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Abstract. We consider the problem
€2 (=) w(E) — V(2)u(Z)(1 — @*(2)) =0 inR,

where (—0,2)° denotes the usual fractional Laplace operator, € > 0 is a
small parameter and the smooth bounded function V satisfies
infzer V(&) > 0. For s € (3,1), we prove the existence of separate multi-
layered solutions for any small €, where the layers are located near any
non-degenerate local maximal points and non-degenerate local minimal
points of function V. We also prove the existence of clustering-layered
solutions, and these clustering layers appear within a very small neigh-
borhood of a local maximum point of V.
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1. Introduction

We consider the following fractional inhomogeneous Allen—Cahn equation
2 (=0p)*u —V(@)u(l - %) =0 7 €R, (1)

where (—0,5)°, s € (0,1), denotes the usual fractional Laplace operator, a
Fourier multiplier of symbol |£|?¢. Here ¢ > 0 is a small parameter and the
bounded smooth function V satisfies infzeg V(Z) > 0. We investigate the
existence of layer solutions to (1) by applying a Lyapunov Schmidt reduction
method. We call layer solution an heteroclinic connection for Eq. (1). This
method has been applied in [6] to construct concentrating standing waves for
the fractional nonlinear Schrédinger equation.

For the case s = 1, it is shown in [14] that the corresponding problem in
a bounded interval of (1)

2" +V(z)u(l —u?) =0 z€(0,1), /(0)=1u/(1)=0,

has interior layer solutions, and any layer solution can have its layers (namely
its zeros) only near two endpoints of the interval, the local minimum points
and local maximum points of V(z). Furthermore, there appears at most one
zero near each local minimum point of V. Subsequently, in [9], the authors
extended this result to the two space dimension case considering

E2Au+V(zr)u(l—u?)=0 in Q, g =0 on 09, (2)
and introduced a weighted arclength [}, V2ds. The authors proved that (2) has
an interior layer solution and this layer appears near a non-degenerate closed
geodesic curve relative to the weighted arclength fr V2ds. Existence of layer
solutions and clustering layer solution of (2) in general dimension Euclidean
spaces and Riemannian manifolds were also obtained in [10,11,15,17]. The
case V = 1 of the equation in (2) corresponds to the standard Allen—Cahn
equation (see [1])

e2Au+u(l—u?)=0 in Q.
We now come back to our problem (1) scaling the variables as & =
ex, u(z) = u(ex) := u(x). Therefore, Eq. (1) writes
(=02)u(z) = V(ex) F(u(x)) = z € R, (3)
where
F(u) == u(l —u?).
Note that F' is an odd function. We will find a solution to (1) if we may

construct a solution to (3).
Denote w the unique solution of

(=0zz)°w — F(w(z)) =0, w(0) =0, w(+oo) = £1. (4)

The previous heteroclinic connection w has been proved to exist and to be
unique in [2,16]. We now describe our main results.
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Theorem 1.1. Let s € (%, 1) and let A;, CR, i=1,...,m, m > 1, be disjoint
bounded open interval. Set A = Ay X --- X A,,,. Assume that the function

T(glvvgm)zzve(fz)v 9:1_%>0
=1

has a stable critical point situation in A in the following sense: there exists
b0 > 0 such that for any g € C*(A) with ||g|| L) + Vgl (a) < b0, there is
a &y € A such that VY (&) + Vg(&,) = 0.

Then for all sufficiently small €, (1) has a solution of the form

)= >0 (v =8 ) s Ly

where £&& = (&5,...,&5,) € A and VY (§¢) — 0 ase — 0.

Corollary 1.1. Let s € (3,1) and let &,...,&5, be m non-degenerate critical
points of V', namely

V() =0, V"(E)£0, Vi=1,...,m.
Then (1) possesses a layer solution of the form (5) with £ — £9.

In Corollary 1.1 multi-layered solutions are constructed in ”separate”
non-degenerate local maximum or local minimum points of the potential V.
These layers(zero points of solutions) are well separated. We will also obtain
so-called clustering-layered solutions in the next theorem, and these layers
appear within a very small neighborhood of a local maximum point of V.

Theorem 1.2. Let s € (%, 1) and 7 be a positive constant satisfying T < 2(22;:11).

Let T be a local mazimum point of V', namely there exists a bounded open
interval I such that

zel, V(z) = max V(z) >V(z), V=zel\{z}

Then for any m > 1, there exists g > 0 such that for any e < £q, (1) has a
solution of the form (5), where these layers satisfy £&§ — T as € — 0. Moreover

& —&in

e

min

>(Ce 5T - 00, as €—0. (6)
1<i<m—1

Furthermore, if T is non-degenerate, namely V' (Z) < 0, then
|65 — 7| < Ce2, i=1,...,m. (7)
2(25-1)
2541
T T

2 < 25 —1’
which is a necessary condition to make that both (6) and (7) hold true. In
other words, if § > 1 — 57, it is impossible that (1) possesses a solution of
the form (5) satisfying (6) and (7).

For convenience, we shall assume that the non-degenerate local maximum
point Z of V is the origin.

