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Abstract In this paper, we show that the total area of two distinct surfaceswith
Gaussian curvature equal to 1, which are also conformal to the Euclidean unit
disk with the same conformal factor on the boundary, must be at least 4π . In
other words, the areas of these surfacesmust cover thewhole unit sphere after a
proper rearrangement. We refer to this lower bound of total area as the Sphere
Covering Inequality. The inequality and its generalizations are applied to a
number of open problems related to Moser–Trudinger type inequalities, mean
field equations and Onsager vortices, etc, and yield optimal results. In partic-
ular, we prove a conjecture proposed by Chang and Yang (Acta Math 159(3–
4):215–259, 1987) in the study of Nirenberg problem in conformal geometry.

1 Introduction

A large number of important second order nonlinear elliptic equations involve
exponential nonlinearities. These equations arise, for example, in the study of
Gaussian curvature of surfaces with metrics conformal to Euclidean metric
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1170 C. Gui, A. Moradifam

([13,15,16,19,20], etc.), Moser–Trudinger type inequalities [1,2,7,23,24,26,
30,38,40,41,45], the mean field theory of statistical mechanics of classical
vortices and thermodynamics [4,6,11,12,14,17,33,36], and self gravitating
cosmic string configurations in the framework of Einstein’s general relativity
[18,42,46]. In this article, we shall prove a basic and important inequality
which becomes a crucial tool for tackling several open problems in the above
mentioned areas.

Let us consider the equation

�v + e2v = 0, y ∈ �, (1.1)

where � ⊂ R
2 is a C2 simply-connected region. It is well-known that for a

solution v ∈ C2(�̄) of (1.1), the two dimensional Riemannian manifold with
boundary (�, g)with a conformal Euclideanmetric dg = e2vdy has Gaussian
curvature equal to 1 everywhere. The total area as well as the total curvature
of such manifold is equal to A = ∫

�
e2vdy. The well-known Gauss–Bonnet

Theorem states that

A =
∫

�

e2vdy =
∫

�

dg = 2π −
∫

∂�

κgdlg

where κg is the geodesic curvature and dlg is the length parameter of ∂�. From
the equation, it is also easy to see that

A = −
∫

∂�

∂v

∂r
dlg.

These formulas, though very useful in general, do not impose any restric-
tion on the area of the surface, as the uniformization theorem says that every
simply-connected Riemann surface is conformally equivalent to one of the
three domains: the open unit disk, the complex plane, or the Riemann sphere.
However, if there is another surface (�, g̃) with a distinct conformal metric
dg̃ = e2ṽdy in �, where ṽ ∈ C2(�̄) is a solution of (1.1) and g̃ = g on ∂�,
we shall show

Ã + A =
∫

�

(e2ṽ + e2v)dy ≥ 4π. (1.2)

Since the standard sphere has Gaussian curvature 1 and area 4π , and these
two surfaces have total area bigger than or equal to that of the standard sphere,
one may think that these two surfaces could cover the standard sphere if they
are properly arranged (this will be made more rigorous later in Sect. 2.1). The
equality obviously hold when the two surfaces are isometric to two comple-
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The sphere covering inequality and its applications 1171

menting spherical caps on the standard sphere. We therefore refer to (1.2) as
the Sphere Covering Inequality.

We will prove inequality (1.2) in a more general setting as follows.

Theorem 1.1 (The sphere covering inequality) Let � be a simply-connected
subset of R2 and assume vi ∈ C2(�), i = 1, 2 satisfy

�vi + e2vi = fi (y),

∫

�

e2vi ≤ 4π (1.3)

where f2 ≥ f1 ≥ 0 in �. If v2 ≥ v1, v2 �≡ v1 in ω and v2 = v1 on ∂ω for
some piecewise Liptschitz subdomain ω ⊂ �, then

∫

ω

(e2v1 + e2v2)dy ≥ 4π. (1.4)

Moreover, the equality only holds when f2 ≡ f1 ≡ 0 in ω, and (ω, e2vi dy),
i = 1, 2 are isometric to two complementary spherical caps on the standard
unit sphere.

For the simplicity of the equation, we may replace 2v by u − ln 2 and
consider

�u + eu = 0, y ∈ �.

Geometrically, this is equivalent to multiplying the conformal factor by
√
2

so the sphere in comparison has radius
√
2 and total area 8π . Indeed Theorem

1.1 is equivalent to Theorem 3.1 in Sect. 3.
The Sphere Covering Inequality is closely related to the symmetry of solu-

tions of elliptic equations with exponential nonlinearity in R
2. To see the

connection, consider the equation

�w + ew = f ≥ 0 in R
2, (1.5)

and let w be a classical solution with a critical point located at P ∈ R
2.

Assume that f is smooth and evenly symmetric about a line passing through
P . It follows from the Sphere Covering Inequality that if

∫
R2 ewdy < 16π ,

thenw must be symmetric about the line. More precisely, suppose P = (p, 0)
and f (y1, y2) = f (y1, −y2) in R2. Define w̄(y1, y2) = w(y1, −y2), and set
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1172 C. Gui, A. Moradifam

ṽ:=w − w̄.

Then ṽ satisfies

�ṽ + cṽ = 0,

where

c = ew − ew̄

w − w̄
≥ 0

is a smooth function. Suppose ṽ �≡ 0. Classic results imply that the nodal set of
ṽ consists of finitely many immersed smooth curves which have only finitely
many self-intersection points in any compact domain (see, e.g. Theorem 2.5
of [22]). These intersecting points are sometime called nodal points, they are
also the critical points of ṽ. Note that the nodal set of ṽ contains y1-axis and it
follows from the classic results that the nodal curve of ṽ divides a neighborhood
of P into at least four regions (see, e.g. Theorem 2.2 of [22], or [8,31]). It also
follows easily from Hopf’s lemma that ṽ changes sign in Bε(P) ∩ {y2 > 0}
for any ε > 0 since it vanishes on y1-axis. Consequently there exist at least
two simply-connected regions �1, �2 ⊂ R

2+ such that ṽ > 0 in �1, ṽ < 0 in
�2, and ṽ = 0 on ∂�1 ∪ ∂�2. Therefore on each �i , i = 1, 2, the Eq. (1.5)
has two distinct solutions, w and w̄, satisfying the assumptions of Theorem
3.1, which is an equivalent form of Theorem 1.1 for (1.5). Thus

∫

R2
ewdy ≥

∫

�1

(
ew + ew̄

)
dy +

∫

�2

(
ew + ew̄

)
dy ≥ 16π,

which is a contradiction and leads to the symmetry of w.
The above argument is at the core of the proof of the symmetry results in this

paper, and consists of two main ingredients: the Sphere Covering Inequality
and the nodal set analysis. The idea of using nodal sets to prove symmetry
results for elliptic equations with exponential nonlinearity was used by Lin
and others to obtain symmetry results for mean field equations in R

2 and on
S2 and flat tori (see, e.g., [6,26,35,37], etc). The key in their arguments is
Proposition 3.2 in Sect. 3, which has a geometrical interpretation in terms
of the extremal first eigenvalue (see Remark 3.4). Note that Proposition 3.2
may be regarded as a special limiting case of the Sphere Covering Inequality,
although the geometric meaning of the Sphere Covering Inequality itself still
remains unclear to us and worth further exploring. In this paper, the Sphere
Covering Inequality will be used to solve several important open problems.
Below we introduce some of the problems.
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The sphere covering inequality and its applications 1173

1.1 Best constant in a Moser–Trudinger type inequality

Let S2 be the unit sphere and for u ∈ H1(S2) define

Jα(u) = α

4

∫

S2
|∇u|2dω1 +

∫

S2
udω1 − log

∫

S2
eudω1, (1.6)

where the volume form dω1 is normalized so that
∫

S2 dω1 = 1. The well-
known Moser–Trudinger inequality [38] says that Jα is bounded below if and
only if α ≥ 1. Onofri [40] showed that for α ≥ 1 the best lower bound is equal
to zero. On the other hand, Aubin [2] proved that if Jα is restricted to

M:=
{

u ∈ H1(S2) :
∫

S2
eu xi = 0, i = 1, 2, 3

}

,

then for α ≥ 1
2 , Jα is bounded below and the infimum is attained in M. In

1987 Chang and Yang [15], in their work on prescribing Gaussian curvature
on S2 (see also [16]), showed that for α close to 1 the best constant again is
equal to zero, and this led to the following conjecture.

