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Abstract. We consider periodic solutions of the following problem asso-
ciated with the fractional Laplacian

(−∂xx)su(x) + F ′(u(x)) = 0, u(x) = u(x + T ), in R,

where (−∂xx)s denotes the usual fractional Laplace operator with 0 <
s < 1. The primitive function F of the nonlinear term is a smooth
double-well potential. We prove the existence of periodic solutions with
large period T using variational methods. An estimate of the energy of
the periodic solutions is also established.
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1. Introduction

We consider the following problem involving the fractional Laplacian

(−∂xx)su(x) + F ′(u(x)) = 0, in R, (1)

where (−∂xx)s, s ∈ (0, 1), denotes the usual fractional Laplace operator, a
Fourier multiplier of symbol |ξ|2s. The function F is a smooth double-well
potential with wells at +1 and −1, namely, it satisfies{

F (1) = F (−1) = 0 < F (u), ∀ − 1 < u < 1,

F ′(1) = F ′(−1) = 0.
(2)

We also assume that

F is nondecreasing in (−1, 0) and nonincreasing in (0, 1). (3)

Note that conditions (2), (3) mean that F (0) = max−1≤u≤1 F (u) > 0. We
may also assume that F is even. A typical example of such double-well even

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-016-0357-2&domain=pdf


364 C. Gui, J. Zhang and Z. Du JFPTA

function is F (u) = (1−u2)2

4 . We investigate the existence of odd periodic
solutions to Eq. (1), namely the solutions satisfying

u(x) = u(x + T ), u(−x) = −u(x), in R.

We also consider the case that F only satisfies conditions (2), (3), namely, it
is not necessary an even function. In this case, we will obtain the existence
of periodic solutions (not necessary odd) to Eq. (1).

For the local differential operator case s = 1, the corresponding form of
Eq. (1) is

− u′′(x) + F ′(u(x)) = 0, in R. (4)

A solution u is said to be a layer solution of problem (4) if it satisfies

u′(x) > 0, lim
x→−∞ u(x) = −1, lim

x→+∞ u(x) = 1.

The authors in [3] proved that conditions (2) are both necessary and sufficient
for the existence of a layer solution to problem (4).

As for periodic solutions to problem (4), one can easily obtain the ex-
istence of periodic solutions with large periods. More precisely, there exists
T0 > 0 such that problem (4) admits nonconstant periodic solutions with pe-
riod T > T0. Indeed, for the specific nonlinear function F (u) = (1−u2)2

4 , one
can show that T0 = 2π(see [1]). For general case F satisfying (2), furthermore
assuming F ′′(0) < 0, we can show that T0 = 2π × 1√

−F ′′(0)
.

For the fractional Laplacian case, the authors in [4] and [5] proved that
(2) are also the necessary and sufficient conditions for the existence of a layer
solution to Eq. (1). Moreover, they prove that such layer solution is unique
and establish asymptotic behavior of the layer solution. These results also
have been proven with different techniques in [8].

What about periodic solutions to Eq. (1)? Plainly, Eq. (1) possesses
three constant periodic solutions u = 1, −1, 0, under the conditions (2), (3).
In this paper, we will try to find nonconstant periodic solutions.

The fractional Laplace operator (−Δ)s can be defined as a Dirichlet-to-
Neumann map for a so-called s-harmonic extension problem (see [6]). Given
a function φ, the solution φ̃ of the following problem{

div(ya∇φ̃) = 0 in R
n+1
+ = {(x, y) : x ∈ R

n, y > 0},

φ̃(x, 0) = φ(x) on R
n

is called the s-harmonic extension of φ. The parameter a is related to the
power s of the fractional Laplacian (−Δ)s by the formula a = 1−2s ∈ (−1, 1).
One has

φ̃(x, y) =
∫
Rn

ps(x − z, y)φ(z)dz =
∫
Rn

ps(z, y)φ(x − z)dz, (5)

where ps(x, y) is the s-Poisson kernel

ps(x, y) = Cn,s
y2s

(|x|2 + |y|2)n+2s
2

,
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and Cn,s is the constant which makes
∫
Rn ps(x, y)dx = 1. The authors in [6]

proved that

(−Δ)sφ(x) =
∂φ̃

∂νa
in R

n = ∂Rn+1
+ ,

where
∂φ̃

∂νa
:= − lim

y↓0
ya ∂φ̃

∂y
.

