
Recovery of Protein Folding Funnels from

Single-Molecule Time Series by Delay

Embeddings and Manifold Learning

Jiang Wang†,¶ and Andrew L. Ferguson∗,‡

†Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green

Street, Urbana, IL 61801, USA

‡Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue,

Chicago, IL 60637, USA

¶Present address: Department of Chemistry, Rice University, P.O. Box 1892, MS 60

Houston, TX 77251, USA.

E-mail: andrewferguson@uchicago.edu

Phone: (773) 702-3018

1

andrewferguson@uchicago.edu


Abstract

The stability and folding of proteins is governed by the underlying single molecule

free energy surface (smFES) mapping the free energy of the molecule as a function of

configurational state. Ascertaining the smFES is of great value in understanding and

engineering protein structure and function. By integrating tools from dynamical sys-

tems theory and nonlinear manifold learning, we describe an approach to reconstruct

the multidimensional smFES for a protein from a time series in a single experimentally-

measurable observable. We employ Takens’ delay embeddings to project the time series

into a high-dimensional space in which the projected dynamics are C1-equivalent to the

true system dynamics, and employ diffusion maps to recover a low-dimensional recon-

struction of the smFES that is equivalent to the true smFES up to a smooth and

invertible transformation. We validate the approach in molecular dynamics simulations

of Trp-cage, Villin, and BBA to demonstrate that landscapes recovered from univariate

time series in the head-to-tail distance are topologically identical – they precisely pre-

serve the metastable states and folding pathways – and topographically approximate –

the free energy barrier heights and well depths are approximately preserved – to the

true landscapes determined from complete knowledge of all atomic coordinates. We go

on to show that the reconstructed landscapes reliably predict temperature denaturation

and identify point mutations and groups of mutations critical to folding. These results

demonstrate that protein folding funnels can be reconstructed from experimentally-

measurable time series and used to understand and engineer folding.
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1 Introduction

The thermodynamic stability and folding pathways of proteins are governed by the underly-

ing single molecule free energy surface (smFES) colloquially known as the folding funnel. 1,2

By quantifying protein stability and resolving low-free energy folding pathways, the smFES

maps out the metastable states of the protein and the pathways between them, providing

a wealth of understanding of protein structure, folding, and function. 1–7 Changes to the

folding funnel as a function of the prevailing conditions (e.g., temperature, pressure, salt

concentration) or mutations in the protein sequence can inform rational engineering of pro-

tein structure and function.8–11 It is a primary objective in single molecule biophysics and

protein folding and design to determine protein folding funnels.

The spatial location and configuration of a protein containing N atoms is uniquely spec-

ified by a 3N -dimensional vector of Cartesian coordinates. Molecular dynamics calculations

simulate the dynamical evolution of the protein through this high-dimensional configura-

tional space.12 Couplings between the molecular degrees of freedom mediated by bonded

interactions, long-range electrostatic and dispersion interactions, and solvent-mediated hy-

drophobicity generically give rise to a small number of collective variables (CVs) describing

the important large-scale / long-time motions of the protein to which the remaining degrees

of freedom are effectively slaved.13–16 Accordingly, the dynamical evolution of the protein is

effectively restrained to a manifold of dimensionality far lower than the 3N -dimensional space

in which the dynamics are formulated.6,7,7,14–21 The CVs spanning this low-dimensional in-

trinsic manifold present good order parameters with which to parameterize the smFES, since

they naturally distinguish the various metastable states of the protein and are coincident with

the important dynamical motions. Estimates of the CVs can be recovered from molecular

simulation trajectories using dimensionality reduction techniques. Geometric dimensional-

ity reduction techniques seek to determine a low-dimensional manifold residing within the

high-dimensional simulation trajectory using linear 22–25 or nonlinear26–34 approaches. Ki-

netic approaches instead seek to approximate the slowest eigenfunctions of the propagator
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that evolves probability distributions over the molecular state space, 35 and can be formu-

lated as a variational solution of a generalized eigenvalue problem. 35–41 Having identified

CVs by such a method, molecular simulation data may then be projected onto these coordi-

nates and the smFES estimated from the empirical distribution of points projected onto the

low-dimensional intrinsic manifold.6,7,17,39,42,43

Molecular simulations, however, are subject to two primary sources of error: systematic

errors introduced by the approximate nature of the classical mechanical force fields, and sta-

tistical errors introduced by incomplete sampling of configurational space. 44 Single molecule

experiments are not subject to these deficiencies, but present their own difficulties since it is

not currently possible to follow the coordinates of all atoms in a molecule as a function of

time. X-ray crystallography and cryo-electron microscopy can resolve protein structures to

essentially atomic resolution, but cannot track the protein dynamics. Fluorescent imaging

techniques can probe protein dynamics by real-time optical tracking of conjugated fluores-

cent reporters.45,46 Single molecule Förster resonance energy transfer (smFRET) operates

as a “molecular yardstick” furnishing the distance between pairs of fluorophores grafted

to particular locations in the protein.46,47 Monitoring this distance provides coarse-grained

information on the dynamical conformational changes of the protein, but is restricted to fol-

lowing a single (occasionally, a few) intramolecular distances and cannot furnish the location

of all atomic coordinates as a function of time. How might one determine good CVs and

recover estimates of the multidimensional smFES from experimental time series of a single

molecular observable?

We have established a technique to achieve this goal by combining tools from dynamical

systems theory and nonlinear manifold learning. 48 The approach appeals to Takens’ Delay

Embedding Theorem as a means to take time series in generic observables of a dynamical

system and project them into a high-dimensional space within which the projected dynam-

ics are related by a smooth, continuously differentiable function to the true dynamics of the

system.49–58 Manifold learning techniques are then used to extract from within this space
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a low-dimensional manifold supporting a reconstruction of the smFES. 33,34,59 Takens’ The-

orem guarantees that the reconstructed manifold preserves all of the metastable states of

the molecule and the transition pathways between them, but the height of the free energy

barriers and depth of the free energy wells may be perturbed from their true values. In the

context of protein folding, this approach provides a means to take univariate time series of

single experimental observables (e.g., a smFRET intramolecular distance) and recover recon-

structions of multidimensional protein folding funnels without ever requiring access to the

atomic coordinates. In this work, we demonstrate empirically for a number of small proteins

that the perturbation of the reconstructed smFES topography introduced by this procedure

is relatively mild, and that the reconstructed landscapes can be used to understand and en-

gineer protein stability and function. A schematic illustration of our approach is presented

in Figure 1.

We have previously validated the approach in molecular dynamics simulations of a hy-

drophobic polymer chain to show the two-dimensional smFES reconstructed from knowledge

of the dynamics of the chain head-to-tail distance to be topologically identical to the true

landscape determined from analysis of the all-atom simulation trajectory. 48 It is the purpose

of the present work to demonstrate the approach in realistic all-atom molecular dynamics

simulations of small proteins, and assess the degree to which thermodynamic understanding

may be extracted from the reconstructed folding funnels. Analysis of molecular simulation

data allows us to validate the technique because the true smFES is available as a ground

truth from analysis of the all-atom simulation trajectory. In the first part of this paper,

we report the analysis of long folding trajectories of three small proteins Trp-cage, Villin,

and BBA to demonstrate that our approach can faithfully recover topologically equivalent

reconstructions of their protein folding funnels from univariate time series in the protein

head-to-tail distance. We show the landscapes to be consistent with existing understanding,

numerically validate the existence of the diffeomorphism asserted by Takens’ Theorem, and

demonstrate the degree of topographical perturbation of the free energy barrier heights and
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Figure 1: Schematic illustration of the smFES reconstruction approach. (a) The protein
folding funnel is supported by a low-dimensional manifold M within the high-dimensional
state space of all atomic coordinates. CVs parameterizing M can be ascertained by applying
nonlinear manifold learning tools to molecular dynamics trajectories recording the dynami-
cal evolution of all atomic coordinates. In this example, {ψ1, ψ2} denote the CVs spanning
the 2D manifold M and βF (ψ1, ψ2) is the dimensionless free energy surface supported by M
where β = 1/kBT . (b) Tracking of an experimentally measurable coarse-grained observable
of the system v furnishes a univariate time series that provides information on the dynamical
motions of the protein, for example the intramolecular distance between two fluorophores
measured by smFRET. Takens’ Delay Embedding Theorem stipulates that the univariate
time series can be projected into a high-dimensional space in which the dynamical evolution
is C1-equivalent to that of the true dynamics of the system being observed by forming d-
dimensional delay embeddings ~y(t) = [v(t), v(t− τ), v(t− 2τ), . . . v(t− (d− 1)τ)]. (c) Under
some technical conditions on v, d, and τ discussed below, the dynamical evolution of the
delay embedding ~y(t) maps out a manifold Θ(M) that is diffeomorphoic to M . In other
words, Θ defines a smooth and invertible transformation between the true and reconstructed
manifolds Θ : M → Θ(M). Consequently, Θ(M) is topologically equivalent to M in that it
preserves the same metastable states and pathways between them, but may be topograph-
ically perturbed in that the free energy barrier heights and well depths may be perturbed.
No theoretical bounds are available to limit the degree of this perturbation, but we provide
empirical evidence in simulations of a number of small proteins that it is relatively mild.
Applying nonlinear manifold learning to the delay embedding trajectories can identify the
CVs {ψ∗

1, ψ
∗
2} spanning Θ(M) and supporting the reconstructed smFES βF ∗(ψ∗

1, ψ
∗
2).

well depths to be relatively mild. In the second part of the paper, we analyze an ensemble

of molecular simulations of Trp-cage at a variety of temperatures and containing different

engineered mutations. The reconstructed landscapes reliably predict temperature denatu-
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ration and accurately identify those mutations that have strong and weak influences on the

stability of the native fold. This work demonstrates that protein folding landscapes may

be reliably reconstructed from univariate time series in experimentally-accessible molecular

observables, and the landscapes effectively used to understand and engineer protein folding.

2 Methods

2.1 Molecular dynamics simulations

Molecular simulation data analyzed in this work were derived from two sources. Long

(> 100 µs) simulations of three fast-folding proteins obtained from D.E. Shaw Research

(DESRES),60 and an ensemble of simulations of Trp-cage at different temperatures and

containing various mutations were conducted in-house.

