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Abstract. We consider the problem

ε2s(−∂xx)sũ(x̃) − V (x̃)ũ(x̃)(1 − ũ2(x̃)) = 0 in R,

where (−∂xx)s denotes the usual fractional Laplace operator, ε > 0 is a
small parameter and the smooth bounded function V satisfies
inf x̃∈R V (x̃) > 0. For s ∈ ( 1

2
, 1), we prove the existence of separate multi-

layered solutions for any small ε, where the layers are located near any
non-degenerate local maximal points and non-degenerate local minimal
points of function V . We also prove the existence of clustering-layered
solutions, and these clustering layers appear within a very small neigh-
borhood of a local maximum point of V .
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1. Introduction

We consider the following fractional inhomogeneous Allen–Cahn equation

ε2s(−∂xx)sũ − V (x̃)ũ(1 − ũ2) = 0 x̃ ∈ R, (1)

where (−∂xx)s, s ∈ (0, 1), denotes the usual fractional Laplace operator, a
Fourier multiplier of symbol |ξ|2s. Here ε > 0 is a small parameter and the
bounded smooth function V satisfies inf x̃∈R V (x̃) > 0. We investigate the
existence of layer solutions to (1) by applying a Lyapunov Schmidt reduction
method. We call layer solution an heteroclinic connection for Eq. (1). This
method has been applied in [6] to construct concentrating standing waves for
the fractional nonlinear Schrödinger equation.

For the case s = 1, it is shown in [14] that the corresponding problem in
a bounded interval of (1)

ε2u′′ + V (x)u(1 − u2) = 0 x ∈ (0, 1), u′(0) = u′(1) = 0,

has interior layer solutions, and any layer solution can have its layers (namely
its zeros) only near two endpoints of the interval, the local minimum points
and local maximum points of V (x). Furthermore, there appears at most one
zero near each local minimum point of V . Subsequently, in [9], the authors
extended this result to the two space dimension case considering

ε2Δu + V (x)u(1 − u2) = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω, (2)

and introduced a weighted arclength
∫
Γ

V
1
2 ds. The authors proved that (2) has

an interior layer solution and this layer appears near a non-degenerate closed
geodesic curve relative to the weighted arclength

∫
Γ

V
1
2 ds. Existence of layer

solutions and clustering layer solution of (2) in general dimension Euclidean
spaces and Riemannian manifolds were also obtained in [10,11,15,17]. The
case V ≡ 1 of the equation in (2) corresponds to the standard Allen–Cahn
equation (see [1])

ε2Δu + u(1 − u2) = 0 in Ω.

We now come back to our problem (1) scaling the variables as x̃ =
εx, ũ(x̃) = ũ(εx) := u(x). Therefore, Eq. (1) writes

(−∂xx)su(x) − V (εx)F (u(x)) = 0 x ∈ R, (3)

where

F (u) := u(1 − u2).

Note that F is an odd function. We will find a solution to (1) if we may
construct a solution to (3).

Denote w the unique solution of

(−∂xx)sw − F (w(x)) = 0, w(0) = 0, w(±∞) = ±1. (4)

The previous heteroclinic connection w has been proved to exist and to be
unique in [2,16]. We now describe our main results.



NoDEA Layered solutions for a fractional inhomogeneous Page 3 of 26 29

Theorem 1.1. Let s ∈ ( 1
2 , 1) and let Λi ⊂ R, i = 1, . . . , m, m ≥ 1, be disjoint

bounded open interval. Set Λ = Λ1 × · · · × Λm. Assume that the function

Υ(ξ1, . . . , ξm) =
m∑

i=1

V θ(ξi), θ = 1 − 1
2s

> 0

has a stable critical point situation in Λ in the following sense: there exists
δ0 > 0 such that for any g ∈ C1(Λ̄) with ‖g‖L∞(Λ) + ‖∇g‖L∞(Λ) < δ0, there is
a ξg ∈ Λ such that ∇Υ(ξg) + ∇g(ξg) = 0.

Then for all sufficiently small ε, (1) has a solution of the form

ũ(x̃) =
m∑

i=1

(−1)i−1w

(

V (ξε
i )

1
2s

x̃ − ξε
i

ε

)

+
(−1)m−1 − 1

2
+ o(1), (5)

where ξε = (ξε
1, . . . , ξ

ε
m) ∈ Λ and ∇Υ(ξε) → 0 as ε → 0.

Corollary 1.1. Let s ∈ (1
2 , 1) and let ξ0

1 , . . . , ξ0
m be m non-degenerate critical

points of V , namely

V ′(ξ0
i ) = 0, V ′′(ξ0

i ) 
= 0, ∀ i = 1, . . . , m.

Then (1) possesses a layer solution of the form (5) with ξε
i → ξ0

i .

In Corollary 1.1 multi-layered solutions are constructed in ”separate”
non-degenerate local maximum or local minimum points of the potential V .
These layers(zero points of solutions) are well separated. We will also obtain
so-called clustering-layered solutions in the next theorem, and these layers
appear within a very small neighborhood of a local maximum point of V .

Theorem 1.2. Let s ∈ ( 1
2 , 1) and τ be a positive constant satisfying τ < 2(2s−1)

2s+1 .
Let x̄ be a local maximum point of V , namely there exists a bounded open
interval I such that

x̄ ∈ I, V (x̄) = max
x∈I

V (x) > V (z), ∀ z ∈ I\{x̄}.

Then for any m > 1, there exists ε0 > 0 such that for any ε < ε0, (1) has a
solution of the form (5), where these layers satisfy ξε

i → x̄ as ε → 0. Moreover

min
1≤i≤m−1

∣
∣
∣
∣
ξε
i − ξε

i+1

ε

∣
∣
∣
∣ > Cε− τ

2s−1 → ∞, as ε → 0. (6)

Furthermore, if x̄ is non-degenerate, namely V ′′(x̄) < 0, then

|ξε
i − x̄| ≤ Cε

τ
2 , i = 1, . . . , m. (7)

Note that the condition τ < 2(2s−1)
2s+1 in Theorem 1.2 yields

τ

2
< 1 − τ

2s − 1
,

which is a necessary condition to make that both (6) and (7) hold true. In
other words, if τ

2 ≥ 1 − τ
2s−1 , it is impossible that (1) possesses a solution of

the form (5) satisfying (6) and (7).
For convenience, we shall assume that the non-degenerate local maximum

point x̄ of V is the origin.
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2. Preliminaries

We first introduce the fractional Sobolev space Hs(Rn) as the space of func-
tions φ ∈ L2(Rn) such that

∫

Rn

(1 + |λ|2s)|φ̂(λ)|2dλ < +∞,

whereˆdenotes the usual Fourier transform. The fractional Laplacian (in R
n)

(−Δ)sφ of a function φ ∈ Hs(Rn) is defined in terms of its Fourier transform
(in the space of tempered distributions) by the relation

̂(−Δ)sφ(λ) = |λ|2sφ̂(λ).

