2018 IEEE Conference on Communications and Network Security (CNS)

Compact Energy and Delay-Aware Authentication

Muslum Ozgur Ozmen

Oregon State University

Corvallis, Oregon, USA
ozmenmu@oregonstate.edu

Abstract—Authentication and integrity are fundamental
security services that are critical for any viable system.
However, some of the emerging systems (e.g., smart grids,
aerial drones) are delay-sensitive, and therefore their safe
and reliable operation requires delay-aware authentication
mechanisms. Unfortunately, the current state-of-the-art au-
thentication mechanisms either incur heavy computations or
lack scalability for such large and distributed systems. Hence,
there is a crucial need for digital signature schemes that can
satisfy the requirements of delay-aware applications.

In this paper, we propose a new digital signature scheme
that we refer to as Compact Energy and Delay-aware Authen-
tication (CEDA). In CEDA, signature generation and verifica-
tion only require a small-constant number of multiplications
and Pseudo Random Function (PRF) calls. Therefore, it
achieves the lowest end-to-end delay among its counterparts.
Our implementation results on an ARM processor and com-
modity hardware show that CEDA has the most efficient
signature generation on both platforms, while offering a
fast signature verification. Among its delay-aware counter-
parts, CEDA has a smaller private key with a constant-size
signature. All these advantages are achieved with the cost
of a larger public key. This is a highly favorable trade-off
for applications wherein the verifier is not memory-limited.
We open-sourced our implementation of CEDA to enable its
broad testing and adaptation.

Index Terms—Applied cryptography, delay-aware authenti-
cation, real-time networks, digital signatures.

I. INTRODUCTION

Broadcast authentication is an essential security service
for various important systems, where the authenticity of
messages should be verified by multiple receivers. How-
ever, broadcast authentication is a challenging problem for
large and distributed systems (e.g. smart grids, vehicular
networks, IoT systems), especially if the system has real-time
authentication requirements [1]. For instance, as mentioned
in relevant vehicular network standards (e.g., [2], [3]), a
single car might broadcast a very large number of messages
(e.g., up to 500-1000 messages) per second, where all these
messages should be verified by other vehicles/devices in the
vicinity. Such messages may include directives for sudden
brakes/turns, which require the timely reaction of the re-
ceiving parties. This also brings scalability problems since a
vehicular network might be composed of a large number of
components (e.g., vehicles, infrastructure, devices). Similarly,
in power grid/smart grid systems, some critical command
and control messages must be verified by a large number of
peripheral devices [4], [5] in real-time. Besides such real-time

978-1-5386-4586-4/18/$31.00 ©2018 |IEEE

Rouzbeh Behnia
Oregon State University
Corvallis, Oregon, USA
behniar@oregonstate.edu

Attila A. Yavuz
Oregon State University
Corvallis, Oregon,USA

attila.yavuz@oregonstate.edu

applications, an efficient authentication mechanism is also
greatly needed by recently emerging IoT applications that
involve resource-limited devices (e.g., small aerial drones).

A. Problem Statement

The current state-of-the-art authentication mechanisms
might not be able to fully meet the demands of large
and distributed time-critical applications (e.g., smart-grid,
vehicular/drone networks). That is, Message Authentication
Codes (MACs) are highly efficient but they lack the necessary
scalability for large and distributed systems as well as public
verifiability and non-repudiation properties. Digital signature
schemes rely on public key infrastructures, and therefore can
enable scalable authentication for large-distributed systems.
However, unlike MACs, they generally require highly expen-
sive operations at the signer’s and/or verifier’s side. For in-
stance, standard signatures (e.g., RSA [6], ECDSA [7]) require
expensive operations such as exponentiation or elliptic curve
scalar multiplications, which have been shown to be highly
costly for some delay-aware applications (e.g., smart-grid [8],
[9], [10], vehicular networks [11], [12], [3], [2]).

Delay-aware signatures such as SCRA [13] and RA [10]
were proposed, however both of these schemes incur very
large private keys due to the pre-computation tables at the
signer’s side. Moreover, RA requires messages to have specific
pre-defined structures, which might not be the case for
various real-life applications. One-time signatures [14] and
some of their variants (e.g., [9], [15]) offer very fast signa-
ture generation and verification, however they have large
signature sizes. Moreover, the private-public key pair must be
continuously renewed, whose overhead may not be practical
for certain applications. Signature schemes that incur linear
token/key storage (e.g. online/offline signatures [16]) are also
not suitable for applications with memory-limited devices. Ef-
ficient signature generation and verification can be achieved
by delayed key disclosure methods [17] and amortized signa-
tures [18]. However, these methods rely on packet buffering,
and therefore, highly intolerant to packet losses. Moreover,
they lack the immediate verification critically required by
delay-aware applications. In Section II, we provide a detailed
overview of the related works that are most relevant to ours.

There is a significant need for a compact and light-weight
digital signature scheme that can achieve high-speed signature
generation and verification for time-critical systems.

2018 IEEE Conference on Communications and Network Security (CNS)

TABLE I: Experimental performance comparison of CEDA and its counterparts on ARM Cortex A53.

Scheme Signer Transmission Verifier End-to-End
Signature Generation | Private Key Signature Signature Verification | Public Key Delay (ms)
Time (ms) (Byte) Size (Byte) Time (ms) (Byte) Yy
RSA 237.15 768 416 1.33 384 238.48
ECDSA 9.33 32 64 12.10 32 21.43
BPV-ECDSA 1.75 10272 64 12.10 32 13.85
Ed25519 2.25 32 64 6.79 32 9.04
SCRA-C-RSA 2.72 2000000 432 4.42 384 7.14
[CEDA 7] 1.59 416 i 416 i 2.98 [393600] 4.57]

B. Our Contributions

In this paper, we developed a new real-time digital signa-
ture scheme that we refer to as Compact Energy and Delay-
aware Authentication (CEDA). We summarize the desirable
properties of CEDA as follows (Table I demonstrates the ex-
perimental comparison between CEDA and its counterparts
on ARM Cortex A53).

o Fast Signing: The signature generation of CEDA does
not require any expensive operation such as expo-
nentiation over large integers or elliptic curve scalar
multiplication. More specifically, the signing algorithm
in CEDA only requires an exponentiation over a small
modulus and cryptographic hash function calls that
makes it the fastest among its counterparts. For instance,
as shown in Tables I and IV, CEDA can generate up to
18,070 and 628 signatures per second on a commodity
hardware and IoT device, respectively.