Note that the condition 7 < in Theorem 1.2 yields
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2. Preliminaries

We first introduce the fractional Sobolev space H*(R™) as the space of func-
tions ¢ € L?(R™) such that

/ (14 2|60 2dA < +oo,
RTL

where " denotes the usual Fourier transform. The fractional Laplacian (in R™)
(=A)*¢ of a function ¢ € H*(R™) is defined in terms of its Fourier transform
(in the space of tempered distributions) by the relation

(=) d(N) = [A*S(N).
The fractional Laplace operator (—A)® can also be defined as a Dirichlet-to-
Neumann map for a so-called s-harmonic extension problem (see [5]). Given a
function ¢, the solution ¢ of the following problem

{div(yl_Qqu’;) =0 inRYM ={(z,y):2 Ry >0},
$(w,0) = ¢(x) on R™

is called the s-harmonic extension of ¢. One has

3w = [ pla = 2)ole)dz,

where pg(x,y) is the s-Poisson kernel
2s

Yy
NCR) N oR— —
) Tl o Jy[2)

and C,, s is the constant makes fRn ps(x,y)dx = 1. Under suitable regularity,
the authors in [5] proved that

(—A)°¢(x) = = lim y*0,¢(z.y).
y—0+
For the linear problem
(-Ay¢+D(@)p=g in R, (8)
where D is a bounded potential, we need to use the following results in [6].

Proposition 2.1. ([6]) Let D be a continuous function, such that for m points
&,i=1,...,m and B =U",Bgr(&) we have

inf  D(x) > 0.
z€R"\ B

Then, given any number § < p < n+ 2s, there exists C' = C(u, m, R) such
that for any ¢ € H* N L>®(R™) and g with ||[p~"g||L=®n) < +00 that satisfy
(8), one has the following estimate

||p_1<p||L°°(]R"L) < C[H(PHLOO(B) + Hp_lgHLoc(Rn)].
Here
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Furthermore, if inf,cgn D(x) > 0 holds true, then

lp™ ¢l e @ny < Cllp™ gl Lo em)-
Particularly, if D(x) = d > 0 holds true, then (8) has a unique solution
© = Tylg] and it satisfies the Hélder estimate
sup [2(2) — #()|
TH#Yy |J} - yla

where o = min{1, 2s}.

< Cligll Lo @y

Note that the results in Proposition 2.1 hold true for all s € (0,1) and
general dimensions n. In what follows, we let s € (%, 1) and n = 1.

3. Formulation of the problem: the ansatz

The existence of the solution w to (4) has been proven in [2,16] and additionally
one has the following asymptotics (see also [2,16]): there exist constants 0 <
C1 < C5 such that the solution w(x) of (4) satisfies

Cl CV2

| |28 <1 —w(z)] < || |z > 1 (9)
Cy p Cs
W <w'(z) < |22 |z| > 1. (10)

Note that for fixed constant A > 0, wy(z) := w(A2 z) satisfies
(=0zz)wr(z) — AF(wx(z)) =0 z €R.
For points §; € R(i = 1,...,m), we let
wl(m) = (—1)i_1wv(§i) (J? — 5;) .
Then w;(x) satisfies
(—=0zz) wi(x) — V(&) F(wi(z)) =0 x €R. (11)

Given numbers M > 0 large and § > 0, we define the configuration space
U as

U{{(fl,...,fm): min

1<i<m—1

> < .
. > M, 121;2;1@\ _5} (12)

We construct the approximate solution

Wg(l‘) = sz(:ﬂ) + (_1)771%_1
i=1

&

c "

With this definition we have that We(x) ~ w;(z) for values of z close to
We construct a solution u of (3) of the form

u(z) = We(z) + o(),
where ¢ € H*(R) is a small function. Now (3) can be expanded as
(—00) d(2) = V(ex)(1 - 3WE(2))p(a) = E+ N(¢)  w€R,  (13)
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where
E =V(ex)F(We) = > V(&) F(wi), (14)
=1
N(¢) = =V (ex)[3We(2)$” + ¢%). (15)

We would like to invert the operator (—8.)® — V(ex)(1 — 3W¢) in equation
(13) to obtain a fixed point equation for ¢. However, the operator

Le¢ = (—04)° = V(ex)(1 = 3WE (2))

may have a kernel, near the kernel

Span{w} (z), wh(z),..., w,(x)}.

Hence, rather than solving problem (13) directly, we shall first solve the fol-
lowing projected problem

Lep=E+N(¢)+ > cw, z€R, (16)

/(;Sw;(x)dx:O, i=1,...,m. (17)
R

4. Linear theory

In this section we consider the corresponding linear problem

Legp = h(x +ch z) xR, (18)

/(;Sw;(x)dx:O, i=1,...,m. (19)
R

Note that the coefficients ¢; are uniquely determined in terms of ¢ and h when
¢ is sufficiently small. Indeed, we have

ch / wiwdr = / Wi[(=02a)’d — V(ex)(1 — 3W§2(m))¢ — hldz
Since

/ W (~Byy) b = / (0w = / OV(E)L - Bululdr,  (20)
R R R

we have

ZCZ / wiw)dr = / wi{[V(§)(1 - 3w]2-) —V(ex)(1— 3W§2)}¢ — hldx

_ / wi{[(V(&) = V(ex))(1 = 3u?)
3V () (W2 — w?)]¢ — h}da. (21)
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It is easy to see that
/Rw;w;dx = ﬁjéi]' + O(M_l_Qs)

where the numbers 8; > 0 are independent of ¢ and M is large. Hence the
matrix of linear system (21) for ¢;(i = 1,...,m) is diagonally dominant for
small &, hence system (21) is uniquely solvable.

