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Abstract In this paper, we show that the total area of two distinct surfaces with
Gaussian curvature equal to 1, which are also conformal to the Euclidean unit
disk with the same conformal factor on the boundary, must be at least 4. In
other words, the areas of these surfaces must cover the whole unit sphere after a
proper rearrangement. We refer to this lower bound of total area as the Sphere
Covering Inequality. The inequality and its generalizations are applied to a
number of open problems related to Moser—Trudinger type inequalities, mean
field equations and Onsager vortices, etc, and yield optimal results. In partic-
ular, we prove a conjecture proposed by Chang and Yang (Acta Math 159(3—
4):215-259, 1987) in the study of Nirenberg problem in conformal geometry.

1 Introduction

A large number of important second order nonlinear elliptic equations involve
exponential nonlinearities. These equations arise, for example, in the study of
Gaussian curvature of surfaces with metrics conformal to Euclidean metric
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([13,15,16,19,20], etc.), Moser—Trudinger type inequalities [1,2,7,23,24,26,
30,38,40,41,45], the mean field theory of statistical mechanics of classical
vortices and thermodynamics [4,6,11,12,14,17,33,36], and self gravitating
cosmic string configurations in the framework of Einstein’s general relativity
[18,42,46]. In this article, we shall prove a basic and important inequality
which becomes a crucial tool for tackling several open problems in the above
mentioned areas.
Let us consider the equation

Av+e?’ =0, yeQ, (1.1)

where Q@ C R? is a C? simply-connected region. It is well-known that for a
solution v € C%(2) of (1.1), the two dimensional Riemannian manifold with
boundary (2, g) with a conformal Euclidean metric dg = ¢*’dy has Gaussian
curvature equal to 1 everywhere. The total area as well as the total curvature
of such manifold is equal to A = fQ e?Vdy. The well-known Gauss—Bonnet
Theorem states that

A=/e2”dy=/dg=2n—/ Kgdl,
Q Q Q2

where «, is the geodesic curvature and d/, is the length parameter of 9€2. From
the equation, it is also easy to see that

ov
A=— | —di,.
ie) or

These formulas, though very useful in general, do not impose any restric-
tion on the area of the surface, as the uniformization theorem says that every
simply-connected Riemann surface is conformally equivalent to one of the
three domains: the open unit disk, the complex plane, or the Riemann sphere.
However, if there is another surface (€2, g) with a distinct conformal metric
dg = ez‘jdy in €, where 7 € C2(Q) is a solution of (1.1) and g = gonoQ,
we shall show

A+ A= / (€ 4 ¢*)dy > 4. (1.2)
Q

Since the standard sphere has Gaussian curvature 1 and area 47, and these
two surfaces have total area bigger than or equal to that of the standard sphere,
one may think that these two surfaces could cover the standard sphere if they
are properly arranged (this will be made more rigorous later in Sect. 2.1). The
equality obviously hold when the two surfaces are isometric to two comple-
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The sphere covering inequality and its applications 1171

menting spherical caps on the standard sphere. We therefore refer to (1.2) as
the Sphere Covering Inequality.
We will prove inequality (1.2) in a more general setting as follows.

Theorem 1.1 (The sphere covering inequality) Let $2 be a simply-connected
subset ofR2 and assume v; € C*(Q),i = 1,2 satisfy

Av; + €Y = fi(y), /Qezw <dg (1.3)

where fo > f1 > 0in Q. If vy > vy, v2 # V] in w and vy = v] on dw for
some piecewise Liptschitz subdomain w C 2, then

/ (€™ + e*V)dy > 4. (1.4)

Moreover, the equality only holds when f» = fi = 0 in w, and (w, e*idy),
i = 1,2 are isometric to two complementary spherical caps on the standard
unit sphere.

For the simplicity of the equation, we may replace 2v by # — In2 and
consider

Au+e"=0, yeQ.

Geometrically, this is equivalent to multiplying the conformal factor by /2
so the sphere in comparison has radius +/2 and total area 8. Indeed Theorem
1.1 is equivalent to Theorem 3.1 in Sect. 3.

The Sphere Covering Inequality is closely related to the symmetry of solu-
tions of elliptic equations with exponential nonlinearity in R?. To see the
connection, consider the equation

Aw+e” = f>0 in R? (1.5)

and let w be a classical solution with a critical point located at P € R2.
Assume that f is smooth and evenly symmetric about a line passing through
P. It follows from the Sphere Covering Inequality that if fRZ e’dy < l6m,
then w must be symmetric about the line. More precisely, suppose P = (p, 0)

and f(y1, y2) = f(y1, —y2) in R?. Define w(y1, y2) = w(y1, —y2), and set
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1172 C. Gui, A. Moradifam

Vi=w — w
Then v satisfies
AV +cv =0,
where
eV —e
c = — >0
w— w

is a smooth function. Suppose v # 0. Classic results imply that the nodal set of
v consists of finitely many immersed smooth curves which have only finitely
many self-intersection points in any compact domain (see, e.g. Theorem 2.5
of [22]). These intersecting points are sometime called nodal points, they are
also the critical points of v. Note that the nodal set of v contains y;-axis and it
follows from the classic results that the nodal curve of v divides a neighborhood
of P into at least four regions (see, e.g. Theorem 2.2 of [22], or [8,31]). It also
follows easily from Hopf’s lemma that v changes sign in B.(P) N {y, > 0}
for any € > 0 since it vanishes on yj-axis. Consequently there exist at least
two simply-connected regions 2, Q2o C R%r suchthat v > 0in Q4,7 < 01in
Q,and v = 0 on 921 U 2. Therefore on each Q;,i = 1, 2, the Eq. (1.5)
has two distinct solutions, w and w, satisfying the assumptions of Theorem
3.1, which is an equivalent form of Theorem 1.1 for (1.5). Thus

/ e’dy > / (ew + ew)dy +/ (ew + eﬁ’)dy > 167,
R2 Q1 Q)

which is a contradiction and leads to the symmetry of w.

The above argument is at the core of the proof of the symmetry results in this
paper, and consists of two main ingredients: the Sphere Covering Inequality
and the nodal set analysis. The idea of using nodal sets to prove symmetry
results for elliptic equations with exponential nonlinearity was used by Lin
and others to obtain symmetry results for mean field equations in R? and on
$2 and flat tori (see, e.g., [6,26,35,37], etc). The key in their arguments is
Proposition 3.2 in Sect. 3, which has a geometrical interpretation in terms
of the extremal first eigenvalue (see Remark 3.4). Note that Proposition 3.2
may be regarded as a special limiting case of the Sphere Covering Inequality,
although the geometric meaning of the Sphere Covering Inequality itself still
remains unclear to us and worth further exploring. In this paper, the Sphere
Covering Inequality will be used to solve several important open problems.
Below we introduce some of the problems.
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The sphere covering inequality and its applications 1173

1.1 Best constant in a Moser-Trudinger type inequality

Let S2 be the unit sphere and for u € H'(S?) define
Jo ) = 5/ \Vudo; +/ udw, — log/ Sdwy, (1.6)
4 S2 S2 S2

where the volume form dw; is normalized so that f ) dwy = 1. The well-
known Moser-Trudinger inequality [38] says that J, is bounded below if and
only if « > 1. Onofri [40] showed that for @ > 1 the best lower bound is equal
to zero. On the other hand, Aubin [2] proved that if J,, is restricted to

M::{ueHl(Sz): fe”xi=0, i=1,2,3}»
S2

then for o > %, J is bounded below and the infimum is attained in M. In

1987 Chang and Yang [15], in their work on prescribing Gaussian curvature
on S? (see also [16]), showed that for « close to 1 the best constant again is
equal to zero, and this led to the following conjecture.