Low End-to-end Delay: CEDA enjoys from the fastest
signing algorithm and the second fastest verification
algorithm among its counterparts. That is, the verifi-
cation only requires an exponentiation over a small
modulus and a few multiplications. More specifically, as
shown in Table I, CEDA is 1.56x faster than its most
efficient counterpart (SCRA in [13]) and 4.69x faster
than ECDSA, in terms of end-to-end delay.

Eliminate the Pre-computation Components from Signer:
Some applications (e.g. IoT, smart-grids) may require
memory-limited devices to issue signatures. Unlike
some existing alternatives (e.g., [19], [13], [10], [20],
[21], [16]), CEDA does not require any pre-computation
table or tokens to be stored at signer’s side. For instance,
SCRA-C-RSA [13] and ECDSA with pre-computation
[19] require storing a private key of size 2 MB and
10 KB on the signer’s side, respectively. CEDA has a
constant private key of size 416 Byte that is smaller
than traditional RSA signature [6] and a signature size
identical to the traditional RSA (see Table I).

Immediate Verification: Unlike some broadcast authenti-
cation mechanisms (e.g. [17]), CEDA can achieve imme-
diate verification without the need of packet buffering
or time synchronization.

e Limitation: The main limitation of CEDA is its large public
key size (e.g., 393 KB for k = 128-bit security) compared to its

alternatives. However, in many delay-aware applications (e.g.,
aerial drones, vehicular networks, smart-grid), the verifying
devices (e.g., cars, UAVs, command centers) are potentially
more than capable of storing such public keys. Therefore, by
providing the lowest end-to-end cryptographic delay with
small private key sizes, CEDA is expected to offer an ideal
choice for time-critical networks, in which a very high-speed
authentication is a crucial requirement to ensure a safe and
reliable operation.

II. RELATED WORK

In this section, we provide an overview of efficient digital
signature schemes and authentication mechanisms that are
most relevant to our work.

Standard Digital Signatures: Standard signatures (e.g.,
RSA [6], ECDSA [7]) require expensive operations, such as
exponentiation over a large modulus, and elliptic curve scalar
multiplication. Hence, they are not suitable for resource-
limited devices and time-critical applications. Improvement
via special elliptic curves [22] and/or pre-computation tech-
niques [19] are possible. However, such improvements may
not fully meet the demands of highly time-critical applica-
tions (see Section VI for detailed analysis).

Delay-Aware Digital Signatures: Real-time signatures, spe-
cially designed for smart grids and vehicular networks were
proposed in [13], [10]. Such schemes provide fast signature
generation and verification to meet the requirements of time-
critical networks. However, RA [10] relies on a pre-defined
structure of messages, which may not be applicable for many
real-life scenarios. Moreover, both of these signature schemes
require large private key sizes (up to 2MB [13]), that may not
be feasible for many resource-limited signers.

One-time Signatures (OTS) and Their Extensions: Hash-
based signatures achieve post-quantum security [23]. Earlier
one-time hash-based signatures (e.g., HORS [14]) offer fast
signing and verification but have very large signature sizes
(e.g., 2-5 KB). Moreover, a private/public key pair can only
be used once and therefore, must be renewed frequently.
This continuous renewal requires the distribution of new
public keys and may be impractical for real-life applications
where each new public key should be signed by a certificate
authority and verified by the verifier. Different performance
and security trade-offs, such as low storage with very high
computational cost [15] and time valid OTS such as TV-
HORS [9], have been offered based on HORS. Despite their

2018 IEEE Conference on Communications and Network Security (CNS)

benefits, time-valid approaches suffer from performance and
security penalties due to time-synchronization requirements
and low tolerance for packet loss. Moreover, the use of low-
security parameters might not be ideal for some security-
critical delay-aware applications even with potential time
constraints. Multiple-time hash-based signatures (e.g., [24])
rely on Merkle-trees [25] with a signer state [26] to be able
to sign several messages. Recently, stateless signatures (e.g.,
SPHINCS [23]) have been proposed. However, these schemes
have extremely large signatures (up to 41 KB) and expensive
signing algorithms for low-end devices [27].

Online/Offline Signatures: Online/offline signatures (e.g.
[21], [16], [28]) pre-compute a token for each message to
be signed at the offline phase, and then use it to compute
a signature on a message efficiently at the online phase.
However, these schemes can use a private/public key pair
only once, and therefore introduce a linear public key size.
Hence, all such online/offline signatures incur linear storage
with respect to the number of messages to be signed, which
might not be practical for resource-limited devices. Moreover,
the tokens must be renewed continuously as depleted, which
introduces further computational overhead. Therefore, they
may not be practical for real-time networks or IoT devices
as considered in this work.

Delayed Key Disclosure and Amortized Signatures:
Delayed key disclosure methods [17] introduce an asymmetry
between the signer and the verifier via a time factor, and
therefore can achieve highly efficient signing and verification
via only Message Authentication Codes. However, they re-
quire time synchronization among entities, packet buffering,
and introduce potential packet loss risks. Therefore, such
schemes cannot provide immediate verification, which is a
critical requirement for real-time networks. Similarly, achiev-
ing time synchronization for a large distributed system might
be difficult. In signature amortization techniques (e.g., [18]),
the signer generates a signature over a set of messages to
reduce the cost. However, this also requires packet buffering
and introduces potential packet loss risks. Moreover, amor-
tized signatures require all related messages in a single set to
be received until a message could be verified, and therefore
they lack immediate verification.

III. PRELIMINARIES

We first outline the notation in Table II and then describe
our building blocks.

Definition 1. A digital signature scheme is a tuple of three
algorithms SGN = (Kg, Sig, Ver) defined as follows.

- (sk, PK) < SGN.Kg(1"): Given the security parame-
ter k, this algorithm outputs the private/public key pair
(sk, PK).

- 0 < SGN.Sig(m, sk): Given a message to be signed
m and the private key of the signer (sk), this algorithm
outputs the signature o.

TABLE II: Notation followed to describe schemes.