Conjecture A For α ≥ 1
2

inf
u∈M Jα(u) = 0.

In 1998, Feldman et al. [25] proved that this conjecture is true for axially
symmetric functions when α > 16

25 −ε. Later the first author andWei [30], and
independently Lin [36] proved Conjecture A for radially symmetric function,
but the problem remained open for non-axially symmetric functions.

In [26] Ghoussoub and Lin, showed that Conjecture A holds true for α ≥
2
3 − ε, for some ε > 0. See Chapter 19 in [27] for a complete history of the
problem. In this paper, among other results, we will prove that Conjecture A
is true.

Theorem 1.2 For α ≥ 1
2

inf
u∈M Jα(u) = 0.

Indeed we shall apply Theorem 3.1 to show that the corresponding Euler-
Lagrange equation

α

2
�u + eu

∫
S2 eudω1

− 1 = 0 on S2 (1.7)
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1174 C. Gui, A. Moradifam

has only constant solutions for α ≥ 1/2 except α = 1. In the latter case α = 1,
all solutions of (1.7) are classified and has a family of axially symmetric
solutions with a scaling parameter which blows up when the parameter goes
to infinity and is usually called a standard bubble. See (2.3) for the explicit
formula of this family of solutions after stereographic projection.

1.2 A mean field equation with singularity on S2

Consider the mean field equation

�gu + λ

(
eu

∫
S2 eudω2

− 1

4π

)

= 4πᾱ
(
δ(P) − 1

4π

)
on S2, (1.8)

where g is the standard metric on S2 with the corresponding volume form
dω2 such that

∫
S2 dω2 = 4π , ᾱ > −1, λ > 0, and P ∈ S2. The problems is

motivated by the study of vortices in self-dual gauge field theory. It is known
that when λ ∈ (0, 8π(1 + α−)), where α− = min{ᾱ, 0}, there exists a unique
solution to (1.8) and the solution is axially symmetric; whilewhenλ ∈ [8π(1+
α−), 8π(1+α+)] and ᾱ �= 0, where α+ = max{ᾱ, 0}, there exists no solution
to (1.8). It is also shown that when λ > 8π(2 + ᾱ), there exist multiple
solutions (see [44] or [6]).

On the other hand, it is shown in [36] thatwhenλ ∈ (8π(1+α+), 8π(2+ᾱ)),
there exists a unique solution in the class of axially symmetric functions. In
particular, in [6] Bartolucci et al. studied symmetry of solutions of (1.8) under
the assumption

λ = 4π(3 + ᾱ) (1.9)

and showed that (1.8) admits a solution if and only if ᾱ ∈ (−1, 1). Then, via
a new bubbling phenomenon, they proved that there exists δ > 0 such that for
ᾱ ∈ (1 − δ, 1) the equation (1.8) admits a unique solution that in addition is
axially symmetric about the direction

−→
O P where O is the origin in R

3, and
proposed the following

Conjecture B All solutions of (1.8)–(1.9) are axially symmetric about
−→
O P

for every ᾱ ∈ (−1, 1).

In Sect. 5,we shall use the SphereCovering Inequality to provide an affirmative
answer to the above question. Indeed we will prove the following result for
general λ.

Theorem 1.3 For every λ ∈ (0, 16π ] and ᾱ > −1, any solution of (1.8) must
be axially symmetric.
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The sphere covering inequality and its applications 1175

We note that if ᾱ = 0, (1.8) is equivalent to (1.7) with λ = 8π/α, and
therefore the above comments on (1.7) apply here. If ᾱ �= 0, the axis of
symmetry must be

−→
O P .

As a consequence, we have

Theorem 1.4 For every ᾱ ∈ (−1, 1), there exists a unique solution (upto
a constant) to (1.8)–(1.9). Moreover, the solution must be axially symmetric
about

−→
O P.

1.3 A mean field equation for the spherical Onsager vortex

Consider the following equation

�gu(x) + exp(α̃u(x) − γ 〈n, x〉)
∫

S2 exp(α̃u(x) − γ 〈n, x〉)dω2
− 1

4π
= 0 on S2, (1.10)

where g is the standard metric on S2 with corresponding volume form dω2, n
is a unit vector in R3, α̃ ≥ 0, and γ ∈ R. Since γ < 0 can be changed to −γ

by replacing the north pole with the south pole, we only need to consider the
case γ ≥ 0. This equation is invariant up to adding a constant and we seek a
normalized solution with

∫

S2
udω2 = 0. (1.11)

In [36], Lin showed that if α̃ < 8π , then for γ ≥ 0 the equation (1.10) has
a unique solution that in addition is axially symmetric with respect to n. In
this case the coefficient in the equation is radially decreasing and therefore the
moving plane method applies [see (5.19)]. He also conjectured the following

Conjecture C Let γ > 0 and α̃ ≤ 16π . Then every solution u of (1.10) is
axially symmetric with respect to n.

In an attempt to prove this conjecture, in [35], C.S. Lin proved the following
theorems for α̃ > 8π .

Theorem A ([35]) For every γ > 0, there exists α0 = α0(γ ) > 8π such that,
for 8π < α̃ ≤ α0, any solution u of (1.10) is axially symmetric.

Theorem B ([35]) Let ui be a solution of (1.10) with γ = 0 and α̃i → 16π .
Suppose limi→∞ sup ui (x) = +∞. Then ui is axially symmetric with respect
to some direction ni in R3 for i large enough.

In Sect. 5, we shall apply the Sphere Covering Theorem to prove the following
result.
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1176 C. Gui, A. Moradifam

Theorem 1.5 Suppose 8π < α̃ ≤ 16π and

0 ≤ γ ≤ α̃

8π
− 1. (1.12)

Then every solution of (1.10) is axially symmetric with respect to n. In partic-
ular if γ = 0 and 8π < α̃ ≤ 16π , then the trivial solution u ≡ 0 is the only
solution of (1.10) and (1.11).

We note that (1.10) with α̃ = 8π, γ = 0 is equivalent to (1.8) with λ =
8π, ᾱ = 0 and (1.7) with α = 1.

In all problems above and many others, there exists a critical number 8π for
a quantity whichmay be interpreted as total area. In (1.6), the quantity is 4π/α,
withα being a parameter; In (1.8), the quantity isλ; while in (1.10), the quantity
is α̃. TheworkofBrezis andMerle [10] andLi [34] aswell as others showed that
8πm, m ∈ N are values where solutions of these type of equations may lose
compactness and blow-up phenomena may happen. The critical level 8π also
separates two significantly different cases in terms of the coerciveness of the
associated functionals and the positivity of the linearized operators. A crucial
tool is required to deal with the supercritical cases ofmany important problems
in related research. The Sphere Covering Inequality provides exactly such a
much needed tool. Besides the applications in this paper, other applications of
the Sphere Covering Inequality will also be discussed in forthcoming papers
[28,29].

The paper is organized as follows. In Sect. 2, we shall discuss some pre-
liminary results about the classical Bol’s inequality and prove a counterpart of
Bol’s inequality for radially symmetric functions which is needed for the proof
of the Sphere Covering Inequality. In Sect. 3, we will prove the Sphere Cov-
ering Inequality. In Sect. 4, the Sphere Covering Inequality shall be applied to
(1.6) to show the best constant. Finally, we will present a general symmetry
result regarding Gaussian curvature equations on R

2 which leads to optimal
results for (1.8), (1.10) and others.

2 Bol’s isoperimetric inequality

Bol’s isoperimetric inequality plays a crucial role in the proof of our main
results. In this section we present some preliminary results on Bol’s inequality
that will be used in subsequent sections. First we recall the classical Bol’s
isoperimetric inequality [3,9,43]:
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The sphere covering inequality and its applications 1177

Proposition 2.1 Let � ⊂ R
2 be a simply-connected domain and assume u ∈

C2(�) satisfies

�u + eu ≥ 0 and
∫

�

eu ≤ 8π. (2.1)

Then for every ω � � with a piecewise C1 boundary (which may not be
necessariely bounded), the following inequality holds

(∫

∂ω

e
u
2

)2

≥ 1

2

(∫

ω

eu
) (

8π −
∫

ω

eu
)

. (2.2)

We first show an example for which the equality in Bol’s inequality holds.
For λ > 0, let us define Uλ by

Uλ:= − 2 ln

(

1 + λ2|y|2
8

)

+ 2 ln(λ). (2.3)

Then

�Uλ + eUλ = 0,

and

∫

Br

eUλdy = 8πλ2r2

8 + λ2r2
,

for all r > 0, where Br denotes the ball of radius r centered at the origin in
R
2. One can check that

(∫

∂ Br

e
Uλ
2

)2

= 1

2

(∫

Br

eUλ

)(

8π −
∫

Br

eUλ

)

,

for all r > 0 and λ > 0. Indeed, eUλ(y)dy corresponds to the metric in a
standard sphere with radius

√
2.