DESRES simulations of Trp-cage, Villin, and BBA. Molecular dynamics simu-

lations of Trp-cage, Villin, and BBA were conducted by D.E. Shaw Research as reported

in Ref.60 Simulations were conducted using the Desmond simulation package 61 running on

the special purpose Anton supercomputer.62 Systems were modeled using the CHARMM22*

force field63 and the modified TIP3P water model.64,65 The N-termini, C-termini, Lys, Arg,

Asp, and Glu residues were modeled as charged, and the His residues as neutral unless

otherwise specified. Systems were equilibrated in the NPT ensemble and production runs

conducted in the NVT ensemble. Temperature was maintained by a Nosé-Hoover ther-

mostat with a time constant of 1 ps. Equations of motion were numerically integrated

with a 2.5 fs time step. Lennard-Jones and short-range Coulomb interactions were treated

with a 0.9-0.95 nm real space cutoff and long-range Coulombic forces treated with the

Gaussian Split Ewald technique66 over a 32×32×32 cubic grid. The 20-residue Trp-cage

(DAYAQWLADGGPSSGRPPPS, PDB ID 2JOF), representing the thermostable K8A mu-

tant of TC10b,67 was simulated at 290 K for 208 µs. Simulations were conducted in 65

mM NaCl in a ∼3.7 nm cubic box of ∼1700 water molecules. We extracted the first 200
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µs of the simulation trajectory for analysis. The 35-residue Villin (LSDEDFKAVFGMTR-

SAFANLPLW(Nle)QQHL(Nle)KEKGLF, PDB ID 2F4K), representing the double norleucine

mutant of the C-terminal fragment of the Villin headpiece, 68 was simulated at 360 K for 125

µs. Simulations were conducted in 40 mM NaCl in a ∼5.4 nm cubic box of ∼4400 water

molecules, and the His residue is modeled as charged. We extracted the first 120 µs of the

simulation trajectory for analysis. The 28-residue BBA (EQYTAKYKGRTFRNEKELRD-

FIEKFKGR, PDB ID 1FME) was simulated at 325 K for 325 µs. Simulations were performed

in a ∼4.7 nm cubic box of ∼3200 water molecules and four chloride ions to maintain charge

neutrality. We extracted the first 200 µs of the simulation trajectory for analysis.

In-house simulations of Trp-cage. We also conducted in-house simulations of the

20-residue TC5b variant of the Trp-cage mini protein (NLYIQWLKDGGPSSGRPPPS, PDB

ID 1L2Y).69 Simulations were conducted using the OpenMM simulation suite. 70 The protein

was modeled using the Amber99sb force field71 and the water solvent modeled implicitly us-

ing the Amber99 GBSA-OBC model.72 The Langevin equation of motion were numerically

integrated with a 2 fs time step. A friction coefficient of 1 ps−1 was employed to main-

tain temperature at 380 K unless otherwise specified. Due to the use of implicit solvent,

simulations were conducted in a formally infinite domain and no non-bonded cutoffs were

employed. Bonds involving a hydrogen atom were constrained to a fixed length to improve

the stability of the numerical integration. Each 1 µs simulation was conducted on a single

NVIDIA GeForce GTX 770M GPU card to achieve execution speeds of ∼1100 ns/day. We

performed 37 independent simulations partitioned into four classes: (I) 8 × simulations of

wild-type TC5b Trp-cage at evenly-spaced temperatures spanning 300-440 K, (II) 4 × simu-

lations of engineered Trp-cage mutants that were the subject of prior experimental study, 69

(III) 20 × alanine point mutants, and (IV) 5 × alanine tetrad mutants. An accounting of

the 37 simulations is provided in Table 1.
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2.2 Attractor reconstruction by Takens’ delay embeddings

Takens’ Delay Embedding Theorem provides a means to recover reconstructions of the ge-

ometry and topology of the phase space occupied by a dynamical system without having

access to the dynamical evolution of all system degrees of freedom. 49–57 The theorem has

been employed in diverse applications including climate modeling, 73 fishery forecasting,58

dynamical mode decomposition of reaction-diffusion and liquid crystal growth, 74 and analy-

sis of peptide dynamics.75,76 In the context of molecular folding, we have previously shown

how the theorem can be used to develop approximations for the smFES from measurements

of one or more coarse-grained observables of the system. 48

Let us consider a classical molecular system comprising N atoms that dynamically evolves

under Newton’s equations of motion within the 3N -dimensional state space parameterized

by all atomic coordinates. A simulation trajectory can be considered a ordered sequence of

C simulation snapshots {~ri}Ci=1 describing the progression of the system through state space.

Couplings between the degrees of freedom generically restrain the dynamics to occupy a

k-dimensional intrinsic manifold M ∈ Rk ⊂ R3N with k << 3N .6,7,7,14–21 This manifold can

be recovered from 3N -dimensional molecular simulation trajectories by applying manifold

learning techniques to identify CVs spanning M and then estimating the smFES it supports

from the distribution of projected points into these CVs. 6,7,17,39,42,43 We will refer to the

smFES over M recovered from analysis of all-atom trajectories as the true smFES of the

system.

Consider now a generic measurement function of a scalar observable of the system v :

Rk → R. In the context of protein folding, v may be an intramolecular distance between two

fluorophores measured by smFRET.46 Takens’ Delay Embedding Theorem asserts that the

state of the system is uniquely specified under the d ≥ (2k+1)-dimensional delay embedding

~y(t) = [v(t), v(t− τ), v(t− 2τ), . . . v(t− (d− 1)τ)] that matches up each instantaneous scalar

observation of the system v(t) with (d − 1) past observations time-delayed by increments

of τ . The theorem further asserts that the dynamics of ~y(t) are C1-equivalent – related
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by a smooth, continuously differentiable function – to the true all-atom dynamics and are

restrained to a manifold Θ(M) ∈ Rk ⊂ Rd where Θ : M → Θ(M) defines a diffeomorphism

– a smooth and invertible mapping – between the true and reconstructed manifolds. 48–57

The reconstructed manifold Θ(M) can be recovered from the time evolution of the delay

embedding ~y(t) using the same manifold learning techniques as applied to the molecular

simulation trajectories. We will refer to the smFES over Θ(M) recovered by appealing to

Takens’ delay embeddings of time series data as the reconstructed smFES of the system.

An important consequence of this theorem is that it provides a means to reconstruct pro-

tein folding funnels from time series measurements in experimentally accessible observables.

The properties of the diffeomorphism Θ : M → Θ(M) relating the true and reconstructed

manifolds are such that it cannot tear or restitch the manifold but may stretch and squash

it.49–52,56,77 Accordingly, the reconstructed manifold is guaranteed to be topologically iden-

tical, preserving the edges, continuity, and connectivity of the true manifold, and therefore

maintain all of the metastable states of the molecule and the transition pathways between

them. However, it may be topographically perturbed, such that the height of the free energy

barriers and depth of the free energy wells are shifted away from their true values. We demon-

strate in this work through empirical comparisons of M and Θ(M) that the topographical

perturbations induced by the diffeomorphism are relatively mild, and that the reconstructed

smFES preserves a high degree of quantitative interpretability.

We now consider a few technical, but important, aspects of the theorem that must be

confronted in its practical application.

v Taken’s Theorem holds for any generic observable v of the system that is a function

of all system degrees of freedom and does not contain any symmetries not present in the

system.49,57,78,79 Let us make three important observations about this condition. First, in

applications to protein folding, the experimentally-accessible observable is typically expected

to be some function of the protein coordinates such as an intramolecular distance. Depending

on the choice of intramolecular distance, this observable may depend more or less strongly
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on particular intramolecular degrees of freedom. Moreover, the dynamical evolution of the

protein is also influenced by solvent degrees of freedom and the dynamics of deterministic

or stochastic thermostats and barostats, applied constraints, and other external couplings.

Accordingly, our application of Takens’ Theorem is actually to observations of a subsystem

– the portion of the protein governing the observed intramolecular distance – subject to a

number of external couplings and forcings. The validity of this application is supported by

generalizations of the theorem by Stark and co-workers who showed it to hold under very

general conditions for (sub)systems subject to stochastic or deterministic forcing. 54,55

Second, what if the chosen observable does contain symmetries not present in the system?

For example, an intramolecular distance measured by smFRET is invariant to head-to-tail

and mirror inversions of the molecule, whereas the molecule itself may not possess these

symmetries. In this case, the reconstructed manifold Θ(M) will collapse out these symmetries

and will not be diffeomorphic toM . It is necessary, therefore, to moderate our goal to instead

seek a spatially symmetrized reconstruction of M that eliminates the symmetries present in

the observable. This modification can be straightforwardly achieved by applying diffusion

map manifold learning in a manner that mods out these spatial symmetries, and we describe

how we achieve this in Section 2.3.48 We also observe that it may be possible to lift the

degeneracy by switching to an observable that does not contain these spurious symmetries,

or by applying Takens’ Theorem to multiple simultaneous observables that taken together

eliminate these symmetries.53

Third, we adopt throughout this work the molecular head-to-tail distance as our experimentally-

accessible time series and assert that this can, in principle, be measured by a technique such

as smFRET. We appreciate that achieving this in practice entails significant experimen-

tal challenges, including the chemical conjugation of large fluorophores to small molecules

and the dynamical perturbations they might induce, the recovery of long trajectories with

high signal-to-noise ratios, sub-ms time resolution, the possibility of photobleaching, and the

recording of reliable measurement of distances outside the 2-8 nm range. 46,47 It is the goal

11



of the present work to consider idealized smFRET measurements in order to validate the

principles of our technique in long simulations of a number of small fast-folding proteins.

This establishes the methodology in this idealized limit, and lays the groundwork for its

future extension to real experimental data.