(t, k) HORS parameters (k out of t)
K Security parameter
N RSA modulus
D, q large primes
d RSA large exponent
e RSA small exponent
z CEDA private key
Si Random components generated deterministically by z
Vi CEDA public key
T One-time randomness
c Counter
PRF Pseudo Random Function
PRR T PRF; : {0,1}* — {0,1}"
PRP,T PRF, :{0,1}* — {0,1}"
H Cryptographic hash function
Hy Hy :{0,1}* — {0,1}"1 where [=2 - &
Ho Hs : {0,1}* — {0,1}"2 where lo = k - log, ¢

9 PRF: and PRF» are two different PRF instantiations with the
same domain.

- {0,1} « SGN.Ver(m,o, PK): Given a message-
signature pair to be verified (m, o), and the public key
of the signer (PK), this algorithm outputs a bit that
indicates if the signature is verified (1) or not (0).

Definition 2. Existential Unforgeability under Chosen Mes-
sage Attack (EU-CMA) experiment EmptSEG[I{_CMA is defined
as follows.
- (sk, PK) + SGN.Kg(1")
_ (m*’o*) <_ASGN.Sig(~)(PK)
- If1+ SGN.Ver(m*, o*, PK) and m* was not queried
to SGN.Sig(-), return 1, else, return 0.

The EMU-CMA advantage of A is defined as Advion " =
Pr[BxptEY-OMA =),

Given a one-way function f, HORS signature scheme is
defined in the following definition.

Definition 3. HORS signature scheme consists of three
algorithms HORS = (Kg, Sig, Ver) defined as follow.

- (sk,PK) < HORS.Kg(l,k,t): Given parameters [,k
and ¢, this algorithm generates ¢t random [-bit strings
(s1,82-..,8¢), computes v; = f(s;) for 1 <4 <t and
outputs sk = (s1,82...,5) and PK = (v1,va...,0p).

- 0 < HORS.Sig(m,sk): Given a message m to be
signed, this algorithm computes h = H(m) and splits
h into k substrings (h1,hs,...,hx), each of length
log,t. The substrings are interpreted as integers %;
for 1 < 57 < k and used to generate a signature as
g = (Sil,SiQ,...,Sik).

- {0,1} + HORS.Ver(m,o, PK): Given a message-
signature pair (m, o = (Sz"17 8;2, cey s;k)), this algorithm
computes h = H(m) and splits h into k substrings
(h1, ha, ..., hi). The substrings are interpreted as inte-
gers i for 1 < j < k. Returns 1 if for each j, f(s;) = v,
and returns 0 otherwise.

Definition 4. A trapdoor permutation function family is a
tuple of algorithms m = (Gen,Eval, Invert) as follows.

2018 IEEE Conference on Communications and Network Security (CNS)

- (i,td) + w.Gen(1"): Given the security parameter x,
this algorithm outputs a pair (4, td), where ¢ is the index
of a particular permutation 7; defined over some domain
D;, and td is the trapdoor that allows for the inversion
of m;.

- y < w.Eval(i,x): Given an index i and x € D, this
algorithm outputs an element y € D;. More specifically,
for all ¢ output by Gen, the function Eval(i,-): D; —
D, is a permutation.

-z« m.Invert(td,y): Given a trapdoor td and y, this
algorithm outputs the element = € D;.

The correctness of a trapdoor permutation family requires
that for all &, all (4,¢d) output by Gen, and all z € D;, we
have © «+ Invert(id,y).

Definition 5. An RSA permutation function is defined as a
tuple RSA = (GenRSA,EvalRSA, InvertRSA) as below.

- ((N,e),(N,d)) <« Gengsa(1®): Given the security
parameter &, it chooses two large primes p and ¢ and
forms their product N < p - ¢q. It then computes
@(N) < (p—1)-(g—1), chooses e that is relatively prime
to ¢(IN) and computes d where e-d =1 mod ¢(N). It
outputs (N, e) as the index 4, and (NN, d) as the trapdoor
td. The domain Dy . is Z}.

- y < Evalgrsa((NV,e),x): Given the index (N, e) and a
random element x € Z},, this algorithm computes and
outputs y <— 2 mod N.

- z « Invertgrsa((N,d),y): Given (N,d) and an ele-
ment y, it computes the inversion as z < y¢ mod N.

Definition 6. Inverting the RSA permutation function de-
fined in Definition 5 without having the knowledge of the
trapdoor information ¢d is known to be a hard problem
[29]. Given, a public key (N,e) and z € Z, the advan-
tage of the adversary A is defined as Advgsa = Pr[y «
EValRSA((N, e), (E), T < A(){,N,e) (y)] < €.

e Security and System Model: The standard security notion
that captures our threat model is EU-CMA as in Definition 2

Our system model is based on Public Key Cryptography
broadcast authentication model which includes two types
of entities (i.e., the signer and the verifier). As depicted in
Figure 1, we assume that a key generation server, uploads
the private key to the signer (offline) and responds to the
public key queries by the verifiers in the system.

IV. PROPOSED SCHEME

The idea behind the proposed scheme is to leverage
the multiplicative property of RSA trapdoor permutation
function (Definition 5) to transform one-time HORS [14]
signatures into an (practically) unbounded time signature.
Specifically, our private key consists of ¢ randomly generated
values s; (that can be deterministically generated with a
seed) and the corresponding public key consists of all V; <
(Evalgsa((NV,e),s;))"! mod N where i € {1,...,t}. To
sign a message, we compute y by combining a subset of
k selected one-time signature components (ie., s;’s whose

indexes (i1,...,i;) are obtained from the message hash
output, as in HORS) along with a one-time randomness 7 to
prevent their disclosure. Recall that the release of the private
key components with each signature is the main reason
that HORS is a one-time signature. We then compute R <«
Evalgrsa((N,e),r) and set the CEDA signature as 0 =
(R,7y). Upon receiving the signature, the verifier first multi-
plies the subset of corresponding public keys from PK and
calculates T'. The verifier checks R = Evalgsa((N,e),v)-T,
and returns valid (1) if it holds; otherwise returns invalid (0).
Our scheme consists of the following algorithms.
(sk, PK) < CEDA.Kg(1"%): Given the security parameter &,
this algorithm works as follows:
1) Select HORS parameters (t, k) as in Definition 3 and
run ((N,e), (N,d)) < Gengrsa(17) to set sk’ = (N, d)
and PK’ = (N, e) as in Definition 5.
2) Pick z & {0,1}" and compute s; < PRF;(z||i) for

i=1,...,t
3) Generate the public keys V; + Evalgga(PK’,s;) for
i=1,...,t and set a counter ¢ + 0.