By examining the proof of Bol’s inequality (see, e.g., [43]), it can be seen
that if the equality holds for some ω in (2.2), then �u + eu = 0 in ω, and
eu(z)dz = eUλ(ξ)dξ , where z = g−1(ξ) for some analytic function g : ω →
BR , and λ > 0.More precisely, let us consider the case whenω = � is simply-
connected, and follow the arguments in [43] by considering the harmonic
lifting h of boundary value of u in �, i.e.,

�h = 0 in �; h = u on ∂�.
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1178 C. Gui, A. Moradifam

It is known that (see [39]) there is an analytic function ξ = g(z) such that eh =
|g′(z)|2. The equality in (2.2) implies that g(�) = BR and g(∂�) = g(∂ BR)

for some R > 0. Furthermore, letting

q(ξ) := eu
(

g−1(ξ)
)
|g′(g−1(ξ)

)|−2,

we have eu(z)dz = q(ξ)dξ and q(ξ) is radially symmetric. Therefore q(ξ) =
eUλ(ξ) for some λ > 0. In general, if ω is not simply-connected , Bartolucci
and Lin showed in [5] that strict inequality holds in (2.2). So the equality may
hold only for simply-connected ω. Note that if � is not simply-connected,
Proposition 2.1 is not valid in general. Indeed, (2.2) does not hold for certain
annular regions as shown in [5].

For the proof of our main results, we shall need the following counterpart
of the Bol’s inequality for radial functions. The proof is a modification of an
argument by Suzuki [43] and we present it here for the sake of completeness.

Proposition 2.2 Let BR be the ball of radius R in R
2 ψ ∈ C0,1(BR) be a

strictly decreasing, radial, Lipschitz function satisfying
∫

∂ Br

|∇ψ |ds ≤
∫

Br

eψdy a.e. r ∈ (0, R), and
∫

BR

eψ ≤ 8π. (2.4)

Then the following inequality holds

(∫

∂ BR

e
ψ
2

)2

≥ 1

2

(∫

BR

eψ

) (

8π −
∫

BR

eψ

)

. (2.5)

Moreover if
∫
∂ Br

|∇ψ |ds �≡ ∫
Br

eψdy in (0, R), then the inequality in (2.5) is
strict.

Proof Let β:=ψ(R) and define

k(t) =
∫

{ψ>t}
eψdy, and μ(t) =

∫

{ψ>t}
dy,

for t > β. Then

−k′(t) =
∫

{ψ=t}
eψ

|∇ψ | = −etμ′(t), for a.e. t > β.
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The sphere covering inequality and its applications 1179

Hence

− k(t)k′(t) ≥
∫

{ψ=t}
|∇ψ | ·

∫

{ψ=t}
eψ

|∇ψ | (2.6)

=
(∫

{ψ=t}
eψ/2

)2

= et
(∫

{ψ=t}
ds

)2

= 4πet
∫

{ψ>t}
dy = 4πetμ(t), for a.e. t > β.

Therefore

d

dt

[

etμ(t) − k(t) + 1

8π
k2(t)

]

=etμ(t) + 1

4π
k′(t)k(t) ≤ 0, fora.e. t > β.

Integrating on (β, ∞) we get

[

etμ(t) − k(t) + 1

8π
k2(t)

]∞

β

= −
(

eβμ(β) − k(β) + 1

8π
k2(β)

)

≤ 0.

(2.7)

Now notice that

k(β) =
∫

BR

eψdy

and

eβμ(β) = eβ

∫

BR

dy = 1

4π
eβ

(∫

∂ BR

ds

)2

= 1

4π

(∫

∂ BR

e
ψ
2 ds

)2

.

Thus (2.5) follows from the inequality (2.7). Finally if
∫
∂ Br

|∇ψ |ds �≡
∫

Br
eψ ∈ (0, R), then the inequality (2.6) will be strict in a set with a pos-

itive measure in {t > β}, and consequently (2.7) and (2.5) will also be strict.
��

2.1 Rearrangement with respect to two measures

Let � ⊂ R
2 be a simply-connected domain and λ > 0, and suppose that

u ∈ C2(�) satisfies

�u + eu ≥ 0,
∫

�

eudy < 8π. (2.8)
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1180 C. Gui, A. Moradifam

Let φ ∈ C2(�) be constant on ∂�. Then φ can be equimeasurably rearranged
with respect to the measures eudy and eUλdy (see [3,37,43]), where Uλ is
defined in (2.3). More precisely, for t > miny∈� φ define

�t :={φ > t} ⊂ �,

and define �∗
t to be the ball centered at the origin in R

2 such that

∫

�∗
t

eUλdy =
∫

�t

eudy:=a(t).

Then a(t) is a right-continuous function, and φ∗ : �∗ → R defined by
φ∗(y):= sup{t ∈ R : y ∈ �∗

t } provides an equimeasurable rearrangement of
φ with respect to the measure eudy and eUλdy, i.e.

∫

{φ∗>t}
eUλdy =

∫

{φ>t}
eudy, ∀t > min

y∈�

φ, (2.9)

where�∗ a ball of radius R < ∞ and centered at the origin with
∫
�∗ eUλdy =∫

�
eudy. Note that φ∗(y) is a radial function and we will identify φ∗(y) with

φ∗(|y|). We shall need the following lemma.

Proposition 2.3 Assume that u ∈ C2(�) satisfies (2.8) and φ ∈ C1(�̄) satis-
fies φ = c for some constant c on ∂�. If � is unbounded, we further assume
that limy→∞ φ(y) = c and φ ≥ c in �. Let φ∗(r) be the equimeasurable
rearrangement of φ with respect to the measure eudy and eUλdy. Then φ∗ is
Lipschitz continuous on (ε, R − ε), for every ε > 0, where R is the radius of
�∗.

Proof First note that the function φ∗ is decreasing and the set

T :={t ≥ min
�̄

φ : (φ∗)−1(t) is not a singleton}

has Lebesgue measure zero. Indeed (φ∗)−1(t) is a connected closed interval
for all t ∈ T . Let 0 < r1 < r2 < R and

a(t) =
∫

{φ∗>t}
eUλdy =

∫

{φ>t}
eudy, ∀t > min

y∈�

φ.
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The sphere covering inequality and its applications 1181

For φ∗(r1), φ∗(r2) /∈ T , we have

a(φ∗(r2)) − a(φ∗(r1)) =
∫

{φ∗(|y|)>φ∗(r2)}
eUλdy −

∫

{φ∗(|y|)>φ∗(r1)}
eUλdy

=
∫

{φ(y)>φ∗(r2)}
eudy −

∫

{φ(y)>φ∗(r1)}
eudy

=
∫

{φ∗(r2)<φ(y)≤φ∗(r1)}
eudy

=
∫

{φ∗(r2)<φ∗(|y|)≤φ∗(r1)}
eUλdy.

Let M1:=max
�∗

eUλ(y), it follows from the above equality that

a(φ∗(r2)) − a(φ∗(r1)) ≤ M1μ({φ∗(r2) ≤ φ∗(|y|) ≤ φ∗(r1)})
= M1μ(r1 ≤ |y| ≤ r2) = M1π(r22 − r21 )

≤ 2π RM1(r2 − r1).

On the other hand, we note that the set {y ∈ � : φ∗(r2) < φ(y)} is bounded.
Let

m(r2) := inf{eu(y) : y ∈ �, φ∗(r2) < φ(y)},
M2(r2) := sup{|∇φ(y)| : y ∈ �, φ∗(r2) < φ(y)}.