τ The theorem places no conditions on the delay time τ , but in practical applications

a good choice of delay time is crucial in making best use of the data and producing high

quality embeddings. We identify an appropriate value of τ using the approach of Fraser

and Swinney, which calculates the mutual information between time-delayed pairs of the

observable (v(t), v(t− τ)).80 The optimal value of τ is selected as that at the first minimum

in the mutual information,80 or – in the absence of a well-defined local minimum – the τ at

which the mutual information decays to 1/e of its initial value.57

d Takens’ Theorem guarantees the existence of a diffeomorphism for delay embeddings of

dimensionality d ≥ (2k + 1). In practical applications, the dimensionality k of the intrinsic

manifold may not be known a priori, and – although not assured – may exist for delay

embeddings of lower dimensionality k ≤ d < (2k + 1).50,81 In practice, we use the method

of Cao to ascertain the minimum delay embedding dimensionality at which the embedding

becomes fully unfolded and there are no artificial intersections of the embedding or false

nearest neighbors.82,83

Temporal symmetry breaking. A molecular system at thermodynamic equilibrium is

constrained to obey time-reversal symmetry and detailed balance wherein every microscopic

transition is equilibrated by the reverse process. 84,85 The construction of delay embeddings

breaks time reversal symmetry by imposing a temporal ordering on the scalar observations.

Specifically, a microscopic configuration ~rA transitioning to a neighboring microstate ~rB

is distinguishable from the same microscopic configuration ~rA that has just transitioned

from ~rB. This distinguishability arises because the delay embedding vectors contain the

history of the transition, and the delay embedding vectors for the forward and backward

transitions are related by inversion of their elements. This temporal symmetry breaking
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leads to an apparent violation of detailed balance within the reconstructed manifold Θ(M)

since forward and backward transitions between any pair of microstates will not lie coincident

within the manifold, but rather be separated across a plane of symmetry. We must eliminate

the artificial temporal symmetry breaking in order to enforce detailed balance within the

reconstructed manifold Θ(M) and achieve a diffeomorphism with the true manifold M where

detailed balance is naturally enforced. We previously developed a means to eliminate this

symmetry breaking by augmenting our scalar time series with its time reversed analog and

identifying and eliminating these symmetry planes. 48 In this work, we introduce a simpler

means to eliminate this temporal symmetry breaking in our application of diffusion maps, and

we describe how we achieve this in Section 2.3. We note that elimination of this symmetry

breaking is likely not warranted or desirable in the analysis of out-of-equilibrium systems.

Diffeomorphic bijection. The diffeomorphism Θ : M → Θ(M) asserts a smooth and

invertible mapping between the two manifolds, and implies a bijection of each point in M

to its image in Θ(M). For C observations of the molecular system {~ri}Ci=1, the manifold

M will comprise C points, whereas Θ(M) typically contains (C − d + 1) projections of the

delay embedding vectors {~yj}(C−d+1)
j=1 , where d is the dimensionality of the delay embedding.

In order to establish a one-to-one mapping between the manifold, we adopt the convention

that each delay vector projection on Θ(M) will be matched to the first of the d simulation

snapshots from which the delay vector was constructed. (An alternative convention might

choose to instead match the central, last, or mean simulation snapshot.) The initial (d− 1)

points in the simulation trajectory for which this average is undefined are discarded.

2.3 Diffusion maps manifold learning

Diffusion maps are an unsupervised nonlinear manifold learning technique that can be

used to identify and extract low-dimensional manifolds latent within high-dimensional data

sets.17,33,34,59,86,87 The approach functions by constructing a random walk over the high-

dimensional data set and performing a spectral decomposition of the resulting dynamics to
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identify a low-dimensional surface to which the data are effectively restrained. In this work

we use this approach to recover parameterizations of the intrinsic manifold M within the

high-dimensional molecular simulation trajectories, and its image Θ(M) residing within the

high-dimensional Takens’ delay embeddings.

The first step in applying diffusion maps is to compute pairwise distances dij between

each pair of points (i, j) in the high-dimensional data. In applying diffusion maps to the

molecular simulation trajectories {~ri}Ci=1 we adopt the root mean squared deviation (RMSD)

between the atomic coordinates of the Cα atoms of the translationally and rotationally

aligned protein structures in each snapshot of the simulation trajectory that we efficiently

compute using the Kabsh algorithm.88 Furthermore, we also minimize this distance over

head-to-tail inversion of the protein by inverting the indexing of the Cα atoms, and also

mirror symmetry by minimizing over the original and mirror image of the Cα coordinates.

This final step symmetrizes the manifoldM with respect to these two inversions, modding out

these transformations that cannot be distinguished by our choice of the head-to-tail distance

as our observable and allowing Θ(M) to approximate the true manifold by application of

Takens’ Theorem to this observable. This choice of distance measure produces a spatially

symmetrized representation of the manifold M . In applying diffusion maps to the delay

embedding trajectories {~yj}(C−d+1)
j=1 , we adopt the Euclidean distance between the the high-

dimensional delay vectors ~y(t) = [v(t), v(t− τ), v(t−2τ), . . . v(t− (d−1)τ)] minimized under

inversion of the ordering of the delay vector elements. In a similar way that head-to-tail

and mirror inversion eliminates the spatial symmetries in the molecular configurations, this

operation eliminates the spurious symmetry breaking introduced by the temporal ordering

of the observables in the delay vector. This choice of distance measure produces a temporally

symmetrized reconstructed manifold Θ(M).

After computing all pairwise distances, we convolute dij with a Gaussian kernel to form

the matrix elements Aij = exp(−d2
ij/2ε). The kernel bandwidth

√
ε defines the characteristic

hop size of the random walk over the high-dimensional data set, which can be automati-
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cally tuned to an appropriate value using the approach in Ref. 89 We then row-normalize

A to obtain the Markov matrix M = D−1A, where D is a diagonal matrix with elements

Dii =
∑

k Aik. The element Mij of the right-stochastic Markov matrix M defines the hop-

ping probability from state i to state j under the action of the discrete random walk in

the high-dimensional space.86 A spectral decomposition of M furnishes a set of eigenvalues

λ1 = 1 ≥ λ2 ≥ . . . ≥ λN and right eigenvectors {ψk}Nk=1. The leading eigenvectors are

discrete approximations to the leading eigenfunctions of the backward Fokker-Planck equa-

tion characterizing the slowest diffusion modes over the data. 33,86,89 A gap in the eigenvalue

spectrum after λk+1 informs a separation of time scales for the diffusion process and the

identification of a k-dimensional intrinsic manifold within the high-dimensional space. After

discarding the trivial top eigenvector ψ1 = ~1, the top k non-trivial eigenvectors serve as good

CVs parameterizing the intrinsic manifold and inform the low-dimensional embedding,

observationi →
(
~ψ2(i), ~ψ3(i), . . . ~ψk+1(i)

)
. (1)

The leading eigenvectors provide good embedding coordinates as the slowest relaxing

modes of the random walk over the high-dimensional data, but the diffusion map does not

provide an explicit mapping from the original coordinate space. In some cases it is possible

to correlate the eigenvectors with physical variables by visualizing heat maps, performing

linear correlation analyses, or screening pools of candidate physical variables. 90–92 It is not

always possible, however, to identify a simple physical correspondence, and it is not surprising

that the CVs emerging from the many-body interactions within complex dynamical systems

may defy simple understanding or human intuition. 93 In the present work, this physical

correspondence is welcome and useful, but not needed since all that we require of the CVs

is to provide a good parameterization of the low-dimensional manifold.

Simple application of diffusion maps requires the calculation and storage of N×N pairwise

distances, which can be computationally prohibitive for large N . In this work we employ
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pivot diffusion maps (P-dMaps) as an algorithmic implementation that obviates the need to

compute the full N × N matrix.94 This approach computes the diffusion map embedding

of n << N pivot points spanning the manifold that are automatically selected on-the-fly

and then subsequently projects in the remaining (N − n) data points using the Nyström

extension.95–97 This technique drastically reduces the time complexity of applying diffusion

maps from O(N2) to O(N × n) with very little loss loss in accuracy.94

Large density variations over the intrinsic manifold can compromise the ability of the

diffusion map embedding to construct a random walk that simultaneously has a sufficiently

large step size to span the manifold but a sufficiently small step size to resolve important

details within the high density regions of the space. 98–100 We resolve this difficulty by employ-

ing a density adaptive variant of diffusion maps that rescales pairwise distances as dij ← dαij

according to a tunable exponent α ∈ (0, 1].100 This operation reduces the difference between

large and small distances over the manifold while rigorously maintaining the triangle in-

equality. This mitigates the apparent density fluctuations over the manifold and produces

superior diffusion map embeddings. Empirical tests suggest that an appropriate value of α

may be estimated by reducing the apparent local density fluctuations to ∼ 102.100

3 Results and Discussion

3.1 smFES reconstruction for Trp-cage, Villin, and BBA mini pro-

teins

We first apply our approach to long molecular dynamics simulation trajectories of three

proteins conducted by D.E. Shaw Research:60 (i) the 20-residue Trp-cage (PDB ID 2JOF)

fast-folding engineered mini protein that has been the subject of extensive experimental and

computational study, (ii) the 35-residue Villin (PDB ID 2F4K) corresponding to the three-

helix headpiece of an actin-binding protein, and (iii) the 28-residue BBA (PDB ID 1FME)

designed FSD-EY protein containing a β-β-α native fold. Simulation details are provided in
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Section 2.1. The goal of this study is to first recover estimates of the smFES by applying

diffusion map manifold learning to the all-atom simulation trajectories (Section 2.3), and then

compare these to reconstructions of the smFES determined by applying Takens’ Theorem

and diffusion maps to time series of the protein head-to-tail distance (h2t) between the first

and last Cα atoms (Section 2.2). We extract this time series directly from the simulation

trajectories under the presumption that such an intramolecular observable could, in principle,

be measured by a technique such as smFRET.46 We present in Figure 2 molecular images of

the native state of each of the three proteins along with the h2t time series extracted from

each simulation trajectory.