4) Compute the modular inverse of the public keys V; =
Vi_1 mod N fori=1,...,t.

5) Output the public and private key pair (PK =
(Vi,...,Vi),sk = %) and the public parameters
params = (PK' t, k).

o + CEDA.Sig(m, sk): Given a message m € {0,1}* to
be signed, this algorithm works as follows.

1) Generate r < PRF5(z||c) and R < Evalgrsa(PK',7)
and increment the counter ¢ < ¢+ 1.

2) Compute h < Hy(R) and (iy,...,i) < Ha(m||h)
where {ij};‘?:l € [1,¢] and |i;| = log, t.

3) Generate s;, < PRF(z||lij) for j = 1,...,k and
compute 7 = (H§:1 si;) -7 mod N to output the
signature as o = (v, h).

{0,1} +- CEDA.Ver(m,o, PK):
signature pair (m,o = (v,h)) and PK = (V4,...,
algorithm works as follows.

1) Compute (i1, ...,i) < Hay(m||h) where {i;}i_, €
[1,k] and |i;| = log, t.

2) Compute T' <« Hle Vi; mod N and 3 =
EValRSA(PK/,’}/) -I" mod N.

3) If H1(B) = h holds, output 1 and 0 otherwise.

Given a message-

Vi), this

V. SECURITY ANALYSIS

In the random oracle model [30], we prove that CEDA is
EU-CMA in Theorem 1. In our proof, we ignore terms that
are negligible in terms of our security parameters.

Theorem 1. If an adversary A can break the EU-CMA
security of our scheme in time t4 after making gy hash
queries and ¢g signature queries, we can build another
algorithm B that runs A as a subroutine and upon outputting
a successful forgery by A, B can invert the RSA trapdoor
one-way permutation function as in Definition 6 in time ¢g.

Ad,UEU—C’MA

oA (tasqm,qs) < Advrsa(ts, qm,qs)

2018 IEEE Conference on Communications and Network Security (CNS)

(sk, PK) + CEDA.Kg(1") (Once, performed offline)™

Server
s1 < PRFy(z||1) Vi +s.¢ mod N :
, « PRF)(2||2 e
Ezg{o.l}h“ S2 R 1(2(12) V2<—52: mod N (sk = 2 PK = (Vi,...,Vi)) | =
s; < PRF)(z||t) Vi < s;° mod N :
= vt 0
: o < CEDA.Sig(m, sk) i Drone/Signer
'7 « PRFy(2]|c) } (irse i) < Ho(ml|h) } !
"R+ e . Output o = (v, h) !
1 k . r Y5
= . PRF, i) - d N !
bty (R) 7= (Al PRAGI) -7 mo L (m.o)
ooy ooy eyl by eglegfogongegligfiogfigeglegligigiog [Ea——

{0,1} < CEDA.Ver(m,o, PK) '

1

1
1

1
| | Fetch corresp. public keys from PK B=~°-T mod N |
P
! I« [[5, Vi, mod N i

If H,(B) = h, return valid
Base Station

Fig. 1: High-level description of CEDA algorithms.

Proof: Let (N,e) be the output of Gengsa(1®) as defined
in Definition 5 and Y = Evalgsa((N,e),z) be the target
challenge value for the algorithm B on a random input z €
Zy- B takes Y as input and runs as follows.

Algorithm B(Y'):

e Setup: B maintains a list LM, and two tables HL; and
H L, that are all initially empty. LM stores messages M that
are queried to CEDA. Sig oracle by A. HL; and HL, store
the queries (and responses) to hash functions H; and Ho,
respectively. B sets up RO(.) and the simulated public keys
to initialize CEDA . Sig oracle as follows.

- Setup RO(.) Oracle: B implements a function H-Sim to
handle RO(.) queries to random oracles H; and Hs.
That is, the cryptographic hash functions H; and H are
modeled as random oracles via H-Sim as follows.

1) hy + H-Sim(R,HL;): If R € HL; then H-Sim re-
turns the corresponding value hy < HL;(R). Other-
wise, it returns 7y & {0, 1}l1 as the answer, and inserts
(R, hy) into HLy.

2) hy < H—SZm(M”hh'Hﬁg) If (M‘lhl) € HLs
then H-Sim returns the corresponding value hy <
HLo(M]||hy). Otherwise, it returns ho & {0,1}" as
the answer, inserts (M ||hy, he) into HLs.

- Setup CEDA. S1ig Oracle: B selects parameters (¢, k) as in
CEDA. Kg Step 1, and creates the simulated CEDA public
key as follows.

1) B generates index j’ & [1,t] and sets the challenge
public key as Vy - Y.

2) B generates {s; & {0, 13N}, ;25 and {Vi <
EValRSA((JV7 6)781')}5:177;#]'/.

3) B sets z < {0,1}" and counter ¢ < 0.

4) Set sk « {si}i_y zj» PK < (V1,...

parameters params < (t,k, N, e, c).

e Execute (M*,0*) ARO().CEPA.Sigs()(PK): B han-

, Vi) and public

dles A ’s queries as follows:

- Queries of A: A can query RO(.) and CEDA.Sig()
oracles on any message of its choice up to ¢y and gg times,
respectively.

1) Handle RO(.) queries: A ’s queries on H; and H are
handled by H-Sim function as described above.

2) Handle CEDA.S1ig queries: To answer A ’s signature
queries CEDA. Sig() on any message of its choice M,
B inserts M into LM and continues as follows.

i) Pick r € Z% and compute R’ < Evalgsa((N,e),
T).

i) i & (1, =1,k

iii) R« R -[[;_, ;' mod N.

iv) h & {0,1}"* and insert (R,h) in HL;.

v) If (H(M||h)) € HLa, B aborts. We call this event
BADI. Else, it inserts (H (M || h), (i1 ... i) in HLs.

vi) Set 0 = (v, h) where v = r, and return o to A.

- Forgery of A : Finally, A outputs a forgery for PK as
(M*,0*), where o* = (v*, h*). By Definition 2, A wins the
EU-CMA experiment for CEDA if the below conditions
hold.

i) CEDA.Ver(M*,c*, PK) =1

i) M* ¢ LM
o 3’s Attempt to Invert RSA Trapdoor Permutation: If A fails
in the FU-CMA experiment for CEDA, B also fails in invert-

ing the RSA trapdoor permutation function as in Definition
5, and therefore, B aborts and returns O.