Then

a(φ∗(r2)) − a(φ∗(r1)) ≥ m(r2)μ({φ∗(r2) < φ(y) ≤ φ∗(r1)})
≥ m(r2)

M2(r2)

∫

{φ∗(r2)<φ(y)≤φ∗(r1)}
|∇φ|dy

≥ m(r2)

M2(r2)

∫ φ∗(r1)

φ∗(r2)

∫

{φ−1(t)}
dsdt

≥ m(r2)

M2(r2)
(φ∗(r1) − φ∗(r2))K (r1, r2),

where

K (r1, r2) = min{φ∗(r2)≤t≤φ∗(r1)}
H1(φ−1(t)) > 0, 0 < r1 < r2 < R.
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Hence we have

0 ≤ φ∗(r2) − φ∗(r1)
r2 − r1

≤ 2π RM1M2(r2)

m(r2)K (r1, r2)
< ∞. (2.10)

In general, for 0 < ε < r∗
1 < r∗

2 < R − ε, we can approximate r∗
1 , r∗

2 by
points r1, r2 such that φ∗(r1), φ∗(r2) /∈ T . Then the above estimate also holds
for r∗

1 , r∗
2 . Thus φ∗ is Lipschitz continuous on (ε, R − ε) for every ε > 0. ��

Now let

j (t) :=
∫

{φ>t}
|∇φ|2dy, j∗(t) :=

∫

{φ∗>t}
|∇φ∗|2dy, ∀t > min

y∈�
φ; (2.11)

J (t) :=
∫

{φ>t}
|∇φ|dy, J∗(t) :=

∫

{φ∗>t}
|∇φ∗|dy, ∀t > min

y∈�
φ. (2.12)

It is easy to see that both j (t) and J (t) are absolutely continuous and non-
increasing for t > miny∈� φ. It also follows that j∗(t), J ∗(t) are absolutely
continuous and non-increasing for t > miny∈� φ. Indeed, all four functions

are right-continuous by definition. Furthermore, since φ belongs toC1(�) and
φ∗ is Lipschitz as in Proposition 2.3, observing that {y ∈ � : φ(y) = t} is
bounded for {t > miny∈� φ}, we have

0 ≤ J (t − 0) − J (t) =
∫

{φ = t}
|∇φ|dy = 0, t > min

y∈�

φ,

0 ≤ J ∗(t − 0) − J ∗(t) =
∫

{φ∗ = t}
|∇φ∗|dy = 0, t > min

y∈�

φ,

0 ≤ j (t − 0) − j (t) =
∫

{φ = t}
|∇φ|2dy = 0, t > min

y∈�

φ

and

0 ≤ j∗(t − 0) − j∗(t) =
∫

{φ∗=t}
|∇φ∗|2dy = 0, t > min

y∈�

φ.

Then all four functions are absolutely continuous and non-increasing.
It can also be shown that

∫

{φ=t}
|∇φ|ds ≥

∫

{φ∗=t}
|∇φ∗|ds, for a.e. t > min

y∈�

φ. (2.13)

Indeed, since φ ≡ c on ∂�, for every t �= c with t > miny∈� φ the level set
{φ = t} encloses a bounded subset �t of �. Hence it follows from Cauchy–
Schwarz and Bol’s inequalities that
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The sphere covering inequality and its applications 1183

∫

{φ=t}
|∇φ|ds ≥

(∫

{φ=t}
e

u
2

)2 (∫

{φ=t}
eu

|∇φ|
)−1

=
(∫

{φ=t}
e

u
2

)2 (

− d

dt

∫

�t

eu
)−1

≥ 1

2

(∫

�t

eu
) (

8π −
∫

�t

eu
)(

− d

dt

∫

�t

eu
)−1

(2.14)

= 1

2

(∫

�∗
t

eUλ

) (

8π −
∫

�∗
t

eUλ

) (

− d

dt

∫

�∗
t

eUλ

)−1

=
(∫

{φ∗=t}
e

Uλ
2

)2
(

− d

dt

∫

�∗
t

eUλ

)−1

=
∫

{φ∗=t}
|∇φ∗|ds, for a.e. t > min

y∈�

φ.

Therefore we have the following proposition.

Proposition 2.4 Assume that u, φ satisfy the conditions in Proposition 2.3.
Let Uλ be given by (2.3). Define the equimeasurable symmetric rearrangement
φ∗ of φ, with respect to the measures eudy and eUλdy, by (2.9). Then φ∗ is
Lipschitz continuous on (ε, R − ε) for every ε > 0, and j∗(t), J ∗(t) are
absolutely continuous and non-increasing in t > miny∈� φ, where j∗(t) and
J ∗(t) are defined as in (2.11) and (2.12), respectively. Moreover, (2.13) holds.

3 The sphere covering inequality

The main objective of this section is to prove the following theorem.

Theorem 3.1 Let � be a simply-connected subset of R2 which may not nec-
essariely be bounded, and assume wi ∈ C2(�), i = 1, 2 satisfy

�wi + ewi = fi (y),

∫

�

ewi dy ≤ 8π (3.1)

where f2 ≥ f1 ≥ 0 in �. If w2 ≥ w1, w2 �≡ w1 in ω and w2 = w1 on
∂ω, limy∈ω→∞ w2(y) − w1(y) = 0 for some piecewise Liptschitz subdomain
ω ⊂ �, then
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1184 C. Gui, A. Moradifam

∫

ω

(ew1 + ew2)dy ≥ 8π. (3.2)

Moreover, the equality only holds when f2 ≡ f1 ≡ 0 and there is an analytic
function ξ = g(y) such that g(ω) = B1 and g(∂ω) = ∂ B1, and ew1(y)dy =
eUλ1 (ξ)dξ, ew2(y)dy = eUλ2 (ξ)dξ for some λ2 > λ1 > 0.

Remark 3.2 The domain ω is not required to be simply connected. Neither
� nor ω is required to be bounded. Also note that if f1 ≡ f2, the condition
w2 ≥ w1, w2 �≡ w1 in the theorem can just be replaced by w2 �≡ w1, since
there must be a piecewise Liptschitz subdomain ω1 of ω such that w2 > w1 in
ω1 and w2 = w1 on ∂ω1 after switching the indices. If w2 − w1 changes sign
in �, the inequality has indeed a lower bound of 16π . Note that when ω = �,
the integral condition in (3.1) is not needed.

Before proving the above theorem, let us first show that Theorem 3.1 holds
when w1, w2 are both radial. Choose λ2 > λ1 and let Uλ1, Uλ2 be given by
(2.3). Suppose Uλ1 = Uλ2 on ∂ BR for some R > 0. Then

λ1

1 + λ21R2

8

= λ2

1 + λ22R2

8

= κ.

Hence λ1, λ2 are positive real roots of the quadratic equation

R2λ2 + 8 = 8

κ
λ.

This implies κ ≤ 2/R2,

λ1 + λ2 = 8

κ R2 , and λ1λ2 = 8

R2 . (3.3)

Direct computations yield

∫

BR

(
eUλ1 + eUλ2

)
dy = 8π

(
λ21R2

8 + λ21R2
+ λ22R2

8 + λ22R2

)

= 8π

(
λ21R2

8λ1
κ

+ λ22R2

8λ2
κ

)

= 8π

[
κ R2

8
(λ1 + λ2)

]

= 8π.

Thus we have the following
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The sphere covering inequality and its applications 1185

Proposition 3.1 Let λ2 > λ1, and Uλ1 and Uλ2 be radial solutions of the
equation

�u + eu = 0, (3.4)

defined in (2.3) with Uλ2 > Uλ1 in BR, and Uλ1 = Uλ2 on ∂ BR, for some
R > 0. Then

∫

BR

(eUλ1 + eUλ2 )dy = 8π.

To understand the above equality geometrically, wemay scale the conformal
factor by 1/2 and consider two surfaces S1 and S2 with constant Gaussian
curvature 1 as follows

S1 = (BR, e2Vλ1dy) and S2 = (BR, e2Vλ2 dy).

where 2Vλ = Uλ − ln 2. Notice that the metrics gi = e2Vλi dy have the same
conformal factor on ∂ BR and hence (3.3) holds and

κ

(
1

λ1
+ 1

λ2

)

= κ(λ1 + λ2)

λ1λ2
= 1. (3.5)

Next we explain that areas of S1 and S2 are equal to the areas of two
complementary spherical caps on the unit sphere, and consequently the total
area must be

A1 + A2 =
∫

BR

e2Vλ1dy +
∫

BR

e2Vλ2 dy = 4π.