From (5) and the above formula of s-Poisson kernel, we can easily deduce
that the s-harmonic extension ũ(x, y) of an odd periodic solution u(x) to (1)
is also odd and periodic with respect to x with the same period of u.

Equation (1) can be realized in a local manner through the nonlinear
boundary value problem{

div(ya∇U) = 0 in R
2
+ = {(x, y) : x ∈ R, y > 0},

∂U
∂νa = −F ′(U) on R.

(6)

Problem (6) is related to Eq. (1) in the sense that, if U is a solution of
(6), then a positive constant multiple of u(x) := U(x, 0) satisfies (1). Then,
to obtain the existence of (odd) periodic solutions of Eq. (1), we need to
construct (odd) periodic solutions with respect to x of (6). We will obtain
such existence by variational methods. Note that (6) is the Euler–Lagrangian
equation of a functional J which will be defined in (8) in the next section.
In particular, for the case that F is even, we will find odd periodic solutions
which minimize the energy functional J . For the case that F is not necessarily
even, we will find periodic solutions by using the mountain pass theorem.

Our main results are the followings.

Theorem 1.1. Let s ∈ (0, 1). Assume F satisfies the assumptions (2)–(3) and
is even. Then there exists T1 > 0 such that for any T > T1, Eq. (1) admits
an odd periodic solution uT with period T , and uT (x) ∈ (0, 1) for x ∈ (0, T

2 ).
Moreover, for any positive number σ < 1

2 , there exists Tσ ≥ T1 such that for
any T > Tσ, we have

J(UT ,ΩT ) < σF (0)T. (7)

Here UT is the s-harmonic extension of uT .

Theorem 1.2. Let s ∈ (0, 1). Assume F satisfies the assumptions (2), (3) and
F ′′(±1) > 0. Then there exists T2 > 0 such that for any T > T2, Eq. (1)
admits a periodic solution uT with period T , |uT (x)| < 1 in R and it changes
its sign at least once in a period. Moreover, for any σ < 1

2 , there exists
Tσ ≥ T2 such that for any T > Tσ, the inequality (7) also holds true.

2. Proof of Theorem 1.1

We assume that F satisfies conditions (2), (3) and is even.
Prior to the proof of Theorem 1.1, we introduce a weighted Poincaré

inequality in [7], where the authors first give the definition of class S. An
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open bounded set D ⊂ R
n is said to belong to the class S, if there exist

α and ρ0 positive such that for each x̂ ∈ ∂D and for each ρ < ρ0 one
has |Bρ(x̂)\D| ≥ α|Bρ(x̂)|. They establish the following weighted Poincaré
inequality.

Proposition 2.1. [7] Assume D belongs to the class S. Then for all x̂ ∈ ∂D,
0 < ρ < ρ0, and all u ∈ C1(Bρ(x̂) ∩ D) vanishing on Bρ(x̂) ∩ ∂D,∫

Bρ(x̂)∩D

xa
nu2(x)dx ≤ C

∫
Bρ(x̂)∩D

xa
n|∇u(x)|2dx,

where a ∈ (−1, 1) and the positive constant C depends only on ρ, n and a.

Proof of Theorem 1.1. For given positive T , we denote

ΩT :=
[
0,

T

2

]
× [0,+∞).

Problem (6) corresponds to an energy functional

J(U,ΩT ) :=
1
2

∫
ΩT

ya|∇U(x, y)|2dxdy +
∫ T

2

0

F (U(x, 0))dx. (8)

We denote the admissible set of the energy J as

ΛT :=

{
U : 0 ≤ U ≤ 1, U(0, y) = 0 = U

(
T

2
, y

)
for all y ≥ 0, U ∈ H1(ΩT , ya)

}
.