The fractional Laplace operator (−Δ)s can also be defined as a Dirichlet-to-
Neumann map for a so-called s-harmonic extension problem (see [5]). Given a
function φ, the solution φ̃ of the following problem

{
div(y1−2s∇φ̃) = 0 in R

n+1
+ = {(x, y) : x ∈ R

n, y > 0},

φ̃(x, 0) = φ(x) on R
n

is called the s-harmonic extension of φ. One has

φ̃(x, y) =
∫

Rn

ps(x − z, y)φ(z)dz,

where ps(x, y) is the s-Poisson kernel

ps(x, y) = Cn,s
y2s

(|x|2 + |y|2)n+2s
2

,

and Cn,s is the constant makes
∫
Rn ps(x, y)dx = 1. Under suitable regularity,

the authors in [5] proved that

(−Δ)sφ(x) = − lim
y→0+

y2s∂yφ̃(x, y).

For the linear problem

(−Δ)sϕ + D(x)ϕ = g in R
n, (8)

where D is a bounded potential, we need to use the following results in [6].

Proposition 2.1. ([6]) Let D be a continuous function, such that for m points
ξi, i = 1, . . . , m and B = ∪m

i=1BR(ξi) we have

inf
x∈Rn\B

D(x) > 0.

Then, given any number n
2 < μ < n + 2s, there exists C = C(μ,m,R) such

that for any ϕ ∈ Hs ∩ L∞(Rn) and g with ‖ρ−1g‖L∞(Rn) < +∞ that satisfy
(8), one has the following estimate

‖ρ−1ϕ‖L∞(Rn) ≤ C[‖ϕ‖L∞(B) + ‖ρ−1g‖L∞(Rn)].

Here

ρ(x) =
m∑

i=1

1
(1 + |x − ξi

ε |)μ
.
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Furthermore, if infx∈Rn D(x) > 0 holds true, then

‖ρ−1ϕ‖L∞(Rn) ≤ C‖ρ−1g‖L∞(Rn).

Particularly, if D(x) ≡ d > 0 holds true, then (8) has a unique solution
ϕ = Td[g] and it satisfies the Hölder estimate

sup
x�=y

|ϕ(x) − ϕ(y)|
|x − y|α ≤ C‖g‖L∞(Rn)

where α = min{1, 2s}.
Note that the results in Proposition 2.1 hold true for all s ∈ (0, 1) and

general dimensions n. In what follows, we let s ∈ (1
2 , 1) and n = 1.

3. Formulation of the problem: the ansatz

The existence of the solution w to (4) has been proven in [2,16] and additionally
one has the following asymptotics (see also [2,16]): there exist constants 0 <
C1 < C2 such that the solution w(x) of (4) satisfies

C1

|x|2s
≤ |1 − w2(x)| ≤ C2

|x|2s
, |x| > 1 (9)

C1

|x|1+2s
≤ w′(x) ≤ C2

|x|1+2s
, |x| > 1. (10)

Note that for fixed constant λ > 0, wλ(x) := w(λ
1
2s x) satisfies

(−∂xx)swλ(x) − λF (wλ(x)) = 0 x ∈ R.

For points ξi ∈ R(i = 1, . . . , m), we let

wi(x) := (−1)i−1wV (ξi)

(

x − ξi

ε

)

.

Then wi(x) satisfies

(−∂xx)swi(x) − V (ξi)F (wi(x)) = 0 x ∈ R. (11)

Given numbers M > 0 large and δ > 0, we define the configuration space
U as

U =
{

ξ = (ξ1, . . . , ξm) : min
1≤i≤m−1

∣
∣
∣
∣
ξi − ξi+1

ε

∣
∣
∣
∣ ≥ M, max

1≤i≤m
|ξi| ≤ δ

}

. (12)

We construct the approximate solution

Wξ(x) :=
m∑

i=1

wi(x) +
(−1)m−1 − 1

2
.

With this definition we have that Wξ(x) ≈ wi(x) for values of x close to ξi

ε .
We construct a solution u of (3) of the form

u(x) = Wξ(x) + φ(x),

where φ ∈ Hs(R) is a small function. Now (3) can be expanded as

(−∂xx)sφ(x) − V (εx)(1 − 3W 2
ξ (x))φ(x) = E + N(φ) x ∈ R, (13)
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where

E = V (εx)F (Wξ) −
m∑

i=1

V (ξi)F (wi), (14)

N(φ) = −V (εx)[3Wξ(x)φ2 + φ3]. (15)

We would like to invert the operator (−∂xx)s − V (εx)(1 − 3W 2
ξ ) in equation

(13) to obtain a fixed point equation for φ. However, the operator

Lξφ := (−∂xx)s − V (εx)(1 − 3W 2
ξ (x))

may have a kernel, near the kernel

Span{w′
1(x), w′

2(x), . . . , w′
m(x)}.

Hence, rather than solving problem (13) directly, we shall first solve the fol-
lowing projected problem

Lξφ = E + N(φ) +
m∑

i=1

ciw
′
i x ∈ R, (16)

∫

R

φw′
i(x)dx = 0, i = 1, . . . , m. (17)

4. Linear theory

In this section we consider the corresponding linear problem

Lξφ = h(x) +
m∑

i=1

ciw
′
i(x) x ∈ R, (18)

∫

R

φw′
i(x)dx = 0, i = 1, . . . , m. (19)

Note that the coefficients ci are uniquely determined in terms of φ and h when
ε is sufficiently small. Indeed, we have

m∑

i=1

ci

∫

R

w′
iw

′
jdx =

∫

R

w′
j [(−∂xx)sφ − V (εx)(1 − 3W 2

ξ (x))φ − h]dx.

Since
∫

R

w′
j(−∂xx)sφdx =

∫

R

φ(−∂xx)sw′
jdx =

∫

R

φV (ξj)[1 − 3w2
j ]w′

jdx, (20)

we have
m∑

i=1

ci

∫

R

w′
iw

′
jdx =

∫

R

w′
j{[V (ξj)(1 − 3w2

j ) − V (εx)(1 − 3W 2
ξ )]φ − h}dx

=
∫

R

w′
j{[(V (ξj) − V (εx))(1 − 3w2

j )

−3V (εx)(W 2
ξ − w2

j )]φ − h}dx. (21)
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It is easy to see that
∫

R

w′
iw

′
jdx = βjδij + O(M−1−2s)

where the numbers βj > 0 are independent of ε and M is large. Hence the
matrix of linear system (21) for ci(i = 1, . . . , m) is diagonally dominant for
small ε, hence system (21) is uniquely solvable.

For the right hand side terms of (21) we have
∣
∣
∣
∣

∫

R

w′
j [(V (ξj) − V (εx))(1 − 3w2

j ) − 3V (εx)(W 2
ξ − w2

j )]φdx

∣
∣
∣
∣

≤ C[ε + M−2s]‖φ‖L2(R).

Hence we obtain the following lemma.

Lemma 4.1. The numbers ci in (18) satisfy

ci =
−1
βi

∫

R

w′
ihdx + θi,

where

|θi| ≤ C[ε + M−2s]‖φ‖L2(R).