Otherwise, if A outputs a successful forgery (M*,c*),
by behaving similar to F4(z), as in [31, Lemma 1], B can
rewind A to get a second forgery (M*,& = (%,h)) where
y* # 4 and h* = h with an overwhelming probability. Given
CEDA forgeries (M*,0* = (y*,h*)) and (M*,5 = (7, h))
on PK where (M*||h*) = (M*||h), based on [31, Lemma 1],
we know that H(M*||h*) # H(M*||h). Then B can attempt

to break RSA trapdoor permutation function if either of the

2018 IEEE Conference on Communications and Network Security (CNS)

following conditions holds.

- If (M*||h* € HLe) and (j' € (if...,i5)) then (j/ ¢
(i1...,ix)), where (i%...,i%) <+ HLy(M*||h*) and
(i1...,1) < HLo(M*|h). We recall this event as GOOD;.

- If (M*||h* € HLe) and (5 ¢ (if...,i5)) then (j/ €
(i1...,ix)), where (i%...,i%) <« HLy(M*||h*) and
(i1 ... ix) « HLy(M*||h). We recall this event as GOODs.
In a case that none of the above conditions holds, BB aborts

and fails to break RSA, otherwise, it works as follows.

- Case 1: If j' € (i ...,i%) and §' & (i1 ...,4x), set

v ITh, s1,/% | P si mod N.

- Case 2: If j' ¢ (i%...,i%) and §' € (iy...
¥ H?:1 S'i;f/’y* H?:Lj‘f‘j/ 83, mod N.

Then, if T = = implies that B has inverted RSA permutation

function without any knowledge of the trapdoor.

2

<

,Ek), set T «—

- Success Probability Analysis: We analyze the events that
are needed for B to successfully invert RSA as follows.

- BAD1: B may abort in the simulation phase when the ad-
versary queries the CEDA. Sig oracle. This event happens
when the randomly drawn (i1,...,4;) already exists in
HLs. This can happen with the probability (ax—1)as/2!.

- ACC: The success probability of A to win the game in
Definition 2 is as in [31, Lemma 1].

- FRK: B3 receives two valid forgeries from A for the target
message.

- BAD2: If A successfully outputs a forgery in each of the
runs, then B will break RSA if (GOOD; V GOOD») happens
for the forged signatures. (GOOD; V GOOD:) can happen
with a non-negligible probability of 2k(t—F)/:2. Note that
given the random behavior of our hash function, we con-
sider the probability ((M*||h* ¢ HLs)V (M*||h ¢ HLs))
to be negligible in the case of the above event.

We bound the success probability of A as defined in [31,

Lemma 1] as ACC > €4 — Pr[BAD1]. The probability that BAD1

occurs can be upper-bounded by (a7 —1)gs /22, and therefore,

ACC > €4 — (qu—1)as/al2,

The probability of B in breaking RSA is given by:

€5 > FRK - BAD2
(ACC? 1)
> —— - _—) -BaD2
qu +qs 2
> (e 2((gm—1gs) 1\ 2k(t—Fk)
IN(¢

qm +qs) 2k t2

202(qy +qs) 2k

Target Collision of Hash Function (H>): Following the
work of [32], the security of our scheme relies on the subset
resiliency of the underlying hash function. We “salt” the
hash of each signature with a one-time randomness so that
A does not know the internal state of the hash function when
they want to compute a collision. Therefore, we reduce the
hardness of our signature scheme from collision resistance to
target-collision resistance. Therefore, considering k subsets in
the hash output, and the number of A’s signature queries
gs, the target collision resiliency of our hash function is

k! . . .
ng . The k! factor comes in place since we should consider

different permutations of the indexes in the hash output
which would potentially result in a collision and forgery.

VI. PERFORMANCE ANALYSIS AND COMPARISON

We first compare the analytical costs of CEDA with its
counterparts and then describe our evaluation metrics along
with the experimental setup. We then present our detailed
experimental results on both commodity hardware and an
ARM processor. Note that we only compare our scheme
with the state-of-the-art digital signatures with a constant-
size key/token storage overhead. Moreover, we also con-
sider optimization techniques such as constant storage pre-
computation [19] and efficient curves [22]. Further note that
in [13], authors proposed three instantiations of SCRA: (i)
SCRA-C-RSA (ii) SCRA-BGLS (iii) SCRA-NTRU. We compare
the cost of CEDA with SCRA-C-RSA since it achieves the
lowest end-to-end delay among these three schemes with a
mid-size table stored at the signer’s side [13].

A. Analytical Performance Comparison

Table IIT shows the analytical comparison of CEDA with
its state-of-the-art counterparts.

Signer Computation and Storage: In CEDA, signature
generation only requires an exponentiation over the small
exponent e and a small-constant number of hash calls, which
have an (almost) negligible overhead (implemented with
highly optimized Blake2 [33]). The small exponent is selected
as e = 65537 to ensure the security, while enabling the
computational efficiency as such an exponentiation can only
be done with 16 squarings and a single multiplication via
square-and-multiply algorithm. Moreover, CEDA has a much
smaller private key size than that of its delay-aware variants
as well as the RSA signature, since the signer does not store
a pre-computed table or the RSA private key d.

RSA and ECDSA require an exponentiation over large
exponent and elliptic curve scalar multiplication(s), respec-
tively, both of which are considered as expensive compu-
tations. BPV-ECDSA eliminates the scalar multiplication in
ECDSA [7] in exchange of some elliptic curve additions [19].
However, it requires storing a pre-computation table at the
signer’s side. Ed25519 scheme [22] uses efficient twisted
Edwards’ curve to perform scalar multiplications. It also has
a very compact private key. SCRA-C-RSA [13] only requires
L multiplications to compute the signature, where L is
suggested to be 32. However, this scheme requires a very
large private key of 2MB, which may not be feasible for some
resource-constrained devices.

Signature Transmission: CEDA has a compact signature
that has the same size with standard RSA signature scheme.
However, elliptic curve based schemes offer more compact
signatures. More specifically, signature length in RSA-based
schemes, including CEDA, require at least |N| 4 |H| bits
where |N| = 3072 bits for k = 128 bit security. On the
other hand elliptic curve based schemes require a signature
size of |¢'| + |H| where |¢'| = 256 bits.