Here

H1(ΩT , ya) := {U : ya(U2 + |∇U |2) ∈ L1(ΩT )}.

Note that J(U,ΩT ) ≥ 0. On the other hand, we have that 0 ∈ ΛT and
J(0,ΩT ) = F (0)T

2 < +∞. Hence, there exists a minimizing sequence {Uk} ⊆
ΛT of J , namely

lim
k→∞

J(Uk,ΩT ) = mT := inf
U∈ΛT

J(U,ΩT ).

Due to F (u) ≥ 0 for |u| ≤ 1, from the definition of J , we have∫
ΩT

ya|∇Uk(x, y)|2dxdy ≤ 2mT . (9)

From this, Proposition 2.1 and the fact that Uk is bounded, we obtain∫
ΩT

yaU2
k (x, y)dxdy ≤ C < +∞, ∀ k. (10)

From (9), (10) we deduce that there exists a subsequence of {Uk}, still denoted
as {Uk}, converging weakly in H1(ΩT , ya) to a function UT ∈ H1(ΩT , ya).
Due to the weak convergence we obtain that∫

ΩT

ya|∇UT (x, y)|2dxdy ≤ lim inf
k→∞

∫
ΩT

ya|∇Uk(x, y)|2dxdy.

By Fatou’s Lemma, we also have∫ T
2

0

F (UT (x, 0))dx ≤ lim inf
k→∞

∫ T
2

0

F (Uk(x, 0))dx.
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Hence J(UT ,ΩT ) ≤ mT . Note that the set ΛT is weakly closed, so UT ∈ ΛT .
Then J(UT ,ΩT ) = mT , namely UT is a minimizer of J(U,ΩT ) in ΛT . For
any given η ∈ ΛT satisfying UT + ση ∈ ΛT for all small |σ|, we construct a
real-valued function

ϕ(σ) := J(UT + ση,ΩT ).

Then

0 =
d
dσ

ϕ(σ)|σ=0

=
∫

ΩT

ya∇UT (x, y) · ∇η(x, y)dxdy +
∫ T

2

0

F ′(UT (x, 0))η(x, 0)dx

= −
∫

ΩT

ηdiv(ya∇UT )dxdy +
∫ T

2

0

[
∂UT

∂νa
+ F ′(UT (x, 0))

]
η(x, 0)dx.

Hence, by the arbitrariness of η, we obtain

{
div(ya∇UT ) = 0 in ΩT ,
∂UT

∂νa = −F ′(UT ) on (∂ΩT )0 := [0, T
2 ].

Now, we extend UT oddly (with respect to x) from ΩT to [−T
2 , T

2 ]× [0,+∞).
Furthermore, we extend it periodically (with respect to x again) from [−T

2 , T
2 ]

× [0,+∞) to the whole half space R
2
+, and we still denote it as UT . Then UT

is a weak solution of (6).
The remaining task is to prove that UT �≡ 0. For σ ∈ (0, 1

2 ), we define
the following continuous function

h(x) :=

⎧⎪⎪⎨
⎪⎪⎩

4
σT x, x ∈ [0, σT

4 ],

1, x ∈ [σT
4 , T

2 − σT
4 ],

2
σ − 4

σT x, x ∈ [T
2 − σT

4 , T
2 ].

Note that 0 ≤ h ≤ 1. Then we construct a function ψ ∈ ΛT as follows

ψ(x, y) = exp
{

− y

2b+1

}
h(x),

where the parameter b will be determined later. We next compute the energy
J(ψ,ΩT ). From conditions (2), (3) of F , we have

∫ T
2

0

F (ψ(x, 0))dx =
∫ T

2

0

F (h(x))dx < F (0)
σT

2
. (11)
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For the other part of the energy, we have
∫ T

2

0

∫ ∞

0

ya|∇ψ(x, y)|2dxdy

=
∫ ∞

0

yaexp
{

− y

2b

}
dy

∫ T
2

0

[
h2(x)
22b+2

+ (h′(x))2
]

dx

≤
[

1
22b

T

8
+

8
σT

] ∫ ∞

0

yaexp
{

− y

2b

}
dy

= 2b(a+1)

[
1

22b

T

8
+

8
σT

] ∫ ∞

0

zae−zdz

= Γ(a + 1)2b(a−1)

[
T

8
+ 22b 8

σT

]
.

