Boyd (Ed.). Springer Berlin Heidelberg, 157-174.

Léo Ducas, Alain Durmus, Tancréde Lepoint, and Vadim Lyubashevsky. 2013.
Lattice Signatures and Bimodal Gaussians. In Advances in Cryptology — CRYPTO
2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, Ran Canetti and Juan A. Garay (Eds.). Springer Berlin
Heidelberg, 40-56.

Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehle. 2017. CRYSTALS - Dilithium: Digital Signatures from
Module Lattices. Cryptology ePrint Archive, Report 2017/633. (2017). http:
//eprint.iacr.org/2017/633.

Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. 2014. Efficient Identity-Based
Encryption over NTRU Lattices. In Advances in Cryptology — ASTACRYPT 2014:
20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, Palash Sarkar and Tetsu Iwata (Eds.). Springer Berlin Heidelberg, 22-41.
Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, and Mehdi Tibouchi. 2017.
Side-Channel Attacks on BLISS Lattice-Based Signatures: Exploiting Branch Trac-
ing against strongSwan and Electromagnetic Emanations in Microcontrollers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017. 1857-1874.

1866

[22]

[23

[24

[26

[27

(28]

[29

[30

[31

W@
&,

[33

[34

[35

&
2

(37

[38

[39

[40

[42

[43

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology — CRYPTO’ 86,
Andrew M. Odlyzko (Ed.). Springer Berlin Heidelberg.

Nicolas Gama and Phong Q. Nguyen. 2008. Predicting Lattice Reduction. In
Advances in Cryptology — EUROCRYPT 2008, Nigel Smart (Ed.). Springer Berlin
Heidelberg, 31-51.

Florian Gopfert, Christine van Vredendaal, and Thomas Wunderer. 2017. A Hybrid
Lattice Basis Reduction and Quantum Search Attack on LWE. In Post-Quantum
Cryptography, Tanja Lange and Tsuyoshi Takagi (Eds.). Springer International
Publishing, Cham, 184-202.

Leon Groot Bruinderink, Andreas Hiilsing, Tanja Lange, and Yuval Yarom. 2016.
Flush, Gauss, and Reload — A Cache Attack on the BLISS Lattice-Based Signature
Scheme. In Cryptographic Hardware and Embedded Systems — CHES 2016: 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
Benedikt Gierlichs and Axel Y. Poschmann (Eds.). Springer Berlin Heidelberg,
323-345.

Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. 2011. Terminating BKZ.
Cryptology ePrint Archive, Report 2011/198. (2011). https://eprint.iacr.org/2011/
198.

Jeffrey Hoffstein, Jill Pipher, William Whyte, and Zhenfei Zhang. 2017. A signa-
ture scheme from Learning with Truncation. Cryptology ePrint Archive, Report
2017/995. (2017). https://eprint.iacr.org/2017/995.

Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja
Lange, Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, and Peter Schwabe. 2018. SPHINCS+. Sub-
mission to the NIST’s post-quantum cryptography standardization process.
(2018). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round- 1/submissions/SPHINCS_Plus.zip.

Andreas Hiilsing, Joost Rijneveld, and Peter Schwabe. 2016. ARMed SPHINCS -
Computing a 41 KB Signature in 16 KB of RAM. In Public-Key Cryptography - PKC
2016 - 19th IACR International Conference on Practice and Theory in Public-Key
Cryptography. 446-470.

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman &
Hall/CRC.

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. 2018. A Concrete
Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model. In
Advances in Cryptology — EUROCRYPT 2018, Jesper Buus Nielsen and Vincent
Rijmen (Eds.). Springer International Publishing, Cham, 552-586.

Thijs Laarhoven. 2015. Search problems in cryptography from fingerprinting
to lattice sieving. Ph.D. Dissertation. Gildeprint Drukkerijen, Enschede, The
Netherlands.

Leslie Lamport. 1979. Constructing digital signatures from a one-way function.
Technical Report. Technical Report CSL-98, SRI International Palo Alto.

Wijik Lee, Young-Sik Kim, Yong-Woo Lee, and Jong-Seon No. 2018. pgsigRM.
Submission to the NIST’s post-quantum cryptography standardization process.
(2018). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round- 1/submissions/pqsigRM.zip.