Figure 2: Time series in the head-to-tail distance (h2t) extracted from long molecular
dynamics simulation trajectories for three mini-proteins (a) Trp-cage (PDB ID 2JOF), (b)
Villin (PDB ID 2F4K), and (c) BBA (PDB ID 1FME).60 Molecular models of the native
state of each protein are also provided showing the secondary structural elements and shaded
red-to-blue from the N-terminus to C-terminus. All molecular renderings in this work are
constructed using VMD.101
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3.1.1 Trp-cage (PDB ID 2JOF)

All-atom trajectories. We first apply diffusion maps to the 200 µs all-atom simulation

trajectory of Trp-cage at T = 290 K to discover good CVs with which to parameterize

the intrinsic manifold M supporting the true smFES. The 1,000,000 frame trajectory is

sampled at 0.2 ns resolution, which we evenly subsample down to 100,000 frames for analysis.

Distances between pairs of molecular configurations required in the application of diffusion

maps are measured according to the RMSD between Cα atom coordinates minimized over

translation, rotation, head-to-tail inversion, and mirror inversion. As detailed in Section 2.3,

these symmetrizing operations are required to respect the fact that these transformations

are not distinguishable to our choice of molecular observable h2t, and so we can only hope to

recover a spatially symmetrized version of the smFES. We apply pivot diffusion maps with a

pivot cutoff radius of 0.41 nm in the RMSD to identify 622 pivot points. 94 A diffusion map

with bandwidth
√
ε = 1.0 nm and density rescaling exponent α = 0.15 produces an eigenvalue

spectrum with a gap after λ3 implying a 2D intrinsic manifold that can be parameterized by

(ψ2, ψ3).

We present in Figure 3 the embedding of the all-atom simulation snapshots into the 2D

intrinsic manifold M parameterized by these two CVs. Coloring each embedded point by

the molecular radius of gyration Rg (Figure 3a) shows the top-left corner to contain highly

extended configurations that flow first to the southeast and then to the northeast to occupy

the collapsed configurations in the northeastern lobe. Coloring by the RMSD from the

native state (Figure 3b) confirms that this lobe contains the native fold. Finally, restricting

the RMSD to measure distance from the native N-terminal α-helix formed by residues 2-8

(RMSD-helix) shows that the lobe is distinguished from the rest of the embedding by folding

of the N-terminal α-helix (Figure 3c).

We present in Figure 4 the smFES supported by the true intrinsic manifold M spanned

by (ψ2, ψ3) estimated from histograms in the observed distribution of projected points over

the manifold P̂ (ψ) via the relation βF (ψ) = − ln P̂ (ψ) + C, where ψ specifies the location
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Figure 3: Representations of the 2D intrinsic manifold of Trp-cage (PDB ID 2JOF). (a-c)
The true manifold M spanned by the CVs (ψ2, ψ3) discovered by application of diffusion
maps to the all-atom simulation trajectory and colored by Rg, RMSD, and RMSD-helix.
Each point represents a projection of an all-atom configuration observed in the molecular
simulation trajectory. (d-e) The reconstructed manifold Θ(M) spanned by the CVs (ψ∗

2, ψ
∗
4)

discovered by construction of Takens’ delay embeddings of the h2t time series extracted
from the simulation trajectory and subsequent application of diffusion maps. Each point
represents a projection of a (d=50)-dimensional delay vector of h2t values and is colored by
the Rg, RMSD, and RMSD-helix corresponding to the first configuration in the delay vector.

on the manifold, β = 1/kBT where kB is Boltzmann’s constant and T is the simulation

temperature, and C is an arbitrary additive constant reflecting our ignorance of the absolute

free energy scale. The smFES over M illustrated in Figure 4b reveals the existence of two

well-defined free energy wells corresponding to the native folded state A and a proximate

metastable state B. Molecular renderings of representative molecular configurations within

these basins are presented in Figure 4e. The native fold A resides at the global free energy

minimum of the smFES and comprises a N-terminal α-helix, 310-helix, C-terminal polyproline

tail, and well-defined hydrophobic core caging the Trp-6 side chain. The state B is a low-

lying metastable state residing ∼0.5 kBT higher in free energy than the native fold. It is

structurally very similar to A with the exception that the 310-helix is unfolded, and is a
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well-known structural intermediate identified in a number of prior studies. 102–105 These two

low-lying states are connected by a narrow pass to a plateau lying ∼2.5 kBT higher in free

energy. This largely featureless plateau contains the unfolded ensemble, although some weak

local minima corresponding to marginally metastable structures are apparent, one of which

we have called out as configuration C.

The smFES is in good qualitative agreement with that recovered by Juraszek et al. em-

ploying the OPLS force field and SPC water model,102 Kim et al. employing the Amber03w

force field and TIP4P/2005 water,103 and by us employing employing the Amber03 force field

and implicit solvent.104 In all cases the landscape exhibits well-defined low-lying minima near

the native fold and a large unfolded ensemble. To facilitate comparison of the smFES with

prior studies of Trp-cage, we present in Figure 4a the smFES reweighted into the two con-

ventional order parameters (RMSD,RMSD-helix). The strong correlation between (ψ2, ψ3)

and (RMSD,RMSD-helix) evinced in Figure 3 allows us to anticipate good preservation of

the structure of the smFES in this projection, although the data-driven CVs identified by

diffusion maps do a superior job in resolving structure within the unfolded ensemble. Kim

et al. analyzed Trp-cage using diffusion maps103 and we have previously employed artificial

neural networks to similar effect.104 In both instances a 2D intrinsic manifold was identified

containing the two low-lying metastable A and B basins. However – in addition to the

standard caveats regarding force fields and simulation protocols – we caution against too

close comparisons with the present work due to our elimination of the spatial symmetries

that mods out head-to-tail and mirror inversions.

h2t time series. We now recover the reconstructed manifold Θ(M) from a knowledge of

only the time evolution of the single molecular observable by constructing high-dimensional

Takens’ delay embeddings and applying diffusion maps to extract the image of the low-

dimensional manifold within this space. We generate the univariate time series in h2t by

tracking the value of h2t in each of the 1,000,000 frames of the simulation trajectory (Figure

2a). Following the Takens’ delay embedding protocol detailed in Section 2.2, we define an ap-
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Figure 4: Single molecule free energy surfaces of Trp-cage (PDB ID 2JOF). (a) smFES
spanned by the conventional CVs (RMSD,RMSD-helix). (b) smFES supported by the true
intrinsic manifoldM spanned by the CVs (ψ2, ψ3) identified by applying diffusion maps to the
all-atom simulation trajectory. (c) smFES supported by the reconstructed manifold Θ(M)
spanned by the CVs (ψ∗

2, ψ
∗
4) identified by applying diffusion maps to delay embeddings of the

h2t time series. We report the Helmholtz free energy F dedimensionalized by β = 1/kBT
where T = 290 K is the simulation temperature. (d) Determinant of the Jacobian JΘ

for the forward transformation Θ : M → Θ(M) numerically evaluated at each point in
the embedding and displayed as a function of elapsed simulation time. (e) Representative
molecular snapshots at the locations identified in panels a-c.

propriate delay time τ = 0.6 ns and delay embedding dimensionality of d = 50. Turning now

to the 100,000 snapshot subsampled trajectory, we then construct delay embedding vectors

employing these parameters for all configurations sufficiently advanced from the beginning

of the simulation (t > 30 ns) so that all elements of the delay vector are defined. This results

in the generation of 99,985 delay vectors populating a (d=50)-dimensional space. Pairwise

distances between delay vectors are measured under a Euclidean metric minimized under

inversion of the vector elements. As detailed in Section 2.3, this operation eliminates spuri-

ous symmetry breaking introduced into the temporal ordering of the delay vector elements.

Application of pivot diffusion maps with a pivot cutoff radius of 8.5 nm in the delay vector
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h2t Euclidean distance identifies 515 pivot points. A diffusion map with bandwidth
√
ε =

1.45 nm, and density rescaling exponent α = 0.15 produces an eigenvalue equation with a

gap after λ∗4 indicating that embeddings should be constructed in (ψ∗
2, ψ

∗
3, ψ

∗
4). (For clarity

of exposition, we use an asterisk to distinguish quantities pertaining to the reconstructed

smFES.) Analysis of these eigenvectors reveals that ψ∗
3 is functionally correlated with ψ∗

2

mapping out a 1D manifold in the (ψ∗
2, ψ

∗
3) plane. Accordingly, ψ∗

3 is effectively slaved to ψ∗
2

and can be discarded from the low-dimensional embedding without loss of information on

the structure of the low-dimensional manifold. 7,94

We present in Figure 3d-f the projection of the delay vectors into the 2D reconstructed

intrinsic manifold Θ(M) spanned by the CVs (ψ∗
2, ψ

∗
4). The bijection between the true mani-

foldM (Figure 3a-c) and the reconstructed manifold Θ(M) (Figure 3d-f) asserted by Takens’

Theorem implies the existence of a nonlinear transformation between the CVs spanning the

two spaces. Visual inspection of the upper and lower rows of Figure 3 suggests that ψ2 is

closely related to ψ∗
2 and ψ3 to ψ∗

4. This is confirmed by a linear correlation analysis that

reveals Pearson correlation coefficients of ρ(ψ2, ψ
∗
2) = 0.81 (p < 1× 10−10 ) and ρ(ψ3, ψ

∗
4) =

0.44 (p < 1×10−10 ). There is also close correspondence in the gradations in Rg, RMSD, and

RMSD-helix, although there is clearly some degree of non-uniform stretching and squashing.

Further, the smFES supported by Θ(M) reported in Figure 4c preserves a similar topogra-

phy to that over M reported in Figure 4b, demonstrating the existence of the native A and

metastable B states and unfolded ensemble C.

