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Abstract. We consider periodic solutions of the following problem asso-
ciated with the fractional Laplacian

(=0sz) u(z) + F'(u(z)) = 0, u(z) = u(z +T), in R,

where (—0.z)° denotes the usual fractional Laplace operator with 0 <
s < 1. The primitive function F of the nonlinear term is a smooth
double-well potential. We prove the existence of periodic solutions with
large period T using variational methods. An estimate of the energy of
the periodic solutions is also established.
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1. Introduction
We consider the following problem involving the fractional Laplacian
(=0z)’u(z) + F'(u(z)) = 0, in R, (1)

where (—0;,)%, s € (0,1), denotes the usual fractional Laplace operator, a
Fourier multiplier of symbol |£]?. The function F is a smooth double-well
potential with wells at +1 and —1, namely, it satisfies

F1)=F(-1)=0< F(u), V-l<u<]l, )
{F’(l) = F'(-1) = 0. @

We also assume that
F' is nondecreasing in (—1,0) and nonincreasing in (0, 1). (3)

Note that conditions (2), (3) mean that F(0) = max_q<,<1 F'(u) > 0. We
may also assume that F' is even. A typical example of such double-well even
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2y2
function is F'(u) A=v)” We investigate the existence of odd periodic

solutions to Eq. (1), namely the solutions satisfying
u(z) =ulx +T), u(—z) = —u(z), in R.

We also consider the case that F' only satisfies conditions (2), (3), namely, it
is not necessary an even function. In this case, we will obtain the existence
of periodic solutions (not necessary odd) to Eq. (1).

For the local differential operator case s = 1, the corresponding form of
Eq. (1) is

—u"(z) + F'(u(x)) =0, in R. (4)
A solution u is said to be a layer solution of problem (4) if it satisfies
u'(x) >0, lim wu(z)= -1, lir+n u(z) = 1.

The authors in [3] proved that conditions (2) are both necessary and sufficient
for the existence of a layer solution to problem (4).

As for periodic solutions to problem (4), one can easily obtain the ex-
istence of periodic solutions with large periods. More precisely, there exists
Ty > 0 such that problem (4) admits nonconstant periodic solutions with pe-
riod T > Tp. Indeed, for the specific nonlinear function F(u) = %, one
can show that To = 27 (see [1]). For general case F' satisfying (2), furthermore

assuming F"'(0) < 0, we can show that Ty = 27 x \/ﬁ.

For the fractional Laplacian case, the authors in [4] and [5] proved that
(2) are also the necessary and sufficient conditions for the existence of a layer
solution to Eq. (1). Moreover, they prove that such layer solution is unique
and establish asymptotic behavior of the layer solution. These results also
have been proven with different techniques in [8].

What about periodic solutions to Eq. (1)7 Plainly, Eq. (1) possesses
three constant periodic solutions uw = 1, —1, 0, under the conditions (2), (3).
In this paper, we will try to find nonconstant periodic solutions.

The fractional Laplace operator (—A)® can be defined as a Dirichlet-to-
Neumann map for a so-called s-harmonic extension problem (see [6]). Given
a function ¢, the solution q~$ of the following problem

div(y*Ve) =0 in RT™ = {(2,y) : x € R",y > 0},
¢(x,0) = ¢(z) onR"

is called the s-harmonic extension of ¢. The parameter a is related to the
power s of the fractional Laplacian (—A)?® by the formulaa = 1-2s € (—1,1).
One has

i) = [ plo-mno@ie= [ pewoa-d (5)

where ps(x,y) is the s-Poisson kernel

y25

ps(l‘,y) = Cn,s
(Jz[* + [y[?

425 9
)
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and C,, s is the constant which makes f]R" ps(x,y)dz = 1. The authors in [6]
proved that

(=A)Sp(z) = gj; in R" = R+,
where
09 = —limyaa—(ﬁ.
ove yl07 Oy

From (5) and the above formula of s-Poisson kernel, we can easily deduce
that the s-harmonic extension 4(x,y) of an odd periodic solution u(z) to (1)
is also odd and periodic with respect to x with the same period of .

Equation (1) can be realized in a local manner through the nonlinear
boundary value problem

div(y*VU) =0 in R = {(z,y) : 2 € R,y > 0}, (©)
AU — —F'(U) on R.

Problem (6) is related to Eq. (1) in the sense that, if U is a solution of
(6), then a positive constant multiple of u(z) := U(x,0) satisfies (1). Then,
to obtain the existence of (odd) periodic solutions of Eq. (1), we need to
construct (odd) periodic solutions with respect to x of (6). We will obtain
such existence by variational methods. Note that (6) is the Euler-Lagrangian
equation of a functional J which will be defined in (8) in the next section.
In particular, for the case that F is even, we will find odd periodic solutions
which minimize the energy functional J. For the case that F is not necessarily
even, we will find periodic solutions by using the mountain pass theorem.
Our main results are the followings.

