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ABSTRACT

Evolutionary theory predicts that reproduction entails costs that detract from somatic maintenance, accelerating biological
aging. Despite support from studies in human and non-human animals, mechanisms linking ‘costs of reproduction’ (CoR) to
aging are poorly understood. Human pregnancy is characterized by major alterations in metabolic regulation, oxidative stress,
and immune cell proliferation. We hypothesized that these adaptations could accelerate blood-derived cellular aging. To test
this hypothesis, we examined gravidity in relation to telomere length (TL, n=821) and DNA-methylation age (DNAmAge, n=397)
in a cohort of young (20-22 year-old) Filipino women. Age-corrected TL and accelerated DNAmMAge both predict age-related
morbidity and mortality, and provide markers of mitotic and non-mitotic cellular aging, respectively. Consistent with theoretical
predictions, TL decreased (p=0.031) and DNAmAge increased (p=0.007) with gravidity, a relationship that was not contingent
upon resource availability. Neither biomarker was associated with subsequent fertility (both p > 0.3), broadly consistent with a
causal effect of gravidity on cellular aging. Our findings provide evidence that reproduction in women carries costs in the form
of accelerated aging through two independent cellular pathways.

Introduction

Evolutionary theory predicts that energy expenditure in the form of reproductive effort comes at the expense of somatic
maintenance and lifespan!. Because resources are finite and selection favors early life fecundity over late life functional
integrity?, reductions in somatic maintenance driven by the ‘costs of reproduction’ (CoR) are expected to accelerate senescence
and functional decline and increase mortality risk>>*. When extrinsic mortality is high or resources are limited or unpredictable,
selection will favor future discounting and a shift towards “faster’ life-history strategies'>. While potentially adaptive from an
evolutionary point-of-view, investing less into growth and maintenance and more into reproduction early in life could compound
tradeoffs between reproduction and longevity and thereby accelerate senescence®”.

CoR have been demonstrated in animal models, whereby reproduction hastens senescenced?; conversely, selection for late
life fecundity results in lifespan extension'®!!. In humans, CoR has been predominantly studied through the use of historical
datasets, which show that increased reproductive effort is often associated with a shortening of lifespan!?~16-butseel7 anq that
these costs are exacerbated when resources are limited'3-20, However, most studies of CoR in humans are restricted to modeling
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mortality as the sole outcome, and are therefore unable to address the underlying biological processes through which CoR
might translate into senescence and functional decline.

Among women, CoR likely accumulate predominantly during lactation and pregnancy?'->?. Lactation is energetically taxing,
while the highly invasive hemochorial placentation of human pregnancy places substantial physiological and immunological
demands on the female body?3~23. At the cellular level, pregnancy-induced senescence may be mediated through mitotic or
non-mitotic pathways, or both. Mitotic — or replicative — cellular aging can be measured using telomere length (TL). Telomeres
are non-coding DNA sequences that cap chromosomes, and are required for cell division and survival®®2’. Telomere length
shortens with cell division and chronological age, placing a limit on the number of cell divisions>®—3?. At a critical threshold,
TL attrition leads to the exhaustion of a cell’s proliferative potential, a process referred to as ‘cellular senescence’!-32. Shorter
TL controlling for age in turn predicts higher morbidity and mortality rates>3~3.

Pregnancy may also affect cellular aging through pathways operating independently from TL. A powerful emerging marker
of non-mitotic cellular aging is epigenetic age (DNAmAge)*”-38. DNAmAge in human® and non-human genomes***?
is calculated from methylation at a species-specific subset of cytosine-guanine dyads (CpGs), and is strongly correlated
with chronological age*®%3. Independent of a host of associated risk factors in humans, accelerated DNAmAge relative to
chronological age is associated with elevated risks for morbidity and mortality*+6. Vital to capitalizing on epigenetic age as a
marker of non-mitotic cellular aging, accelerated DNAmAge predicts senescence and mortality independently of TL in living
humans*’>#%, and independently of both TL and the DNA damage response in vitro®’-3°.