The influence of the transformation Θ : M → Θ(M) is quantified through calculation

of its Jacobian JΘ at each point on M . Verification that the Jacobian determinant det(JΘ)

does not pass through zero is, by the inverse function theorem, sufficient to validate the ex-

istence of the diffeomorphism asserted by Takens’ Theorem. 106–108 The sign of the Jacobian

determinant simply serves to specify whether orientation is preserved (positive) or inverted

(negative). Takens’ Theorem is silent, however, in placing any bounds on the degree to

which the diffeomorphism may perturb the manifold through non-uniform compression and
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dilation. This may be numerically evaluated post hoc by studying the magnitude of det(JΘ)

as an empirical measure of the degree of local stretching and squashing. A transformation

for which the Jacobian determinant is of unit magnitude everywhere would be subject to no

stretching or squashing and the two manifolds would be topologically and topographically

identical. One for which the Jacobian determinant is a constant smaller (greater) than unit

magnitude would be subject to uniform compression (dilation) everywhere, and the recon-

structed manifold would be identical to the true manifold under a uniform rescaling. One for

which the Jacobian determinant varies over several orders of magnitude is subject to large

variations in local compression and/or dilation, thereby inducing large non-uniform pertur-

bations in free energy barrier heights and well depths making interpretation of the smFES

over the reconstructed manifold Θ(M) hopeless without knowledge of the invertible trans-

formation Θ : M → Θ(M). Conversely, one for which the Jacobian determinant is restricted

to vary over a small range implies relatively mild local variation in compression/dilation,

and one might hope to glean semi-quantitative understanding of the true smFES even in the

absence of the mapping. As we shall see, we find that all proteins studied in the present

work fall into the latter case.

We numerically evaluate the Jacobian using the mesh-free approach detailed in Ref. 48

and report its value as a function of simulation time in Figure 4d. As detailed in Section

2.2 we establish the bijection required in this calculation by matching the first element of

each d-dimensional delay vector to the corresponding all-atom simulation snapshot. That the

determinants remain single signed numerically validates the existence of the diffeomorphism,

but that they are not single valued is indicative of non-uniform stretching and squashing

of the manifold under the transformation. Nevertheless, the determinant spans no more

than about an order of magnitude over the range 0.01-0.15, which implies that the degree

of non-uniform perturbation to the manifold is relatively mild. This is consistent with

the qualitative analysis described above wherein the true and reconstructed manifolds are

visually similar and preserve a similar topography of metastable states. This is a tantalizing
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result since it implies that the topography of the smFES recovered from knowledge of only

experimentally-accessible observables may provide a good semi-quantitative approximation

to the true landscape.

We quantify the degree of topographical perturbation in two ways. First, we compute

the depth of the global free energy minimum containing the native fold δβF relative to the

highest finite free energy resolved by the smFES. The stability of the native fold in the

reconstructed landscape is δβF ∗ = 6.20, constituting a ∼44% overestimate compared to

that computed over the true landscape δβF = 4.29. Although there is a sizable discrepancy

between these values, it is remarkable that the value reconstructed from knowledge of only

h2t should provide so good an estimate within only a couple of kBT . Second, we compute the

Pearson correlation coefficient in the free energy assigned to each point within the true and

reconstructed landscapes to identify a linear correlation of ρ(βF, βF ∗) = 0.53 (p < 1×10−10),

indicating a relatively strong linear relation between the reconstructed and true free energy

values and suggesting that relative free energy differences over the reconstructed landscapes

may possess useful interpretablity. We defer a deeper engagement of these issues to Section

3.2.

3.1.2 Villin (PDB ID 2F4K)

All-atom trajectories. In an analogous manner to Trp-cage, we apply diffusion maps to the

120 µs Villin simulation trajectory at T = 360 K that we uniformly subsample from 600,000

snapshots at 0.2 ns resolution down to 60,000 frames. Pivot diffusion maps are applied to

the Cα atom coordinates under spatial symmetrization of RMSD pairwise distances with a

pivot cutoff radius of 0.80 nm to identify 448 pivot points. A diffusion map with bandwidth
√
ε = 1.0 nm and density rescaling exponent α = 0.7 produces an eigenvalue spectrum with

a gap after λ3 implying construction of a 2D intrinsic manifold M spanned by (ψ2, ψ3).

The smFES in conventional CVs (RMSD,Rg) illustrated in Figure 5a is in good agreement

with that supported by the true intrinsic manifoldM displayed in Figure 5b. Both landscapes
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evince a well-defined folded state A connected to an unfolded ensemble containing a diversity

of configurations with varying degrees of native structure and packing within the three α

helices, of which B is one example. These results are consistent with the T = 360 K landscape

for native Villin (PDB ID 1YRF) recovered by Lei et al. by replica exchange molecular

dynamics simulations employing the Amber03 force field and implicit solvent that resolved

an equilibrium between the native fold and denatured ensemble. 109
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Figure 5: Single molecule free energy surfaces of Villin (PDB ID 2F4K). (a) smFES spanned
by the conventional CVs (RMSD,Rg). (b) smFES supported by the true intrinsic manifoldM
spanned by the CVs (ψ2, ψ3) identified by applying diffusion maps to the all-atom simulation
trajectory. (c) smFES supported by the reconstructed manifold Θ(M) spanned by the CVs
(ψ∗

2, ψ
∗
3) identified by applying diffusion maps to delay embeddings of the h2t time series. We

report the Helmholtz free energy F dedimensionalized by β = 1/kBT where T = 360 K is the
simulation temperature. (d) Determinant of the Jacobian JΘ for the forward transformation
Θ : M → Θ(M) numerically evaluated at each point in the embedding and displayed as a
function of elapsed simulation time. (e) Representative molecular snapshots at the locations
identified in panels a-c.

h2t time series. Takens’ delay embeddings of the h2t time series (Figure 2b) were

constructed using a delay time of τ = 0.4 ns and a delay embedding dimensionality of d

= 50. Pivot diffusion maps were applied to the delay embedding vectors under temporal

symmetrization of the Euclidean pairwise distances with a pivot cutoff of 8.0 nm to identify
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1358 pivot points. A diffusion map with bandwidth
√
ε = 3.16 nm, and density rescaling

exponent α = 0.5 produces an eigenvalue spectrum with a gap after λ∗3 implying that the

reconstructed intrinsic manifold Θ(M) be constructed in (ψ∗
2, ψ

∗
3).

Up to a trivial π/2 counter-clockwise rotation, the reconstructed smFES supported by

Θ(M) in Figure 5c is visually similar to that supported by M presented in Figure 5b, with

ρ(ψ2, ψ
∗
3) = 0.33 (p < 1 × 10−10) and ρ(ψ3, ψ

∗
2) = -0.32 (p < 1 × 10−10). Figure 5d il-

lustrates that det(JΘ) remains single signed – numerically validating the existence of the

diffeomorphism – and spans a range of only about half an order of magnitude – indicative of

a relatively uniform topographical perturbation over the manifold. This result is supported

by good correspondence in the observed stability of the native state over the true and re-

constructed manifolds of δβF = 3.76 and δβF ∗ = 3.90, with the reconstructed estimate

in agreement with the true value within ∼4% error. Similarly, the the linear correlation

between the free energies assigned to each point is also moderately strong at ρ(βF, βF ∗) =

0.46 (p < 1× 10−10).

3.1.3 BBA (PDB ID 1FME)

All-atom trajectories. The BBA simulation trajectory at T = 325 K comprising 1,000,000

snapshots at 0.2 ns resolution was uniformly subsampled to 100,000 frames. Pivot diffusion

maps applied to the spatially symmetrized Cα pairwise RMSD distances with a pivot cutoff

radius of 1.0 nm identified 596 pivots. A diffusion map with bandwidth
√
ε = 1.0 nm and

density rescaling exponent α = 0.15 generated an eigenvalue spectrum with a gap after λ3

implying construction of a 2D intrinsic manifold M spanned by (ψ2, ψ3).

The smFES in conventional CVs (RMSD,Rg) is presented in Figure 6a. In contrast to

Trp-cage and Villin, the native fold A does not reside within a deep free energy well but is

rather in competition with an equally stable partially folded ensemble B from which it is

separated by a ∼1 kBT free energy barrier. This is consistent with numerous prior studies

that have reported the native fold of the BBA FSD-EY protein and related mutants to
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be relatively unstable and in competition with partially folded intermediates. 60,110–113 The

smFES over the true intrinsic manifold M in Figure 6b provides a superior embedding to

that in the conventional CVs in that it better separates out the diversity of metastable states

and reveals the native fold A to be just one of a number of nearly equi-stable structures

including both partially folded B and fully unfolded C.
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Figure 6: Single molecule free energy surfaces of BBA (PDB ID 1FME). (a) smFES spanned
by the conventional CVs (RMSD,Rg). (b) smFES supported by the true intrinsic manifoldM
spanned by the CVs (ψ2, ψ3) identified by applying diffusion maps to the all-atom simulation
trajectory. (c) smFES supported by the reconstructed manifold Θ(M) spanned by the CVs
(ψ∗

2, ψ
∗
3) identified by applying diffusion maps to delay embeddings of the h2t time series. We

report the Helmholtz free energy F dedimensionalized by β = 1/kBT where T = 325 K is the
simulation temperature. (d) Determinant of the Jacobian JΘ for the forward transformation
Θ : M → Θ(M) numerically evaluated at each point in the embedding and displayed as a
function of elapsed simulation time. (e) Representative molecular snapshots at the locations
identified in panels a-c.

h2t time series. Analysis of the h2t time series (Figure 2c) identified τ = 0.8 ns to

be an appropriate delay time and d = 50 a suitable delay embedding. Pivot diffusion maps

applied to the temporally symmetrized Euclidean pairwise distances between delay vectors

with a pivot cutoff of 8.0 nm returned 840 pivot points. A diffusion map with bandwidth
√
ε = 3.16 nm, and density rescaling exponent α = 0.5 produced an eigenvalue spectrum
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with a gap after λ∗3 indicating that the reconstructed intrinsic manifold Θ(M) should be

parameterized by (ψ∗
2, ψ

∗
3).

In contrast to Trp-cage and Villin – perhaps due to the presence of a diversity of nearly

equally stable configurational states – the smFES over Θ(M) in Figure 6c is less visually

similar to that over M in Figure 6b. Nevertheless, the Jacobian determinant det(JΘ) is

confirmed to be single signed, numerically verifying that M and Θ(M) are related by a

diffeomorphism and that the smFES that they support are topologically identical. A linear

correlation analysis reveals that ρ(ψ2, ψ
∗
2) = 0.63 (p < 1 × 10−10) and ρ(ψ3, ψ

∗
3) = 0.04

(p < 1× 10−10), indicating that ψ2 and ψ∗
2 contain similar information content but that ψ3

and ψ∗
3 are linearly uncorrelated. We observe once again that det(JΘ) spans only around an

order of magnitude, limiting the non-uniformity in the topological perturbation exerted by

the diffeomorphism over the manifold. As a result, we again find relatively good agreement

between δβF = 2.60 and δβF ∗ = 3.77, and compute ρ(βF, βF ∗) = 0.56 (p < 1× 10−10).