For the right hand side terms of (21) we have

[ ) = Vien - 3ud) = 3V ()72 - o

< COle+ M™*][]l 2(w)-
Hence we obtain the following lemma.

Lemma 4.1. The numbers ¢; in (18) satisfy
-1 / ,
¢i = — [ w;hdx +6;,
Bi Jr

16:] < Cle + M|l L2(r)-

where

The main task of this section is to establish the following proposition.

Proposition 4.1. Given m > 1, % < p < 14 2s, there exist positive numbers
My, 9,00 such that for any points &1, ...,&, and any € with

§i —&it1

3

min
1<i<m—1

> My, 0<e<eo, mzax|§z| <y

there exists a unique solution ¢ = T'[h] of (18)—=(19) that defines a linear oper-
ator of h, provided that

_ G 1
o 1h||L<>o(JR) < 400, plz)= Z T e &ile

Moreover
o™ |l @) < Cllp™ bl Lo (r)-

To prove this result we need to establish the following several lemmas.
We have the following nondegeneracy lemma.

Lemma 4.2. The only bounded solution to
(=022)°¢ = M1 = 3u]¢ =0, |¢| <1

18 cw;\.
Proof. For s = %, this has been proved in [7]. It is easy to see that the same

proof works exactly in the case of s > % In fact for s > %,

super-solution and hence one can prove that |¢| < Iw\%“ for |z| > 1. Then

!
wy works as a

we let ¢ = wg\w. Integrating by parts we then obtain that v» = Constant. We
omit the details. O
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Lemma 4.3. Under the conditions of Proposition 4.1, there exists C > 0 such
that for any solutions of (18)~(19) with |[p~ ¢|| (=) < 00 we have the apriori
estimate
™ bl L) < Cllo™ hll Lo -

Proof. We argue by contradiction: namely there exist sequences €, — 0, &,
i=1,...,m, with
gin - §i+1,n
| —

€n

and ¢, h, satisfying (18)—(19) such that

min
1<i<m—1

lon SnllLe@ =1, llon hallLe@) — 0, (22)

where

- 1
pn(r) = Z ﬁ

We claim that for any fixed R > 0 we have that

m
Z ||¢n||L°°(BR(§in/6n)) — 0. (23)

i=1
Indeed, assume that for a fixed j we have that [|¢n ||z (Bg(c;,/c0)) =7 > 0.

We set ¢ () = (2 + ij—:) We also assume that \j, = V(&) — A > 0. One
has

(=000)* () =V (Ejn + en@){1 = 3[(=1) " wn,, (2) + 00 (2)]*} I (2) = hon (),

where

hn(2) = hy, (x + ?) + Zcm(—l)i_lw&m (fjn_fm + x) .
" i=1

En

We observe that Ay, (z) — 0 uniformly on bounded closed intervals. From the
uniform Holder estimates in Proposition 2.1, we also obtain equicontinuity of
the sequence g?)n Thus, passing to a subsequence, we may assume that gZ;n
converges, uniformly on bounded closed intervals, to a bounded function qg
which satisfies ||(Z§||LOC(BR(O)) >~ and

(_am:v)sqg - 5‘[1 - 311}%\](5 =0, (24)

/ éw;dx =0. (25)
R

Combining (24), (25) and the nondegeneracy of the solution w to (4) ob-
tained in Lemma 4.2 we know that qAS = 0, which contradicts with the fact
HJ)”LOO(BR(O)) > ~. Formula (23) and the apriori estimate in Proposition 2.1
give that |[p;, ¢n | oo ®) — 0, which contradicts with (22). O
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In order to construct a solution to problem (18)—(19), we first establish
a solution to a simpler problem

(—00z)* () + 2V (e2)§ = h(x Zcz (26)

/qbwg(x)dx:O, i=1,...,m. (27)
Lemma 4.4. For any h with |[p~h| p®) < 0o, there exists a unique solution
of (26)—(27), ¢ = Q[h] € H*(R). Moreover

o™ Q| ) < Cllo™ Lo r)- (28)

Proof. Let H be the closure of the set of all functions in C'g° (@) under the
norm

1615 = [ 199y 2oddy + [ 2v(e0)oPds <+,
T

where ¢ is the s-harmonic extension of ¢. Furthermore we define a closed
subspace X of H as

:{&eH:/w;dx:o,vz‘:1,...,m}.
R

Then, given h € L?, we consider the problem of finding a é € X such that

() := [ V- Vipy' =2 dady + /}R 2V (ex)prpda = /R hpdz, V1€ X.