M Cl( )

In 1998, Feldman et al. [25] proved that this conjecture is true for axially
symmetric functions when o > % — €. Later the first author and Wei [30], and
independently Lin [36] proved Conjecture A for radially symmetric function,
but the problem remained open for non-axially symmetric functions.

In [26] Ghoussoub and Lin, showed that Conjecture A holds true for o >
% — €, for some € > 0. See Chapter 19 in [27] for a complete history of the
problem. In this paper, among other results, we will prove that Conjecture A

is true.

Theorem 1.2 For o > %
inf J,(u) =0.
MIEM Ol( )

Indeed we shall apply Theorem 3.1 to show that the corresponding Euler-
Lagrange equation

u

AU+ — —1=0on §? (1.7)
2 fsze“dan B '
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1174 C. Gui, A. Moradifam

has only constant solutions for @ > 1/2 except @ = 1. In the latter case o« = 1,
all solutions of (1.7) are classified and has a family of axially symmetric
solutions with a scaling parameter which blows up when the parameter goes
to infinity and is usually called a standard bubble. See (2.3) for the explicit
formula of this family of solutions after stereographic projection.

1.2 A mean field equation with singularity on S2

Consider the mean field equation

u

e 1 _ 1 >
Agut + A — | =4ra(s(P) — E) on §7,  (1.8)

sz edan 4

where g is the standard metric on S with the corresponding volume form
dwy such that [, dwy =4, & > —1, 4 > 0,and P € S2. The problems is
motivated by the study of vortices in self-dual gauge field theory. It is known
that when A € (0, 87 (1 4+ @_)), where «_ = min{«, 0}, there exists a unique
solution to (1.8) and the solution is axially symmetric; while when A € [87 (14
o_),8m(l1+a4)]and @ # 0, where oy = max{«, 0}, there exists no solution
to (1.8). It is also shown that when A > 8w (2 + @), there exist multiple
solutions (see [44] or [6]).

On the other hand, itis shown in [36] that when A € (87 (14a4), 8w (2+a)),
there exists a unique solution in the class of axially symmetric functions. In
particular, in [6] Bartolucci et al. studied symmetry of solutions of (1.8) under
the assumption

L=4r(3+a) (1.9)

and showed that (1.8) admits a solution if and only if & € (—1, 1). Then, via
a new bubbling phenomenon, they proved that there exists § > 0 such that for
a € (1 — 4, 1) the equation (1.8) admits a unique solution that in addition is
axially symmetric about the direction O P where O is the origin in R3, and
proposed the following

Conjecture B All solutions of (1.8)—(1.9) are axially symmetric about m)’
for every o € (—1, 1).

In Sect. 5, we shall use the Sphere Covering Inequality to provide an affirmative
answer to the above question. Indeed we will prove the following result for
general A.

Theorem 1.3 For every A € (0, 167] and a > —1, any solution of (1.8) must
be axially symmetric.
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The sphere covering inequality and its applications 1175

We note that if « = 0, (1.8) is equivalent to (1.7) with A = 87 /«, and
therefore the above comments on (1.7) apply here. If @« # 0, the axis of

—
symmetry must be O P.
As a consequence, we have

Theorem 1.4 For every a € (—1, 1), there exists a unique solution (upto
a constant) to (1.8)—(1.9). Moreover, the solution must be axially symmetric

—
about O P.

1.3 A mean field equation for the spherical Onsager vortex
Consider the following equation

exp(@u(x) — y(n, x)) — =0on $%, (1.10)

A X Gu() — y(m wden 47

where g is the standard metric on S with corresponding volume form dwy, n
is a unit vector in R, & > 0, and y € R. Since ¥ < 0 can be changed to —y
by replacing the north pole with the south pole, we only need to consider the
case y > 0. This equation is invariant up to adding a constant and we seek a
normalized solution with

/ udwy = 0. (1.11)
S2

In [36], Lin showed that if @ < 87, then for y > 0 the equation (1.10) has
a unique solution that in addition is axially symmetric with respect to n. In
this case the coefficient in the equation is radially decreasing and therefore the
moving plane method applies [see (5.19)]. He also conjectured the following

Conjecture C Let y > 0 and @ < 167. Then every solution u of (1.10) is
axially symmetric with respect to n.

In an attempt to prove this conjecture, in [35], C.S. Lin proved the following
theorems for & > 8.

Theorem A ([35]) Foreveryy > 0, there exists ag = ag(y) > 8w such that,
for 8m < a < g, any solution u of (1.10) is axially symmetric.

Theorem B ([35]) Let u; be a solution of (1.10) with y = 0 and &; — 167.
Suppose lim;_, oo sup u; (x) = +00. Then u; is axially symmetric with respect
to some direction n; in R3 for i large enough.

In Sect. 5, we shall apply the Sphere Covering Theorem to prove the following
result.
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1176 C. Gui, A. Moradifam

Theorem 1.5 Suppose 87 < & < 167 and
a
O0<y<—-—1. (1.12)
8

Then every solution of (1.10) is axially symmetric with respect to n. In partic-
ularif y = 0 and 8n < & < 167, then the trivial solution u = 0 is the only
solution of (1.10) and (1.11).

We note that (1.10) with @ = 8z, y = 0 is equivalent to (1.8) with A =
87, = 0and (1.7) witha = 1.

In all problems above and many others, there exists a critical number 8r for
aquantity which may be interpreted as total area. In (1.6), the quantity is 47 /cr,
with « being a parameter; In (1.8), the quantity is A; while in (1.10), the quantity
is &. The work of Brezis and Merle [10] and Li [34] as well as others showed that
8mwm,m € N are values where solutions of these type of equations may lose
compactness and blow-up phenomena may happen. The critical level 8 also
separates two significantly different cases in terms of the coerciveness of the
associated functionals and the positivity of the linearized operators. A crucial
tool is required to deal with the supercritical cases of many important problems
in related research. The Sphere Covering Inequality provides exactly such a
much needed tool. Besides the applications in this paper, other applications of
the Sphere Covering Inequality will also be discussed in forthcoming papers
[28,29].

The paper is organized as follows. In Sect. 2, we shall discuss some pre-
liminary results about the classical Bol’s inequality and prove a counterpart of
Bol’s inequality for radially symmetric functions which is needed for the proof
of the Sphere Covering Inequality. In Sect. 3, we will prove the Sphere Cov-
ering Inequality. In Sect. 4, the Sphere Covering Inequality shall be applied to
(1.6) to show the best constant. Finally, we will present a general symmetry
result regarding Gaussian curvature equations on R? which leads to optimal
results for (1.8), (1.10) and others.