Note that a − 1 < 0, for the purpose that the term 2b(a−1)Γ(a + 1) is small,
we can choose sufficiently large b. For chosen b, the other term 22b 8

σT is also
small provided that T is large enough. Hence there exists T1 > 0 such that
for any T > T1, the following estimate holds true

∫ T
2

0

∫ ∞

0

ya|∇ψ(x, y)|2dxdy < (1 − σ)F (0)
T

2
. (12)

From (11), (12), we have

J(0,ΩT ) = F (0)
T

2
> J(ψ,ΩT ) ≥ J(UT ,ΩT ),

which shows that UT �≡ 0.

Now we set

uT (x) := UT (x, 0),

then uT is an odd periodic solution of Eq. (1). In view of 0 ≤ UT |ΩT
≤ 1 and

UT |ΩT
�≡ 0 or 1, a Hopf principle in [4] shows that UT (x, 0) = uT (x) ∈ (0, 1)

in (0, T
2 ), where we used the fact that F ′(0) = F ′(1) = 0.

Indeed, by choosing larger b and T , we can improve the inequality (12)
as follows∫ T

2

0

∫ ∞

0

ya|∇ψ(x, y)|2dxdy < F (0)
σT

2
, for any T > Tσ, (13)

where Tσ ≥ T1 and limσ→0 Tσ → +∞. From (13) and (11), we obtain

J(ψ,ΩT ) < σF (0)T.

This and the minimality of UT with respect to J yield estimate (7). �

3. Proof of Theorem 1.2

We assume that F satisfies conditions (2), (3) and is not necessary even.
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Proof of Theorem 1.2. We now define the Hilbert space as

H :=

{
U : |U | ≤ 1, ‖U‖2

H :=

∫
ΩT

ya|∇U(x, y)|2dxdy +

∫ T
2

− T
2

U2(x, 0))dx < ∞
}

,

where

ΩT :=
[
−T

2
,
T

2

]
× [0,+∞).

We consider the corresponding energy functional

J(U,ΩT ) =
1
2

∫
ΩT

ya|∇U(x, y)|2dxdy +
∫ T

2

− T
2

F (U(x, 0))dx.

Plainly, J ∈ C1(H,R), since F is smooth. Next we verify the Palais–
Smale condition. Namely, for any sequence Uk ∈ H with

J(Uk,ΩT ) bounded

and

J ′(Uk,ΩT ) → 0 in H,

it contains a convergent subsequence. Similar estimates as (9), (10) yield that
there exists a subsequence of {Uk}, still denoted as {Uk}, converging weakly
to a function Ū in H1(ΩT , ya). In view of

H1(ΩT , ya) ↪→ Hs

(
−T

2
,
T

2

)
↪→↪→ L2

(
−T

2
,
T

2

)
,

we have

Uk(x, 0) → Ū(x, 0) in L2

(
−T

2
,
T

2

)
. (14)

Note that∫
ΩT

ya|∇(Uk(x, y) − Ū(x, y))|2dxdy

= 〈J ′(Uk,ΩT ) − J ′(Ū ,ΩT ), Uk − Ū〉

−
∫ T

2

− T
2

[F ′(Uk(x, 0)) − F ′(Ū(x, 0))](Uk(x, 0)) − Ū(x, 0))dx.

Clearly,

〈J ′(Uk,ΩT ) − J ′(Ū ,ΩT ), Uk − Ū〉 → 0.