3.2 Trp-cage smFES reconstruction, interpretation, and engineer-

ing

Analysis of the three proteins above demonstrated the capacity of our approach to recon-

struct free energy landscapes from univariate time series in experimentally-measurable ob-

servables. The sign of the Jacobian determinant of the transformation between the true and

reconstructed landscapes numerically validated the existence of the diffeomorphism that

guarantees topological equivalence. Furthermore, the magnitude of the determinant was ob-

served to span no more than about one order of magnitude, effectively bounding the degree

of local deformation induced by the diffeomorphism. Accordingly, the barrier heights and

well depths of the smFES over the reconstructed manifold Θ(M) may be expected to possess

semi-quantitative interpretability. We now proceed to study the degree to which this is true

by performing a comparative analysis of the changes in the true and reconstructed smFES

for a Trp-cage variant subject to different temperatures and patterns of mutations. With a
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view to ultimately applying our approach to experimental data for which the true smFES

over M is unavailable, we seek to understand to what degree the reconstructed smFES over

Θ(M) may be used to understand and engineer protein stability, folding, and ultimately

function.

We study Trp-cage (PDB ID 1L2Y) in implicit solvent and conduct a total of 37 inde-

pendent 1 µs simulations at a number of temperatures and under a number of engineered

mutations (Section 2.1). A full accounting of the various simulations are provided in Table 1.

Empirically, we observe numerous folding transitions at around T = 380 K and so choose to

focus our investigations around this temperature. We note that the native Trp-cage studied

in this portion of the work (PDB ID 1L2Y) differs from that studied in Section 3.1 (PDB

ID 2JOF) by four point mutations in the N-terminal region. We first describe our recovery

of the true and reconstructed smFES for the 37 simulations, and then assess to what ex-

tent folding may be interpreted and engineered through temperature and mutation from a

knowledge of only the reconstructed landscapes.

3.2.1 Determination of composite true and reconstructed smFES

All-atom trajectories. We harvest 10,000 uniformly spaced frames from each of the 37

simulations to assemble a 370,000 frame composite ensemble to be analyzed by diffusion

maps. By analyzing the union of molecular snapshots taken under all conditions studied,

we ensure that the CVs recovered by diffusion maps span all regions of configurational space

explored by the various simulations, and furnish a unified basis set with which to parameter-

ize the underlying intrinsic manifold M .114 Different systems are expected to populate the

manifold differently and yield different free energy surfaces, but the use of a unified basis

set in construction of M is crucial in drawing quantitative comparisons between the differ-

ent systems. We represent each configuration as a vector of the 20 Cα atomic coordinates,

enabling straightforward comparisons between snapshots drawn from different simulations.

The only system requiring special treatment is simulation #11 comprising an engineered
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Table 1: List of Trp-cage simulations. Four simulation classes were considered:
(I) wild type at various temperatures, (II) engineered mutants,69 (III) alanine
scan, and (IV) alanine tetrads. Point mutations from the wild type TC5b Trp-
cage (PDB ID 1L2Y)69 are indicated in bold.

Index Type Name T (K) Sequence δβF δβF ∗ (δβF ∗−δβF )
δβF

/% ρ(βF, βF ∗)

1 300K 300 NLYIQ WLKDG GPSSG RPPPS 4.02 4.14 2.97 0.42
2 320K 320 NLYIQ WLKDG GPSSG RPPPS 3.92 4.20 7.12 0.44
3 340K 340 NLYIQ WLKDG GPSSG RPPPS 4.32 4.51 4.41 0.39
4 I 360K 360 NLYIQ WLKDG GPSSG RPPPS 4.24 4.44 4.78 0.47
5 380K 380 NLYIQ WLKDG GPSSG RPPPS 4.07 4.18 2.78 0.61
6 400K 400 NLYIQ WLKDG GPSSG RPPPS 3.54 3.56 0.51 0.52
7 420K 420 NLYIQ WLKDG GPSSG RPPPS 3.22 2.65 -17.82 0.31
8 440K 440 NLYIQ WLKDG GPSSG RPPPS 2.97 2.07 -30.14 0.04
9 TC3b 380 NLFIE WLKNG GPSSG APPPS 3.60 3.84 6.73 0.51
10 II TC4a 380 DLFIE WLKNG GPSSG RPPPS 3.82 4.09 7.25 0.58
11 TC4c 380 KGLFIE WLKNG GPSSG RPPPS 3.84 3.30 -14.16 0.52
12 TC5a 380 NLFIQ WLKDG GPSSG RPPPS 4.06 4.31 6.17 0.58
13 N1A 380 ALYIQ WLKDG GPSSG RPPPS 3.84 3.95 2.91 0.54
14 L2A 380 NAYIQ WLKDG GPSSG RPPPS 3.53 3.58 1.62 0.55
15 Y3A 380 NLAIQ WLKDG GPSSG RPPPS 3.81 4.16 9.25 0.56
16 I4A 380 NLYAQ WLKDG GPSSG RPPPS 4.12 4.41 7.13 0.59
17 Q5A 380 NLYIA WLKDG GPSSG RPPPS 3.98 4.41 10.88 0.56
18 W6A 380 NLYIQ ALKDG GPSSG RPPPS 2.53 1.95 -22.96 0.15
19 L7A 380 NLYIQ WAKDG GPSSG RPPPS 3.28 3.38 3.27 0.45
20 K8A 380 NLYIQ WLADG GPSSG RPPPS 3.93 4.05 3.05 0.58
21 D9A 380 NLYIQ WLKAG GPSSG RPPPS 3.99 4.14 3.86 0.58
22 G10A 380 NLYIQ WLKDA GPSSG RPPPS 3.54 3.75 5.89 0.53
23 III G11A 380 NLYIQ WLKDG APSSG RPPPS 3.11 3.58 15.10 0.42
24 P12A 380 NLYIQ WLKDG GASSG RPPPS 3.11 2.64 -15.24 0.31
25 S13A 380 NLYIQ WLKDG GPASG RPPPS 4.14 4.40 6.21 0.60
26 S14A 380 NLYIQ WLKDG GPSAG RPPPS 3.66 3.84 4.80 0.56
27 G15A 380 NLYIQ WLKDG GPSSA RPPPS 3.16 3.22 1.96 0.44
28 R16A 380 NLYIQ WLKDG GPSSG APPPS 3.62 3.76 3.78 0.49
29 P17A 380 NLYIQ WLKDG GPSSG RAPPS 3.64 3.74 2.75 0.56
30 P18A 380 NLYIQ WLKDG GPSSG RPAPS 3.33 3.33 0.00 0.52
31 P19A 380 NLYIQ WLKDG GPSSG RPPAS 3.30 3.02 -8.36 0.46
32 S20A 380 NLYIQ WLKDG GPSSG RPPPA 4.16 4.41 5.96 0.57
33 tetrad1 380 AAAAQ WLKDG GPSSG RPPPS 3.82 3.96 3.75 0.53
34 tetrad2 380 NLYIA AAADG GPSSG RPPPS 2.48 2.01 -18.91 0.09
35 IV tetrad3 380 NLYIQ WLKAA AASSG RPPPS 3.16 2.56 -18.75 0.34
36 tetrad4 380 NLYIQ WLKDG GPAAA APPPS 2.94 2.56 -12.89 0.33
37 tetrad5 380 NLYIQ WLKDG GPSSG RAAAA 2.71 2.44 -9.81 0.08
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mutant containing an addition N-terminal lysine that we simply neglect in our coordinate

representation.

Pivot diffusion maps employing spatial symmetrization with a pivot cutoff of 0.38 nm in

RMSD yielded 478 pivot points. A diffusion map with bandwidth
√
ε = 0.89 nm and density

rescaling exponent α = 1.0 generated an eigenvalue spectrum with a gap after λ3 implying

that the true intrinsic manifold M is parameterized by the data-driven CVs (ψ2, ψ3).

We present in Figure 7 the embedding of the composite ensemble of all-atom configu-

rations into the 2D intrinsic manifold M and colored by Rg (Figure 7a), RMSD (Figure

7b), and RMSD-helix (Figure 7c). The shape and gradations of the physical measures over

the manifold are very similar to those for the manifold recovered above for the closely re-

lated Trp-cage mutant presented in Figure 3, although not identical due to differences in

temperature, sequence, solvent, and force field (see Section 2.1).

h2t time series. We constructed delay embeddings of each of the 37 h2t time series cor-

responding to each simulation, employing a delay time of τ = 0.02 ns and a delay embedding

dimensionality of d = 20. As for the all-atom analysis, we applied pivot diffusion maps to

the composite ensemble of delay vectors over all 37 simulations in order to recover a unified

basis set with which to parameterize the reconstructed intrinsic manifold Θ(M). This as-

sures that there is a single well-defined transformation between each true and reconstructed

smFES Θ : M → Θ(M) and all reconstructed smFES are supported by the same manifold.

Importantly, this allows us to draw quantitative comparisons between the topography of the

reconstructed smFES under different simulation conditions. Accordingly, even if the true

smFES is unavailable and the transformation Θ : M → Θ(M) is unknown, we can still draw

inferences about the effect of changing conditions by comparing the reconstructed landscapes

within a common basis.