2 Bol’s isoperimetric inequality

Bol’s isoperimetric inequality plays a crucial role in the proof of our main
results. In this section we present some preliminary results on Bol’s inequality
that will be used in subsequent sections. First we recall the classical Bol’s
isoperimetric inequality [3,9,43]:

@ Springer



The sphere covering inequality and its applications 1177

Proposition 2.1 Let Q@ C R? be a simply-connected domain and assume u €
Cci(Q) satisfies

Au—+é* >0 and f et < 8. 2.1
Q

Then for every @ € Q with a piecewise C' boundary (which may not be
necessariely bounded), the following inequality holds

</awe;>2 23 (/w "’u) (8” - /we) - 22)

We first show an example for which the equality in Bol’s inequality holds.
For A > 0, let us define U, by

A2y)?

Up:=—2In (1 + ) +2In(V). (2.3)

Then
AU; + e =0,

and

for all r > 0, where B, denotes the ball of radius r centered at the origin in
R2. One can check that

(L) =3 (L) e o)

for all » > 0 and A > 0. Indeed, ¢Y*")dy corresponds to the metric in a
standard sphere with radius \/5

By examining the proof of Bol’s inequality (see, e.g., [43]), it can be seen
that if the equality holds for some w in (2.2), then Au + ¢* = 0 in w, and
"Ddz = V@ dg, where z = g~ (&) for some analytic function g : @ —
Bpr,and A > 0. More precisely, let us consider the case when w = Q is simply-
connected, and follow the arguments in [43] by considering the harmonic
lifting & of boundary value of u in €, i.e.,

Ah=01in Q; h=u on 9%2.
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1178 C. Gui, A. Moradifam

It is known that (see [39]) there is an analytic function £ = g(z) such that e/ =
|g/(z)|2. The equality in (2.2) implies that g(2) = Bg and g(0<2) = g(dBR)
for some R > 0. Furthermore, letting

g(®) = (' ©) 1/ (g1 ()2,

we have ¢"(2)dz = q(&)d& and g (&) is radially symmetric. Therefore g (§) =
eY®) for some A > 0. In general, if  is not simply-connected , Bartolucci
and Lin showed in [5] that strict inequality holds in (2.2). So the equality may
hold only for simply-connected w. Note that if €2 is not simply-connected,
Proposition 2.1 is not valid in general. Indeed, (2.2) does not hold for certain
annular regions as shown in [5].

For the proof of our main results, we shall need the following counterpart
of the Bol’s inequality for radial functions. The proof is a modification of an
argument by Suzuki [43] and we present it here for the sake of completeness.

Proposition 2.2 Let By be the ball of radius R in R*> v € C%!(Bg) be a
strictly decreasing, radial, Lipschitz function satisfying

/ [Vr|ds 5/ e'pdy ae.r € (0,R), and / eV < 8. 2.4)
0B, B, Bg

Then the following inequality holds

(/E)BR evz/)z 3 (/BR ew) (8” - /BR e‘p) - 2.5)

Moreover iffaB, |Vir|ds #£ fBr ewdy in (0, R), then the inequality in (2.5) is
strict.

Proof Let B:=v(R) and define

k(t) = f eVdy, and pu(r) = / dy,
{U>t} {U>rt}

for t > B. Then

¥
—k'(t) = /{1// }|;—W| = —e'u/(t), for a.e. t> B.
=t
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The sphere covering inequality and its applications 1179

Hence
KOK (1) = f vy / ! 2.6)
-~ Jw=n) =t} IVV¥I '
2 2
) ()
(U=t} (=t}
=4ne’/ dy =4me' u(t), fora.e. t > p.
{¥>1}

Therefore

d [ t 1 2 :| t 1 /
“etn@) — k@) + —k2(t) | =e' @) + —K (k) <0, fora.e. t > B.
dt 8 4

Integrating on (B, co) we get

t 5 > B 1 5

[e p(t) — k(1) + 3 k (t)} =— <e w(B) —k(B) + —k (ﬁ)) <0.
T ) 8

Q2.7

Now notice that
k(B) = f eVdy
Br

and

1 2 1 v 2
) =eﬂ/ dy = Lof (f ds) _ L (/ e2ds) .
Br 4 9Bg 4 \ JoBg

Thus (2.5) follows from the inequality (2.7). Finally if fa B, |Virlds

/, B, eV € (0, R), then the inequality (2.6) will be strict in a set with a pos-
itive measure in {t > B}, and consequently (2.7) and (2.5) will also be strict.
0

2.1 Rearrangement with respect to two measures

Let @ C R? be a simply-connected domain and A > 0, and suppose that
u € C3(Q) satisfies

Au+ée" >0, /Qe“dy < 8m. (2.8)
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1180 C. Gui, A. Moradifam

Let ¢ € C%(Q) be constant on 9. Then ¢ can be equimeasurably rearranged
with respect to the measures e¢“dy and eU*dy (see [3,37,43]), where U, is
defined in (2.3). More precisely, for ¢ > miny cg ¢ define

Q={¢p >t} C 2,

and define Q" to be the ball centered at the origin in R? such that

/ eU*dy=/ e'dy:=a(t).
QF Q

Then a(r) is a right-continuous function, and ¢* : Q* — R defined by
@*(y):=supft € R : y € Q7} provides an equimeasurable rearrangement of
¢ with respect to the measure e“dy and eV*dy, i.e.

/ eYrdy :/ e"dy, VYt > ming, (2.9)
{¢p*>1} {p>t} yeQ

where Q* a ball of radius R < oo and centered at the origin with f o eUrd y =
fQ e"dy. Note that ¢*(y) is a radial function and we will identify ¢*(y) with
¢*(]y]). We shall need the following lemma.

Proposition 2.3 Assume thatu € C 2(Q) satisfies (2.8) and ¢ € C L(Q) satis-
fies ¢ = c for some constant ¢ on IQ2. If Q is unbounded, we further assume
that limy_, oo ¢(y) = c and ¢ > c in Q. Let ¢*(r) be the equimeasurable
rearrangement of ¢ with respect to the measure e*dy and eY*dy. Then ¢* is
Lipschitz continuous on (€, R — €), for every € > 0, where R is the radius of
Q*,

Proof First note that the function ¢* is decreasing and the set

T:={t > min¢ : (¢*)_1(t) is not a singleton}
Q

has Lebesgue measure zero. Indeed (d)"‘)_1 (1) is a connected closed interval
forallt € 7.Let0 <r; <r < R and

a(t) = / eU*dy :/ e'dy, VYt > ming.
{p*>t} {p>1} yeQ
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For ¢*(r1), ¢*(r2) ¢ T, we have

(" (1)) — a(é* (1)) = / Vi dy / Uidy
{p*(lyD)>¢*(r2)} {p*(lyD)>¢*(r1)}

=/ e”dy—/ e'dy
{p(»)>¢*(r2)} {¢()>¢*(ri)}

e'dy

»/{‘¢*(r2)<¢>(y)§¢* (r}

eVrdy.

K¢*(fz)<¢*(|yl)s¢*(r1)}

Let M:=max eV*O) it follows from the above equality that
Q*

a(@*(r2)) —a(@*(r1)) < Min({¢*(r2) < ¢*(Iy) < ¢*(r1)})
= Miu(r) < |yl <r) = Mz(rs —r})
<2mRM(ry — ry).