Vadim Lyubashevsky. 2008. Lattice-Based Identification Schemes Secure Un-
der Active Attacks. In Public Key Cryptography — PKC 2008: 11th International
Workshop on Practice and Theory in Public-Key Cryptography, Barcelona, Spain,
March 9-12, 2008. Proceedings, Ronald Cramer (Ed.). Springer Berlin Heidelberg,
162-179.

Vadim Lyubashevsky. 2012. Lattice Signatures Without Trapdoors. In Proceed-
ings of the 31st Annual International Conference on Theory and Applications of
Cryptographic Techniques (EUROCRYPT 12). Springer-Verlag, 738-755.

Vadim Lyubashevsky and Daniele Micciancio. 2006. Generalized Compact Knap-
sacks Are Collision Resistant. In Automata, Languages and Programming: 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener
(Eds.). Springer Berlin Heidelberg, 144-155.

Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. 2008.
SWIFFT: A Modest Proposal for FFT Hashing. In Fast Software Encryption: 15th
International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008,
Revised Selected Papers. Springer Berlin Heidelberg, 54-72.

Robert] Mceliece. 1978. A public-key cryptosystem based on algebraic. Coding
Thv 4244 (1978), 114-116.

Ralph C. Merkle. 1989. A certified digital signature. In Proceedings on Advances
in cryptology (CRYPTO °89). Springer-Verlag, New York, NY, USA, 218-238.

D. Micciancio. 2002. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions from worst-case complexity assumptions. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. 356-365.
Daniele Micciancio. 2007. Generalized Compact Knapsacks, Cyclic Lattices, and
Efficient One-Way Functions. computational complexity 16, 4 (2007), 365-411.
https://doi.org/10.1007/s00037-007-0234-9

Committee on National Security Systems. 2015. Use of Public Standards for the
Secure Sharing of Information Among National Security Systems. (2015).

Session 9C: Crypto 4

[44] Jacques Patarin, Nicolas Courtois, and Louis Goubin. 2001. QUARTZ, 128-Bit
Long Digital Signatures. In Topics in Cryptology — CT-RSA 2001, David Naccache
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 282-297.

[45] Chris Peikert. 2010. An Efficient and Parallel Gaussian Sampler for Lattices.

In Advances in Cryptology — CRYPTO 2010: 30th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, Tal Rabin (Ed.). Springer

Berlin Heidelberg, 80-97.

A. Perrig, R. Canetti, D. Song, and D. Tygar. 2000. Efficient Authentication and

Signing of Multicast Streams over Lossy Channels. In Proceedings of the IEEE

Symposium on Security and Privacy.

[47] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. 2017. To BLISS-B or Not

to Be: Attacking strongSwan’s Implementation of Post-Quantum Signatures. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’17). ACM, New York, NY, USA, 1843-1855.

L. Reyzin and N. Reyzin. 2002. Better than BiBa: Short One-Time Signatures with

Fast Signing and Verifying. In Proceedings of the 7th Australian Conference on

Information Security and Privacy (ACIPS ’02). Springer-Verlag, 144-153.

[46

[48

1867

[49]

[50]

(51]

[52]

(53]

[54]

CCS’18, October 15-19, 2018, Toronto, ON, Canada

C. P. Schnorr and M. Euchner. 1994. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming 66, 1
(01 Aug 1994), 181-199.

Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Rev. 41, 2 (1999), 303-332.
Jacques Stern. 1994. A new identification scheme based on syndrome decoding.
In Advances in Cryptology — CRYPTO’ 93, Douglas R. Stinson (Ed.). Springer
Berlin Heidelberg, 13-21.

Dominique Unruh. 2015. Non-Interactive Zero-Knowledge Proofs in the Quantum
Random Oracle Model. In Advances in Cryptology - EUROCRYPT 2015, Elisabeth
Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
755-784.

Pascal Véron. 1997. Improved identification schemes based on error-correcting
codes. Applicable Algebra in Engineering, Communication and Computing 8, 1 (01
Jan 1997), 57-69.

Thomas Wunderer. 2016. Revisiting the Hybrid Attack: Improved Analysis and
Refined Security Estimates. Cryptology ePrint Archive, Report 2016/733. (2016).
https://eprint.iacr.org/2016/733.