A pivot cutoff radius of 2.5 nm in the temporally symmetrized pairwise Euclidean dis-

tances identifies 970 pivot points, and a subsequent diffusion map with bandwidth
√
ε = 2.0

nm and density rescaling exponent α = 0.25 produces an eigenvalue spectrum with a gap
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Figure 7: Representations of the 2D intrinsic manifold of Trp-cage (PDB ID 1L2Y). (a-c)
The true manifold M spanned by the CVs (ψ2, ψ3) discovered by application of diffusion
maps to the composite of 37 all-atom simulation trajectories and colored by Rg, RMSD, and
RMSD-helix. Each point represents a projection of an all-atom configuration observed in
the molecular simulation trajectory. (d-e) The reconstructed manifold Θ(M) spanned by the
CVs (ψ∗

2, ψ
∗
4) discovered by construction of Takens’ delay embeddings of the h2t time series

extracted from each of the 37 simulation trajectories and subsequent application of diffusion
maps. Each point represents a projection of a (d=50)-dimensional delay vector of h2t values
and is colored by the Rg, RMSD, and RMSD-helix corresponding to the first configuration
in the delay vector.

after λ∗4. As before, we found ψ∗
3 to be effectively slaved to ψ∗

2 mapping out a 1D manifold

in the (ψ∗
2, ψ

∗
3) plane and allowing us to parameterize the reconstructed intrinsic manifold

Θ(M) in (ψ∗
2, ψ

∗
4) without loss of information.7,94

Embeddings of the composite ensemble of delay vectors into the 2D reconstructed mani-

fold Θ(M) colored by Rg, RMSD, and RMSD-helix (Figure 7d-f) show clear visual similarity

to the all-atom embeddings into the true manifold M (Figure 7a-c). A Pearson correlation

analysis confirms the existence of strong ρ(ψ2, ψ
∗
2) = 0.81 (p < 1 × 10−10) and moderate

ρ(ψ3, ψ
∗
4) = 0.29 (p < 1× 10−10) linear correlation.
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3.2.2 The reconstructed smFES approximate the true smFES

For each of the 37 simulations we estimate the smFES supported by the true manifoldM from

histograms in the projected distribution of all-atom simulation snapshots into (ψ2, ψ3) via the

relation βF (ψ2, ψ3) = − ln P̂ (ψ2, ψ3) +C, where β = 1/kBT is evaluated at T = 380 K, and

C is an arbitrary additive constant. Each independent simulation produces an independent

smFES, but importantly these are all constructed over a common parameterization of M .

We specify the value of C in each of the 37 different landscapes by asserting equality of

the highest finite free energy observed. By an analogous procedure, we estimate the smFES

supported by the reconstructed manifold Θ(M) from histograms in the projected distribution

of delay vectors into (ψ∗
2, ψ

∗
4) and using the relation βF (ψ∗

2, ψ
∗
4) = − ln P̂ (ψ∗

2, ψ
∗
4)+C∗, where

β = 1/kBT is evaluated at T = 380 K.

In subsequent sections we investigate the degree to which changes in the topography

of the reconstructed smFES over Θ(M) as a function of temperature or mutations reflect

changes to the true smFES over M . If we find good correspondence between these changes,

then this provides support for our conjecture that protein folding landscapes recovered from

experimental time series might be used to understand and engineer protein structure, sta-

bility, and folding. Before presenting the free energy surfaces themselves, we first assess the

degree to which we might expect this correspondence to hold.

First, we numerically evaluate det(JΘ) to confirm that it remains single signed and vali-

date the existence of the diffeomorphism (Figure 8a). We observe that its magnitude varies

only over approximately an order of magnitude, lending empirical support that the variation

in the degree of local perturbation induced in the reconstructed manifold is relatively tightly

bounded. We therefore expect that the topography of the true smFES may be approxi-

mately preserved within the reconstructed smFES and is therefore interpretable. Second,

we report in Table 1 the measured stability of the native fold in the true δβF and recon-

structed δβF ∗ landscapes, which shows the latter to approximate the former within a max-

imum error of ∼30%. These quantities exhibit a strong linear correlation of ρ(δβF, δβF ∗)
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= 0.94 (p < 1 × 10−10) and their relationship is well fit by a linear least squares fit of

(δβF ∗) = 1.47(δβF )− 1.70 (R2 = 0.89) (Figure 8b). The slope close to unity and intercept

close to zero indicates that native fold stabilities estimated from the reconstructed folding

funnel are in semi-quantitative agreement with those measured over the true landscape.

Third, the correlation in free energy assigned to each point within the pairs of true and

reconstructed landscapes tends to exhibit moderately strong linear correlation, with a mean

value of ρ(βF, βF ∗) = 0.45 over the 37 simulations. The particular values of ρ(βF, βF ∗)

are reported in Table 1. We find that higher native state stabilities δβF & 3.0 (Region B

in Figure 8c) tend to possess stronger correlation coefficients, whereas shallower free energy

minima have weaker correlation (Region A). Region A comprises Simulations #8, #18, #34,

and #37 that correspond to high temperatures or mutations that strongly destabilize the na-

tive state and cause the protein to delocalize over the folding landscape. These observations

suggest that the reconstructed smFES is a better approximation for the true smFES under

conditions where the protein possesses a moderately stable native fold than when it is delo-

calized over a rather flat free energy landscape, and we should be wary of over-interpreting

the reconstructed landscape in the latter case.

3.2.3 The reconstructed smFES accurately tracks temperature denaturation

The smFES for wild type Trp cage at T = 320 K, 380 K, and 420 K are illustrated in Figure

9. The landscapes for all eight temperatures considered (Simulations #1-#8 in Table 1) are

presented in Figure S1 in the Supporting Information. For each temperature we project the

smFES into the conventional variables (RMSD,RMSD-helix), the true manifold M spanned

by (ψ2,ψ3), and the reconstructed manifold Θ(M) spanned by (ψ∗
2,ψ∗

4). The projection into

conventional CVs is provided to facilitate comparison with prior work.

Under the force field and implicit solvent model employed in this work we observed

multiple folding and unfolding events over the 1 µs trajectory at T = 380 K wherein Trp-cage

rapidly switches between the two states A and C, where A is the native state (Figure 9j) and
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Figure 8: Numerical analysis of diffeomorphism between the Trp-cage (PDB ID 1L2Y) true
M and reconstructed Θ(M) manifolds and the degree of induced topographical perturbation.
(a) Determinant of the Jacobian JΘ for the forward transformation Θ : M → Θ(M). For
representational clarity we concatenate the 37 independent 1 µs simulations (Table 1) into
a single trajectory and represent det(JΘ) at each point as a function of time. That det(JΘ)
is single signed verifies the existence of the diffeomorphism, and that it varies in magnitude
over approximately only one order of magnitude bounds the range of local compression or
dilation induced by the transformation. (b) Parity plot of the stability of the native fold in
the smFES supported by the true δβF and reconstructed δβF ∗ manifolds. The data exhibit
a Pearson correlation coefficient of ρ(δβF, δβF ∗) = 0.94 and the red line indicates the least
squares best fit line (δβF ∗) = 1.47(δβF )−1.70. (c) Scatter plot of native state stability δβF
against linear correlation coefficient between the free energy assigned to each configuration
over the smFES over the true and reconstructed manifolds ρ(βF, βF ∗). The correlation
coefficient ρ(βF, βF ∗) tends to be stronger, and therefore maximizes the interpretability of
the reconstructed smFES, for higher native state stabilities (Region B, δβF & 3.0) and
diminishes for shallower native free energy wells (Region A, δβF . 3.0).

C possesses a partially unfolded N-terminal α-helix (Figure 9l). This dynamic equilibrium

produces a folding funnel centered on the native state but with substantial exploration of

nearby non-native configurations (Figure 9k,m,n): State B contains a partially unfolded 310
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Figure 9: Single molecule free energy surfaces of wild type Trp-cage (PDB ID 1L2Y) as a
function of temperature (Simulations #2, #5, and #7 in Table 1). smFES supported by
conventional CVs (left), the true intrinsic manifold M (center) and reconstructed manifold
Θ(M) (right) at (a-c) T = 320 K, (d-f) T = 380 K, and (g-i) T = 420 K. We report the
Helmholtz free energy F dedimensionalized by β = 1/kBT at T = 380 K. (j-n) Representative
molecular snapshots corresponding to the locations identified in panels (d-f).
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helix, in D both the N-terminal α-helix and 310 helix are partially unfolded, and in E the

N-terminal α-helix and 310 helix are essentially completely unfolded. The depth of the native

well measured on the reconstructed manifold is δβF ∗ = 4.18 in very good agreement with

that measured on the true landscape of δβF = 4.07, where we report free energy in units of

β = 1/kBT at T = 380 K. The reconstructed smFES show that lowering the temperature

to T = 320 K causes the protein to retreat into the native free energy well but negligible

change in the depth of the native well to δβF ∗ = 4.20 (Figure 9c), whereas increasing the

temperature to T = 420 K greatly destabilizes the native fold to δβF ∗ = 2.65 and induces

the protein to delocalize over the folding funnel (Figure 9i). Of course, these trends are

not unexpected and are generic features of natural proteins with a well-defined native fold.

What is remarkable is that the observed trends in the shape and topography of a folding

funnel reconstructed from the knowledge of the time evolution of a single coarse-grained

observable should map so well to those over the true landscape that requires knowledge of

all atomic coordinates. The temperature-dependent shape and size of the the true smFES

(Figure 9b,e,h) are in good agreement with its reconstructed image, and the reconstructed

smFES predictions for the low and high temperature native fold stabilities are in reasonably

good agreement with the true values – δβF = 3.92 and δβF ∗ = 4.20 at T = 320 K and δβF

= 3.22 and δβF ∗ = 2.65 at T = 420 K – within only 7.1% and 18% error.

3.2.4 The reconstructed smFES predicts the stability of engineered mutants

The TC5b Trp-cage variant that we adopt as our wild type sequence was experimentally

engineered by Andersen and co-workers as a truncated mutant of a poorly folded 39-residue

peptide exendin-4.69 We now consider four more of their engineered mutants – TC3b, TC4a,

TC4c, and TC5a (Simulations #9-#12 in Table 1) – to determine whether the reconstructed

smFES can correctly identify their relative stabilities. Experimentally, TC5b (our wild type)

and TC5a are found to be of comparable stability, and TC3b and TC4c to be of comparable

and lower stability.69 Stability measures for TC4a in water are not reported. 69
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Despite our use of an approximate implicit solvent model, the smFES over the true

manifold M recapitulate these experimental trends (Figure 10b,h,k, Figure 9e), revealing

native state stabilities of δβF = 4.07 and 4.06 for TC5b and TC5a, and δβF = 3.84 and

3.60 for TC4c and TC3b (Table 1). Remarkably, the reconstructed smFES illuminate very

similar trends, showing the TC4c and TC3b funnels to be wider and shallower than those

of TC5b and TC5a, and reporting native state stabilities of δβF ∗ = 4.18 and 4.31 for TC5b

and TC5a, and δβF ∗ = 3.30 and 3.84 for TC4c and TC3b. Although the reconstructed

smFES inverts the order of stability within each pair, the errors in the stability predictions

are better than 14% and correspond to just a fraction of a kBT . Finally, the reconstructed

and true native stabilities of TC4a are δβF = 3.82 and δβF ∗ = 4.09, which agree to within

7% error. This analysis demonstrates the capacity of the reconstructed landscapes to provide

semi-quantitative predictions of the stability and topographical character of the smFES for

engineered protein mutants in agreement with the true smFES and experimental data.