The main task of this section is to establish the following proposition.

Proposition 4.1. Given m ≥ 1, 1
2 < μ < 1 + 2s, there exist positive numbers

M0, ε0, δ0 such that for any points ξ1, . . . , ξm and any ε with

min
1≤i≤m−1

∣
∣
∣
∣
ξi − ξi+1

ε

∣
∣
∣
∣ ≥ M0, 0 < ε < ε0, max

i
|ξi| ≤ δ0

there exists a unique solution φ = T [h] of (18)–(19) that defines a linear oper-
ator of h, provided that

‖ρ−1h‖L∞(R) < +∞, ρ(x) =
m∑

i=1

1
(1 + |x − ξi

ε |)μ
.

Moreover

‖ρ−1φ‖L∞(R) ≤ C‖ρ−1h‖L∞(R).

To prove this result we need to establish the following several lemmas.
We have the following nondegeneracy lemma.

Lemma 4.2. The only bounded solution to

(−∂xx)sφ − λ̂[1 − 3w2
λ̂
]φ = 0, |φ| ≤ 1

is cw
′

λ̂
.

Proof. For s = 1
2 , this has been proved in [7]. It is easy to see that the same

proof works exactly in the case of s > 1
2 . In fact for s > 1

2 , w
′

λ̂
works as a

super-solution and hence one can prove that |φ| ≤ 1
|x|1+2s for |x| > 1. Then

we let φ = w
′

λ̂
ψ. Integrating by parts we then obtain that ψ ≡ Constant. We

omit the details. �
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Lemma 4.3. Under the conditions of Proposition 4.1, there exists C > 0 such
that for any solutions of (18)–(19) with ‖ρ−1φ‖L∞(R) < ∞ we have the apriori
estimate

‖ρ−1φ‖L∞(R) ≤ C‖ρ−1h‖L∞(R).

Proof. We argue by contradiction: namely there exist sequences εn → 0, ξin,
i = 1, . . . , m, with

min
1≤i≤m−1

∣
∣
∣
∣
ξin − ξi+1,n

εn

∣
∣
∣
∣ → ∞

and φn, hn satisfying (18)–(19) such that

‖ρ−1
n φn‖L∞(R) = 1, ‖ρ−1

n hn‖L∞(R) → 0, (22)

where

ρn(x) =
m∑

i=1

1
(1 + |x − ξin

εn
|)μ

We claim that for any fixed R > 0 we have that
m∑

i=1

‖φn‖L∞(BR(ξin/εn)) → 0. (23)

Indeed, assume that for a fixed j we have that ‖φn‖L∞(BR(ξjn/εn)) ≥ γ > 0.
We set φ̂n(x) = φn(x+ ξjn

εn
). We also assume that λjn = V (ξjn) → λ̂ > 0. One

has

(−∂xx)sφ̂n(x)−V (ξjn + εnx){1 − 3[(−1)j−1wλjn
(x) + θn(x)]2}φ̂n(x)= ĥn(x),

where

ĥn(x) = hn

(

x +
ξjn

εn

)

+
m∑

i=1

cin(−1)i−1w′
λin

(
ξjn − ξin

εn
+ x

)

.

We observe that ĥn(x) → 0 uniformly on bounded closed intervals. From the
uniform Hölder estimates in Proposition 2.1, we also obtain equicontinuity of
the sequence φ̂n. Thus, passing to a subsequence, we may assume that φ̂n

converges, uniformly on bounded closed intervals, to a bounded function φ̂

which satisfies ‖φ̂‖L∞(BR(0)) ≥ γ and

(−∂xx)sφ̂ − λ̂[1 − 3w2
λ̂
]φ̂ = 0, (24)

∫

R

φ̂w′
λ̂
dx = 0. (25)

Combining (24), (25) and the nondegeneracy of the solution w to (4) ob-
tained in Lemma 4.2 we know that φ̂ = 0, which contradicts with the fact
‖φ̂‖L∞(BR(0)) ≥ γ. Formula (23) and the apriori estimate in Proposition 2.1
give that ‖ρ−1

n φn‖L∞(R) → 0, which contradicts with (22). �
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In order to construct a solution to problem (18)–(19), we first establish
a solution to a simpler problem

(−∂xx)sφ(x) + 2V (εx)φ = h(x) +
m∑

i=1

ciw
′
i(x), (26)

∫

R

φw′
i(x)dx = 0, i = 1, . . . , m. (27)

Lemma 4.4. For any h with ‖ρ−1h‖L∞(R) < ∞, there exists a unique solution
of (26)–(27), φ = Q[h] ∈ Hs(R). Moreover

‖ρ−1Q[h]‖L∞(R) ≤ C‖ρ−1h‖L∞(R). (28)

Proof. Let H be the closure of the set of all functions in C∞
c (R2

+) under the
norm

‖φ̃‖2
H :=

∫

R
2
+

|∇φ̃|2y1−2sdxdy +
∫

R

2V (εx)φ2dx < +∞,

where φ̃ is the s-harmonic extension of φ. Furthermore we define a closed
subspace X of H as

X =
{

φ̃ ∈ H :
∫

R

φw′
idx = 0,∀i = 1, . . . , m

}

.

Then, given h ∈ L2, we consider the problem of finding a φ̃ ∈ X such that

〈φ̃, ψ̃〉 :=
∫

R
2
+

∇φ̃ · ∇ψ̃y1−2sdxdy +
∫

R

2V (εx)φψdx =
∫

R

hψdx, ∀ ψ̃ ∈ X.

(29)
We observe that 〈·, ·〉 defines an inner product in X. Then Riesz’s theorem
yields existence and uniqueness of a solution to (26)–(27). Moreover we have

‖φ‖L2(R) ≤ C‖h‖L2(R).

Next we check that this produces a solution in strong sense. Let W be the
space spanned by the functions w′

i. We denote by P [h] the L2(R) orthogonal
projection of h onto W and by P̃ [h] its s-harmonic extension. Then for each
η̃ ∈ H, we know that ψ̃ := η̃ − P̃ [η] ∈ X. Substituting this ψ̃ into (29) we
obtain∫

R
2
+

∇φ̃ · ∇η̃y1−2sdxdy +
∫

R

2V φηdx =
∫

R

hηdx +
∫

R

(2V φ − h)P [η]dx

+
∫

R

φ(−∂xx)sP [η]dx,

where we used the relation∫

R
2
+

∇φ̃ · ∇P̃ [η]y1−2sdxdy =
∫

R

φ(−∂xx)sP [η]dx.

For η ∈ L2(R) we consider the functional

zφ(η) :=
∫

R

φ(−∂xx)sP [η]dx.
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We have

|zφ(η)| =
∣
∣
∣
∣

∫

R

ηP [(−∂xx)sφ]dx

∣
∣
∣
∣ ≤ C‖η‖2‖P [(−∂xx)sφ]‖2

≤ C‖η‖2

m∑

i=1

∣
∣
∣
∣

∫

R

w′
i(−∂xx)sφdx

∣
∣
∣
∣ ≤ C‖φ‖2‖η‖2,

where in the last inequality we have used (20). Hence there exists an e(φ) ∈
L2(R) such that

zφ(η) =
∫

R

e(φ)ηdx.