By scaling in y ∈ R
2 and using the stereographic projection �: S2 → R

2

with respect to the north pole N = (0, 0, 1):

y = �(x):=
(

x1
1 − x3

,
x2

1 − x3

)

,

we can see that the surface S1 = (BR, e2Vλ1dy) is isometric to

(
Bλ1R/

√
8, e2V1dy

) = (
Bλ1R/

√
8,

4

(1 + |y|2)2 dy
)
,
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1186 C. Gui, A. Moradifam

which in turn is isometric to a disc C1 around the south pole. Similarly the
surface S2 = (BR, e2Vλ2 dy) is isometric to

(
Bλ2R/

√
8, e2V2dy

) = (
Bλ2R/

√
8,

4

(1 + |y|2)2 dy
)
,

which in turn is isometric to a disc C2 around the south pole.
Using the Kelvin transformation z = y/|y|2 and (3.3), one can see that

(
Bλ2R/

√
8,

4

(1 + |y|2)2 dy) is isometric to
(
R
2 \ Bλ1R/

√
8,

4

(1 + |z|2)2 dz
)

with the latter being isometric to S2 \ C1. This implies that S1 and S2 are
indeed isometric to two complementary spherical caps on the unit sphere, and
therefore their areas sum to exactly 4π.

Note that the area of the smaller cap C1 can be arbitrarily close to 0 or 2π .
It is therefore important that the two surfaces S1,S2 are not the same, which
is geometrically the reason why w1, w2 should be distinct.

The following lemma will play a key role in the proof of Theorem 3.1.

Lemma 3.3 Assume that ψ ∈ C0,1(BR) is a strictly decreasing, radial, Lip-
schitz function, and satisfies

∫

∂ Br

|∇ψ |ds ≤
∫

Br

eψdy (3.6)

a.e. r ∈ (0, R) and ψ = Uλ1 = Uλ2 for some λ2 > λ1 on ∂ BR, and R > 0.
Then

either
∫

BR

eψdy ≤
∫

BR

eUλ1dy or
∫

BR

eψdy ≥
∫

BR

eUλ2 dy. (3.7)

Moreover if the inequality in (3.6) is strict in a set with positive measure in
(0, R), then the inequalities in (3.7) are also strict.

Proof Let m1:=
∫

BR
eUλ1dy, m2:=

∫
BR

eUλ2 dy, and m:= ∫
BR

eψdy. Also
define

β:=
(∫

∂ BR

e
ψ
2 ds

)2

=
(∫

∂ BR

e
Uλ1
2 ds

)2

=
(∫

∂ BR

e
Uλ2
2 ds

)2

.

It follows from Proposition 2.2 that

β ≥ 1

2
m(8π − m).
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The sphere covering inequality and its applications 1187

On the other hand,

β = 1

2
m1(8π − m1) = 1

2
m2(8π − m2).

Hence m1 and m2 are roots of the quadratic equation

x2 − 8πx + 2β = 0.

Since m satisfies

m2 − 8πm + 2β ≥ 0,

we have

either m ≤ m1 or m ≥ m2.

Equality holds only when the equality in (3.6) holds for a.e. r ∈ (0, R). This
completes the proof. ��

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 Supposew1 andw2 satisfy the assumptions of Theorem
3.1. Then

�(w2 − w1) + ew2 − ew1 = f2 − f1 ≥ 0.

Without loss of generality we may assume
∫
�

ew1dy < 4π . We can choose
λ2 > λ1 such that Uλ1 and Uλ2 are as described in Proposition 3.1, and

∫

�

ew1dy =
∫

B1

eUλ1dy. (3.8)

Let�t = {y ∈ � : w2(y)−w1(y) > t} andϕ be the symmetrization ofw2−
w1 with respect to the measures ew1dy and eUλ1dy. Then using Proposition
2.4, Green’s formula, equation (3.1) and Cavalieri’s principle we have

∫

{ϕ=t}
|∇ϕ|ds ≤

∫

{w2−w1=t}
|∇(w2 − w1)|ds [by the inequality (2.13)]

≤
∫

�t

(
ew2 − ew1

)
dy [using Green’s formula and Eq. (3.1)]

=
∫

�t

ew2−w1ew1dy −
∫

�t

ew1dy
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1188 C. Gui, A. Moradifam

=
∫

{ϕ>t}
eϕeUλ1dy −

∫

{ϕ>t}
eUλ1dy

(using the rearrangement and Cavalieri’s principle)

=
∫

{ϕ>t}
eUλ1+ϕdy −

∫

{ϕ=t}
|∇Uλ1 |ds, for a.e.t > 0.

(3.9)

Hence
∫

{ϕ=t}
|∇(Uλ1 + ϕ)|ds ≤

∫

{ϕ>t}
e(Uλ1+ϕ)dy, for a.e.t > 0. (3.10)

Since ϕ ≥ 0 is decreasing in r , ψ :=Uλ1 + ϕ is a strictly decreasing radial
function, and

∫

∂ Br

|∇ψ |ds ≤
∫

Br

eψdy, a.e. r ∈ (0, 1), (3.11)

by Proposition 2.4 and the above inequality we know that ψ belongs to
C0,1(B1). It follows from Lemma 3.3 that

∫

B1

eψdy =
∫

B1

eUλ1+ϕdy ≥
∫

B1

eUλ2 dy.

Hence
∫

�

(ew1 + ew2)dy =
∫

B1

(
eUλ1 + eUλ1+ϕ

)
dy ≥

∫

B1

(
eUλ1 + eUλ2

)
dy = 8π.

Moreover, if the equality holds, then

∫

{w2−w1=t}
|∇(w2 − w1)|ds =

∫

�t

(
ew2 − ew1

)
dy fora.e.t > 0,

and hence
∫
�t

( f2− f1)dy = 0 for a.e. t > 0. Thus f2 ≡ f1. On the other hand
it follows from the computations in (2.14) that the equality in (3.9) for a.e. t > 0
leads to the equality in Bol’s inequality for w1 in �t for a.e. t > 0. Therefore
f1 ≡ 0 and, by the argument right before Proposition 2.2 in Sect. 2, there is
an analytic function ξ = g(y) such that g(�) = B1 and g(∂�) = ∂ B1 and
ew1(y)dy = eUλ1 (ξ)dξ . Furthermore, we have also ψ = Uλ1 + ϕ ≡ Uλ2(ξ)

since it is the only other radial solution of (3.4) with the same boundary
condition as Uλ1 on ∂ B1. This proof is complete. ��
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The following consequence ofBol’s inequality and the equimeasurable sym-
metric rearrangement was first proved in [3] and was used frequently in the
study of related equations (see also Lemma 3.1 in [26], or Proposition 3.3 in
[37] for a proof).

Proposition 3.2 Let � ⊂ R
2 be a simply-connected domain and assume that

w ∈ C2(�) satisfies

�w + ew ≥ 0 in � (3.12)

and
∫
�

ew ≤ 8π . Consider an open set ω ⊂ � and define the first eigenvalue
of the operator � + ew in H1

0 (ω) by

λ1,w(ω):= inf
{φ∈H1

0 (ω):|φ|L2(ω)
=1}

(∫

ω

|∇φ|2 −
∫

ω

φ2ew

)

,

and suppose λ1,w(ω) ≤ 0. Then
∫
ω

ew ≥ 4π , and the inequality is strict if the
inequality in (3.12) is strict at some point in ω.