On the other hand, we note thatthe set {y € Q : ¢*(r2) < ¢(y)}is bounded.
Let

m(ry) = inf{e"™ 1y € Q, $*(r) < p(M)},
Ma(ra) =sup{I[Vo ()| :y € Q, ¢*(r2) < d()}.

Then
a(@*(r2)) —a(@*(r1)) = mr)pn({P*(r2) < ¢(y) < ¢*(r)})
> () Voldy
M>(r2) Jig*(ra) <o ()< (1))
. m(ra) ‘W”)/ dsdt
T Ma(r2) Jpriry) Jiet )
m@ra) oo
> AT (@7 (r1) — @~ (r2))K (r1,12),
where
K(ry, 1) = min HY(d 1) >0, 0<r <r<R.

{p*(r))<t=¢*(rn)}
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1182 C. Gui, A. Moradifam

Hence we have

0< ¢*(r2) — @*(r1) _ 27 RMM>(r2)

< < (2.10)
=T m(r2)K(ry,r2)

In general, for 0 < € < r{ < ry < R — €, we can approximate r{, ry by
points r1, rp such that ¢*(r1), ¢*(r2) ¢ 7. Then the above estimate also holds
for r{, ry. Thus ¢* is Lipschitz continuous on (¢, R — €) for every € > 0. O

Now let

i :=/ IVo>dy, j*(t) :=/ Vo™’ dy, Vi>ming; (2.11)
(¢>1) {¢*>1)

yeQ

1) :=/ Voldy, T :=/ Vo*ldy, Vi>ming.  (2.12)
{p>1} {p*>1}

yeQ

It is easy to see that both j(¢) and J(¢) are absolutely continuous and non-
increasing for t > miny cg ¢- It also follows that j*(¢), J*(¢) are absolutely
continuous and non-increasing for ¢ > miny cg - Indeed, all four functions

are right-continuous by definition. Furthermore, since ¢ belongs to C'(£2) and
¢* is Lipschitz as in Proposition 2.3, observing that {y € Q : ¢(y) = t} is
bounded for {¢r > miny cg ¢}, we have

0<J(t—0)—J() =/ |Vpldy =0, ¢ > ming,
¢=1) yeQ

0<J*@t—-0)—J*@) =/ IV¢p*|dy =0, t > ming,

{p* =1} yeQ
0<j(t—0)—j@ =/ Vol2dy =0, ¢ > ming
{p=1} yeQ

and

0§j*(t—0)—j*(t)=/ IV¢*|2dy:0, { > min ¢.
{p*=t} yeQ

Then all four functions are absolutely continuous and non-increasing.
It can also be shown that

/ |V¢|dsz/ |Vo*|ds, fora.e. t>ming.  (2.13)
(¢=1) {¢*=1) e

Indeed, since ¢ = c on 02, for every t # ¢ with ¢t > miny cg ¢ the level set
{¢ = t} encloses a bounded subset ©2; of 2. Hence it follows from Cauchy—
Schwarz and Bol’s inequalities that
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=/ |[V¢p*|ds, fora.e. t > ming.
{p*=1} yeQ

Therefore we have the following proposition.

Proposition 2.4 Assume that u, ¢ satisfy the conditions in Proposition 2.3.
Let Uy, be given by (2.3). Define the equimeasurable symmetric rearrangement
@* of ¢, with respect to the measures e"dy and eV*dy, by (2.9). Then ¢* is
Lipschitz continuous on (¢, R — €) for every € > 0, and j*(t), J*(t) are
absolutely continuous and non-increasing int > min, _g ¢, where j*(t) and
J*(t) are defined as in (2.11) and (2.12), respectively. Moreover, (2.13) holds.

3 The sphere covering inequality

The main objective of this section is to prove the following theorem.

Theorem 3.1 Let 2 be a simply-connected subset of R? which may not nec-
essariely be bounded, and assume w; € C 2(9), i =1, 2 satisfy

Aw; + €% = fi(y), /gzewidy < 8w (3.1)

where f > f1 = 0in Q. If wy > wy,wy &£ wy in w and wy = w; on
dw, limyey 00 w2(y) — wi(y) = 0 for some piecewise Liptschitz subdomain
w C , then
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1184 C. Gui, A. Moradifam

/(ewl +e")dy > 8x. (3.2)

Moreover, the equality only holds when f> = f1 = 0 and there is an analytic
function & = g(y) such that g(w) = By and g(dw) = dBj, and ew‘()’)dy =
U@ gg emady = Y2 S de for some 1y > A1 > 0.

Remark 3.2 The domain w is not required to be simply connected. Neither
Q nor w is required to be bounded. Also note that if f| = f>, the condition
wy > wi, wy # wi in the theorem can just be replaced by wy # wj, since
there must be a piecewise Liptschitz subdomain w; of w such that wr, > wy in
w1 and wy = wj on dw after switching the indices. If wy — w; changes sign
in €2, the inequality has indeed a lower bound of 167r. Note that when o = €2,
the integral condition in (3.1) is not needed.

Before proving the above theorem, let us first show that Theorem 3.1 holds
when wy, wy are both radial. Choose A» > A; and let Uy, U,, be given by
(2.3). Suppose Uy, = U,, on dBg for some R > 0. Then

Al A2

2R 22 R2
1+ IT 1+ 28

=K.

Hence A1, A, are positive real roots of the quadratic equation

8
R*\> +8=—A.
K
This implies k¥ < 2/R?,
A+ A d rar 8 (3.3)
= —, an = —. .
1 2= R 142= 13

Direct computations yield

A2R? A3R?
/ (eU‘l + eUh) dy =8m ! 75, + 2 3
Bg 8+)»1R2 8+k2R2

AR A3R? Kk R?
=87\ Ty | =87 T(M+'\2)

K K

= 8.
Thus we have the following
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Proposition 3.1 Let A, > Ay, and U, and U,, be radial solutions of the
equation

Au+e" =0, (3.4)

defined in (2.3) with U,, > Uy, in Bg, and Uy, = Uy, on 0B, for some
R > 0. Then

(eUKl + eUAZ)dy = 8.
Bg

To understand the above equality geometrically, we may scale the conformal

factor by 1/2 and consider two surfaces S1 and S, with constant Gaussian
curvature 1 as follows

Si = (Bg, e*"1dy) and S = (Bg, ¢*V2dy).

where 2V, = U, — In2. Notice that the metrics g; = eV dy have the same
conformal factor on d Bg and hence (3.3) holds and

1 1 k(A + A2)
— )= "= 1. 3.5
“ (M - )»2) A2 )

Next we explain that areas of S; and Sy are equal to the areas of two
complementary spherical caps on the unit sphere, and consequently the total
area must be

A1+A2=/ eZVAldy—i-/ e?Vady = 47
Bpr Bgr

By scaling in y € R? and using the stereographic projection IT: §? — R?
with respect to the north pole N = (0, 0, 1):

X1 X
y =I(x):= , ,
1—x3 1—x3

we can see that the surface S| = (Bg, e?Vrd V) is isometric to

4
(Barryvs €' d¥) = By s Ty ™)
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which in turn is isometric to a disc C; around the south pole. Similarly the
surface S, = (Bp, 2V dy) is isometric to

4
(Branyvs-23) = By Gy )

which in turn is isometric to a disc C, around the south pole.
Using the Kelvin transformation z = y/| y|2 and (3.3), one can see that

4 . . 2 4
(BAZR/ﬁ’ mdy) is isometric to (R \BAIR/Jg’ mdz)

with the latter being isometric to 52 \ C1. This implies that &7 and &, are
indeed isometric to two complementary spherical caps on the unit sphere, and
therefore their areas sum to exactly 4.