Human pregnancy could generate costs to female health and lifespan by shortening TL (mitotic age), accelerating DNAmAge
(non-mitotic age), or both. During pregnancy, blood cells proliferate to compensate for fluid volume expansion**>°, and
women experience a shift towards innate immunity and an increased sensitivity to infection®' %, Data from cell culture, rodent
based experiments, and clinical studies show that inflammation and infection increase cell proliferation and DNA damage,
both expected to accelerate the pace of telomere shortening®> 2. Accelerated DNAmAge relative to chronological age has
been observed in other pro-inflammatory contexts®>%4, and with menopause®, an important physiological and life-history
transition in human females. DNAmAge acceleration arising from menopause, whether naturally-occurring or surgically-
induced is attenuated by hormone therapy®’, suggesting that physiological and hormonal changes like those accompanying
pregnancy could have effects on DNAmAge. While recent studies examining TL or DNA damage and pregnancy have yielded
mixed results®®%°, none have attempted to test for CoR in humans using mitotic and non-mitotic measures of cellular aging
simultaneously.

Here, we test for human CoR using mitotic (TL) and non-mitotic (Horvath’s DNAmAge*?) measures of cellular aging.
We test three inter-related hypotheses in a relatively young cohort (age 20-22) of women in the Philippines. First, we ask
whether pregnancy history increases mitotic or non-mitotic measures of cellular aging, or both (H1). We consider whether any
associations between reproductive history and cell aging are stronger among women of lower socioeconomic status, for whom
resource constraints are expected to be highest (H2). Finally, we evaluate the potential for reverse causation by examining the
effect of both TL and DNAmAge on the number of pregnancies over the subsequent 4 years (H3).

Results

The relatively young women in our sample (21.7 & 0.4 years old) displayed a range of reproductive histories. While women
who had never been pregnant formed the largest group (n=507; 61.7%), women having experienced one (n=174; 21.2%), two
(n=102; 12.4%), and three (n=28; 3.4%) pregnancies were also well represented. A small subset of women had experienced
four (n=7; 0.8%) or five (n=3; 0.4%) pregnancies. Although the women in our sample fell into a relatively narrow age range,
age-adjusted measures of DNAmAge and TL were themselves uncorrelated (p=0.64; n=396), consistent with their independent
roles in cellular aging.

Reproductive History and Cellular Aging

TL decreased and DNAmAge acceleration increased with the number of pregnancies in a woman’s reproductive history
(Figure 1 and Table 1). The relationship between gravidity and both measures were also relatively robust — in nested models
controlling for a range of potential confounders, effects sizes for pregnancy number remained stable or increased (Table 1).
Each additional pregnancy was associated with the equivalent of 0.34-3.67 years of telomere aging, and 0.29-0.63 years of
DNAmAge acceleration (calculations in Supplementary Notes).

Cellular Aging and Subsequent Parity

We also tested for reverse causation by examining the associations of TL and DNAmAge with future reproduction. Neither
measure of cellular aging at the time of measurement (2005) predicted the number of pregnancies over the subsequent four
years (2005-2009), whether or not we controlled for baseline gravidity in 2005 (Table 2).
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Table 1. Regression models linking number of pregnancies to telomere length (models 1-4) and DNAmAge (models 5-8).

Telomere Length DNAmAge
ey ) 3)f 8 &) ©) ' (8"
Age —0.047 —0.029 —0.028 —0.029 0.485 0.667 0.656 0.645
p-values 0.003** 0.071% 0.073% 0.068* 0.293 0.157 0.158 0.165
No.Pregnancies —0.014 —-0.013 —-0.014 —0.016 0.363 0.326 0.459 0.510
p-values 0.025* 0.039* 0.031* 0.020* 0.026* 0.049* 0.007** 0.005**
SES —0.006 —0.006 —0.004 —0.180 —-0.214 —0.291
p-values 0.143 0.161 0.395 0.146 0.081" 0.055%
Currently Pregnant (Y) 0.011 0.011 —1.472 —1.460
p-values 0.534 0.540 0.001** 0.001**
No.Pregnancies x SES —0.004 0.106
p-values 0.362 0.385
Intercept 1.826 1.337 1.332 1.343 14.818 10.319 10.611 10.850
Observations 821 821 821 821 397 397 397 397
Adjusted R? 0.015 0.063 0.062 0.062 0.011 0.041 0.067 0.067

T Marked models include controls for top 10 principal components of genetic variation and average urbanicity score (complete results in
Supplementary Table S1). Note: ™ p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001.

Discussion

TL and DNAmAge, measures of mitotic and non-mitotic cellular aging, respectively, were both associated with reproductive
history in our sample of young women. The relationship between gravidity and cellular aging was relatively robust to a
number of potential confounders, and did not appear to be mediated by socioeconomic status, a measure of resource availability.
Moreover, neither measure was associated with gravidity over the subsequent 4 years, consistent with a causal effect of the
number of pregnancy on cellular aging.