2018 IEEE Conference on Communications and Network Security (CNS)

TABLE III: Analytical performance comparison of CEDA and its counterparts.

Signer Transmission Verifier
Scheme Signature Signature
. + . + . +
Private Key Generation’ Signature Public Key Verification
RSA IN| +|d] Ezpg |N| IN|+ e Ezp.

ECDSA 74 Emul + H + Muly q|+1H q 1.3- Emul + FEadd + H
BPV-ECDSA dT+7T1 v- Eadd+ H + Muly 1+ H q 1.3- Emul + Eadd + H

Ed25519 |q/| Emulass19 + 2H + Mulq/ Jd1+H q 1.3 - Emulassig + Faddass1g + H
SCRA-C-RSA [N|+T2 L - Muln [N+ H[+ & N[+ Je] + & Ezpe+L-H+ L-Muly

[CEDA T T=l+INT] (k+3)-H+ Ezpe [INI+[H] [IN]+]e[+ PK] Expe + k- Muly |

q Ezpe and Expg denote exponentiation over the small exponent e and large exponent d, respectively. Emul and Eadd denote the costs of EC
scalar multiplication over modulus p’, and EC addition over modulus p, respectively. Emul and Eadd are performed in secp256r1, where Emulass19
and Faddass19 are performed on twisted Edwards’ curve. H and Mwul,/ denote a cryptographic hash and a modular multiplication over modulus
q’, respectively. We omit the constant number of negligible operations if there is an expensive operation (e.g., integer additions are omitted if there is
an Emul or Exp.). We use double-point scalar multiplication for verifications of ECC based schemes (1.3 - Emul instead of 2 - Emul [34]).

Suggested parameters for v, L, k are 32 [19], 32 [13], and 26, respectively.

t For k = 128, the parameter sizes are: |N| = 3072 bit, |e| = 17 bit, |d| ~ 3072 bit, and |z| = 128 bit. The size of the pre-computation tables with
the suggested parameters for BPV-ECDSA [19], SCRA-C-RSA [13] and CEDA are 384 KB, 10KB [19] and 2MB [13] for PK, T'1 and T'2, respectively.
For ECC-based schemes, (p’,q’) are ECC parameters where |p’| = |¢’| = 256 bit.

Verifier Computation and Storage: CEDA has an ultra
efficient verification algorithm since it only requires an expo-
nentiation over e and k multiplications, where k is suggested
to be 26. However, CEDA has a relatively large public key
size, that requires storing a table. This table has a size of
t - |N|, where t = 1024 and |N| = 3072 bits. On the other
hand, all elliptic curve based counterparts have a very small
public key of size 32 bytes, but they require a double scalar
multiplication for verification. Double scalar multiplication
can be accelerated with Shamir’s trick [34], however, this
is still a very expensive operation, and to the best of our
knowledge, there are no pre-computation methods to speed-
up this operation. RSA verification is the fastest among all
schemes, since it only requires an exponentiation over e. It
also has a compact public key size of |N| + |e|. SCRA-C-
RSA requires exponentiation over e along with L hash and
multiplication calls, where L is suggested to be 32 [13]. As
for the public key size, it only requires and additional « bits
to be stored, in addition to traditional RSA [6].

Our analytical analysis shows that CEDA only requires
a small-constant number of inexpensive operations at the
signer’s and verifier’s sides, which makes it a suitable alter-
native for delay-aware applications. It has a compact private
key and signature size as compared to that of its delay-aware
signature alternatives. However, it can be seen that elliptic
curve-based counterparts offer more compact private key and
signatures than CEDA, but with the cost of a large end-to-
end delay. The main limitation of CEDA is its relatively large
public key size, which can be readily stored by verifiers for
many real-life applications.

B. Experimental Evaluation

Evaluation Metrics: We implemented CEDA both on an
IoT device (ARM Cortex A53) and commodity hardware. We
also ran our counterparts on both devices to compare the
signature generation and verification times. Moreover, we
discuss the signer’s and verifier’s storage, along with the
transmission requirement of each signature scheme.

Software Libraries and Implementation: We developed
two implementations of CEDA in C, one with MIRACL [35]
and the other with GMP [36]. We observed that GMP imple-
mentation is significantly faster, and therefore we present
our results in GMP. We use Blake2 as our cryptographic
hash function and PRF due to its high efficiency [33]. We
use portable implementation of Blake2 hash, b2 library. We
have open-sourced our implementation of CEDA for wide
adaptation and comparison.

https://github.com/ozgurozmen/CEDA

Aside from the hash functions and RSA parameters, the
security of CEDA relies on the parameters (¢, k). More specif-
ically, CEDA security depends on the number of different k-
out-of-t combinations possible and also the target collision
(2’?—!2) as described in Section V. We selected t 1024
and k = 26 which guarantees 2'72 different combinations
and a target collision probability of 21—171 CEDA can be
instantiated with different ¢ and k parameters to offer a trade-
off between computation and storage. For instance, ¢t = 256,
k 32 also provide a high security level, with smaller
storage but slower computation. Since |N| = 3072 provides
approximately x = 128-bit security, all in all, our current
CEDA implementation offers x = 128-bit security.

We benchmarked the ECDSA implementation in MIRACL
library [35]. We applied BPV pre-computation technique [19]
to ECDSA implementation of MIRACL. For Ed25519, we
used the Supercop implementation [22]. Note that BPV pre-
computation technique cannot be directly incorporated into
Ed25519 scheme, since the randomness is generated deter-
ministically with the message that is being signed. We also
benchmarked RSA [6] with GMP library in C [36]. SCRA-C-
RSA was implemented in MIRACL library in [13], however,
our experiments showed us that MIRACL is significantly
slower than GMP for modular exponentiations and multipli-
cations. Therefore, for the purpose of fairness, we measured
SCRA-C-RSA costs with GMP library. Moreover, we observed
that authors selected the small exponent in RSA as e = 3, that
is not recommended [37]. Therefore, we calculated SCRA-C-

2018 IEEE Conference on Communications and Network Security (CNS)

TABLE IV: Experimental performance comparison of CEDA and its counterparts on commodity hardware.