If φ was a priori known to be in Hs(R) we would have precise formula of e(φ)

e(φ) = P [(−∂xx)sφ].

Since P is a self-adjoint operator in L2(R) we then have that
∫

R
2
+

∇φ̃ · ∇η̃y1−2sdxdy +
∫

R

2V φηdx =
∫

R

h̄ηdx,

where

h̄ = h + P [2V φ − h] + P [(−∂xx)sφ].

Since h̄ ∈ L2(R), it follows that φ ∈ Hs(R) and it satisfies

(−∂xx)sφ(x) + 2V (εx)φ − h(x) = P [(−∂xx)sφ + 2V φ − h] ∈ W,

hence Eqs. (26)–(27) are satisfied.
Now we prove (28). We have

‖ρ−1P [(−∂xx)sφ + 2V φ − h]‖∞ ≤ C[‖φ‖2 + ‖h‖2] ≤ C‖h‖2 ≤ C‖ρ−1h‖∞,

where we used the condition 1
2 < μ < 1 + 2s. This and Proposition 2.1 show

the desired estimate. �

Proof of Proposition 4.1. Let B be the Banach space

B := {φ ∈ C(R) : ‖φ‖B := ‖ρ−1φ‖L∞(R) < ∞}. (30)

Problem (18)–(19) can be written as the fixed point problem

φ − Q[3V (εx)(1 − W 2
ξ (x))φ] = Q[h], φ ∈ B. (31)

We claim that

A[φ] := Q[V (εx)(1 − W 2
ξ (x))φ]

defines a compact operator in B. Indeed, assume that {φn} is a bounded se-
quence in B. It is easy to see that for some α > 0 the estimate holds true

|V (εx)(1 − W 2
ξ (x))φn| ≤ C‖φn‖Bρ1+α,

namely

ρ−(1+α)|V (εx)(1 − W 2
ξ (x))φn| ≤ C‖φn‖B.
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It follows that gn := A[φn] satisfies

|ρ−1gn| = |ρ−1Q[V (εx)(1 − W 2
ξ (x))φn]|

≤ C‖ρ−1V (εx)(1 − W 2
ξ (x))φn‖∞

= Cραρ−α‖ρ−1V (εx)(1 − W 2
ξ (x))φn‖∞

≤ Cρα‖ρ−(1+α)V (εx)(1 − W 2
ξ (x))φn‖∞ ≤ Cρα.

Besides since gn = Td[(d − V )gn + hn], we use Hölder estimate in Proposition
2.1 to get that for some β > 0

sup
x�=y

|gn(x) − gn(y)|
|x − y|β ≤ C.

Arzela’s theorem gives the existence of a subsequence of gn which we label the
same way, that converges uniformly to a continuous function g with

|ρ−1g| ≤ Cρα.

Let R > 0 be a large number. Then we have

‖ρ−1(gn − g)‖L∞(R) ≤ ‖ρ−1(gn − g)‖L∞(BR(0)) + C max
|x|>R

ρα(x).

Since

max
|x|>R

ρα(x) → 0 as R → ∞,

we deduce that ‖gn − g‖B → 0, and the claim is proved.
Now, the apriori estimate Lemma 4.3 tell us that for h = 0, (31) has

only the trivial solution. Fredholm’s alternative gives the desired result in this
proposition. �

Let us write the solution φ = Tξ[h] to emphasize the dependence of the
operator T on ξ. In the rest of this section, we obtain the differentiability of
φ = Tξ[h] with respect to ξ.

Lemma 4.5. The map ξ �→ Tξ is continuously differentiable, and for some
C > 0, one has

‖∂ξi
Tξ[h]‖B ≤ C

ε
‖h‖B, ∀ i = 1, . . . , m,

for all ξ satisfying constraints (12).

The argument of this lemma is rather similar to that of Lemma 4.4 in
[6], we omit it.

5. Solving the nonlinear intermediate problem

In this section we will apply contraction mapping principle to solve nonlinear
problem (16)–(17).

We first make an estimate of the error E in the norm ‖ · ‖B. Recall that

E = V (εx)F (Wξ) −
m∑

i=1

V (ξi)F (wi).
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We rewrite it as

E = V (εx)

[

F (Wξ) −
m∑

i=1

F (wi)

]

+
m∑

i=1

[V (εx) − V (ξi)]F (wi).

Here we need to take μ ∈ (1
2 , s). Let

M := min
1≤i≤m−1

∣
∣
∣
∣
ξi − ξi+1

ε

∣
∣
∣
∣ � 1.

The second term in E can be easily estimated as
∣
∣
∣
∣
∣
ρ−1(x)

m∑

i=1

[V (εx) − V (ξi)]F (wi)

∣
∣
∣
∣
∣
≤ Cεs.

To estimate the interaction term (the first term) in E, we divide the R into
the m sub-intervals

Ij := {x ∈ R : |wj(x)| ≤ |wi(x)|, ∀ i 
= j, 1 ≤ i ≤ m}.

For x ∈ Ij , we have
∣
∣
∣
∣
∣
V (εx)

[

F (Wξ) −
m∑

i=1

F (wi)

]∣
∣
∣
∣
∣

≤ C
∑

i�=j

1
|x − ξi

ε |2s
≤ C

∑

i�=j

1

| ξi−ξj

ε |2s

≤ C
1

1 + |x − ξj

ε |μ
∑

i�=j

1

| ξi−ξj

ε |2s−μ

≤ Cρ(x)Mμ−2s ≤ Cρ(x)M−s.

Therefore we obtain that

‖E‖B ≤ C[εs + M−s]. (32)

Similarly, we can obtain

‖∂ξE‖B ≤ C

ε
[εs + M−s]. (33)

We denote

κ := C[εs + M−s].

We have the following result.

Lemma 5.1. Assume that ‖E‖B is sufficiently small, then (16)–(17) possesses
a unique small solution φ = Φ(ξ) with

‖Φ(ξ)‖B ≤ C‖E‖B.

Moreover the map ξ �→ Φ(ξ) is of class C1, and for some C > 0

‖∂ξΦ(ξ)‖B ≤ C

[
1
ε
‖E‖B + ‖∂ξE‖B

]

(34)

for all ξ satisfying constraints (12).
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Proof. Problem (16)–(17) can be written as the fixed point problem

φ = Tξ(E + N(φ)) =: Kξ(φ), φ ∈ B. (35)

Let

Z = {φ ∈ B : ‖φ(ξ)‖B ≤ σ}.

If φ ∈ Z, then it is easy to see that

‖N(φ)‖B ≤ C‖φ‖2
B
.

Hence

‖Kξ(φ)‖B ≤ C0[‖E‖B + σ2].