Although consistent with theoretical predictions and non-human animal work, this is the first study to our knowledge to
examine CoR using both mitotic and non-mitotic measures of cellular aging. Gravidity predicted age-related changes in both TL
and DNAmAge in our study, yet several recent studies of CoR in women using TL alone did not find the predicted relationship.
The first, conducted among 75 Guatamalan Maya women, reported a positive association between TL and number of surviving
offspring over a 13-year period®®. TL in that study was determined using a combination of saliva- and buccal-derived DNA
samples, which unfortunately have not been consistently associated with chronological age’®~’?. Furthermore, two separate
measures of TL in that study were uncorrelated within individuals between the two timepoints, making comparisons between
these findings and our own blood-derived TL findings difficult.

Contrasting with our findings, a study among 620 participants of the US-based CARDIA study did not find evidence for
any relationship between parity and TL®. Why this study found no evidence for an effect of parity on TL while our findings
support CoR is unclear, but could relate to pronounced differences in the age ranges and socio-ecological conditions in the two
populations. Notably, markers of oxidative stress appear to be affected by parity in some socio-ecological contexts but not
others®”-%8. Furthermore, TL attrition occurs more rapidly at younger ages’>, suggesting that any impacts of reproduction on TL
shortening could be most pronounced among young women, especially if reproduction begins in adolescence and overlaps with
late stages of the mother’s own somatic growth!:’#. Whether or not the relationship between TL and DNAmAge will persist, or
if women with accelerated cellular aging will ‘recover’ and return to more age-typical levels remains an open question.

We found evidence for CoR using both TL and DNAmAGge, yet these two measures of cellular aging appear to reflect
different biological pathways linking reproductive effort with senescence. Congruent with this interpretation is the observation
that TL and DNAmAge measured in the same individuals have been independently associated with aging and mortality in
prior studies*® 73, and capture distinct dimensions of cellular aging®’-3%7%. Accordingly, TL and DNAmAge acceleration were
not associated with each other in this study. Accelerated TL attrition — a measure of ‘mitotic age’ that is modified directly by
cellular division — could stem from factors that modify cellular proliferation rates, such as the elevated inflammation, blood cell
production, and cell-turnover rates that characterize pregnancy in this and other samples>: 7.

In contrast to TL, Horvath’s DNAmAge is not considered a marker of mitotic age. In vitro DNAmAge is associated with
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Table 2. Relationship between telomere length (TL) and epigenetic age (DNAmAge acceleration) measured in 2005 and
parity over the subsequent four years (2005-2009). Models with and without adjustment for baseline gravidity in 2005.

Parity 2005-2009

Telomere Length DNAmAge
Unadjusted for Adjusted for Unadjusted for Adjusted for
Gravidity in 2005  Gravidity in 2005  Gravidity in 2005  Gravidity in 2005
Measurement time bt. 2005-2009 (Days) —0.003 —0.003 —0.002 —0.002
p-values 0.005** 0.011* 0.058* 0.068*
Parity in 2005 0.252 0.123
p-values 0.000** 0.016*
Age Adjusted Telomere Length in 2005 0.041 0.155
p-values 0.885 0.588
Age Adjusted DNAmAge in 2005 —0.011 —0.016
p-values 0.484 0.325
Intercept 4.313 3.719 3.461 3.267
Observations 738 738 397 397
Log Likelihood -832.737 -814.371 -485.277 -482.434
Akaike Inf. Crit. 1,671.474 1,636.742 976.553 972.867

Note: ™ p <0.1;* p <0.05; ** p < 0.01; *** p < 0.001.

cell passage number, but only in conjunction with the expression of the Telomerase Reverse Transcriptase (TERT) gene’®, and

DNAmAge tracks chronological age even in immortal, non-dividing, and non-proliferative tissues and cells**. Although the
biological significance of DNAmAge is unknown, it is hypothesized to reflect the integrity of an epigenetic maintenance system,
itself responsible for maintaining dynamic regulatory stability within cells**. In light of the hypotheses about the functional
underpinnings of DNAmAge, our findings are consistent with the prediction that reproduction comes at a cost of ‘maintenance’
—in this case at the scale of cellular regulatory integrity. Exactly how gravidity might lead to DNAmAge acceleration is unclear,
but tradeoffs between protein homeostasis and epigenetic control arising from immune activation or the buffering of oxidative
stress are plausible pathways’®®!. Indeed, cumulative changes in immune cell composition during pregnancy likely contribute
to DNAmAge acceleration with gravidity, although the measure of DNAmAge used here is remarkably robust across tissue
types®”. Nevertheless, the fact that the functionally-distinct measures of TL and DNAmAge show similar associations with
gravidity provides strong support for our prediction that reproduction accelerates cellular aging and organismal senescence, at
least among the young adult women represented by our sample.