We would like to point out that the Sphere Covering Inequality is more
general than Proposition 3.2 and can deal with the case when w1 and w2
are different, while Proposition 3.2 may be regarded as a limiting case when
w1 ≡ w2 ≡ w. To be more precise, when w1 ≡ w2, the other conditions on
w2, w1 in the Sphere Covering Inequality become the eigenvalue condition
λ1,w(ω) ≤ 0 in the following sense: suppose that there exist two sequences
of solutions wk

1, w
k
2 of (3.1) with f k

1 , f k
2 in �, k = 1, 2, . . . with wk

i →
w in C2(ω), f k

i → f in C0(ω), i = 1, 2 as k → ∞ and the conditions of
Theorem 3.1 hold for each k. Then, the standard elliptic theory leads to

ϕ:= lim
k→∞

wk
2 − wk

1

||wk
2 − wk

1||L∞(ω)

> 0

and ϕ is the first eigenfunciton of the linearized operator�+ew in H1
0 (ω)with

λ1,w(ω) = 0. Hence w satisfies the condition in Proposition 3.2. The Sphere
Covering Inequality applied to wk

1, w
k
2, after taking limit k → ∞, gives

∫

ω

ew + ew = lim
k→∞

∫

ω

ewk
1 + ewk

2 ≥ 8π,

which leads to the same lower bound
∫
ω

ew ≥ 4π as in Proposition 3.2. This is
why Proposition 3.2 may be regarded as a limiting case of the Sphere Covering
Inequality.
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1190 C. Gui, A. Moradifam

Remark 3.4 It can be seen from its proof that Proposition 3.2 has a geometrical
interpretation as follows: Given a simply connected regionω on a surface with
a conformal metric dg = ewdx and Gaussian curvature less than 1/2, if the
first eigenvalue of Laplacian in ω with zero Dirichlet boundary condition

λ1(ω):= inf
{φ∈H1

0 (ω),φ �≡0}

∫
ω

|∇φ|2
∫
ω

φ2ew
≤ 1,

then the area of ω must be bigger than or equal to 4π , which is the area of a
standard upper hemisphere S+√

2
with radius

√
2 and Gaussian curvature 1/2

(see Proposition 2 in [43]). Note that such a hemisphere has the first eigenvalue
equal to 1 as the height function φ1 = x3 is the first eigenfunction due to the
fact that −�S√

2
φ1 = φ1. In other words, Proposition 3.2 is an immediate

consequence of the extremal eigenvalue theorem which says that a geodesic
disc on the sphere achieves the smallest first eigenvalue of Laplacian among
all surfaces with the same area and the same Gaussian curvature upper bound.
It would be very interesting to see whether there is an intrinsic geometric
explanation of Theorem 3.1.

4 Best constant in a Moser–Trudinger type inequality

Let us consider the functional Jα(u) defined in (1.6) and restricted to the set

M:=
{

u ∈ H1(S2) :
∫

S2
eu x j = 0 for j = 1, 2, 3

}

.

In this section we shall prove that infu∈M Jα(u) = 0 for α ≥ 1
2 . Critical

points of Jα(u), up to an additive constant such that
∫

S2 eudω1 = 1, satisfy

α

2
�u + eu − 1 = 0 on S2. (4.1)

Throughout this section we shall assume that the volume form is normalized
so that

∫
S2 eudω1 = 1. In particular, the Lagrange multipliers vanish due to

Kazdan–Warner identity [32] (see [16,26] for more details). Following [26],
let � be the stereographic projection S2 → R

2 with respect to the north pole
N = (0, 0, 1):

�:=
(

x1
1 − x3

,
x2

1 − x3

)

.
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Suppose u is a solution of (4.1), and let

ū(y):=u(�−1(y)) for y ∈ R
2.

Then ū satisfies

�ū + 8

α(1 + |y|2)2 (eū − 1) = 0 in R
2 . (4.2)

Now if we let

v = ū − 2

α
ln(1 + |y|2) + ln

(
8

α

)

, (4.3)

then v satisfies

�v + (1 + |y|2)2( 1α −1)ev = 0 in R
2, (4.4)

and
∫

R2
(1 + |y|2)2( 1α −1)evdy = 8π

α
. (4.5)

4.1 Uniqueness of axially symmetric solutions

For convenience of the reader, we first use a newmethod to prove Conjecture A
for axially symmetric functions, which was originally proven in [30,36].

Lemma 4.1 Let α ≥ 1
2 and u ∈ M be a solution of (4.1). If u is axially

symmetric, then u ≡ 0.

Proof We may assume that u is symmetric about the x3-axis, i.e. u = g(x3),
x3 ∈ [−1, 1]. Since ∫

S2 eu x3dω = 0, g could not be monotone in x3 unless
it is identically equal to a constant C . Therefore, if u �≡ C , then it must
have either a local minimum or local maximum at some point x03 ∈ (−1, 1).
Without loss of generality we can assume x03 ≥ 0. Now choose some point
p = (x p

1 , 0, x p
3 ) ∈ S2 with x03 < x p

3 < 1 and let u p(x) = u(R−1(x)) for
some R ∈ SO(3) with R(p) = (0, 0, 1). Define ū p = u p(�

−1) and let

vp = ū p − 2

α
ln(1 + |y|2) + ln

(
8

α

)

.
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the vp satisfies (4.4) and (4.5). Now let

ϕp(y):=y2
∂vp

∂y1
− y1

∂vp

∂y2
.

Note that the set of critical points of ū p contains a closed simple curve C ⊂
R
2 which contains the origin in its interior. On the other hand vp is evenly

symmetric about the y1-axis, therefore

C ∪ {y = (y1, 0) : y ∈ R
2} ⊂ ϕ−1

p (0).

Hence ϕ−1
p (0) divides R2 into at least four simply-connected regions �i , i =

1, 2, 3, 4. Now let wp:= ln((1 + |y|2)2( 1α −1)evp). Then wp satisfies

�wp + ewp = 8( 1
α

− 1)

(1 + |y|2)2 > 0 in R
2 .

On the other hand ϕp satisfies

�ϕp + ewpϕp = 0 in R
2 .

Note that if ϕp ≡ 0 in an open subset ofR2, then ϕp ≡ 0 inR2. Thus it follows
from Proposition 3.2 that

8π

α
=

∫

R2
(1 + |y|2)2( 1α −1)evp dy =

4∑

i=1

∫

�i

ewp dy > 4 × 4π = 16π.

This implies α < 1
2 , which is a contradiction. Therefore ϕp ≡ 0 and con-

sequently u is also axially symmetric about the line passing through p and
the origin. Since p �= (0, 0, 1), u must be identically equal to a constant, and
therefore must be zero. ��

Next we prove that if u is evenly symmetric about a plane passing through
the origin, then u is axially symmetric. Note that this result was remarked by
Ghoussoub and Lin [26], we provide the details here since it is needed in the
proof of the main result.

Lemma 4.2 Let α ≥ 1
2 and u be a solution of (4.1). If u is evenly symmetric

about a plane passing through the origin, then u is axially symmetric.

Proof The proof is similar to the proof of Lemma 4.1. We may assume that
u is evenly symmetric about x1x3-plane. Let u0 be the restriction of u to
{x ∈ S2 : x2 = 0} and assume that p ∈ S2 is a maximum point of u0. Since u
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is symmetric about the x1x3-plane, p is also a critical point of u on S2.Without
loss of generality we may assume p = (0, 0, −1). We claim that

ϕ(y1, y2) = y2
∂v

∂y1
− y1

∂v

∂y2
≡ 0,

where v is defined by (4.3). Suppose ϕ �≡ 0. Since v has a critical point at the
origin, the nodal line of ϕ is piecewise smooth and divides a neighborhood
of the origin into at least four regions (see Theorem 2.5 of [22], or [8,31]).
On the other hand ϕ is anti-symmetric (odd) with respect to the y1-axis and
the nodal line of ϕ contains the y1-axis. Therefore the nodal line of ϕ divides
R
2 into at least 4 simply-connected regions �i , i = 1, 2, 3, 4. As before, we

can show that ϕ ≡ 0 and consequently u is axially symmetric about the line
passing through p and the origin. ��

4.2 The general case

We shall prove the even symmetry of a solution to (4.1).

Theorem 4.3 Let α ≥ 1
2 and assume u to be a solution of (4.1). Then u is

evenly symmetric about any plane passing through the origin and a critical
point of u. Therefore u must be axially symmetric and consequently u ≡ 0.

Proof Without loss of generality we may assume that (1, 0, 0) is a criti-
cal point of u, and that u is not symmetric about the x1x2-plane. To finish
the proof, it is enough to prove that u is symmetric about the x1x2-plane.
Define u∗(x1, x2, x3):=u(x1, x2, −x3) and ũ(x) = u(x) − u∗(x). Notice that
ũ(x1, x2, 0) = 0, for all (x1, x2, 0) ∈ S2. Then ũ satisfies

α

2
�ũ + c(x)ũ = 0, on S2, (4.6)

where

c(x):=eu − eu∗

u − u∗ .

Since (1, 0, 0) is a critical point of u, it follows from Hopf’s lemma that ũ
must change sign in S+:={x ∈ S2 : x3 > 0}. Indeed, classic results imply that
the nodal set of ũ consists of finite many immmersed smooth curves which
have only finite many self-intersecting points which are critical points of ũ.
Moreovr, ũ behaves like a harmonic polynomial near critical points, and its
nodal set locally looks like straight lines with equal angles near critical points.
(See, e.g. Theorem 2.5 of [22], or [8,31].) Recall that ũ = 0 on ∂S+. Therefore
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the nodal lines of ũ divides S+ into at least two simply-connected regions and
there exists S++ , S+− ⊂ S+ such that u = u∗ on ∂(S++ ∪ S+−),

u > u∗ on S++ and u < u∗ on S+− .