w2

(29)
We observe that (-,-) defines an inner product in X. Then Riesz’s theorem
yields existence and uniqueness of a solution to (26)—(27). Moreover we have

¢llz2®) < Cllhllr2m)

Next we check that this produces a solution in strong sense. Let W be the
space spanned by the functions w;. We denote by P[h] the L?(R) orthogonal
projection of h onto W and by P[h] its s-harmonic extension. Then for each
i € H, we know that ¢ := 7j — P[y] € X. Substituting this 1 into (29) we
obtain

Vo - Viy' = dedy + / 2V ¢ndx = / hndx + / (2V ¢ — h) P[n]dz
R R R
+ / b(—0ua)* Plildz,
where we used the relation

[ V- OPlaly dedy = [ 6(-0,.)°Plalde.
R R

]

For n € L*(R) we consider the functional

n) =/R¢(—8m)SPndw
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We have

126 (n)| = ‘/RUP[(—ﬁm)Sd?]dx < Clnll2 | P(=0x2)*d]ll2

m

< Clnll2)

i=1

< Cllgll2llmll2,

[ wit-0.0)°0a

where in the last inequality we have used (20). Hence there exists an e(¢) €
L?(R) such that

o) = [ e(opmda.
If ¢ was a priori known to be in H*(R) we would have precise formula of e(¢)
e(¢) = P[(=022)"¢)-
Since P is a self-adjoint operator in L?(R) we then have that
Vo - Viy' = dedy + / 2V ¢mdaz = / hndz,
R% R R
where
h=h+ P[2V¢ — h] 4+ P[(—02:)°¢].
Since h € L%(R), it follows that ¢ € H*(R) and it satisfies
(=022)°0(2) + 2V (ex)¢ — h(x) = P[(=0ra)’¢ + 2V —h] € W,

hence Eqgs. (26)—(27) are satisfied.
Now we prove (28). We have

lp™ P[(=022)°¢ + 2V — hllloc < Clllll2 + [IAll2] < CllAllz < Cllp™ Ao,

where we used the condition % < p < 1+ 2s. This and Proposition 2.1 show
the desired estimate. U

Proof of Proposition 4.1. Let B be the Banach space

B:={¢ € CR): [[¢]le := 07 dll o=y < o0} (30)
Problem (18)—(19) can be written as the fixed point problem
¢ = QBV (ea)(1 - W¢(@))e] = Q[n], ¢ € B. (31)

We claim that
Alg] == Q[V (ex)(1 — Wi(x))g]

defines a compact operator in B. Indeed, assume that {¢,} is a bounded se-
quence in B. It is easy to see that for some a > 0 the estimate holds true

V(ex)(1 = WE(2))¢n| < Clldnllep'™,
namely

p~H|V (ez) (1 — WE(z))¢n| < Cllgnlls.



NoDEA Layered solutions for a fractional inhomogeneous Page 11 of 26 29

It follows that g, := A[¢,] satisfies
0™ gnl = P71 QIV (e2) (1 = WE(2))¢n]|
< Cllp™'V(ex)(1 = WE(x))bnll
= Cp®p~lp™ V(ex)(1 = WE(2))bnllo
< Cp®llp~ OV () (1 — W (2))dnlloo < Cp™

Besides since g, = Ty[(d — V')gn + hy], we use Holder estimate in Proposition
2.1 to get that for some 5 > 0

|gn(‘r) — gn(y)| <C.

sup
z#Y ‘JJ - y|ﬁ

Arzela’s theorem gives the existence of a subsequence of g,, which we label the
same way, that converges uniformly to a continuous function g with

lp~lgl < Cp°.
Let R > 0 be a large number. Then we have

107" (gn — D@ < 107 (9n — 9l (Br0) +C max p ().

Since

max p%(z) - 0 as R — oo,
|z|>R

we deduce that ||g, — g|lp — 0, and the claim is proved.

Now, the apriori estimate Lemma 4.3 tell us that for h = 0, (31) has
only the trivial solution. Fredholm’s alternative gives the desired result in this
proposition. (]

Let us write the solution ¢ = T¢[h] to emphasize the dependence of the
operator T on £. In the rest of this section, we obtain the differentiability of
¢ = Te[h] with respect to &.

Lemma 4.5. The map & — T¢ is continuously differentiable, and for some
C > 0, one has

C .
10, Te [hll|e < ;”h’H]}% Vi=1,...,m,
for all & satisfying constraints (12).

The argument of this lemma is rather similar to that of Lemma 4.4 in
[6], we omit it.

5. Solving the nonlinear intermediate problem

In this section we will apply contraction mapping principle to solve nonlinear
problem (16)—(17).
We first make an estimate of the error £ in the norm || - ||g. Recall that

B = V(ea)F(We) = Y V(€ F(w))
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We rewrite it as

E=V(ex) [F(We) =Y Flwi)| + ) [V(ex) = V(&)]F(wy).
i=1 i=1
Here we need to take p € (3, s). Let
Mi= min |95
1<i<m—1 5

The second term in F can be easily estimated as

m

p~H (@)Y [V(ex) — V(&) F(w;)

=1

< Ces.