Contrary to our prediction that the costs of reproduction would be greatest among individuals with limited resources
we found no evidence for an interaction between gravidity and SES in models predicting either TL or DNAmAge acceleration.
While women in low SES conditions in our study very likely experience constraints in energy or nutrient availability, it is still
unclear to what extent our measure of SES adequately captures limitations in the resources most relevant to CoR. Given the
relatively young age of the participants, however, it is possible that the moderating effect of resource limitation will emerge at
more advanced ages. SES in this population may also index factors other than resource availability that contribute to accelerated
aging, such as less healthful diets or decreases in physical activity. This does not appear to be a major confounding factor,
however, as neither TL or DNAmAge were significantly associated with SES in our models.

Importantly, neither measure of cellular aging obtained in 2005 predicted parity over the subsequent 4 years (2005-2009).
This suggests that the women in our study are not altering their reproductive output based on their future prospects of health
and survival, nor in response to separate physiological or environmental factors also responsible for accelerating cellular aging.
This runs counter to a life-history framework whereby ‘pace-of-living’ as captured by TL and DNAmAge is itself predictive of
future fecundity> %2,

Intriguingly, currently pregnant women exhibited significantly ‘younger’ DNAmAge. This finding could reflect the suite
of immunological and physiological shifts that occur during pregnancy, including changes in immune cell composition and
elevated estrogen levels. At least in some contexts, estrogen can lower oxidative stress®?, and elevated estrogen is protective for
both TL and DNAmAge®>-84. Pregnancy status and accompanying changes in cell composition may therefore be an important
confounder to include in future studies investigating the costs of reproduction in women.

Our findings should be considered in the context of several limitations. First, while we attempt to control for socio-ecological
factors that could affect both gravidity and our markers of cellular aging, residual confounding arising from differences in
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health and/or resources remains a possibility. Although the effects were modest, confounding could help explain the slight
decrease in effect size of gravidity after adjusting for SES in models 2 and 6. Future studies employing longitudinal measures of
TL and DNAmAge acceleration would minimize the potential effects of such confounders®, while modeling lactation and other
indices for reproductive effort will be necessary for a more complete estimate of the CoR3®#7_ Finally, the women in this study
all fall within a relatively narrow age range in young adulthood (20-22 years old). Because both TL and DNA-methylation
change more rapidly early in adulthood®®73, it is possible that both measures are particularly sensitive to reproduction at this
time. This leaves open the possibility that the relationship between gravidity and cellular aging is transient — and measurements
of TL and DNAmAge later in life will prove important for resolving this question.

In sum, our study suggests that gravidity predicts shorter telomeres and epigenetic age acceleration, measures of mitotic
and non-mitotic aging, respectively, among the young women in our sample. The consistency in relationships between
gravidity and aging in two distinct pathways—one reflecting cellular turnover, and the second a putative marker of epigenomic
regulation—support a cost of reproduction from pregnancy in humans.

Methods

Data collection

Data came from the Cebu Longitudinal Health and Nutrition Survey (CLHNS), a birth cohort study in Metropolitan Cebu,
Philippines that began with enrollment of 3,327 pregnant mothers in 1983-198438. Longitudinal data are available for download
at: https://dataverse.unc.edu/dataverse/cebu. In 2005 blood samples from overnight fasted subjects were
collected into EDTA-coated vacutainer tubes. Automated and manual DNA extraction (Puregene, Gentra) was conducted
on blood samples. Informed consent was obtained from all participants and data collection was conducted with approval
and in accordance with the Institutional Review Boards of the University of North Carolina at Chapel Hill and Northwestern
University.

Telomere length

TLs were measured using a modified form of the monochrome multiplex quantitative polymerase chain reaction assay that was
externally validated. Details of the protocol and external validity can be found in®® and since the coefficient of variation has
recently been recognized to be an invalid statistic to assess TL measurement reliability?’-°!, intraclass correlation coefficient
statistics of measurement error can be found in®2.