Choosing

σ = 2C0‖E‖B,

we have

‖Kξ(φ)‖B ≤ C0[
σ

2C0
+ σ2] ≤ σ,

which means that Kξ(Z) ⊂ Z.
We observe that

|N(φ1) − N(φ2)| ≤ C[|φ1| + |φ2|]|φ1 − φ2|,
which yields that

‖N(φ1) − N(φ2)‖B ≤ Cσ‖φ1 − φ2‖B.

Hence

‖Kξ(φ1) − Kξ(φ2)‖B ≤ Cσ‖φ1 − φ2‖B.

Reducing σ if necessary, we obtain that Kξ is a contraction mapping and hence
has a unique solution of problem (35) in Z. We denote it as φ = Φ(ξ).

Next we prove that Φ is C1 with respect to ξ. Denote

G(φ, ξ) := φ − Tξ(E + N(φ)).

Let φ0 = Φ(ξ0), then G(φ0, ξ0) = 0. We have

∂φG(φ, ξ)[ψ] = ψ − Tξ(N ′(φ)ψ),

where N ′(φ) = −V (εx)[6Wξ(x)φ + 3φ2]. Hence

‖N ′(φ)ψ‖B ≤ Cσ‖ψ‖B.

Then, if σ is sufficiently small, we have that ∂φG(φ0, ξ0) is an invertible oper-
ator with uniformly bounded inverse. Besides

∂ξG(φ, ξ) = (∂ξTξ)(E + N(φ)) + Tξ(∂ξE + ∂ξN(φ)).

Both partial derivatives are continuous in their arguments. The implicit func-
tion theorem applies in a small neighborhood of (φ0, ξ0) to give existence and
uniqueness of a function φ = φ(ξ) with φ0 = φ(ξ0) defined near ξ0. Besides
φ(ξ) is of class C1. However, by uniqueness, we must have φ(ξ) = Φ(ξ).

Finally we note that

∂ξN(φ) = −3V (εx)∂ξWξ(x)φ2,
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so

‖∂ξN(Φ(ξ))‖B ≤ C

ε
‖Φ(ξ)‖2

B
≤ C

ε
‖E‖2

B
. (36)

Since

∂ξΦ(ξ) = − 1
∂φG(Φ(ξ), ξ)

[(∂ξTξ)(E + N(Φ(ξ))) + Tξ(∂ξE + ∂ξN(Φ(ξ)))],

from this, (36) and Lemma 4.5, we obtain (34). �

6. The variational reduced problem

Recalling that we have obtained the existence of a unique solution u = Wξ(x)+
Φ(ξ) of the problem (16)–(17). Namely, if we denote this solution as u = uξ,
we have

(−∂xx)suξ − V (εx)(uξ − u3
ξ) =

m∑

i=1

ciw
′
i. (37)

Then, in order to prove Theorem 1.1, we need to verify that the coefficients
ci(i = 1, . . . , m) are equal to zero, by choosing an appropriate point ξ =
(ξ1, . . . , ξm).

Problem (3) corresponds to an energy functional

Jε(u) =
1
2

∫

R

u(x)(−∂xx)su(x)dx +
1
4

∫

R

V (εx)(1 − u2(x))2dx.

Note that Jε(u) is well-defined, since s > 1
2 . We denote

J (ξ) := Jε(uξ) = Jε(Wξ(x) + Φ(ξ)).

We will first establish expansions of the energy J (ξ).

Lemma 6.1. Assume that the number M−1 in the definition of U in (12) is
taken so small that

‖E‖B + ε‖∂ξE‖B ≤ κ � 1.

Then

J (ξ) = Jε(Wξ(x)) + O(κ2) (38)

and

∂ξJ (ξ) = ∂ξJε(Wξ(x)) + O(
κ2

ε
) (39)

uniformly on points ξ in U .

Proof. Since

J (ξ) =
1
2

∫

R

uξ(x)(−∂xx)suξ(x)dx +
1
4

∫

R

V (εx)(1 − u2
ξ(x))2dx,
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we can expand

J (ξ) = Jε(Wξ) +
1
2

∫

R

Φ(−∂xx)sΦdx (40)

+
∫

R

Φ[(−∂xx)sWξ − V (εx)Wξ(1 − W 2
ξ (x))]dx

+
1
4

∫

R

V (εx){[u4
ξ − W 4

ξ − 4W 3
ξ Φ] − 2[u2

ξ − W 2
ξ − 2WξΦ]}dx.

In view of ‖E‖B ≤ κ then ‖Φ‖B ≤ Cκ, and from equation (16) we also have
‖(−∂xx)sΦ‖B ≤ Cκ. Hence

∫

R

Φ(−∂xx)sΦdx ≤ Cκ2

∫

R

ρ2dx ≤ Cκ2 (41)

and
∫

R

V (εx){[u4
ξ − W 4

ξ − 4W 3
ξ Φ] − 2[u2

ξ − W 2
ξ − 2WξΦ]}dx (42)

=
∫

R

V {[(Wξ + Φ)4 − W 4
ξ − 4W 3

ξ Φ] − 2[(Wξ + Φ)2 − W 2
ξ − 2WξΦ]}

≤ Cκ2

∫

R

ρ2dx ≤ Cκ2,

where we have used the definition of ρ(x) =
∑m

i=1
1

(1+|x− ξi
ε |)μ

and the fact that

μ > 1
2 .
Note that (−∂xx)sWξ − V (εx)Wξ(1 − W 2

ξ (x)) = E, so
∫

R

Φ[(−∂xx)sWξ − V (εx)Wξ(1 − W 2
ξ (x))]dx ≤ Cκ2

∫

R

ρ2dx ≤ Cκ2. (43)

From (40)–(43), we obtain (38).
Differentiating (40) with respect to ξj , we have

∂ξj
J (ξ) = ∂ξj

Jε(Wξ) +
∫

R

[∂ξj
Φ(−∂xx)sΦdx +

∫

R

[E∂ξj
Φ + Φ∂ξj

E]dx

+
∫

R

V (εx){[(Wξ + Φ)3 − W 3
ξ − 3W 3

ξ Φ]∂ξj
Wξ (44)

+ [(Wξ + Φ)3 − W 3
ξ ]∂ξj

Φ + Φ∂ξj
Φ}dx.

We have that
∫

R

V (εx)[(Wξ + Φ)3 − W 3
ξ − 3W 3

ξ Φ]∂ξj
Wξdx ≤ C

ε
κ2.

From this, (44), (34) and the condition ‖E‖B + ε‖∂ξE‖B ≤ κ, we can obtain
(39). �

Next we estimate Jε(Wξ) and ∂ξJε(Wξ). We begin with the simpler case
m = 1. Note that the condition ‖E‖B + ε‖∂ξE‖B ≤ κ is always true. Now

Wξ(x) = wλ

(

x − ξ

ε

)

, λ = V (ξ).
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It is easy to see that

Jε(Wξ) = Jλ(wλ) +
1
4

∫

R

[V (ξ + εx) − V (ξ)](1 − w2
λ(x))2dx, (45)

where

Jλ(v) =
1
2

∫

R

v(−∂xx)svdx +
λ

4

∫

R

(1 − v2)2dx.