Theorem 1.1. Let s € (0,1). Assume F satisfies the assumptions (2)—(3) and
is even. Then there exists Ty > 0 such that for any T > Ty, Eq. (1) admits
an odd periodic solution ur with period T, and ur(z) € (0,1) for x € (0, %)
Moreover, for any positive number o < %, there exists T, > Ty such that for
any T > T,, we have

J(UT, QT) < O’F(O)T (7)
Here Ur is the s-harmonic extension of ur.

Theorem 1.2. Let s € (0,1). Assume F satisfies the assumptions (2), (3) and
F"(£1) > 0. Then there exists To > 0 such that for any T > Ty, Eq. (1)
admits a periodic solution up with period T, lup(z)| < 1 in R and it changes
its sign at least once in a period. Moreover, for any o < %, there exists
T, > Ty such that for any T > Ty, the inequality (7) also holds true.

2. Proof of Theorem 1.1

We assume that F satisfies conditions (2), (3) and is even.
Prior to the proof of Theorem 1.1, we introduce a weighted Poincaré
inequality in [7], where the authors first give the definition of class S. An
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open bounded set D C R” is said to belong to the class S, if there exist
a and pg positive such that for each £ € 9D and for each p < pg one
has |B,(2)\D| > «|B,(&)|. They establish the following weighted Poincaré
inequality.

Proposition 2.1. [7] Assume D belongs to the class S. Then for all & € 0D,
0 < p < po, and all u € C*(B,(&) N D) vanishing on B,(&) N dD,

/ rlu?(z)dz < C’/ x| Vu(z)[Ade,
B,(z)ND B,(2)ND

where a € (—1,1) and the positive constant C' depends only on p, n and a.

Proof of Theorem 1.1. For given positive T', we denote
T
QT = |:07 2:| X [0, +OO)

Problem (6) corresponds to an energy functional

J(U, Q) = % /Q VU (z, y)Pdady + /O C PU(z,0)dz. (8)

We denote the admissible set of the energy J as
Ar = {U :0< UL, U0,y)=0=U (%,y) forally >0,U € Hl(QT,ya)}.
Here

H'(Qr,y") == {U : y*(U* + |VU[*) € L'(Q1)}.

Note that J(U,Qr) > 0. On the other hand, we have that 0 € Ap and
J(0,Qr) = F(O)% < +00. Hence, there exists a minimizing sequence {Uy} C
Ar of J, namely

li Qpr) = = inf Qr).
1m J(Uk, T) mr UIEnATJ(U7 T)

k—oo

Due to F(u) > 0 for |u| <1, from the definition of J, we have
/Q Y| VU (z,9)|*dedy < 2mrp. (9)
From this, Proposition 2T.1 and the fact that Uy is bounded, we obtain
/Q y*UR (v, y)dazdy < C < 400, VY k. (10)
T
From (9), (10) we deduce that there exists a subsequence of {Uy }, still denoted

as {Ug}, converging weakly in H(Q7,y%) to a function Ur € H'(Qr,y%).
Due to the weak convergence we obtain that

/ y“|VUT(x,y)|2dxdySlikminf/ Y| VU (z,y)|*dzdy.
Qr — JQr

By Fatou’s Lemma, we also have

/ * F(Ur(x,0))de < liminf / * F(Up(x,0))dz.
0

k—o0 0
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Hence J(Ur, Q1) < mr. Note that the set Ar is weakly closed, so Ur € Ar.
Then J(Ur,Qr) = mp, namely Up is a minimizer of J(U,Qr) in Ap. For
any given n € Ap satisfying Up 4+ on € Ap for all small ||, we construct a
real-valued function

(o) = J(Ur + on, Qr).

Then

_d
T de

- / YV Ur(z,y) - Vi(z, y)dady + / F/(Ur(z,0)n(x, 0)dz
Qr 0

0 ¢(0)]o=0

:_/ ndiv(yavUT)d:cdy+/2 BZGT + F'(Ur(z,0))| n(z,0)dz.
Qp 0

Hence, by the arbitrariness of 7, we obtain

{div(yaVUT) =0 inQr,

Wr — —F'(Ur) on (0Qr)o == [0, L].

Now, we extend Ur oddly (with respect to z) from Q7 to [-Z, L] x [0, +00).

T 202
Furthermore, we extend it periodically (with respect to 2 again) from [—Z, Z]
x [0, 400) to the whole half space R2 , and we still denote it as Ur. Then Up

is a weak solution of (6).