Note that the area of the smaller cap C; can be arbitrarily close to 0 or 2.
It is therefore important that the two surfaces S, S» are not the same, which
is geometrically the reason why w1, wy should be distinct.

The following lemma will play a key role in the proof of Theorem 3.1.

Lemma 3.3 Assume that v € C%'(BR) is a strictly decreasing, radial, Lip-
schitz function, and satisfies

/ |V1p|ds§f eVdy (3.6)
3B, B,

ae.r € (0,R) and v = U,, = U,, for some Ay > A1 on dBg, and R > 0.

Then
either / e‘l'dyS/ eU"ldy or / el/’dyzf eUAZdy. (3.7)
Bg Bg Bg Bg

Moreover if the inequality in (3.6) is strict in a set with positive measure in
(0, R), then the inequalities in (3.7) are also strict.

Proof Let m1:=fBR eVndy, mziszR eY2dy, and m::fBR eVdy. Also
define

2 U, 2 U, 2
Bi= (f egds> = (/ e21ds) = (/ e22ds> .
IBR 3BR 3BR

It follows from Proposition 2.2 that
1
B = Em(Sn —m).
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On the other hand,

1 1
B = §m1(87f —my) = Emz(Sﬂ —my).

Hence m| and m» are roots of the quadratic equation
x2—8nx+2ﬂ=0.
Since m satisfies
m2—87tm+2/3 >0,
we have
either m <mjy or m > my.

Equality holds only when the equality in (3.6) holds for a.e. ¥ € (0, R). This
completes the proof. O

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 Suppose w; and wy satisfy the assumptions of Theorem
3.1. Then

Awy —wy) +e”? —e" = fr— f1 = 0.

Without loss of generality we may assume fQ e"ldy < 4m. We can choose
A2 > Aj such that Uy, and U,, are as described in Proposition 3.1, and

/ eVdy = / eVnidy. (3.8)
Q B

LetQ, ={y € Q: wa(y)—wi(y) > t}and ¢ be the symmetrization of wy —
w1 with respect to the measures ¢*'dy and eY*1dy. Then using Proposition
2.4, Green’s formula, equation (3.1) and Cavalieri’s principle we have

/ [Volds < / V(w2 — wy)|ds [by the inequality (2.13)]
{p=t} {wy—wi=t}

2/ ewzwlewldy—/ e"ldy
Q Q2

< / (ew2 — ewl)dy [using Green’s formula and Eq. (3.1)]
Q;
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/ e?eVridy —/ eUidy
{p>1} {p>1}

(using the rearrangement and Cavalieri’s principle)
/ eVntedy — / |VU,,|ds, for a.e.t>0.
{p>1} {o=t}
(3.9

Hence

/ IV(U,, +¢)lds < / eUn*9dy for a.er>0. (3.10)
{p=t} {o>1}

Since ¢ > 0 is decreasing in r, ¥:=U,, + ¢ is a strictly decreasing radial
function, and

/ |Vir|ds 5/ e'/’dy, ae. r€(0,1), 3.11)
3B, X

by Proposition 2.4 and the above inequality we know that i belongs to
co! (By). It follows from Lemma 3.3 that

/ e'/’dy=/ eUMJ”/’dyZ/ eVady.
By B B

Hence

/ (e 4+ e")dy = / (eU‘l + eUAIJ"/’) dy > / (eU‘l + eUAZ) dy = 8.
Q By B

1

Moreover, if the equality holds, then

/ [V(wy — wy)|ds = / (e —e")dy fora.e.t >0,
{wry—wi=t} 2

and hence th(fz — f1)dy = Ofora.e.t > 0. Thus f> = f1. On the other hand
it follows from the computations in (2.14) that the equality in (3.9) fora.e.r > 0
leads to the equality in Bol’s inequality for w; in €2; for a.e. ¢ > 0. Therefore
f1 = 0 and, by the argument right before Proposition 2.2 in Sect. 2, there is
an analytic function & = g(y) such that g(2) = B; and g(d2) = 9B and
1My = Y1) gg . Furthermore, we have also ¥ = Uy, + ¢ = Uy (§)
since it is the only other radial solution of (3.4) with the same boundary
condition as Uy, on d By. This proof is complete. O
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The following consequence of Bol’s inequality and the equimeasurable sym-
metric rearrangement was first proved in [3] and was used frequently in the
study of related equations (see also Lemma 3.1 in [26], or Proposition 3.3 in
[37] for a proof).

Proposition 3.2 Ler Q2 C R? be a simply-connected domain and assume that
w e CX(Q) satisfies

Aw+e”>0in Q (3.12)

and fQ e < 8m. Consider an open set v C 2 and define the first eigenvalue
of the operator A + % in HO1 (w) by

Mo (@)= inf (f |V¢|2—/¢2ew>,
{peHy (@):19],2,, =1} \Jo a)

and suppose Ay (@) < 0. Then f »€" = 4w, and the inequality is strict if the
inequality in (3.12) is strict at some point in .

We would like to point out that the Sphere Covering Inequality is more
general than Proposition 3.2 and can deal with the case when w; and w»
are different, while Proposition 3.2 may be regarded as a limiting case when
w] = wy = w. To be more precise, when w; = w», the other conditions on
wy, wi in the Sphere Covering Inequality become the eigenvalue condition
M w(w) < 0 1in the following sense: suppose that there exist two sequences
of solutions wf, w4 of (3.1) with ff, £¥ in Q,k = 1,2,... with wf —
w in Cz(a)), fl.k — fin Co(a)),i = 1,2 as k — oo and the conditions of
Theorem 3.1 hold for each k. Then, the standard elliptic theory leads to

wk — wk
@:= lim z 2 T ! >0
k=00 [Jwy — w1 (w)

and ¢ is the first eigenfunciton of the linearized operator A 4" in H(} (w) with
A w(w) = 0. Hence w satisfies the condition in Proposition 3.2. The Sphere
Covering Inequality applied to wll‘ w’zC , after taking limit k — oo, gives

. k k
e¥ +e% = lim e”l 4+ e"2 > 8,
® k—o0 J,,

which leads to the same lower bound fw e” > 4w asin Proposition 3.2. This is
why Proposition 3.2 may be regarded as a limiting case of the Sphere Covering
Inequality.
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Remark 3.4 1t can be seen from its proof that Proposition 3.2 has a geometrical
interpretation as follows: Given a simply connected region w on a surface with
a conformal metric dg = e"dx and Gaussian curvature less than 1/2, if the
first eigenvalue of Laplacian in w with zero Dirichlet boundary condition

2
JoIVoP _ |

e% —

M(w):= inf
(e @).020) [, ®°

then the area of w must be bigger than or equal to 47, which is the area of a
standard upper hemisphere S, 5 with radius +/2 and Gaussian curvature 1/2

(see Proposition 2 in [43]). Note that such a hemisphere has the first eigenvalue
equal to 1 as the height function ¢; = x3 is the first eigenfunction due to the
fact that —Ag ﬁqﬁl = ¢1. In other words, Proposition 3.2 is an immediate
consequence of the extremal eigenvalue theorem which says that a geodesic
disc on the sphere achieves the smallest first eigenvalue of Laplacian among
all surfaces with the same area and the same Gaussian curvature upper bound.
It would be very interesting to see whether there is an intrinsic geometric
explanation of Theorem 3.1.