To estimate the interaction term (the first term) in F, we divide the R into
the m sub-intervals

I :={zx e R:|w;(z)] < |wi(x)], Vi#7, 1<i<m}.

For x € I;, we have

m
1 1
Viex) | F(We) = 3 F(w) ’ SO Ten SOl e
i=1 i#] € i#] €
1 1
<C — Y
1+ |z — %‘“ it glsEJ‘QSfﬂ

< Cp(m)M”_2s < Cp(x)M~°.

Therefore we obtain that

1Els < Cle® + M™°]. (32)
Similarly, we can obtain

I0cEls < Tt + M7, (33)

We denote

k:=Cle®+ M~°].

We have the following result.

Lemma 5.1. Assume that ||E||p is sufficiently small, then (16)—(17) possesses
a unique small solution ¢ = (&) with

12z < ClE|s.
Moreover the map & — ®(€) is of class C*, and for some C > 0

1
10e2(E)lle < C | Zl1Ele + 19 Elle (34)

for all € satisfying constraints (12).
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Proof. Problem (16)—(17) can be written as the fixed point problem
¢ =Te(E+ N(9)) =: Ke(9), ¢€B. (35)
Let
Z={¢eB:o¢)lls <o}
If ¢ € Z, then it is easy to see that
IN()]ls < Cllll5-

Hence
1Ke()lls < ColllElls + o).
Choosing
o =2Co[|Ells,
we have

K g 2
< R <
| £(¢)||cho[200+a]io,

which means that K¢(Z) C Z.
We observe that
[N (¢1) = N(¢2)| < Clln| + [¢2l]l¢1 — ¢al,
which yields that

IN(é1) = N(¢2)lls < Colldr — ¢2lls.

Hence
[Ke(¢1) — Ke(d2)llp < Colldpr — alfs.

Reducing o if necessary, we obtain that K¢ is a contraction mapping and hence
has a unique solution of problem (35) in Z. We denote it as ¢ = ®(£).
Next we prove that ® is C'' with respect to £. Denote
G(6,8) == ¢ —Te(E+ N(¢)).
Let ¢o = ®(&o), then G(¢o, &) = 0. We have

9sG (6, W] = — Te(N'(9)9),
where N'(¢) = —V (ex)[6We ()¢ + 3¢?]. Hence

IN"(¢)¢lls < Col[¥ls.

Then, if o is sufficiently small, we have that dyG(¢o,&o) is an invertible oper-
ator with uniformly bounded inverse. Besides

0cG(9,8) = (OcTe)(E + N(9)) + Te (0 E + 0 N(9)).

Both partial derivatives are continuous in their arguments. The implicit func-

tion theorem applies in a small neighborhood of (¢g,&y) to give existence and

uniqueness of a function ¢ = ¢(&) with ¢g = ¢(&p) defined near &,. Besides

#(€) is of class C't. However, by uniqueness, we must have ¢(&) = ®(€).
Finally we note that

DeN(¢) = =3V (e2)9 We ()¢,
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0N (@E@)ls < Sl (©I3 < B2 (36)
Since
00(6) = ~ 5 e g (TE + N@E) + Te(0F + 0N (B(6))],
from this, (36) and Lemma 4.5, we obtain (34). O

6. The variational reduced problem

Recalling that we have obtained the existence of a unique solution u = We(x)+
(&) of the problem (16)-(17). Namely, if we denote this solution as u = ug,
we have

(—0zz)’ue — V(ex)(ue — ug Z ciw (37)
Then, in order to prove Theorem 1.1, we need to verify that the coefficients
¢i(i = 1,...,m) are equal to zero, by choosing an appropriate point & =
(&1, &m)-
Problem (3) corresponds to an energy functional

Je(u) = B /Ru(z)(*am)su(:l:)dx + i/RV(é:x)(l —u%(x))%dz.
Note that J.(u) is well-defined, since s > 1. We denote
T(§) = Je(ug) = J(We(x) + 2(€)).
We will first establish expansions of the energy J(£).

Lemma 6.1. Assume that the number M~ in the definition of U in (12) is
taken so small that

|E|e +ell0Ellp < k < 1.
Then
T (&) = J-(We(x)) + O(K?) (38)

and
2

0eJ (§) = e (We(w)) + O() (39)
uniformly on points & in U.

Proof. Since

7€) = 5 [ vele) 0 uctorto + [ Vien)1 - ud(a) P
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we can expand
T = 1.(We) + 5 [ #(~00,)0da (10)
+ [ D00, We = V(e We(1 = WE(a) o
/ V(ex) — AWED] — 2[uf — W§ — 2We D) }da.

In view of ||E||g < & then ||®||z < Ck, and from equation (16) we also have
[(=0s2)°®|ls < Ck. Hence

/ B(—0yy ) ®dr < CK? / prdx < CK? (41)
R R
and

/ V(ex){[ug — W — AWP®] — 2[uf — W7 — 2W | }dx (42)

R
= / V{[(We + @) — W — AW3P] — 2[(We + )% — W2 — 2W, D]}
R
< Ck? / prdr < OK?,
R

where we have used the definition of p(z) = Y., m and the fact that
p> 5.