The remaining task is to prove that Ur # 0. For o € (0, %), we define
the following continuous function

o T € [0, 7],
h(ZE) = 13 T e [%7 % - %]7
st velz -4

Note that 0 < h < 1. Then we construct a function ) € Ar as follows

} ha).

Y(z,y) = exp {— Qbﬁl

where the parameter b will be determined later. We next compute the energy
J(¢, Q7). From conditions (2), (3) of F, we have

/7 F(u(x,0))de — /7 F(h(z))dz < F(0) L. (11)

0 0 2
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For the other part of the energy, we have

|7 vvetePasy

0 0

_ [T Y TTR@) | e

_/0 yexp { zb}dy/o {?Hﬁ(h(x)) d
17T 8 < Yy

= [Q%NUTM v'exp{ =55}y

1T e
= 2b(at) [ + 8} / 2% *dz

2208 oT

T 8
=T 1)2ble=1) | = 4 920 = |
(a+1) s T4 oT

Note that a — 1 < 0, for the purpose that the term 2°(®~DT(a 4 1) is small,
we can choose sufficiently large b. For chosen b, the other term 22”% is also
small provided that T is large enough. Hence there exists 77 > 0 such that
for any T > T7, the following estimate holds true

|7 vV Pdedy < - o) F0) 3. (12)
0 0 2
From (11), (12), we have

J0,90) = FO)5 > J(,90) 2 J(Ur,0n),

which shows that Up # 0.
Now we set

ur(x) := Up(x,0),

then ur is an odd periodic solution of Eq. (1). In view of 0 < Ur|q, < 1 and
Urla, #Z 0 or 1, a Hopf principle in [4] shows that Ur(x,0) = ur(x) € (0,1)
in (0, Z), where we used the fact that F’(0) = F'(1) = 0.

Indeed, by choosing larger b and T', we can improve the inequality (12)
as follows

g oo T
/ / Y| Vap(z,y) Pdedy < F(O)%, for any T > T, (13)
o Jo

where T, > T and lim,_,0 T, — +oo. From (13) and (11), we obtain
J(,Qr) < oF(0)T.

This and the minimality of Ur with respect to J yield estimate (7). O

3. Proof of Theorem 1.2

We assume that F' satisfies conditions (2), (3) and is not necessary even.
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Proof of Theorem 1.2. We now define the Hilbert space as

r
2

H = {U:|U| <1, ||U]3 ;:/ ya|VU(a:,y)|2dxdy+/ UQ(x,O))dm<oo},
Qr

r
2

where
— T T
QT = |:—2, 2:| X [0,+OO)

We consider the corresponding energy functional

s
2

J(U,Qr) = %/ﬁ y“|VU(x,y)|2dxdy+/ F(U(z,0))dz.

Sl

Plainly, J € C*(H,R), since F is smooth. Next we verify the Palais—
Smale condition. Namely, for any sequence U, € ‘H with

J(Ug, Q7) bounded
and
J' (U, Qr) — 0 inH,

it contains a convergent subsequence. Similar estimates as (9), (10) yield that
there exists a subsequence of {Uy}, still denoted as {Uy}, converging weakly
to a function U in H'(Qr,y*). In view of

— T T T T
H Qp,y") - H | —=, = | == L* [ -=, =
(Tay) < 2a2) < 252>7

we have
Up(x,0) — U(x,0) in L* <_§’ Z) . (14)
Note that
L v V@) - Oy andy
= (J'(Uy, Q) — J'(U,Q7),U, — U)

_ /;z [F'(Ug(x,0)) — F'(U(x,0))](Ug(2,0)) — U(z,0))dx.
Clearly,
(J' Uy, Qr) — J'(U,Qr), U, — U) — 0.

We also have
T

[Z [F'(Ug(x,0)) — F'(U(x,0)](Us(z,0)) — U(z,0))dz

= 0/2 |Uk(x70) - U'(:r,O)|2dx — 0,

r
2
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where the convergence result follows from (14). Hence
| 19 ) = U)oy — o
T

This and (14) give that

Uk — U in H.
We have obtained the Palais—Smale condition.
We set
I':={g€C([0,1;H):9(0) = -1, g(1) = 1}.
Note that

J(LQT):J(—LQT):OSJ(’U,QT), VoveH,
and J is stable at 1 and —1, namely
T
3

/ y*|VelAdady + F"(+£1)¢?(x,0)dz >0, for all p #0 € H.
Qr -

©lS

Hence we have
5t = inf sup J(g(t),Qr) > 0.
9€T te0,1]
We set
J(Ur,Qr) =7, where Ur = g(tg) for some g € T' and some t, € (0,1).