Signer Transmission Verifier

Scheme Signature Generation | Private Key Signature Signature Verification | Public Key Fi;u}-to-(E n;i
Time (us) (Byte) Size (Byte) Time (us) (Byte) elay (us
RSA 8083.26 768 416 47.74 386 8131.00
ECDSA 725.38 32 64 927.30 32 1652.68
BPV-ECDSA 149.60 10272 64 927.30 32 1076.9
Ed25519 132.61 32 64 335.95 32 468.56
SCRA-C-RSA 88.67 2000000 432 164.85 384 253.52
[CEDA 7] 55.33 [416 i 416 i 115.45 [393600 [170.78 |

RSA costs with e = 65537 (as in CEDA implementation).
Hardware Configurations: We benchmarked our scheme
and its counterparts on an ARM Cortex A53 processor as the
IoT device. ARM Cortex A53 is a low-cost and low energy
consuming (can work with small batteries) device with a
powerful processor [38]. Therefore, it is highly preferred in
IoT applications [39]. We used a laptop equipped with Intel
Core i7 6700HQ 2.6 GHz processor and 12GB RAM as the
commodity hardware.

C. Performance Evaluation

Table I and Table IV depict the experimental results of
CEDA and its counterparts on ARM Cortex A53 and com-
modity hardware, respectively.

IoT Device: Our experiments on ARM Cortex A53 show
that CEDA is the fastest signature scheme among its coun-
terparts. CEDA outperforms all its counterparts in terms of
signature generation and verification speeds (the only excep-
tion is RSA verification, however the signature generation of
RSA is very expensive). More specifically, CEDA has 1.56 %,
1.98x%, and 3.03x lower end-to-end delay as compared to
SCRA-C-RSA, Ed25519, and BPV-ECDSA (as its most efficient
counterparts), respectively. Although CEDA requires a larger
storage requirement at the verifier’s side, due to the larger
public key (~ 393 KB), it is still highly achiveable with the
storage capabilities of IoT devices such as ARM Cortex A53.

Energy consumption hinders the full adoption of crypto-
graphic protocols to IoT systems. Therefore, it is highly useful
to provide an energy-efficient cryptographic protocol for IoT
systems. Note that computational energy consumption can
be calculated with the formula £ =V - I -t, where V is the
voltage processor is taking, I is the current drawn by the pro-
cessor and ¢ is the computation time. Considering most IoT
processors work with constant currents and voltages in active
mode, computation time should be optimized to decrease
the energy consumption. Thus, computational efficiency of
CEDA drastically reduces the energy consumption and we
believe that it is the most suitable signature scheme to be
deployed in energy-critical applications.

Commodity Hardware: The signature generation of
CEDA is 1.60x faster than that of SCRA-C-RSA (the fastest
counterpart), which has a large private key (2MB). We note
that CEDA can generate 18,070 signatures per second, which
can meet the high throughput requirements of various real-
life applications. For instance, as discussed in Section I-B, ve-

hicular networks may require a significantly large throughput
for signature generation [2]. With the hardware configuration
described, CEDA offers a signing speed way above this re-
quirement, which can be suitable for infrastructure-to-vehicle
communication. Therefore, we believe CEDA can potentially
meet the needs of even the most stringent requirements of
high signing throughput applications.

CEDA signature verification is also 1.43x and 2.91x faster
than that of SCRA-C-RSA and Ed25519 (the fastest counter-
parts with reasonable end-to-end delay), respectively. Note
that standard RSA has 2x faster verification than CEDA.
However, its signature generation is 146.17x slower, which
is not suitable for delay-aware applications. The signature
verification time is highly critical for applications that require
a fast response to the commands/messages. We believe that
CEDA is highly suitable for such applications with a very
fast verification and end-to-end delay. Specifically, verification
throughput of CEDA is 8,660 signatures per second. However,
as depicted in Table IV, CEDA requires storing a public
key of size almost 393 KB at the verifier’s side, when
t = 1024. Therefore, if the verifier is storage-limited, different
parameters (e.g. t = 256, k = 32) can be used to instantiate
CEDA with a storage-computation trade-off.

VII. CoNcLUSION

In this paper, towards addressing the authentication
requirements of time-critical applications, we created a
novel delay-aware digital signature scheme that we refer to
as Compact Energy and Delay-aware Authentication (CEDA).
CEDA achieves the lowest end-to-end cryptographic delay
among all of its counterparts by offering the fastest signature
generation along with a highly efficient verification.
Moreover CEDA requires only a small-constant size private
key and signature, which are smaller than its most efficient
delay-aware counterparts. Our experiments on ARM and
Intel processors further confirmed the significant speed
advantages of CEDA over its counterparts with compact
signer storage overhead. On the other hand, CEDA has a
larger public key size than that of its counterparts. Overall,
by offering the lowest end-to-end delay with small private
key and signature sizes, CEDA is an ideal authentication
tool for delay-aware critical systems such as energy delivery
(e.g., smart-grids) and mobile cyber-physical systems (e.g.,
vehicular and aerial drone networks). We open-sourced our
implementation for public testing and adaptation purposes.

2018 IEEE Conference on Communications and Network Security (CNS)

Acknowledgment. The first author (Muslum Ozgur Ozmen)
and second author (Rouzbeh Behnia) contributed equally to
this work. We would like to thank the anonymous reviewers
for their insightful comments and suggestions. This work is
supported by NSF CAREER Award CNS-1652389.

(1]

(2]
(3]

(10]

[11]

(15]

(16]

(17]

(18]

(19]

REFERENCES

M. Luk, A. Perrig, and B. Whillock, “Seven cardinal properties of sensor
network broadcast authentication,” in Proceedings of 4th ACM workshop
on security of ad hoc and sensor networks, ser. SASN ’06. New York,
NY, USA: ACM, 2006, pp. 147-156.

“leee guide for wireless access in vehicular environments (wave) -
architecture,” IEEE Std 1609.0-2013, pp. 1-78, March 2014.

J. Harding, G. Powell, R. Yoon,]. Fikentscher, C. Doyle, D. Sade,
M. Lukuc, J. Simons, and J. Wang, “Vehicle-to-Vehicle Communica-
tions: Readiness of V2V Technology for Application,” U.S. Depart-
ment of Transportation National Highway Traffic Safety Administration
(NHTSA), August 2014.

A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1,
pp- 22-32, Feb 2014.

T. Tesfay and J. Y. L. Boudec, “Experimental comparison of multicast
authentication for wide area monitoring systems,” IEEE Transactions on
Smart Grid, vol. PP, no. 99, 2017.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120-126, 1978.

ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), Amer-
ican Bankers Association, 1999.