We also have∣∣∣∣∣
∫ T

2

− T
2

[F ′(Uk(x, 0)) − F ′(Ū(x, 0))](Uk(x, 0)) − Ū(x, 0))dx

∣∣∣∣∣
≤ C

∫ T
2

− T
2

|Uk(x, 0) − Ū(x, 0)|2dx → 0,
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where the convergence result follows from (14). Hence∫
ΩT

ya|∇(Uk(x, y) − Ū(x, y))|2dxdy → 0.

This and (14) give that

Uk → Ū in H.

We have obtained the Palais–Smale condition.
We set

Γ := {g ∈ C([0, 1];H) : g(0) = −1, g(1) = 1}.

Note that

J(1,ΩT ) = J(−1,ΩT ) = 0 ≤ J(v,ΩT ), ∀ v ∈ H,

and J is stable at 1 and −1, namely
∫

ΩT

ya|∇ϕ|2dxdy +
∫ T

2

− T
2

F ′′(±1)ϕ2(x, 0)dx > 0, for all ϕ �= 0 ∈ H.

Hence we have

δT := inf
g∈Γ

sup
t∈[0,1]

J(g(t),ΩT ) > 0.

We set

J(UT ,ΩT ) = δT , where UT = g(t0) for some g ∈ Γ and some t0 ∈ (0, 1).

Now we extend UT periodically (with respect to x) from ΩT to the whole
half space R

2
+, and we still denote it as UT . From the mountain pass theory

in [2], we know that UT is a weak solution of (6).
Next we show that UT �≡ 0. We choose a similar function ψ ∈ H as in

the above section

ψ(x, y) = exp
{

− y

2b+1

}
h̃(x),

where h̃ is the odd extension of the function h (defined in the above section)
from (0, T

2 ) onto (−T
2 , T

2 ). We construct a path as

ḡ(t) =

{
2tψ + (1 − 2t)(−1), for 0 ≤ t ≤ 1

2 ,

(2 − 2t)ψ + (2t − 1), for 1
2 ≤ t ≤ 1.

Clearly, ḡ ∈ Γ. We have∫
ΩT

ya|∇ḡ|2dxdy ≤
∫

ΩT

ya|∇ψ(x, y)|2dxdy.

Note that

ḡ(t) =

{
2tψ + (1 − 2t)(−1) ∈ [−1, ψ], for 0 ≤ t ≤ 1

2 ,

(2 − 2t)ψ + (2t − 1) ∈ [ψ, 1], for 1
2 ≤ t ≤ 1.
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We denote ḡ(t) as ḡt(x, y) to emphasize the dependence of ḡ on (x, y). Then
for 0 ≤ t ≤ 1

2 , we have

∫ T
2

− T
2

F (ḡt(x, 0))dx =
∫ 0

− T
2

F (ḡt(x, 0))dx +
∫ T

2

0

F (ḡt(x, 0))dx

≤
∫ 0

− T
2

F (ψ(x, 0))dx + F (0)
T

2
.

Similarly, for 1
2 ≤ t ≤ 1, we have

∫ T
2

− T
2

F (ḡt(x, 0))dx ≤
∫ T

2

0

F (ψ(x, 0))dx + F (0)
T

2
.

Hence for any t ∈ [0, 1], one has

J(ḡt,ΩT ) ≤ 1
2

∫
ΩT

ya|∇ψ(x, y)|2dxdy

+ max

{∫ 0

− T
2

F (ψ(x, 0))dx,

∫ T
2

0

F (ψ(x, 0))dx

}
+ F (0)

T

2
.

(15)

Then similar computation as (11) and (12) in the preceding section shows
that there exists T2 > 0 such that for T > T2 we have

J(ḡt,ΩT ) < F (0)T = J(0,ΩT ), for ∀ t ∈ [0, 1].

Hence

J(UT ,ΩT ) = δT ≤ max
t∈[0,1]

J(ḡt,ΩT ) < J(0,ΩT ),

which gives that UT �≡ 0. Then uT (x) := UT (x, 0) is the desired solution of
Eq. (1). Plainly uT (x) must change its sign. Hence uT (x) change its sign at
least once in a period. A Hopf principle in [4] gives again that |uT (x)| =
|UT (x, 0)| < 1.