Note that (—0yz)*We — V(ex)We(1 — Wg(x)) =F, so

/ O[(—0pe) We — V(ex)We(1 — Wg(sr:))]dat < Ck? / pPde < Ck?. (43)
R R

From (40)—(43), we obtain (38).
Differentiating (40) with respect to ;, we have

De, T (€) = D, J.(We) + / [0, ®(—0,0) el + / (B0, & + B0, Elda
R
+ / V(ex){[(We + @)% — W2 — 3WD|0e, We (44)
R

+ [(We + @)° — W2]0:, @ + 0, @ }da.

We have that
/ V(ex)[(We + ®)° — W — 3W2 0|0, Weda < gf«ﬁ.

R

From this, (44), (34) and the condition || E|g + ¢||0¢E||zg < k, we can obtain
(39). O

Next we estimate J.(W¢) and 0¢J. (W¢). We begin with the simpler case
m = 1. Note that the condition ||E||g + ¢||0:E||g < & is always true. Now

We(z) = ws (x - f) A=V,
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It is easy to see that

JWe) = )+ § [V + e - VION -~ ud@)Pdr, (45

where

JMw) = %/Rv(—am)svdx + % /(1 —v?)%dz.

R

Note that
1
JMwy) = N2 TN (w). (46)

Indeed, recalling that wy (z) = w(A2s z) satisfies the equation

(_ama:)sw/\ - )\('LU)\ — w:;\> =0 in R,
where w = w; is the unique solution of

(—0p)*w — (w—w3) =0, w(0)=0, w(+oo)==+1.

Then, after a change of variables we obtain (46).
We claim that

/R V(€ + ) — VI — wd (x))dx = O(e3). (47)

Indeed, for any large number ¢ with ¢ < ¢!

Wi+ en) - VOl - w(o)de

, we have

= [ Wiea+6) = V()1 - w*(V(©)Fa) s
= [ Ve Ve -t o) e

m‘,_‘
8
~
~
™)
QU
8

+ / Viez +€) — V(E) - V(€)1 — w?(V(€)F
lz|<¢

+ /<< - 71[V(6$ &) = V(&) — eV (©)2])(1 — wi(V (€)% x))2dw

< O™+ Jopax V(ex+&) = V(§) —eV'(Oxl]

—1
£
+C’/ e2xx 4 dx.
¢
In view of

et 0527 5

52/ 2 Ydy < { Ce?lnl, ,
¢

4s—1
Ce ,

o oW

>
<

o= ®» »

<

N[

we have

[t eo) - vienn - was

; 1
<Cle™ '+ +e%In E]

Choosing ¢ = !, we obtain (47), where we used the fact 1+ < s < 1.
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We claim

0 / V(€ +22) — V()L — wl(2))dx = (1), (48)

o

Indeed

0 [ IVe-+e0) ~ VIO)1 — (@) da
= [0V (€ +20) = 36V()1 — w0
—2VEIQVIE) [Vi+en) - Vi
(1 —wi (2))w' (V3 z)da
From the proof of (47), we know that

/R[asV(S +ex) = 0V (§))(1 - wi(w))*dx = O(e™).

For the other term, we have

1

[t +e0) ~viglat @)’ (via) da
R

Al fot)
|z|>e—1 |z|<¢ (<|z|<e—1

x V(¢ +ex) = V(©la(l - wi (@)’ (Viia)

< CE*™ '+ max |V(iex+¢€)— +C’/ wir
z€(=¢,0)

< Cle™ ' +e(+¢],
where in the last inequality we have used the fact s > % Choosing ¢ = 2572
and noting that § < s < 1, we obtain (48).
Hence, from Lemma 6.1, the definition of x and (45)—(48), we obtain the
following lemma.

Lemma 6.2. Let ¢, = J'(w) and m = 1. Then the following expansions hold
true

J(€) = e.V(§)' 7% + 0(™),

0eT(€) = cue [V()1 % | + 0> ).

For the general case m > 1, without loss of generality, we may assume
that & < & < -+ < &,,. Taking minj<;<m—1 §i— 5’“’ > M > 1, we know

that || E||g < Ck also holds true. Hence from Lemma 6.1, we have also

K/2
T = V) +O02),  3T(6) =0 (Wew) +0 (). (19)
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For each i(i = 1,...,m—1), we denote the unique number in (fl 5”1 ) as
¢; such that |w;(¢;)| = |wit1(¢;)|- From the properties of the potential function
V', we know that there exists o; € (0, 1), independent of &, such that

Q=§+ i1 =& & i=1,...,m—1.
g g

We have the following lemma.
Lemma 6.3. The following expansions hold true
w @+t o(l)
o . 17% o i 2s —2s
T(&) = e Z V(&) = Z |€i+1—fi 251 + 0™ + M™7), (50)
€

=1 i=1

m m—1 ~
Zv<5i>1—2¥] =Y 2 o). )