“Ieee standard communication delivery time performance requirements
for electric power substation automation,” IEEE Std 1646-2004, pp. 1-24,
2005.

Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid one-time
signature for time-critical multicast data authentication,” in INFOCOM
2009, IEEE, April 2009.

A. A. Yavuz, “An efficient real-time broadcast authentication scheme
for command and control messages,” IEEE Transactions on Information
Forensics and Security, vol. 9, no. 10, pp. 1733-1742, Oct 2014.

S. S. Manvi, M. S. Kakkasageri, and D. G. Adiga, “Message authen-
tication in vehicular ad hoc networks: Ecdsa based approach,” in
Proceedings of the 2009 International Conference on Future Computer
and Communication, ser. ICFCC ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 16-20.

C. Zhang, P.-H. Ho, and J. Tapolcai, “On batch verification with group
testing for vehicular communications,” Wireless Networking, vol. 17,
no. 8, pp. 1851-1865, November 2011.

A. A. Yavuz, A. Mudgerikar, A. Singla, 1. Papapanagiotou, and
E. Bertino, “Real-time digital signatures for time-critical networks,”
IEEE Transactions on Information Forensics and Security, vol. 12, no. 11,
pp. 2627-2639, Nov 2017.

L. Reyzin and N. Reyzin, “Better than biba: Short one-time signatures
with fast signing and verifying,” in Information Security and Privacy:
7th Australasian Conference, ACISP 2002 Melbourne, Australia, July 3-5,
2002 Proceedings, L. Batten and J. Seberry, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 144-153.

Q. Li and G. Cao, “Multicast authentication in the smart grid with one-
time signature,” I[EEE Transactions on Smart Grid, vol. 2, no. 4, pp. 686
-696, December 2011.

S. Even, O. Goldreich, and S. Micali, “Online/offline digital signatures,”
in Proceedings on Advances in Cryptology (CRYPTO °89). Springer-
Verlag, 1989, pp. 263-275.

A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure source
authentication for multicast,” in Proceedings of Network and Distributed
System Security Symposium, February 2001.

A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Multicast authen-
tication in fully adversarial networks,” in IEEE Symposium on Security
and Privacy, May 2004, pp. 241 -253.

V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete log
and factoring based schemes via precomputations,” in Advances in
Cryptology — EUROCRYPT’98: International Conference on the Theory
and Application of Cryptographic Techniques Espoo, Finland, May 31

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

— June 4, 1998 Proceedings.

Heidelberg, 1998, pp. 221-235.
D. Catalano, M. D. Raimondo, D. Fiore, and R. Gennaro, “Off-line/on-
line signatures: Theoretical aspects and experimental results,” ser.
Public Key Cryptography (PKC). Springer-Verlag, 2008, pp. 101-120.
A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’01. London, UK: Springer-
Verlag, 2001, pp. 355-367.

D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77-89, 2012.

D. J. Bernstein, D. Hopwood, A. Hiilsing, T. Lange, R. Niederha-
gen, L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, “SPHINCS: Practical stateless hash-based signatures,” in Ad-
vances in Cryptology — EUROCRYPT 2015: 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer Berlin Heidelberg, April 2015, pp. 368-397.

P. Berman, M. Karpinski, and Y. Nekrich, “Optimal trade-off for merkle
tree traversal,” Theor. Comput. Sci., vol. 372, no. 1, pp. 26-36, Mar. 2007.
R. C. Merkle, “A certified digital signature,” in Proceedings on Advances
in cryptology, ser. CRYPTO ’89. New York, NY, USA: Springer-Verlag,
1989, pp. 218-238.

J. Buchmann, E. Dahmen, and A. Hiilsing, “Xmss - a practical forward
secure signature scheme based on minimal security assumptions,’
in Proceedings of the 4th International Conference on Post-Quantum
Cryptography, ser. PQCrypto’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 117-129.

A. Hiilsing, J. Rijneveld, and P. Schwabe, “Armed SPHINCS - computing
a 41 KB signature in 16 KB of RAM,” in Public-Key Cryptography -
PKC 2016 - 19th IACR International Conference on Practice and Theory
in Public-Key Cryptography, March 2016, pp. 446-470.

D. Naccache, D. M’Raihi, S. Vaudenay, and D. Raphaeli, “Can D.S.A. be
improved? Complexity trade-offs with the digital signature standard,”
in Proceedings of the 13th International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT ’94), 1994, pp.
77-85.

D. Aggarwal and U. Maurer, “Breaking rsa generically is equivalent to
factoring,” IEEE Transactions on Information Theory, vol. 62, no. 11, pp.
6251-6259, Nov 2016.

M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM confer-
ence on Computer and Communications Security (CCS ’93). NY, USA:
ACM, 1993, pp. 62-73.

M. Bellare and G. Neven, “Multi-signatures in the plain public-key
model and a general forking lemma,” in Proceedings of the 13th ACM
Conference on Computer and Communications Security, ser. CCS ’06.
New York, NY, USA: ACM, 2006, pp. 390-399.

L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Proceedings of the 7th Australian
Conference on Information Security and Privacy (ACIPS °02). Springer-
Verlag, 2002, pp. 144-153.

J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3
proposal blake,” Submission to NIST (Round 3), 2010. [Online].
Available: http://131002.net/blake/blake.pdf

D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer, 2004.

Shamus, “Multiprecision integer and rational arithmetic c/c++ li-
brary (MIRACL), http://www.certivox.com/miracl/miracl-download/,
Last Accessed on 09/02/2014.

T. G. et al, “GNU multiple precision arithmetic library 6.1.2 https:
//gmplib.org/.

D. Coppersmith, “Small solutions to polynomial equations, and low
exponent rsa vulnerabilities,” Journal of Cryptology, vol. 10, no. 4,
pp- 233-260, Sep 1997. [Online]. Available: https://doi.org/10.1007/
5001459900030

V. Vujovi¢ and M. Maksimovi¢, “Raspberry pi as a sensor web node
for home automation,” Comput. Electr. Eng., vol. 44, no. C, pp. 153-171,
May 2015.

A. Raza, A. A. Ikram, A. Amin, and A. J. Ikram, “A review of low cost
and power efficient development boards for iot applications,” in 2016
Future Technologies Conference (FIC), Dec 2016, pp. 786—790.

Berlin, Heidelberg: Springer Berlin