Epigenetic age (DNAmAge)

160ng of sodium bisulfite converted DNA (Zymo AZDNA methylation kit, Zymo Research, Irvine, CA, USA) was applied to
the Illumina HumanMethylation450 Bead Chip using manufacturer’s standard conditions. Standard methods for background
subtraction and color correction were carried out using default parameters in [llumina Genome Studio and exported into R
for further analyses. Quality control involved first confirming participant sex and replicate status. This was followed by
quantile normalization using lumi®® on all probes including SNP-associated and XY multiple binding probes. To maximize
the number of sites available for the epigenetic age calculator, probes with detection p-values above 0.01 were called NA for
poor performing samples only, and were otherwise retained. Horvath’s DNAmAge was calculated using an online calculator
(http://labs.genetics.ucla.edu/horvath/dnamage/), designed to be generally robust to cell-type differences
associated with age®’. Background-corrected beta values were pre-processed using the calculator’s internal normalization
algorithms.

Socioeconomic status (SES)

SES is measured as a combination of income, education, and assets. Participants reported their annual income from all sources,
including in-kind services, and the sale of livestock or other products by household members during the prior year, which
were summed to determine total household income. Incomes were deflated to 1983 levels, and log-transformed. Maternal
education (in years) was also reported. Participants also reported on nine assets (coded 0, 1) that were selected to capture
population-relevant aspects of social class, including electricity, televisions, refrigerators, air conditioners, tape recorder, electric
fans, jeepneys, cars, and their residence. In addition, house construction type (i.e., light, mixed, permanent structure) was coded
as 0,1, and 2, respectively. Thus, asset scores ranged from O to 11. A principal components analysis was run on log income and
assets at birth (1983) and at sample collection (2005) along with maternal education in Stata (v. 14.1). The first component of
variation accounted for 49% of the variation and individual scores for this component of variation were used as our measure of
SES.

Statistical methods
The key predictor variable was gravidity (the number of pregnancies including stillbirths, miscarriages and live births, but not
current pregnancies) the respondent reported having had in 2005 (at the time of blood sampling). Control variables included
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chronological age in 2005 (the time of blood collection), the measure of socioeconomic status (SES) described above, average
urbanicity score between 1983 and 2005°*, and whether the respondent was pregnant at the time of blood collection. Pregnancy
status was reported at the time of sampling, and through back-calculation based on parturition within 9 months of the original
interview (maternal and infant measures are recorded with each pregnancy as part of ongoing tracking process). DNAmAge
acceleration refers to DNAmAge residualized on chronological age. Principal components (PCs) of genome-wide genetic
variation were included to control for potential population genetic structure. The derivation of these principal components
has been described previously”™ 7. As in previous analyses’>“8, the bivariate association between the first ten principal
components and TL were tested. The top principal components up to and including the last one showing a significant bivariate
association with TL (10 total) were retained as control variables, with the same 10 principal components used for DNAmAge
models.

Linear regression was used for analyses predicting TL and DNAmAge (both normally distributed continuous outcome
variables), while generalized linear models with a Poisson family and log-link were used to test for reverse association —
that TL/DNAmAge would predict gravidity (a discrete integer) over the subsequent 4 years. The negative effect of time
between 2005-2009 surveys and number of pregnancies during this time is an artifact tied to household visit schedules and
urbanicity (less urban participants tend to have more pregnancies, and were visited later in the data collection wave). All models
were two-tailed with o = 0.05 and were followed by standard model diagnostics®. For all linear regressions, the absence
of collinearity in predictor variables was confirmed with variance inflation factors (VIFs) for all models falling below 1.1,
while Poisson GLMs showed no signs of under- or over-dispersion'?’. Despite the large number of nulliparous women and
relatively small number of women with 3 or more pregnancies, all model assumptions were met, and there was no evidence
of heteroscedasticity, outliers, or high leverage data points confounding our analyses. All analyses were run in R'°! with
ggplot2!9? and stargazer!®? for figures and tables.
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Figure 1. Relationship between mitotic (TL) and non-mitotic (DNAmAge acceleration) measures of cellular aging and
reproductive history (number of pregnancies) in young women. a) Residualized TL for all variables in Table 2, Model 3, and
statistics from same model. b) Residualized DNAmAge for all variables in Table 2, Model 7, and statistics from same model.
Graphs are labeled and dots are colored by relative aging for each marker (blue, low; red, high) and best fit lines are drawn with
95% CI of beta value.
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