
Articles
https://doi.org/10.1038/s41559-018-0622-3

1Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands. 
2Department of Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA. 3Department of Soil and Water Conservation, 
Nanjing Forestry University, Nanjing, China. 4Department of Biology, Illinois College, Jacksonville, IL, USA. 5Department of Biology, Grice Marine 
Laboratory, College of Charleston, Charleston, SC, USA. 6Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of 
Kansas, Lawrence, KS, USA. *e-mail: M.B.Eppinga@uu.nl

Despite decades of research, it remains surprisingly challeng-
ing to explain how species competing for the same resources 
can coexist in the large numbers observed in plant communi-

ties1–7. Ecological theory states that stabilizing mechanisms creat-
ing negative frequency-dependent feedbacks are needed to prevent 
competitive exclusion due to species differences in fitness6–8. Recent 
empirical studies of species-rich plant communities are in qualita-
tive agreement with the expected connection between negative fre-
quency-dependent feedback and patterns of species abundance9,10 
and species richness11–13. Until now, utilization of these data for more 
direct tests of ecological theory is hampered by the lack of a theo-
retical analytical framework linking species interactions to commu-
nity diversity and stability. In contrast with studies of evolutionary 
game dynamics14, theoretical ecological studies have focused either 
on coexistence of small numbers of species3 or on sufficiently large 
communities, enabling a distributional approach based on prob-
abilities (of particular species interactions15). Alternatively, coex-
istence has been studied for equivalent species16, species exerting 
equal effects on all competitors17, (anti-)symmetric species interac-
tions5,7 and species experiencing strictly hierarchical competition2. 
These assumptions enable a detailed description of potential plant 
community dynamics, but do not consider asymmetric competitive 
interactions. In addition, the above approaches do not represent the 
forces driving negative frequency-dependent feedbacks at the com-
munity level.

Focusing on a specific mechanism through which frequency-
dependent feedbacks may arise from asymmetric species interac-
tions, plant–soil feedback theory has been developed by means of 

models that can be directly parameterized with data from pot or 
field experiments, providing a promising means to integrate experi-
ments with theory18–20. Yet, theoretical development and empiri-
cal testing of plant–soil feedback theory has been limited to small 
numbers of interacting species18–23. Here, we generalize the plant–
soil feedback model18 (see Supplementary Information Section 1), 
yielding a generic phenomenological model of frequency-depen-
dent interactions. When rewriting the species’ density dynamics 
into frequency dynamics, this generalized model projects onto the 
well-known replicator equation originating from evolutionary game 
theory14. The replicator equation can be solved analytically for com-
munities containing any number of species. This procedure does 
not require an assumption of species equivalence, meaning that 
equilibrium solutions retain species-specific parameters describing 
the growth for each species. We also derive a fundamental criterion 
for species persistence. Our results provide a framework to assess 
the importance of empirically observed frequency-dependent inter-
actions in maintaining coexistence of highly diverse plant commu-
nities (Fig. 1).

Results and discussion
The proposed framework consists of a set of ordinary differen-
tial equations describing plant frequencies and hence community 
dynamics over time (Supplementary Information Section 1). The 
only parameters in this model are the coefficients σij, which quantify 
the growth rate of species i in an environment dominated by spe-
cies j (Fig. 1). Thus, when these coefficients are set to non-neutral 
values, species fitness becomes frequency dependent, creating a 
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feedback between community composition and the growth of each 
species. For a system of two species, net feedback is described by the 
two-species interaction coefficient IS

18,19:

σ σ σ σ= − − +I (1)S 11 12 21 22

Provided that the coexistence equilibrium is feasible (that is, both 
plant species have a positive frequency at equilibrium), IS < 0 
will generate negative feedback, and the equilibrium is stable. 

Alternatively, IS >  0 will generate positive feedback and the equi-
librium is unstable, meaning that one of the plant species will be 
excluded18,19 (Supplementary Information Section 2). IS can thus be 
interpreted as a pairwise feedback: the sum of two species-specific 
feedbacks, which are described by the difference between a species’ 
conspecific and its heterospecific responses (thus, the species-spe-
cific feedback of plant species 1, for example, is given by24: σ11 – σ21). 
For the two-species case, the equilibrium frequency for each plant 
species is then given by the ratio between its competitor’s species-
specific feedback and the pairwise feedback18, yielding:
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in which �Pi  indicates the species’ equilibrium frequencies. These 
results can be generalized from two to any number of species 
(Supplementary Information Section 3). General results can be 
obtained using the interaction matrix:

σ σ σ
σ

σ σ
=

..
.. .. ..

.. .. .. ..
.. ..



