Finally, we show estimate (7). To this end, for any given integer m > 1,
we define 2m − 1 continuous functions hi(1 ≤ i ≤ 2m − 1) as follows

hi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 8m
T x + 4m, for x ∈ [T

2 − T
8m , T

2 ],

1, for x ∈ [T
2 − iT

2m + T
8m , T

2 − T
8m ],

8m
T x − 4(m − i), for x ∈ [T

2 − iT
2m − T

8m , T
2 − iT

2m + T
8m ],

−1 for x ∈ [−T
2 + T

8m , T
2 − iT

2m − T
8m ],

− 8m
T x − 4m, for x ∈ [−T

2 ,−T
2 + T

8m ].

Note that hi ∈ [0, 1]. Similarly we define ψi ∈ H(1 ≤ i ≤ 2m − 1)

ψi(x, y) = exp
{

− y

2b+1

}
hi(x).
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Now we construct a path as

ĝ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2mtψ1 + (1 − 2mt)(−1), for 0 ≤ t ≤ 1
2m ,

((i + 1) − 2mt)ψi + (2mt − i)ψi+1, for i
2m ≤ t ≤ i+1

2m ,

1 ≤ i ≤ 2m − 2,

(2m − 2mt)ψ2m−1 + (2mt − (2m − 1)), for 2m−1
2m ≤ t ≤ 1.

Clearly, ĝ ∈ Γ.
For 0 ≤ t ≤ 1

2m , from the definitions of ĝ, we have∫ T
2

− T
2

F (ĝt(x, 0))dx =
∫ T

2

T
2 − T

2m − T
8m

F (ĝt(x, 0))dx ≤ F (0)
5T

8m
.

Similarly, for 2m−1
2m ≤ t ≤ 1, we have∫ T

2

− T
2

F (ĝt(x, 0))dx =
∫ T

2m + T
8m

0

F (ĝt(x, 0))dx ≤ F (0)
5T

8m
.

For the cases i
2m ≤ t ≤ i+1

2m (1 ≤ i ≤ 2m − 2), we have∫ T
2

− T
2

F (ĝt(x, 0))dx =
∫ T

8m

0

F (ĝt(x, 0))dx +
∫ T

2

T
2 − T

8m

F (ĝt(x, 0))dx

+
∫ T

2 − iT
2m + T

8m

T
2 − (i+1)T

2m − T
8m

F (ĝt(x, 0))dx

≤ F (0)
T

m
.

Therefore, ∫ T
2

− T
2

F (ĝt(x, 0))dx ≤ F (0)
T

m
, ∀ t ∈ [0, 1]. (16)

For the other part of the energy, we have∫
ΩT

ya|∇ĝ|2dxdy ≤ max
1≤i≤2m−1

2
∫

ΩT

ya|∇ψi(x, y)|2dxdy.

Similarly, by choosing enough large b and T , we obtain

max
1≤i≤2m−1

2
∫

ΩT

ya|∇ψi(x, y)|2dxdy ≤ F (0)
T

m
, for any T > Tm, (17)

where Tm ≥ T2 and limm→+∞ Tm → +∞. Inequalities (16), (17) give that

max
t∈[0,1]

J(ĝt,ΩT ) ≤ F (0)
2T

m
, for any T > Tm.

Hence for any 0 < σ < 1
2 , we can take large m = m(σ) such that

J(UT ,ΩT ) ≤ max
t∈[0,1]

J(ĝt,ΩT ) ≤ F (0)
2T

m
< σF (0)T, for any T > Tσ,

which is the desired estimate (7). Here Tσ := Tm(σ) → +∞ as σ → 0. �
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[3] Ambrosio, L., Cabré, X.: Entire solutions of semilinear elliptic equations in R3

and a conjecture of De Giorgi. J. Am. Math. Soc. 13, 725–739 (2000)
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