Now we extend Ur periodically (with respect to z) from Qr to the whole
half space @, and we still denote it as Up. From the mountain pass theory
in [2], we know that Uy is a weak solution of (6).

Next we show that Ur # 0. We choose a similar function ¢ € H as in
the above section

Y(z,y) = exp {—21%} h(z),

where h is the odd extension of the function h (defined in the above section)

from (0,Z) onto (—%,Z). We construct a path as

“(g) — 2tp + (1 —2t)(—-1), for0<
S le-2p+(2t—1), forl<

Clearly, g € I'. We have

/ﬁy“|V§|2dmdy§[ Y|V (z, y) Pdedy.

Qr
Note that
B 2t + (1 —2t)(=1) € [-1,¢], for0<t <L,
9(t) = {(2 —20)+ (2t —1) € [, 1], for 2 <t <1
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We denote §(t) as g:(z,y) to emphasize the dependence of g on (z,y). Then
for0 <t < %, we have

L 0

T P 0)de = [ F(g(r0)dz + / ¥ F(gu(z,0))de

_T —
2

vlN

0 T
< F(¢(2,0))dz + F(O)?

Sk

Similarly, for % <t <1, we have

/

Hence for any ¢ € [0, 1], one has

vl

T
2

Fou(e.0)do < [ * F(u(w,0)do + F(0)

0

E

— 1
Ha8r) <3 [ 5190y

0 z
—I—max{/ F(z/;(z,O))dx,/ F(z/;(x,O))dx} —|—F(O)§.

2 (15)

Then similar computation as (11) and (12) in the preceding section shows
that there exists Ty > 0 such that for T > Ty we have

J(g, Q1) < F(0)T = J(0,Qr), for V t € [0,1].
Hence

J(UT,QT) =i < tren[gx J(gt,QT) < J(0, QT)
which gives that Ur # 0. Then ur(x) := Ur(x,0) is the desired solution of
Eq. (1). Plainly up(z) must change its sign. Hence ur(x) change its sign at
least once in a period. A Hopf principle in [4] gives again that |ur(x)| =
|Ur(z,0)] < 1.
Finally, we show estimate (7). To this end, for any given integer m > 1,
we define 2m — 1 continuous functions h;(1 <14 < 2m — 1) as follows

—8y 4 4m, for z € [£ — %,%L
1, forze[% 2’%+%’%7%]7
hi(z) = § 2z —d(m —i), foroe(f-ZL - L T-Z+I]
y e 34 T 25 )
—8my — dm, forze[-2,-L 4+ L]
Note that h; € [0,1]. Similarly we define ¢; € H(1 <i < 2m —1)

Yi(z,y) = exp {—21,311 } hi(z).
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JFPTA
Now we construct a path as
2mtpy + (1 —2mt)(—1), for 0 <t < 5,
() ((i + 1) — 2mt); + (2mt — i)hiy1, for oL <t < LHL
g =

1<i<2m-—2,
2m—1

(2m — 2mt)Yom 1 + (2mt — (2m — 1)), for =F— <t < 1.

Clearly, g € T.

For 0 <t < ﬁ, from the definitions of g, we have

.
2

. 2 . 5T
[ ratwonas= [ Py < FO)
_T T_ T _ T
2 2 2m
Similarly, for 27;17751 <t <1, we have

8m’
z
F

vl

8Sm’

oo ooy
(3e(z, 0))dz = / F(u(z,0))dx < F(0) 22

For the cases QL <t< %(1 < i< 2m —2), we have

/; F(gi(x,0))da = /OST" F({]t(aﬁ,()))d:ch/Tg ) F(gi(z,0))dz

2 8m
T _ iT
2

72'77L+g’,1,:L
+/17M7L F(gi(x,0))dx
2 2m 8m
T
< F(0)—.
( )m
Therefore,
: T
| Fadaomiz < FOZ, vee o (16)
T
2

For the other part of the energy, we have
| wivaasdy < | max 2 [y Pdad.
O 1<i<2m—1 Jq,

Similarly, by choosing enough large b and 7', we obtain

max

T
a . 2 < —
1<Z_<2m12/QTy [Vibi(z, y)|[*dedy < F(O)m, for any 7' > T5,,, (17)

where T),, > T and lim,,— 1o, T, — +00. Inequalities (16), (17) give that

— 2T
max J (G, Qr) < F(0)—, for any T > T,,,.
t€[0,1] m

Hence for any 0 < 0 < %, we can take large m = m(o) such that

_ — 2T

J(Ur,Qr) < tm[aa)i] J (g, Q) < F(O)H <oF(0)T, forany T >T,,
€10,

which is the desired estimate (7). Here T, := T}, (o) — 400 as 0 — 0.

O
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