2s—1
=1

_ cio} % 4 cipr (1 — )2 + o(1)
25 — 1 ’

where ¢; > 0 is a constant between Cy and Cy, which are given in (9)—(10).
Proof. It suffices to expand J.(W¢(z)). We have
Je(We(z))
= %/Wg(—BII)SVng:L’—}—i/V(El‘)(l—Wg)?dw
R

72/ [ (wi(w) — (=1)'™) w5 (2) + 3 (wi(a) “)]
1<j

>

a:w)

Z(wl(x DY w,(x —1—2 w; (z YO da
1<J i>g
2

2
i 2/1 o {1— [;(wi—(—1)"‘1)+wj+;(wi+(—1)“)] } dz
=),

Z/‘ [Z —(=D)"H 4+ (wi(x) + (1)i‘1)] (=02 ) w; (z)

1<J i>7

(—Oa) w0, + V(ex)

(1- w?)Qda:

l\)\r—l

Z/ (We — w;)(—022)° (We — wj)da

j=1 I;

l\’)\»—t
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+ g:l /Ij V(jw){[l W22 - [ - w??}de + O(M ™)

LA | s \% —2s
= Z/I W5 (—0e)*w; + (Z:C)(lfw?)deJrO(M ). (52)
j=1"1;
Note that

Zm:/I @(1 —w?)2dy = i/R V(f) (1 —wj)*de + O(M'™*). (53)
j=1"1

j=1
Besides
m 1 m
w] ME j — / / xm)swj‘
Z/I ]Z::l R 2 ; R\IJ
We claim that
m m—1 ~
¢j +o(1)
(=) wyda = ) (54)
32—31-/11@\1: J z::l |€J+1E 5J|23—1
Indeed, one has
1 V(&
/ S0 (~0u) g = / %wﬁu —w?)de (55)
R\, R\,

[, e (o -9)
X {1 — w? (Vzls(gj) <$ -~ 5;))} da.

w? (vés(gj) <x - ij)) ~1,

3 (e (-2)) <
L <1V (a- 2 — 2 . (56
Vige—ep -\ )) S vige e Y

Recall that

For € R\I;, we have
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Hence for 2 < j <m — 1, we have

£, 200 (0 - ) v (o))
[ e ) v (a4
i ) e I

. . 1-2s 1—2s
_ Cj +O(1) |:(1 _ O’jfl)l_Qs é-] Eé-]—l :| ’
(57)

§i+1— &

1-2
+ 05 s
€

2s — 1

where ¢; > 01is a constant between C; and Cy, which are given in (56). Formula
(57) also holds true for j =1 and j = m, the only difference is that the right
hand side term is respectively replaced by

¢+ 0(1) (1 — )1—25 52 - gl e Cm + 0(1) 0_1—28 E’H’L — gm—l e
25 — 1 ! £ ©o2s—1 mTt €
(58)
From (55), (57), (58), we obtain (54).
Then, from (52)—(54) we have
- 1 R V(ex)
TWew) = 3 [ Goi(-0mu; + =521 - o
j=1
m—1 ~
¢j + 0(1) —2s
- Z |£j+1*£j 251 +O(M).
Jj=1 €
By the same argument for the case of m = 1, we know
1 v
/R§wj(—8m)swj + (ZI) (1- w?)de = C*V(ﬁj)l_i + O(e?%).
Hence
u“ L E G +o(1)
Je(We(2)) = c. Z V(fj)l_ﬂ - Z W + O(M ™% + &%),
j=1 j=1 c
This and (49) yield (50).
Similarly, we can obtain (51). We omit the precise argument. O

In the rest of this section, we establish the following variational result.

Lemma 6.4. c:= (c1,...,¢m) =0 if and only if 0¢ T (§) = 0.
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Proof. We have

O, J (&) = /R2 Viig - V(0¢,iie)y' ~**dudy — /R V(ex)ue(l — ug)agjude
= [ 100 e = Vicoyuela) (1 — e)log ue@da (59)
= ;/}Rciw;a&j ue(x)dx

where ¢ is the s-harmonic extension of ug = We(z) + ®(£). Note that

1
O¢ug(z) = —gw} +O(1) + 0¢,2(),

and, from Lemma 5.1, we have
1
106, 2(€)1s < C | 21215 + 101

From [, wiw)dx = 3;6;; +O(M~'72%) and (32)~(33), we know that, for small
¢ and M > 1, the matrix of linear system (59) for ¢; is diagonally dominant.
This shows that (c1,...,¢y) =0 if and only if 9¢ J(£) = 0. O

7. The proof of Theorem 1.1

In this section, we will complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By the definition of configuration space U (12), we can
choose M ~ ¢! and achieve that A C U. Then we obtain

|Blle + ell ¢ Elle < Ce*.
By Lemma 6.3 we have
T(€) = e X(§) =0(1), VI(§)—c.VYI(§) =0(1)

uniformly in & € A as ¢ — 0, where the function T is defined in Theorem
1.1. We choose J(§) — ¢, T(§) as the function g in Theorem 1.1. Then, by the
assumption on Y, we know that for all sufficiently small € there exists a £ € A
such that V7 (£°) = 0. Now applying Lemma 6.4, we obtain the result of this
theorem. O

8. The proof of Theorem 1.2

Let I be as in Theorem 1.2 and ¢ > 0 be a small number. Set

1-2s
<ece p,
2(25—1) 2(25—1)

where 0 < 7 < Y Note that 5er1 < 25— 1< 2s, since s > %
Similarly we construct a solution with the form

u(r) = We(z) + ¢().