3.2.5 The reconstructed smFES identifies significant and insignificant Ala point

mutations

Alanine scanning is a technique that probes wild type residue contributions to protein struc-

ture or function by making all alanine point mutations. 115 We perform a computational

version of this technique to determine whether the reconstructed smFES can reliably iden-

tify those point mutants that substantially perturb the free energy surface from those that

are relatively silent and leave it largely unaffected. We illustrate in Figure 11 the smFES

for four selected alanine point mutations Q5A, W6A, P12A, and S13A. The complete set of

landscapes for all 20 point mutants is presented in Figure S2 in the Supporting Information.

The reconstructed smFES under the Q5A and S13A mutations (Figure 11c,l) are very

similar to that for the wild type (Figure 9f), suggesting that alanine mutations at these posi-

tions do not strongly affect the folding landscape. This prediction is confirmed by the smFES

over the true manifold that shows very little perturbation under the two point mutations
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Figure 10: Single molecule free energy surfaces of experimentally engineered mutants of Trp-
cage (PDB ID 1L2Y) (Simulations #9-#12 in Table 1). smFES supported by conventional
CVs (left), the true intrinsic manifold M (center) and reconstructed manifold Θ(M) (right)
for mutants (a-c) TC3b, (d-f) TC4a, (g-i) TC4c, and (j-l) TC5a. We report the Helmholtz
free energy F dedimensionalized by β = 1/kBT at T = 380 K.

(Figure 11b,k, Figure 9e). There is also good quantitative agreement between the predicted

small changes in native fold stabilities according to the reconstructed smFES δβF ∗ = 4.18

(wt), 4.41 (Q5A), and 4.40 (S13A) relative to those from the true smFES δβF = 4.07 (wt),

3.98 (Q5A), and 4.14 (S13A). Conversely, the reconstructed smFES exhibits large changes
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Figure 11: Single molecule free energy surfaces of selected alanine point mutants of Trp-cage
(PDB ID 1L2Y) (Simulations #17, #18, #24, and #25 in Table 1). smFES supported by
conventional CVs (left), the true intrinsic manifold M (center) and reconstructed manifold
Θ(M) (right) for point mutants (a-c) Q5A, (d-f) W6A, (g-i) P12A, and (j-l) S13A. We report
the Helmholtz free energy F dedimensionalized by β = 1/kBT at T = 380 K.

in the smFES under the W6A and P12A mutations (Figure 11f,i) wherein the native free

energy well is destroyed, the weak residual minimum shifted away from the location of the

wild type native fold, and the configurational ensemble delocalized over the folding funnel.

These trends are in excellent accord with the observed changes over the true smFES (Fig-
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ure 11e,h). The destabilization of the native state measured over the reconstructed smFES

δβF ∗ = 1.95 (W6A) and 2.64 (P12A) again track those over the true smFES δβF = 2.53

(W6A), and 3.11 (P12A). In addition to the W6A and P12A mutations, the reconstructed

smFES also predicts the L2A, L7A, G11A, G15A, P18A, and P19A to destabilize the na-

tive state by more than 0.5 kBT , failing to identify only the G10A mutation identified by

applying the same criterion to the true smFES. Accordingly, the reconstructed landscape

has identified with high accuracy those Ala point mutations that do and do not substan-

tially impact native state stability. The Trp-cage hydrophobic core comprises the Trp-6 side

chain “caged” by encircling Tyr-3, Leu-7, Gly-11, Pro-12, Pro-18, and Pro-19 side chains,

and many of the residues identified as significant by the alanine scan can be understood to

disrupt formation of the hydrophobic core.67,69,116 Finally, we note that the linear correlation

between the true and reconstructed free energy values is moderately strong for all alanine

point mutations ρ(βF, βF ∗) > 0.4 with the exception of the two most destabilizing mutants

W6A (ρ(βF, βF ∗) = 0.15) and P12A (ρ(βF, βF ∗) = 0.31) where abrogation of the native

well and flattening of the landscape is observed to diminish the topographic fidelity of the

reconstructed smFES.

3.2.6 The reconstructed smFES identifies significant and insignificant Ala tetrad

mutations

As a more extreme example of alanine scanning we also perform alanine tetrad scans in which

we mutate the five tetrads of contiguous residues 1-4, 5-8, 9-12, 13-16, 17-20 to alanine. The

reconstructed and true smFES are again in very good agreement (Figure 12). The recon-

structed smFES correctly predicts that all of the tetrad mutations substantially destabilize

the native fold with the exception of Tetrad 1 in positions 1-4. This can be understood

since these mutations are restricted to the N-terminal helix that can still form under alanine

substitutions and which does not strongly participate in forming the hydrophobic core of

the native fold. Three of the other tetrads mutate away the Trp-6 (Tetrad 2), Gly-11 and
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Pro-12 (Tetrad 3), and Pro-18 and Pro-19 (Tetrad 5) residues that are critical for formation

of the hydrophobic core.67 The remaining Tetrad 4 replaces Ser-13, Ser-14, Gly-15, and Arg-

16 with four contiguous Ala residues, which form a short α-helix that disrupts the native

tertiary structure. The native state stabilities predicted over the reconstructed landscape

δβF ∗ = 3.96 (Tetrad 1), 2.01 (Tetrad 2), 2.56 (Tetrad 3), 2.56 (Tetrad 4), and 2.44 (Tetrad

5) are again in quite good agreement with those over the true smFES δβF = 3.82 (Tetrad

1), 2.48 (Tetrad 2), 3.16 (Tetrad 3), 2.94 (Tetrad 4), and 2.71 (Tetrad 5). Tetrad 1 preserves

a stable native fold and maintains reasonably strong linear correlation in the free energy

ρ(βF, βF ∗) = 0.53, but flattening of the landscape drives the linear correlation below 0.35

for the remaining four tetrads. These results show that knowledge of only the h2t time

series is sufficient to reconstruct a smFES that can accurately predict the effect of multiple

mutations upon the stability and topography of the folding funnel.

4 Conclusions

We have demonstrated an integration of nonlinear manifold learning techniques with Takens’

Delay Embedding Theorem to reconstruct single molecule free energy surfaces (smFES) for

protein folding from univariate time series recording the dynamical evolution of the head-

to-tail distance of the molecule. We have previously validated the approach in molecular

dynamics simulations of a hydrocarbon chain, 48 and the present work represents its first ap-

plication to realistic molecular simulations of protein folding. Intramolecular distances are

experimentally accessible observables that can be followed by experimental techniques such

as single molecule Förster resonance energy transfer (smFRET). Subject to the elimination

of spatial symmetries in the observation variable and remediation of spurious temporal sym-

metry breaking in the delay embeddings, Takens’ Theorem guarantees that the reconstructed

smFES is diffeomorphic – related by a smooth and invertible transformation – to the true

smFES determined from complete knowledge of the dynamical evolution of all molecular
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Figure 12: Single molecule free energy surfaces of selected alanine tetrad mutants of Trp-
cage (PDB ID 1L2Y) (Simulations #33-#37 in Table 1). smFES supported by conventional
CVs (left), the true intrinsic manifold M (center) and reconstructed manifold Θ(M) (right)
for alanine tetrad mutants inserted into positions (a-c) 1-4, (d-f) 5-8, (g-i) 9-12, (j-l) 13-16,
and (m-o) 17-20. We report the Helmholtz free energy F dedimensionalized by β = 1/kBT
at T = 380 K.
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degrees of freedom.

Molecular simulation trajectories give us access to both the true and reconstructed land-

scapes, and we demonstrate that the latter do indeed provide topologically equivalent repre-

sentations of the former in long simulations of three small proteins Trp-cage, Villin, and BBA

in explicit solvent. We further show in an ensemble of simulations of Trp-cage in implicit

solvent, that the reconstructed landscapes reliably recapitulate topographical changes to the

true landscape as a function of temperature or the introduction of amino acid mutations.

We numerically compute the local Jacobian of the transformation between the true and

reconstructed landscapes to the validate the existence of the diffeomorphism and quantify

the topographical perturbation. Theoretical bounds on the local variation are not known,

but our empirical analyses show that for the proteins studied here and the head-to-tail dis-

tance as a univariate observable, the degree of perturbation lies within approximately one

order of magnitude. This empirical result bounds the degree of topographical perturbation

of the reconstructed smFES and allows us to semi-quantitatively interpret the free energy

barrier heights and well depths. This demonstrates, in principle, the potential to use protein

folding landscapes reconstructed from time series in experimentally accessible observables to

understand and engineer protein stability and folding.

This work reconstructs protein folding funnels from synthetic, idealized smFRET time

series at arbitrarily high time resolution, subject to no measurement noise, and without

regard to any concerns of photobleaching or perturbation of the underlying molecular motions

by bulky dye molecules. Applications to real experimental data must confront these issues,

but the present work establishes proof of principle in this idealized limit. In future work, we

will engage these matters by artificially corrupting molecular simulation time series with shot

noise, reducing the time resolution, directly simulating the dye molecules, and exploring the

use of more and different molecular observables. Further, this work has provided empirical

evidence that the degree of topographical perturbation may be bounded, and we are working

to place theoretical bounds on the range of local variation in compression and dilation.
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5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website

at http://pubs.acs.org. Figures provide additional single molecule free energy surfaces

for Trp-cage (PDB ID 1L2Y) at various temperatures and subjected to alanine scan point

mutations.
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