4 Best constant in a Moser-Trudinger type inequality

Let us consider the functional J, (#) defined in (1.6) and restricted to the set
M:= {u e H'($%) : / e'x; =0 for j=1,2, 3} :
S2

In this section we shall prove that inf,caq Jo,(#) = 0 for o > % Critical
points of J, (#), up to an additive constant such that f 2 e'dwy = 1, satisfy

%Au +e*—1=0 on S 4.1

Throughout this section we shall assume that the volume form is normalized
so that |, g2 e'dw) = 1. In particular, the Lagrange multipliers vanish due to
Kazdan—Warner identity [32] (see [16,26] for more details). Following [26],
let IT be the stereographic projection S — R? with respect to the north pole

N = (0,0, 1):
IM:= all , 2 .
1 —x3 1—x3
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Suppose u is a solution of (4.1), and let
i(y):=u(I~'(y)) for y e R%.

Then u satisfies

i+——— (" —1)=0 in R>. 4.2
a(l + |y|2)2( ) “2)
Now if we let
_ 2 ) 8
v:u—aln(1—|—|y|)+ln %) 4.3)
then v satisfies
Av+ (1 + y)2EDe? =0 in R2, 4.4)
and
22(1-1) v 87
1+ |y e Veldy = —. 4.5)
R? o

4.1 Uniqueness of axially symmetric solutions

For convenience of the reader, we first use a new method to prove Conjecture A
for axially symmetric functions, which was originally proven in [30,36].

Lemma 4.1 Let ¢ > é and u € M be a solution of (4.1). If u is axially
symmetric, then u = 0.

Proof We may assume that u is symmetric about the x3-axis, i.e. u = g(x3),
x3 € [—1, 1]. Since sz e“x3dw = 0, g could not be monotone in x3 unless
it is identically equal to a constant C. Therefore, if u # C, then it must
have either a local minimum or local maximum at some point xg e (—1,1).
Without loss of generality we can assume xg > (. Now choose some point
p=(l0,x8) e S?withx) < xl < landletu,(x) = u(R™1(x)) for
some R € SO (3) with R(p) = (0,0, 1). Define u, = up(l'l_l) and let

_ 2 > 8
v,,:up—aln(1+|y|)—|—ln .

o
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the v, satisfies (4.4) and (4.5). Now let

) vy vy

Cp\YV)=n27— V15

P Y1 dy2

Note that the set of critical points of u,, contains a closed simple curve C C
R? which contains the origin in its interior. On the other hand v p is evenly
symmetric about the y;-axis, therefore

CUly=(1.0):yeR*) Cg, 0.

Hence <p;1 (0) divides R? into at least four simply-connected regions ;, i =

1,2,3,4. Now let w,:=In((1 + |y[2)2@Dev). Then w,, satisfies

8(L—1)

. 2
W>OIHR.

Aw, +e'r =

On the other hand ¢, satisfies
A, +e“Pp, =0 in R?.

Note thatif ¢, = 0 in an open subset of R?, then ¢ p» =0in R?. Thus it follows
from Proposition 3.2 that

4
8
= =/ (I+ |y|2)2($_1)€””dy = Z/ e"rdy > 4 x 4 = 167.
o R2 P Q

This implies o < %, which is a contradiction. Therefore ¢, = 0 and con-

sequently u is also axially symmetric about the line passing through p and
the origin. Since p # (0, 0, 1), u must be identically equal to a constant, and
therefore must be zero. O

Next we prove that if u is evenly symmetric about a plane passing through
the origin, then u is axially symmetric. Note that this result was remarked by
Ghoussoub and Lin [26], we provide the details here since it is needed in the
proof of the main result.

Lemma 4.2 Let o > % and u be a solution of (4.1). If u is evenly symmetric
about a plane passing through the origin, then u is axially symmetric.

Proof The proof is similar to the proof of Lemma 4.1. We may assume that
u is evenly symmetric about xjx3-plane. Let ug be the restriction of u to
{x € §2: x, = 0} and assume that p € $? is a maximum point of ug. Since u
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is symmetric about the x1x3-plane, p is also a critical point of u on S%. Without
loss of generality we may assume p = (0, 0, —1). We claim that

v v
o1, 2) =y»— —y1— =0,

CAY dy2
where v is defined by (4.3). Suppose ¢ 0. Since v has a critical point at the
origin, the nodal line of ¢ is piecewise smooth and divides a neighborhood
of the origin into at least four regions (see Theorem 2.5 of [22], or [8,31]).
On the other hand ¢ is anti-symmetric (odd) with respect to the y;-axis and
the nodal line of ¢ contains the y;-axis. Therefore the nodal line of ¢ divides
R? into at least 4 simply-connected regions 2;,i = 1,2, 3, 4. As before, we
can show that ¢ = 0 and consequently « is axially symmetric about the line
passing through p and the origin. O

4.2 The general case

We shall prove the even symmetry of a solution to (4.1).

Theorem 4.3 Let o > % and assume u to be a solution of (4.1). Then u is

evenly symmetric about any plane passing through the origin and a critical
point of u. Therefore u must be axially symmetric and consequently u = 0.

Proof Without loss of generality we may assume that (1,0, 0) is a criti-
cal point of u, and that u is not symmetric about the xjxz-plane. To finish
the proof, it is enough to prove that u# is symmetric about the x|x;-plane.
Define u™(x1, x2, x3):=u(x1, x2, —x3) and u(x) = u(x) — u™(x). Notice that
u(xy, xp,0) =0, for all (x, x2,0) € S2. Then 7 satisfies

%Az} +e(x)i=0, on S, (4.6)
where
el — eu*
c(x)=—.
u—u*

Since (1,0, 0) is a critical point of u, it follows from Hopf’s lemma that i
must change signin ST:={x € $2 : x3 > 0}. Indeed, classic results imply that
the nodal set of & consists of finite many immmersed smooth curves which
have only finite many self-intersecting points which are critical points of .
Moreovr, # behaves like a harmonic polynomial near critical points, and its
nodal set locally looks like straight lines with equal angles near critical points.
(See, e.g. Theorem 2.5 of [22], or [8,31].) Recall that iz = 0 on 3.S™. Therefore
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the nodal lines of i divides ST into at least two simply-connected regions and
there exists ST, S* C S such that u = u* on 3(ST U S™),

u>u* on Si and u < u* on ST.

Define S, S” to be the reflections of SI, ST with respect to the xxo—plane.
Then we also have u = u* on 3(S, U S7),

u<u*on S, and u>u* on S_.