Note that
Jλ(wλ) = λ1− 1

2s J1(w). (46)

Indeed, recalling that wλ(x) = w(λ
1
2s x) satisfies the equation

(−∂xx)swλ − λ(wλ − w3
λ) = 0 in R,

where w = w1 is the unique solution of

(−∂xx)sw − (w − w3) = 0, w(0) = 0, w(±∞) = ±1.

Then, after a change of variables we obtain (46).
We claim that

∫

R

[V (ξ + εx) − V (ξ)](1 − w2
λ(x))2dx = O(ε2s). (47)

Indeed, for any large number ζ with ζ < ε−1, we have
∫

R

[V (ξ + εx) − V (ξ)](1 − w2
λ(x))2dx

=
∫

R

[V (εx + ξ) − V (ξ)](1 − w2(V (ξ)
1
2s x))2dx

=
∫

|x|>ε−1
[V (εx + ξ) − V (ξ)](1 − w2(V (ξ)

1
2s x))2dx

+
∫

|x|<ζ

[V (εx + ξ) − V (ξ) − εV ′(ξ)x](1 − w2(V (ξ)
1
2s x))2dx

+
∫

ζ<|x|<ε−1
[V (εx + ξ) − V (ξ) − εV ′(ξ)x](1 − w2(V (ξ)

1
2s x))2dx

≤ C[ε4s−1 + max
x∈(−ζ,ζ)

|V (εx + ξ) − V (ξ) − εV ′(ξ)x|]

+C

∫ ε−1

ζ

ε2x2x−4sdx.

In view of

ε2

∫ ε−1

ζ

x2−4sdx ≤
⎧
⎨

⎩

Cε2, s > 3
4 ,

Cε2 ln 1
ε , s = 3

4 ,
Cε4s−1, 1

2 < s < 3
4 ,

we have
∣
∣
∣
∣

∫

R

[V (ξ + εx) − V (ξ)](1 − w2
λ)2dx

∣
∣
∣
∣ ≤ C[ε4s−1 + ε2ζ2 + ε2 ln

1
ε
].

Choosing ζ = εs−1, we obtain (47), where we used the fact 1
2 < s < 1.
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We claim

∂ξ

∫

R

[V (ξ + εx) − V (ξ)](1 − w2
λ(x))2dx = O(ε2s−1). (48)

Indeed

∂ξ

∫

R

[V (ξ + εx) − V (ξ)](1 − w2
λ(x))2dx

=
∫

R

[∂ξV (ξ + εx) − ∂ξV (ξ)](1 − w2
λ(x))2dx

− 2
s
V

1
2s −1(ξ)V ′(ξ)

∫

R

[V (ξ + εx) − V (ξ)]x

× (1 − w2
λ(x))w′(V

1
2s x)dx.

From the proof of (47), we know that
∫

R

[∂ξV (ξ + εx) − ∂ξV (ξ)](1 − w2
λ(x))2dx = O(ε2s).

For the other term, we have
∫

R

[V (ξ + εx) − V (ξ)]x(1 − w2
λ(x))w′

(
V

1
2s x

)
dx

=

{∫

|x|>ε−1
+

∫

|x|<ζ

+
∫

ζ<|x|<ε−1

}

× [V (ξ + εx) − V (ξ)]x(1 − w2
λ(x))w′

(
V

1
2s x

)

≤ C[ε4s−1 + max
x∈(−ζ,ζ)

|V (εx + ξ) − V (ξ)|] + C

∫ ε−1

ζ

εx2x−4s−1dx

≤ C[ε4s−1 + εζ + ε],

where in the last inequality we have used the fact s > 1
2 . Choosing ζ = ε2s−2

and noting that 1
2 < s < 1, we obtain (48).

Hence, from Lemma 6.1, the definition of κ and (45)–(48), we obtain the
following lemma.

Lemma 6.2. Let c∗ = J1(w) and m = 1. Then the following expansions hold
true

J (ξ) = c∗V (ξ)1− 1
2s + O(ε2s),

∂ξJ (ξ) = c∗∂ξ

[
V (ξ)1− 1

2s

]
+ O(ε2s−1).

For the general case m > 1, without loss of generality, we may assume
that ξ1 ≤ ξ2 ≤ · · · ≤ ξm. Taking min1≤i≤m−1

∣
∣
∣ ξi−ξi+1

ε

∣
∣
∣ ≥ M � 1, we know

that ‖E‖B ≤ Cκ also holds true. Hence from Lemma 6.1, we have also

J (ξ) = Jε(Wξ(x)) + O(κ2), ∂ξJ (ξ) = ∂ξJε(Wξ(x)) + O
(

κ2

ε

)

. (49)
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For each i(i = 1, . . . , m−1), we denote the unique number in ( ξi

ε , ξi+1
ε ) as

ζi such that |wi(ζi)| = |wi+1(ζi)|. From the properties of the potential function
V , we know that there exists σi ∈ (0, 1), independent of ε, such that

ζi =
ξi

ε
+ σi

ξi+1 − ξi

ε
, i = 1, . . . , m − 1.

We have the following lemma.

Lemma 6.3. The following expansions hold true

J (ξ) = c∗
m∑

i=1

V (ξi)1− 1
2s −

m−1∑

i=1

c̃i + o(1)

| ξi+1−ξi

ε |2s−1
+ O(ε2s + M−2s), (50)

∂ξJ (ξ) = c∗∂ξ

[
m∑

i=1

V (ξi)1− 1
2s

]

−
m−1∑

i=1

c̃i + o(1)

| ξi+1−ξi

ε |2s−1
+

1
ε
O(ε2s + M−2s). (51)

Here

c̃i =
ciσ

1−2s
i + ci+1(1 − σi)1−2s + o(1)

2s − 1
, i = 1, . . . , m − 1,

where ci > 0 is a constant between C1 and C2, which are given in (9)–(10).