Define S−+ , S−− to be the reflections of S++ , S+− with respect to the x1x2−plane.
Then we also have u = u∗ on ∂(S−+ ∪ S−−),

u < u∗ on S−+ and u > u∗ on S−− .

Let �1, �2, �3, �4 ⊂ R
2 be the images of S−− , S−+ , S+− , S++ ⊂ S2 under the

stereographic projection, respectively. Define v1, v2 as follows

v1(y) = u(�−1(y)) − 2

α
ln(1 + |y|2) + ln

(
8

α

)

and

v2(y) = u∗(�−1(y)) − 2

α
ln(1 + |y|2) + ln

(
8

α

)

.

Then v1 and v2 both satisfy (4.4) and wi defined by

wi := ln((1 + |y|2)2( 1α −1)evi )

satisfies

�wi + ewi = 8( 1
α

− 1)

(1 + |y|2)2 ≥ 0 in R
2, i = 1, 2.

Moreover w1 = w2 on ∂�i , i = 1, 2, 3, 4. Applying the Sphere Covering
Inequality (Theorem 3.1) in �i , i = 1, 2, 3, 4, we obtain that

2 × 8π

α
=

∫

R2
(1 + |y|2)2( 1α −1)ev1dy +

∫

R2
(1 + |y|2)2( 1α −1)ev2dy

≥
4∑

i=1

∫

�i

(ew1 + ew2)dy > 4 × 8π.

Hence α < 1
2 , which is a contradiction. Thus u is evenly symmetric about the

x1x2-plane and the proof is complete. ��
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5 Radial symmetry of solutions in R
2

In this section, we shall consider solutions to a general class of equations in
R
2 and prove radial symmetry of the solutions. Assume u ∈ C2(R2) satisfies

�u + k(|y|)eu = 0 in R
2, (5.1)

and

1

2π

∫

R2
k(|y|)eudy = β < ∞, (5.2)

where K (y) = k(|y|) ∈ C2(R2) is a non constant positive function satisfying

(K1) � ln(k(|y|)) ≥ 0, y ∈ R
2

(K2) k(|y|) ≤ C(1 + |y|)m, y ∈ R
2

for some constant C, m > 0. It is easy to see that (K1) implies that both k(r)

and rk′(r)
k(r)

are nondecreasing. Let

2l = lim
r→∞

rk′(r)

k(r)
.

From (K2) we know that 0 ≤ 2l ≤ m and hence for any ε > 0 there exists a
positive constant Cε > 0 such that

Cε(1 + |y|2)l−ε ≤ k(|y|) ≤ C(1 + |y|2)l, y ∈ R
2.

Without loss of generality we may assume that m = 2l. Then it follows from
Theorem 1.1 in [21] that

β ≥ 2l + 2.

Following [26] and using Pohazaev’s identity, we can obtain the following
result.

Proposition 5.1 Suppose u is a solution to (5.1)–(5.2), where K is not a con-
stant and (K1)–(K2) hold with m = 2l. Then, if β > 2l + 2, there holds

4 < β < 4l + 4. (5.3)

Proof By Theorem 1.1 in [21], we have

u(y) = −β ln(|y|) + C + O(|y|−γ ) (5.4)
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for some constants C and γ > 0 as y → ∞, if β > 2l +2. Also if β = 2l +2,
then for any ε > 0 there exists R(ε) > 0 such that

−β ln(|y|) − C ≤ u(y) ≤ (ε − β) ln(|y|), |y| ≥ R(ε)

for some constant C . On the other hand, it is easy to see that when β > 2l +2,
we have

∇u = (−β + o(1))
y

|y|2 , as y → ∞.

Multiplying (5.1) by y · ∇u and integrating by parts on BR = {y : |y| ≤ R},
we obtain

∫
∂ BR

(y · ∇u) ∂u
∂ν

ds − 1
2

∫
∂ BR

(y · ν)|∇u|2ds = − ∫
BR

k(|y|)y · ∇eudy

= ∫
BR

(2k(|y|) + k′(|y|)|y|)eudy − ∫
∂ BR

(y · ν)k(|y|)euds.

Letting R → ∞ and using (5.4), we obtain that
∫

R2

(
2k(|y|) + k′(|y|)|y|)eudy = πβ2.

Hence we derive (5.3) from

2k(|y|) ≤ 2k(|y|) + k′(|y|)|y| ≤ (2l + 2)k(|y|), y ∈ R
2,

and the fact that equality holds everywhere in any of the above inequalities
only when l = 0 and k equals to a constant. Note that by our assump-
tions, k(|y|) = |y|2l is not allowed for l > 0 since k(0) = 0. The proof is
complete. ��
Remark 5.1 In all applications considered in this paper, it holds thatβ > 2l+2.
We wonder whether β > 2l + 2 is always true for all solutions to (5.1)–(5.2)
under the general conditions (K1)–(K2).

It is shown in [36] that

Proposition 5.2 If 0 < l ≤ 1, there exists a radially symmetric solution uβ

to (5.1) if and only if β ∈ (4, 4l + 4). The radial solution is also unique in this
case. If l > 1, there exists a unique radially symmetric solution uβ to (5.1) for
β ∈ (4l, 4l + 4). In the latter case, there exists β(l) ∈ (4, 4l) such that there
is no radial solution for β < β(l) but there are at least two radial solutions
for β ∈ (β(l), 4l).

Now we are ready to prove the following general theorem.
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Theorem 5.2 Assume that K (y) = k(|y|) > 0 is not constant and satisfies
(K1)–(K2), and u is a solution to (5.1)–(5.2) with 2l + 2 < β ≤ 8. Then u
must be radially symmetric.

Proof It follows from (5.4) that lim|y|→∞ u(y) = −∞, and hence u has a
maximum point p ∈ R

2. We first prove that u is evenly symmetric about
the line passing through the origin and p. In particular if p = (0, 0), then
the following argument guarantees that u is evenly symmetric about any line
passing through the origin and hence u must be radially symmetric. Without
loss of generality we may assume that p lies on y1-axis. Define

v(y1, y2) = u(y1, y2) − u(y1, −y2). (5.5)

Suppose v �≡ 0. Then the nodal line of v, v−1(0), contains the y1-axis. On
the other hand since the critical point p lies on y1-axis, the nodal line of v

divides every small neighborhood of p into at least four regions. Therefore
the nodal line of v divides R2 into at least four simply-connected regions �i ,
i = 1, 2, 3, 4. Now notice that on each �i the equation

�u + k(|y|)eu = 0 y ∈ �i

has two solutions u1
i (y1, y2) = u(y1, y2) and u2

i (y1, y2) = u(y1, −y2) with
u1

i |∂� = u2
i |∂�i . Define w:=u + ln(k(|y|)). Then w satisfies

�w + ew = �(ln(k(|y|))) ≥ 0. (5.6)

Thus on each �i , the above equation has two solutions w1
i , w

2
i with w1

i |∂�i =
w2

i |∂�, i = 1, 2, 3, 4. Hence it follows from Theorem 3.1 that

4πβ = 2
∫

R2
k(|y|)eudy =

∫

R2
k(|y|)eu(y1,y2)dy +

∫

R2
k(|y|)eu(y1,−y2)dy

≥
4∑

i=1

∫

�i

(ew1 + ew2)dy > 4 × 8π = 32π.

Consequently β > 8, which is a contradiction, and therefore u is evenly
symmetric about the y1-axis.

Next we shall prove that u is indeed axially symmetric. Let φ = y2 · uy1 −
y1 · uy2 . Then φ satisfies

�φ + K (y)euφ = 0, y ∈ R
2. (5.7)
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On the other hand, uy2 satisfies

�uy2 + K (y)euuy2 = −y2
k′(|y|)

|y| eu, y ∈ R
2. (5.8)

Note that both uy2 and φ are odd function in y2. Let us multiply Eq. (5.7) by
uy2 and Eq. (5.8) by φ and subtract. Then, integrating the resulting equation
in B+

R = {y : y2 > 0, |y| ≤ R}, we obtain
∫

∂ B+
R

(

φ
∂uy2

∂ν
− uy2

∂φ

∂ν

)

ds = −
∫

B+
R

y2
k′(|y|)

|y| euφdy.