Let 1, Q2, Q23, Q24 C R? be the images of S_, S, st Si C S? under the
stereographic projection, respectively. Define vy, v, as follows

_ 2 5 8
vi(y) =u(l™(y)) — —In(1 +[y[") +In| =
o o
and
* -1 2 2 8
va(y) =u (IT""(y)) — aln(1+|y| )+ 1In -
Then v and v, both satisfy (4.4) and w; defined by

1 .
wiz=In((1 + |y[*)2 @ De")

satisfies
8- T

Awi—i—ewl:“—zzzOmR,l:l,Z
(I+1y9)

Moreover w; = wp on 9$2;, i = 1,2, 3, 4. Applying the Sphere Covering
Inequality (Theorem 3.1) in 2;,i = 1, 2, 3, 4, we obtain that

8
2x = [ PRy 4 [ PR Venay
o R2 R2
4
> Z/ (e +e")dy > 4 x 8.
. Q;
i=1 !

Hence o < %, which is a contradiction. Thus u is evenly symmetric about the
x1x2-plane and the proof is complete. O
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5 Radial symmetry of solutions in R?

In this section, we shall consider solutions to a general class of equations in
R? and prove radial symmetry of the solutions. Assume u# € C?(R?) satisfies

Au+ k(|y]e* =0 in R?, (5.1

and
1 u
T k(lyDe'dy = B < oo, (5.2)
T JR2

where K (y) = k(]y]) € C 2(R?) is a non constant positive function satisfying

(K1)  Alnk(y]) >0, yeR?
(K2)  k(yh <CA+[y)", yeR?

for some constant C, m > 0. It is easy to see that (K1) implies that both k(r)

/
and r,]f(g) are nondecreasing. Let

k()
2]l = lim .
r—oo k(r)

From (K2) we know that 0 < 2/ < m and hence for any € > 0 there exists a
positive constant C, > 0 such that

Ccl+ 1y <k(y) < +1y», yeR

Without loss of generality we may assume that m = 2/. Then it follows from
Theorem 1.1 in [21] that

B> 2l +2.

Following [26] and using Pohazaev’s identity, we can obtain the following
result.

Proposition 5.1 Suppose u is a solution to (5.1)—(5.2), where K is not a con-
stant and (K 1)—(K2) hold with m = 2l. Then, if B > 2l + 2, there holds

4 < B <4l+4. (5.3)
Proof By Theorem 1.1 in [21], we have

u(y) =—pIn(ly) +C+ O0(y|™") (5.4)
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for some constants C and y > Qasy — o0,if f > 2[+2. Alsoif 8 = 2]+ 2,
then for any € > 0 there exists R(¢) > 0 such that

—BIn(ly)) = C = u(y) = (e = B)In(ly]), [yl = R(e)

for some constant C. On the other hand, it is easy to see that when 8 > 2/ 42,
we have

Vi = (-8 +0(1))|y%, as y — 00,

Multiplying (5.1) by y - Vu and integrating by parts on Bg = {y : |y| < R},
we obtain

Jypo - V) Bds — L 10 (v -»)IVulPds = — [, k(yDy - Ve'dy
= [, k(YD + K (AyDIyDetdy — [y (v - k(yeds.

Letting R — oo and using (5.4), we obtain that
fRz(Zk(lyl) + K (yDIyl)e"dy = 7B

Hence we derive (5.3) from

2k(lyD) < 2k(IyD + K (yDIyl < QL+ 2k(lyD, y e R?,

and the fact that equality holds everywhere in any of the above inequalities

only when / = 0 and k equals to a constant. Note that by our assump-
tions, k(|y|) = |y|* is not allowed for I > 0 since k(0) = 0. The proof is
complete. O

Remark 5.1 Inall applications considered in this paper, itholds that 8 > 2[+2.
We wonder whether 8 > 2/ + 2 is always true for all solutions to (5.1)—(5.2)
under the general conditions (K 1)—(K?2).

It is shown in [36] that

Proposition 5.2 If 0 < [ < 1, there exists a radially symmetric solution ug
to (5.1)ifand only if B € (4, 4l +4). The radial solution is also unique in this
case. If | > 1, there exists a unique radially symmetric solution ug to (5.1) for
B € (41,41 4+ 4). In the latter case, there exists (l) € (4, 4l) such that there
is no radial solution for B < B(l) but there are at least two radial solutions

Sfor B € (B(1),4]).

Now we are ready to prove the following general theorem.
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Theorem 5.2 Assume that K(y) = k(|y|) > 0 is not constant and satisfies
(K1)—(K?2), and u is a solution to (5.1)-(5.2) with2l +2 < B < 8. Then u
must be radially symmetric.

Proof 1t follows from (5.4) that limy| o u(y) = —o0, and hence u has a
maximum point p € RZ. We first prove that u is evenly symmetric about
the line passing through the origin and p. In particular if p = (0, 0), then
the following argument guarantees that u is evenly symmetric about any line
passing through the origin and hence u# must be radially symmetric. Without
loss of generality we may assume that p lies on y;-axis. Define

v(y1, y2) = u(y1, y2) — u(yr, —y2). (5.5)

Suppose v %= 0. Then the nodal line of v, v~ 1(0), contains the yi-axis. On
the other hand since the critical point p lies on y;-axis, the nodal line of v
divides every small neighborhood of p into at least four regions. Therefore
the nodal line of v divides R? into at least four simply-connected regions 2;,
i =1, 2,3, 4. Now notice that on each 2; the equation

Au+k(lyDe" =0 y e ;

has two solutions u;] (y1, y2) = u(y1, y2) and u7 (y1, y2) = u(y1, —y2) with
ull lag = M,-zlasz,-- Define w:=u + In(k(|y|)). Then w satisfies

Aw + ¢” = A(n(k(|y]))) > 0. (5.6)

Thus on each €2;, the above equation has two solutions wl.l,

wizlag, i =1,2,3, 4. Hence it follows from Theorem 3.1 that

wl2 with wl.1 loe, =

axp=2 [ kybe'dy = [ kiybe oy + [ ey
R2 R2 R2
4
> Z/ (e +e")dy > 4 x 87 = 327.
i=1 75

Consequently 8 > 8, which is a contradiction, and therefore u is evenly
symmetric about the y;-axis.

Next we shall prove that u is indeed axially symmetric. Let ¢ = yp - uy, —
V1 - Uy,. Then ¢ satisfies

Ap+ K(y)e'p =0, yeR. (5.7)
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On the other hand, u, satisfies

k/(lyl)eu 2

Auy, + K(y)e'uy, = —y ol , yeR (5.8)

Note that both uy, and ¢ are odd function in y;. Let us multiply Eq. (5.7) by
uy, and Eq. (5.8) by ¢ and subtract. Then, integrating the resulting equation
in B; ={y:y»>0,|y|] < R}, we obtain

du A K'(|y])
d) 2 _ u —> ds = —/ 2 eu¢dy
/aB; < v o 5t 1yl

Applying standard Schauder estimates for the elliptic equation satisfied by
u + B 1In(|y|) and using the fact that 8 > 2/ 4+ 2, we obtain

C C
|Vu<y>|5], |v2u<y>|sW, Iyl > 1

for some constant C. Letting R — 00, we derive

k/
/ . (|y|)e”¢dy _o.
R2, |yl

We claim that ¢ = 0 in R%. Assume the contrary.