€1+1

Agz{gz(fl,...7£m)61><
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Repeating the argument of Theorem 1.1, we can prove that the corresponding
projected problem possess a unique solution ¢ = ®(£) with

[2(€)][e < ClE|s < Cle®+ M™7].
&= 51“ > Ce %1, instead of M ~ e~ ! as
in the proof of Theorem 1.1. We also can obtain variational Lemma 6.4, and
the same energy expansion as (50) for sufficiently small e as follows

Note that now M = mini<;<m—1 ‘

m—1

TE) = S VE)H - Y |5+§|(” FOE 4 M), (60)
i=1 =1 1" e

where ¢; > 0.
To prove Theorem 1.2, applying Lemma 6.4, we know that the only task
rest is to obtain the following result.

Lemma 8.1. For ¢ sufficiently small, the following maximizing problem
max{J(§) : £ € Ac}
has a solution £° € A..

Proof. We will borrow the idea in Proposition 4.2 [13] to prove this lemma.
Since J (&) is continuous in £, the maximizing problem has a solution.
Let £€¢ € A be a maximum point of J(€).
We claim that £ € A.. We prove this by energy comparison.

We first establish a lower bound for J7(£°). Recall that 7 < 2(22:+_11) , which

guarantees that 5 < 2’% Hence we may choose o € (TT—U 2*%), which
implies
o(2s — 1) >7, 2(1—0)>T. (61)
The condition 7 > 0 makes that 257 < 1,andso o < 1. Set £ =¢1~7 (z—mTH)
Clearly &Y € I. Moreover
£Q+1 750 1—2s

< 07D < e

3

So €0 =(&9,...,€0) e A,

Since V/(0) = 0, we have the Taylor’s expansion
V(&) = V(0) + O =).
Hence from (60) we obtain
J(E) = ?é%wjj(é) > J ()

> me, V(0)'~
> mc*V(O)l_

= 0(80(2571) _'_52(170) +€2S + M*Z&)

1
2
L
2

S 0(50(23—1) +52(1—a) +€23 _"_5252%17—)7
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where in the last inequality we used M > Ce™%-1. Hence

m m—1 ~
OINCIEEDY |+§|” 2 me.V (0)'
i=1 i=1 |~ g

—C( (25— 1)+52(1 U)+525+€2e 1 )

From the previous analysis in this section, we know that four exponentials of
the corresponding powers of ¢ in the right hand side of (62) all larger than
7. From (62) we can deduce that £¢ € A.. Indeed, suppose not, then by the
definition of A, there are two possible case. The first case is that one of the £ is
an endpoint of I. Then by condition V' (0) = max,e; V(z) > V(z), Vz € I\{0},
we know that there exists 51 > 0 such that V(£5) < V(0) — (34, so

ey V(E)' T <meV(0)' 7% — By
=1

for some [ > 0. This contradicts with (62). The other case is that
1-2

St R = ¢e”. Then
m m—1 ~
e 1—L - Cz+0(1) 1—L - . ~ T
0*2‘/(51) 2 z; 7‘ e 2o = < me V(0) 2 C[1g?%1£—1cl+o(l)]€

which contradicts with (62) again.
Hence £° € A.. O

Proof of Theorem 1.2. Combining Lemmas 6.4 and 8.1, we see that (1) possesses
a solution of the form (5). From the argument of Lemma 8.1, we know that

Z & — f+1

1-2s

= o(e"),

which gives (6). We also know that V(&) — max,er V(z) = V() — V(0) =
o(l), i=1,...,m

Next we prove (7). Suppose not, then by the Taylor’s expansion, due to
V" (0) < 0, there exists some ¢ such that

V(E) < V(0) - CeT,
where C' > 0 is a constant. Hence applying Taylor’s expansion again, we have
V(E) = < V(0T —Ce
which yields

m—1

C*ZVEE I*RZ@T%“)«*ZW =

i=1
< me,V(0)! “2 — CeT.

This contradicts with (62), and so (7) holds true.
The proof of Theorem 1.2 is complete. O
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9. Open questions

This paper initiates the study of effect of inhomogeneity in fractional Allen-
Can equations. We pose several challenging questions in line with the standard
s =1 case.

e Are results stated in this paper true even when s = %? In view of the
results of [3,4], we turn to believe so. s = % is the borderline case.

e What happens when 0 < s < %‘? It is expected that nonlocal interactions
and nonlocal mean curvature will come into effect.

e What about higher dimensional concentrations (on geodesics, minimal
surfaces)? Again there should be a dramatic difference between s > L

2
and s < %
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