Proof. It suffices to expand Jε(Wξ(x)). We have

Jε(Wξ(x))

=
1

2

∫

R

Wξ(−∂xx)sWξdx +
1

4

∫

R

V (εx)(1 − W 2
ξ )2dx

=
1

2

m∑

j=1

∫

Ij

⎡

⎣
∑

i<j

(wi(x) − (−1)i−1) + wj(x) +
∑

i>j

(wi(x) + (−1)i−1)

⎤

⎦

× (−∂xx)s

⎡

⎣
∑

i<j

(wi(x) − (−1)i−1) + wj(x) +
∑

i>j

(wi(x) + (−1)i−1)

⎤

⎦ dx

+

m∑

j=1

∫

Ij

V (εx)

4

⎧
⎨

⎩
1−

⎡

⎣
∑

i<j

(wi − (−1)i−1) + wj +
∑

i>j

(wi + (−1)i−1)

⎤

⎦

2⎫
⎬

⎭

2

dx

=

m∑

j=1

∫

Ij

1

2
wj(−∂xx)swj +

V (εx)

4
(1 − w2

j )2dx

+

m∑

j=1

∫

Ij

⎡

⎣
∑

i<j

(wi(x) − (−1)i−1) +
∑

i>j

(wi(x) + (−1)i−1)

⎤

⎦ (−∂xx)swj(x)

+
1

2

m∑

j=1

∫

Ij

(Wξ − wj)(−∂xx)s(Wξ − wj)dx



NoDEA Layered solutions for a fractional inhomogeneous Page 19 of 26 29

+
m∑

j=1

∫

Ij

V (εx)

4
{[1 − W 2

ξ ]2 − [1 − w2
j ]2}dx + O(M−2s)

=

m∑

j=1

∫

Ij

1

2
wj(−∂xx)swj +

V (εx)

4
(1 − w2

j )2dx + O(M−2s). (52)

Note that

m∑

j=1

∫

Ij

V (εx)
4

(1 − w2
j )2dx =

m∑

j=1

∫

R

V (εx)
4

(1 − w2
j )2dx + O(M1−4s). (53)

Besides

m∑

j=1

∫

Ij

1
2
wj(−∂xx)swj =

m∑

j=1

∫

R

1
2
wj(−∂xx)swj −

m∑

j=1

∫

R\Ij

1
2
wj(−∂xx)swj .

We claim that

m∑

j=1

∫

R\Ij

1
2
wj(−∂xx)swjdx =

m−1∑

j=1

c̃j + o(1)

| ξj+1−ξj

ε |2s−1
. (54)

Indeed, one has

∫

R\Ij

1
2
wj(−∂xx)swjdx =

∫

R\Ij

V (ξj)
2

w2
j (1 − w2

j )dx (55)

=
∫

R\Ij

V (ξj)
2

w2

(

V
1
2s (ξj)

(

x − ξj

ε

))

×
[

1 − w2

(

V
1
2s (ξj)

(

x − ξj

ε

))]

dx.

For x ∈ R\Ij , we have

w2

(

V
1
2s (ξj)

(

x − ξj

ε

))

∼ 1,

C1

V (ξj)|x − ξj

ε |2s
≤ 1 − w2

(

V
1
2s (ξj)

(

x − ξj

ε

))

≤ C2

V (ξj)|x − ξj

ε |2s
. (56)

Recall that

ζj =
ξj

ε
+ σj

ξj+1 − ξj

ε
, j = 1, . . . , m − 1.
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Hence for 2 ≤ j ≤ m − 1, we have

∫

R\Ij

V (ξj)

2
w2

(

V
1
2s (ξj)

(

x − ξj

ε

))[

1 − w2

(

V
1
2s (ξj)

(

x − ξj

ε

))]

dx

=

∫ ζj−1

−∞

V (ξj)

2
w2

(

V
1
2s (ξj)

(

x − ξj

ε

))[

1 − w2

(

V
1
2s (ξj)

(

x − ξj

ε

))]

dx

+

∫ +∞

ζj

V (ξj)

2
w2

(

V
1
2s (ξj)

(

x − ξj

ε

))[

1 − w2

(

V
1
2s (ξj)

(

x − ξj

ε

))]

dx

=
cj + o(1)

2s − 1

[

(1 − σj−1)
1−2s

∣
∣
∣
∣
ξj − ξj−1

ε

∣
∣
∣
∣

1−2s

+ σ1−2s
j

∣
∣
∣
∣
ξj+1 − ξj

ε

∣
∣
∣
∣

1−2s
]

,

(57)

where cj > 0 is a constant between C1 and C2, which are given in (56). Formula
(57) also holds true for j = 1 and j = m, the only difference is that the right
hand side term is respectively replaced by

c1 + o(1)
2s − 1

(1 − σ1)1−2s

∣
∣
∣
∣
ξ2 − ξ1

ε

∣
∣
∣
∣

1−2s

,
cm + o(1)

2s − 1
σ1−2s

m−1

∣
∣
∣
∣
ξm − ξm−1

ε

∣
∣
∣
∣

1−2s

.

(58)
From (55), (57), (58), we obtain (54).

Then, from (52)–(54) we have

Jε(Wξ(x)) =
m∑

j=1

∫

R

1
2
wj(−∂xx)swj +

V (εx)
4

(1 − w2
j )2dx

−
m−1∑

j=1

c̃j + o(1)

| ξj+1−ξj

ε |2s−1
+ O(M−2s).

By the same argument for the case of m = 1, we know
∫

R

1
2
wj(−∂xx)swj +

V (εx)
4

(1 − w2
j )2dx = c∗V (ξj)1− 1

2s + O(ε2s).

Hence

Jε(Wξ(x)) = c∗
m∑

j=1

V (ξj)1− 1
2s −

m−1∑

j=1

c̃j + o(1)

| ξj+1−ξj

ε |2s−1
+ O(M−2s + ε2s).

This and (49) yield (50).
Similarly, we can obtain (51). We omit the precise argument. �

In the rest of this section, we establish the following variational result.

Lemma 6.4. c := (c1, . . . , cm) = 0 if and only if ∂ξJ (ξ) = 0.
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Proof. We have

∂ξj
J (ξ) =

∫

R
2
+

∇ũξ · ∇(∂ξj
ũξ)y1−2sdxdy −

∫

R

V (εx)uξ(1 − u2
ξ)∂ξj

uξdx

=
∫

R

[(−∂xx)suξ − V (εx)uξ(x)(1 − u2
ξ(x))]∂ξj

uξ(x)dx (59)

=
m∑

i=1

∫

R

ciw
′
i∂ξj

uξ(x)dx,

where ũξ is the s-harmonic extension of uξ = Wξ(x) + Φ(ξ). Note that

∂ξj
uξ(x) = −1

ε
w′

j + O(1) + ∂ξj
Φ(ξ),

and, from Lemma 5.1, we have

‖∂ξj
Φ(ξ)‖B ≤ C

[
1
ε
‖E‖B + ‖∂ξE‖B

]

.

From
∫
R

w′
iw

′
jdx = βjδij + O(M−1−2s) and (32)–(33), we know that, for small

ε and M � 1, the matrix of linear system (59) for ci is diagonally dominant.
This shows that (c1, . . . , cm) = 0 if and only if ∂ξJ (ξ) = 0. �

7. The proof of Theorem 1.1

In this section, we will complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By the definition of configuration space U (12), we can
choose M ∼ ε−1 and achieve that Λ ⊂ U . Then we obtain

‖E‖B + ε‖∂ξE‖B ≤ Cεs.