Since k(r) is not constant, by (K1) we have two cases: either k'(r) > 0
for r > 0 or there exists rg > 0 such that k() = k(0) for r € [0, rg] and
k'(r) > 0 forr > rg. In the first case, since y» %e” > 0in ]R2+, there exist
at least two regions 21, 2, C ]R2+ such that ¢ > 0in 2 and ¢ < 0in £2;
and ¢ = Oon 09;,i = 1, 2. Applying Proposition 3.2 to ;,i = 1, 2, we
conclude that

/ k(lyDe"dy 2/ €wdy+/ e’dy > 8,
R2+ Qi Q)

and therefore 8 > 8. This contradiction shows ¢ = 0 in R?, and hence u(y)
is radially symmetric.
In the second case, we have

k/
/ ¥ (|y|)e”¢dy _o.
R2, MBS, Lyl
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c
ro’

in R2. If ¢ does not change sign in Bfo, then¢ = 0in Bfo. Choose ki (r) = e”3
and define

If ¢ changes signs in B¢ , we can argue as above that ¢ must be identically 0

T'(r) = A(Ink(r) — Ink(r)),

Letw =u +Ink(r) —Ink;(r). Then

Aw(y) +ki(Jy])e” = T(|y]) in R?. (5.9)
and
Awy, (y) + ki (Jy)e* w,, =|yy—2|(r/<|y|>— 1(yDe”) in R*. (5.10)

where, for sufficiently large s,
, d
I(ly]) = —9s + d—[A(ln k(r))1 <0, Vre[0,rol.
r
We note that ¢ satisfies

Ap +ki(y)ePp =0, yeR. (5.11)

Multiply Eq. (5.11) by wy, and Eq. (5.9) by ¢ and subtract. Then, integrating

the resulting equation in B;g ={y:y»>0,|y| <ro}, we obtain

Jw ¢ 2
0=f ¢—2 — wy,—)ds =/ —=(I'(Iyl) — ky(|yDe™)pdy
BB;(L)( v y2 8v) B;B |y|( 1 )

where
T'(IlyD) — K (IyDe™ < 0.
This implies that ¢ must change sign at least once in Ri N By, if it is not

identically 0. The same arguments as in the first case lead to a contradiction.
Therefore, we have ¢ = 0 in R?, and hence u(y) is radially symmetric. O

Now we consider several special cases of (5.1)—(5.2). First, if K(y) =
(1 + |y|?)! for some I > 0, then (5.1)—(5.2) read as

Av+ (1+ |y’ =0 in R, (5.12)
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and
1 280 v
o Rz(l +[y[)e"dy = B. (5.13)

The following result is conjectured in [26].

Conjecture D For 0 </ < 2 and 8 = (2 + 4), solutions to (5.12)—(5.13)
must be radially symmetric.

For —2 < [ < 0, the radial symmetry of solutions to (5.12)—(5.13) was
shown in [17,19] by the moving plane method; while for / > 0 the moving
plane method does not seem to work, the conjecture was shown in [26] for
0 < I < 1by using the Alexandrov-Bol inequality. For2 < [ # (k—1)(k+2),
where k > 2isaninteger, itis pointed out by Lin in [36] that there is a non-radial
solution to (5.12)—(5.13) . A direct application of Theorem 5.2 to (5.12)—(5.13)
leads to an affirmative answer to Conjecture D. Indeed, all solutions to (5.12)—
(5.13) must be radially symmetric as long as 8 < 8.

Another example is the following equation from the study of self- gravitating
strings for a massive W-boson model coupled to Einstein theory in account of
gravitational effects ( [42,46]).

Av+ (1+|y/*He’ =0 in R?, (5.14)

and

1 20\ v _
- (1 + [y[*)edy = B, (5.15)
T JR2

where [ > 0. It is shown in [42] that (5.14)—(5.15) admit a radial solution if
and only if

B € (4max{l,1},4(l + 1))

and the corresponding radial solution is unique. Furthermore, for 0 </ < 1,
the interval above is also optimal for the solvability of (5.14)—(5.15) among
non-radial functions. The main known difference between (5.14) and (5.12)
is that the latter possesses radial solutions for a larger range of 8 which is
at least (21 + 2, 4l + 4), and has multiple radial solutions when / > 2 and
B € (B, 4l) for some B; € (21 + 2, 2] + 4), which also implies the existence
of non-radial solutions for (5.12) for [ > 2 (see [23,36]). While the former has
aradial solution only for 8 € (4 max{1, [}, 4 + 1)), which is also unique. In
particular, no non-radial solution is known in this case.
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Theorem 5.2 implies that solutions to (5.14)—(5.15) must be radially sym-
metric when 8 < 8. As a consequence, the solvability range of § among
non-radial functions must be 8 > 4 max{1, [} when[ < 2.

Now we are ready to consider (1.8).

Proof of Theorem 1.3. Let u be a solution of (1.8) and @ # 0. Without loss
of generality we may assume P = (0,0, 1). Now let IT : > — R? be the
stereographic projection with north pole at P = (0, 0, 1). Similar to (2.10) in
[6], we define

v(y) = u(l'I_ly) —1In (/ e”dw2> + In(4)) — (i - O_l) In(1 + |y|2),
S2 4
(5.16)

where y = I1(x). Then u is a solution of (1.8) if and only if v satisfies

Av+ (14 |y =92 = 0 in R?
Jea (14 [yP)ie =¥ 2evdy = i,

Due to the uniqueness result for A € (0, 87 (1 + «—)) and nonexistence result
for & € [87(1 + a—), 8w (1 + a4 )], we only need to consider the case when
A > 87 (1 4+ a4). Since ﬁ —a — 2 > 01in this case, it follows from Theorem
5.2 that v is radially symmetric about the origin. Hence u is axially symmetric

with respect to OP and the proof is complete. O
We note that Theorem 1.4 follows immediately from Theorem 1.3.

Proof of Theorem 1.5. Without loss of generality we may assume that n =
(0,0, 1). Let IT : 2 — R? be the stereographic projection with north pole at
n = (0,0, 1). Define

v(y) = u(I~1(y)) for y e R*.

Then v satisfies

PPyexp@—yy(»)) A0

_ =0 for y € R?,
Jr2 P exp@v — yy(y)dy — 4n

Av +

(5.17)

where

Jo) = —2
TR e
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Now define
- 1 )
w(y):=a v(y)—4—1n(1+|y|) —c,
TT

with

) _
c=y+1In (:/ J2(y)e°“’)”//) .
o JRr2

Aw(y) + K(»)e” =0 in R?, (5.18)

Then we have

and
/ K(y)e"dy = &,
R2
where
_ 2 (=2+&) yi
K(y) =381 +1yl%) e”’), (5.19)
Now we compute

A2+  8y(yP-1
A+ P2 A+ P2

A(n K (y)) =

Since the right hand side of the above equation is nonnegative for 0 < y <

gz — L, it follows from Theorem 5.2 that w is radially symmetric about the

origin. O
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