Applying standard Schauder estimates for the elliptic equation satisfied by
u + β ln(|y|) and using the fact that β > 2l + 2, we obtain

|∇u(y)| ≤ C

|y| , |∇2u(y)| ≤ C

|y|2 , |y| > 1

for some constant C . Letting R → ∞, we derive

∫

R2+
y2

k′(|y|)
|y| euφdy = 0.

We claim that φ ≡ 0 in R2. Assume the contrary.
Since k(r) is not constant, by (K1) we have two cases: either k′(r) > 0

for r > 0 or there exists r0 > 0 such that k(r) = k(0) for r ∈ [0, r0] and
k′(r) > 0 for r > r0. In the first case, since y2

k′(|y|)
|y| eu > 0 in R2+, there exist

at least two regions �1, �2 ⊂ R
2+ such that φ > 0 in �1 and φ < 0 in �2

and φ = 0 on ∂�i , i = 1, 2. Applying Proposition 3.2 to �i , i = 1, 2, we
conclude that

∫

R2+
k(|y|)eudy ≥

∫

�1

ewdy +
∫

�2

ewdy > 8π,

and therefore β > 8. This contradiction shows φ ≡ 0 in R
2, and hence u(y)

is radially symmetric.
In the second case, we have

∫

R2+∩Bc
r0

y2
k′(|y|)

|y| euφdy = 0.
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If φ changes signs in Bc
r0 , we can argue as above that φ must be identically 0

inR2. If φ does not change sign in Bc
r0 , then φ ≡ 0 in Bc

r0 . Choose k1(r) = esr3

and define

�(r) = �
(
ln k(r) − ln k1(r)

)
,

Let w = u + ln k(r) − ln k1(r). Then

�w(y) + k1(|y|)ew = �(|y|) in R
2 . (5.9)

and

�wy2(y) + k1(|y|)ewwy2 = y2
|y|

(
�′(|y|) − k′

1(|y|)ew
)
in R

2 . (5.10)

where, for sufficiently large s,

�′(|y|) = −9s + d

dr
[�(

ln k(r)
)] < 0, ∀r ∈ [0, r0].

We note that φ satisfies

�φ + k1(y)ewφ = 0, y ∈ R
2. (5.11)

Multiply Eq. (5.11) bywy2 and Eq. (5.9) byφ and subtract. Then, integrating
the resulting equation in B+

r0 = {y : y2 > 0, |y| ≤ r0}, we obtain

0 =
∫

∂ B+
r0

(
φ

∂wy2

∂ν
− wy2

∂φ

∂ν

)
ds =

∫

B+
r0

y2
|y|

(
�′(|y|) − k′

1(|y|)ew
)
φdy

where

�′(|y|) − k′
1(|y|)ew < 0.

This implies that φ must change sign at least once in R
2+ ∩ Br0 if it is not

identically 0. The same arguments as in the first case lead to a contradiction.
Therefore, we have φ ≡ 0 in R2, and hence u(y) is radially symmetric. ��

Now we consider several special cases of (5.1)–(5.2). First, if K (y) =
(1 + |y|2)l for some l ≥ 0, then (5.1)–(5.2) read as

�v + (1 + |y|2)l ev = 0 in R
2, (5.12)
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and

1

2π

∫

R2
(1 + |y|2)l evdy = β. (5.13)

The following result is conjectured in [26].

Conjecture D For 0 < l ≤ 2 and β = (2l + 4), solutions to (5.12)–(5.13)
must be radially symmetric.

For −2 < l ≤ 0, the radial symmetry of solutions to (5.12)–(5.13) was
shown in [17,19] by the moving plane method; while for l > 0 the moving
plane method does not seem to work, the conjecture was shown in [26] for
0 < l ≤ 1 by using the Alexandrov-Bol inequality. For 2 < l �= (k−1)(k+2),
where k ≥ 2 is an integer, it is pointedout byLin in [36] that there is a non-radial
solution to (5.12)–(5.13) . A direct application of Theorem 5.2 to (5.12)–(5.13)
leads to an affirmative answer to Conjecture D. Indeed, all solutions to (5.12)–
(5.13) must be radially symmetric as long as β ≤ 8.

Another example is the following equation from the study of self- gravitating
strings for a massive W-boson model coupled to Einstein theory in account of
gravitational effects ( [42,46]).

�v + (1 + |y|2l)ev = 0 in R
2, (5.14)

and

1

2π

∫

R2
(1 + |y|2l)evdy = β, (5.15)

where l > 0. It is shown in [42] that (5.14)–(5.15) admit a radial solution if
and only if

β ∈ (
4max{1, l}, 4(l + 1)

)

and the corresponding radial solution is unique. Furthermore, for 0 < l ≤ 1,
the interval above is also optimal for the solvability of (5.14)–(5.15) among
non-radial functions. The main known difference between (5.14) and (5.12)
is that the latter possesses radial solutions for a larger range of β which is
at least (2l + 2, 4l + 4), and has multiple radial solutions when l > 2 and
β ∈ (βl, 4l) for some βl ∈ (2l + 2, 2l + 4), which also implies the existence
of non-radial solutions for (5.12) for l > 2 (see [23,36]). While the former has
a radial solution only for β ∈ (

4max{1, l}, 4(l + 1)
)
, which is also unique. In

particular, no non-radial solution is known in this case.
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Theorem 5.2 implies that solutions to (5.14)–(5.15) must be radially sym-
metric when β ≤ 8. As a consequence, the solvability range of β among
non-radial functions must be β > 4max{1, l} when l ≤ 2.

Now we are ready to consider (1.8).

Proof of Theorem 1.3. Let u be a solution of (1.8) and ᾱ �= 0. Without loss
of generality we may assume P = (0, 0, 1). Now let � : S2 → R2 be the
stereographic projection with north pole at P = (0, 0, 1). Similar to (2.10) in
[6], we define

v(y) = u(�−1y) − ln

(∫

S2
eudω2

)

+ ln(4λ) −
(

λ

4π
− ᾱ

)

ln(1 + |y|2),
(5.16)

where y = �(x). Then u is a solution of (1.8) if and only if v satisfies

{
�v + (1 + |y|2) λ

4π −ᾱ−2ev = 0 in R2
∫
R2(1 + |y|2) λ

4π −ᾱ−2evdy = λ.

Due to the uniqueness result for λ ∈ (0, 8π(1+ α−)) and nonexistence result
for λ ∈ [8π(1 + α−), 8π(1 + α+)], we only need to consider the case when
λ > 8π(1+ α+). Since λ

4π − ᾱ − 2 > 0 in this case, it follows from Theorem
5.2 that v is radially symmetric about the origin. Hence u is axially symmetric
with respect to

−→
O P and the proof is complete. ��

We note that Theorem 1.4 follows immediately from Theorem 1.3.

Proof of Theorem 1.5. Without loss of generality we may assume that n =
(0, 0, 1). Let � : S2 → R2 be the stereographic projection with north pole at
n = (0, 0, 1). Define

v(y) = u(�−1(y)) for y ∈ R
2.

Then v satisfies

�v + J 2(y) exp(α̃v − γψ(y))
∫
R2 J 2(y) exp(α̃v − γψ(y))dy

− J 2(y)

4π
= 0 for y ∈ R

2,

(5.17)

where

J (y) = 2

1 + |y|2 and ψ(y) = |y|2 − 1

|y2| + 1
.
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Now define

w(y):=α̃

(

v(y) − 1

4π
ln(1 + |y|2)

)

− c,

with

c = γ + ln

(
2

α̃

∫

R2
J 2(y)eα̃v−γψ

)

.

Then we have

�w(y) + K (y)ew = 0 in R
2, (5.18)

and
∫

R2
K (y)ew(y)dy = α̃,

where

K (y) = 8(1 + |y|2)
(
−2+ α̃

4π

)

eγ J (y). (5.19)

Now we compute

�(ln K (y)) = 4(−2 + α̃
4π )

(1 + |y|2)2 + 8γ (|y|2 − 1)

(1 + |y|2)3 .

Since the right hand side of the above equation is nonnegative for 0 ≤ γ ≤
α̃
8π − 1, it follows from Theorem 5.2 that w is radially symmetric about the
origin. ��
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