By Lemma 6.3 we have

J (ξ) − c∗Υ(ξ) = o(1), ∇J (ξ) − c∗∇Υ(ξ) = o(1)

uniformly in ξ ∈ Λ as ε → 0, where the function Υ is defined in Theorem
1.1. We choose J (ξ) − c∗Υ(ξ) as the function g in Theorem 1.1. Then, by the
assumption on Υ, we know that for all sufficiently small ε there exists a ξε ∈ Λ
such that ∇J (ξε) = 0. Now applying Lemma 6.4, we obtain the result of this
theorem. �

8. The proof of Theorem 1.2

Let I be as in Theorem 1.2 and c̄ > 0 be a small number. Set

Λε =

{

ξ = (ξ1, . . . , ξm) ∈ I × · · · × I :
m−1∑

i=1

∣
∣
∣
∣
ξi − ξi+1

ε

∣
∣
∣
∣

1−2s

< c̄ετ

}

,

where 0 < τ < 2(2s−1)
2s+1 . Note that 2(2s−1)

2s+1 < 2s − 1 < 2s, since s > 1
2 .

Similarly we construct a solution with the form

u(x) = Wξ(x) + φ(x).
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Repeating the argument of Theorem 1.1, we can prove that the corresponding
projected problem possess a unique solution φ = Φ(ξ) with

‖Φ(ξ)‖B ≤ C‖E‖B ≤ C[εs + M−s].

Note that now M = min1≤i≤m−1

∣
∣
∣ ξi−ξi+1

ε

∣
∣
∣ ≥ Cε− τ

2s−1 , instead of M ∼ ε−1 as
in the proof of Theorem 1.1. We also can obtain variational Lemma 6.4, and
the same energy expansion as (50) for sufficiently small ε as follows

J (ξ) = c∗
m∑

i=1

V (ξi)1− 1
2s −

m−1∑

i=1

c̃i + o(1)

| ξi+1−ξi

ε |2s−1
+ O(ε2s + M−2s), (60)

where c̃i > 0.
To prove Theorem 1.2, applying Lemma 6.4, we know that the only task

rest is to obtain the following result.

Lemma 8.1. For ε sufficiently small, the following maximizing problem

max{J (ξ) : ξ ∈ Λε}
has a solution ξε ∈ Λε.

Proof. We will borrow the idea in Proposition 4.2 [13] to prove this lemma.
Since J (ξ) is continuous in ξ, the maximizing problem has a solution.

Let ξε ∈ Λε be a maximum point of J (ξ).
We claim that ξε ∈ Λε. We prove this by energy comparison.
We first establish a lower bound for J (ξε). Recall that τ < 2(2s−1)

2s+1 , which

guarantees that τ
2s−1 < 2−τ

2 . Hence we may choose σ ∈
(

τ
2s−1 , 2−τ

2

)
, which

implies

σ(2s − 1) > τ, 2(1 − σ) > τ. (61)

The condition τ > 0 makes that 2−τ
2 < 1, and so σ < 1. Set ξ0

i =ε1−σ
(
i− m+1

2

)
.

Clearly ξ0
i ∈ I. Moreover

∣
∣
∣
∣
ξ0
i+1 − ξ0

i

ε

∣
∣
∣
∣

1−2s

≤ Cεσ(2s−1) < c̄ετ .

So ξ0 = (ξ0
1 , . . . , ξ0

m) ∈ Λε.
Since V ′(0) = 0, we have the Taylor’s expansion

V (ξ0
i ) = V (0) + O(ε2(1−σ)).

Hence from (60) we obtain

J (ξε) = max
ξ∈Λε

J (ξ) ≥ J (ξ0)

≥ mc∗V (0)1− 1
2s − C(εσ(2s−1) + ε2(1−σ) + ε2s + M−2s)

≥ mc∗V (0)1− 1
2s − C(εσ(2s−1) + ε2(1−σ) + ε2s + ε

2s
2s−1 τ ),
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where in the last inequality we used M ≥ Cε− τ
2s−1 . Hence

c∗
m∑

i=1

V (ξε
i )1− 1

2s −
m−1∑

i=1

c̃i + o(1)

| ξε
i+1−ξε

i

ε |2s−1
≥ mc∗V (0)1− 1

2s

− C(εσ(2s−1) + ε2(1−σ) + ε2s + ε
2s

2s−1 τ ).

From the previous analysis in this section, we know that four exponentials of
the corresponding powers of ε in the right hand side of (62) all larger than
τ . From (62) we can deduce that ξε ∈ Λε. Indeed, suppose not, then by the
definition of Λε there are two possible case. The first case is that one of the ξε

i is
an endpoint of I. Then by condition V (0) = maxx∈I V (x) > V (z), ∀z ∈ I\{0},
we know that there exists β1 > 0 such that V (ξε

i ) < V (0) − β1, so

c∗
m∑

i=1

V (ξε
i )1− 1

2s ≤ mc∗V (0)1− 1
2s − β2

for some β2 > 0. This contradicts with (62). The other case is that
∑m−1

i=1

∣
∣
∣
ξε

i −ξε
i+1

ε

∣
∣
∣
1−2s

= c̄ετ . Then

c∗
m∑

i=1

V (ξε
i )1− 1

2s −
m−1∑

i=1

c̃i + o(1)

| ξε
i+1−ξε

i

ε |2s−1
≤ mc∗V (0)1− 1

2s − c̄[ min
1≤i≤m−1

c̃i + o(1)]ετ ,

which contradicts with (62) again.
Hence ξε ∈ Λε. �

Proof of Theorem 1.2. Combining Lemmas 6.4 and 8.1, we see that (1) possesses
a solution of the form (5). From the argument of Lemma 8.1, we know that

m−1∑

i=1

∣
∣
∣
∣
ξε
i − ξε

i+1

ε

∣
∣
∣
∣

1−2s

= o(ετ ),

which gives (6). We also know that V (ξε
i ) − maxx∈I V (x) = V (ξε

i ) − V (0) =
o(1), i = 1, . . . , m.

Next we prove (7). Suppose not, then by the Taylor’s expansion, due to
V ′′(0) < 0, there exists some i such that

V (ξε
i ) < V (0) − Cετ ,

where C > 0 is a constant. Hence applying Taylor’s expansion again, we have

V (ξε
i )1− 1

2s < V (0)1− 1
2s − Cετ ,

which yields

c∗
m∑

i=1

V (ξε
i )1− 1

2s −
m−1∑

i=1

c̃i + o(1)

| ξε
i+1−ξε

i

ε |2s−1
< c∗

m∑

i=1

V (ξε
i )1− 1

2s

< mc∗V (0)1− 1
2s − Cετ .

This contradicts with (62), and so (7) holds true.
The proof of Theorem 1.2 is complete. �
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9. Open questions

This paper initiates the study of effect of inhomogeneity in fractional Allen-
Can equations. We pose several challenging questions in line with the standard
s = 1 case.

• Are results stated in this paper true even when s = 1
2? In view of the

results of [3,4], we turn to believe so. s = 1
2 is the borderline case.

• What happens when 0 < s < 1
2? It is expected that nonlocal interactions

and nonlocal mean curvature will come into effect.
• What about higher dimensional concentrations (on geodesics, minimal

surfaces)? Again there should be a dramatic difference between s ≥ 1
2

and s < 1
2 .
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