A (3)
n

n nn

11 12 1

21

1

As in the two-species case, the frequency of a given species at the 
coexistence equilibrium is the ratio between the feedback effects 
that this species experiences from all competitors and the sum of all 
feedback effects within the community:
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where Ai indicates the interaction matrix A, but with the ith column 
being replaced with a column vector of ones (Fig. 1). Thus, based on 
the interaction structure within the plant community (equation (3)),  
the equilibrium frequencies for species at coexistence can be cal-
culated (equation (4)). Stability of this equilibrium can then be 
assessed by standard eigenvalue analysis of the system’s Jacobian 
matrix. We used this approach to study community assembly 
and the resulting plant species richness (quantified as the maxi-
mum number of species that were found to stably coexist) under 
various regimes of negative feedback (Fig. 2; see also Methods 
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Fig. 1 | conceptual representation of how the frequency-dependent 
feedback framework can be extended to the community level for any 
number of plant species (here, n = 5). a, Plant species (Pi) are modelled as 
frequencies within a community. The diagram includes trees from Laubwerk 
Plant Kit 1 (www.laubwerk.com). b, Plant species exert conspecific (σii) and 
heterospecific (σij) effects, the magnitude of which (per capita) depends on 
the frequency of the exerting species. c, The resulting interaction network 
determines whether the community coexistence equilibrium is feasible; 
equilibrium frequencies are calculated by reduced determinants of the 
interaction matrix, Ai, the sum of which yields the community interaction 
coefficient, IC. d, IC <  0 generates negative community-level feedback and 
is a necessary condition for persistence of all plant species within the 
community. e, IC >  0 generates positive community-level feedback and 
leads to competitive exclusion.
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Fig. 2 | two hundred runs of plant community assembly show that more 
species can stably coexist under stronger negative feedback. The solid 
line shows a quadratic fit assuming a minimum community size of two 
plant species (y =  39.00x2 +  12.52x; Radj

2 =  0.86).
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and Supplementary Information Section 6). We found that under 
more negative feedback, indicated by the system’s average pairwise 
feedback10,19,23, communities with higher species richness could be 
assembled (Fig. 2). For a plant community in which the number of 
species was fixed, more negative feedback increased the resilience of 
the coexistence equilibrium (Fig. 3a, in which resilience is measured 
as the return time after perturbation25). In addition, more negative 
feedback increased community evenness (Fig. 3b). The fact that 
average pairwise feedback correlates well with these community-
level properties is surprising because pairwise descriptors provide 
no formal (that is, mathematically formulated) conditions for coex-
istence in communities of more than two species7. Therefore, to 
establish whether pairwise descriptors can be used as an indicator 
of community-level feedback, a formal measure of community-level 
feedback is also needed.

We found that for the model framework analysed, the two-spe-
cies interaction coefficient IS can be generalized to the community 
level, yielding an exact measure for community-level feedback. 
More specifically, the generalized community interaction coeffi-
cient, IC, is given by (Supplementary Information Section 3):

∑= −
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j

n
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1

A pattern generally observed in empirical studies is that conspe-
cific effects (and variation therein) are relatively strong compared 
with heterospecific effects (and variation therein)11–13. Under these 
conditions, our measure of community-level feedback correlated 
well with the average strength of pairwise feedback (equation (1); 
Fig. 3c and Supplementary Information Section 6). This result did 
not only hold for asymmetric interaction matrices (Fig. 3c), but 
also for (anti)-symmetric interaction matrices (Supplementary 
Information Section 3). This monotonic relation between average 
pairwise feedback and community-level feedback thus provides an 
explanation for recent empirical observations of average pairwise 
feedback correlating well with community diversity11–13.

We could prove that negative community-level feedback, 
IC <  0, presents a necessary condition for persistence of all species 
(Supplementary Information Section 3). Interestingly, the value of 
IC is not affected by inherent fitness inequalities6 between species 
(Supplementary Information Section 7). Following the community 
assembly approach (see Methods), we found that negative feedback 
could still be present in communities for which the real part of 
the leading eigenvalue of the coexistence equilibrium was positive 
(Supplementary Information Section 4). Thus, even when small per-
turbations would drive the community away from the coexistence 
equilibrium point, negative community-level feedback may still 
prevent species extinction. In this case, species abundances fluctu-
ate, but dominance is passed on from one species to another in ways 
that create repeating loops (for example, A →  B →  C →  A), referred 
to as cyclic succession22,26 (Supplementary Information Section 4). 
However, IC <  0 is not a sufficient condition for persistence of all spe-
cies within a community (Supplementary Information Section 3).  
These observations highlight the importance of knowing the exact 
structure of the right-hand side of equation (3), as the loops creat-
ing the cyclic succession dynamics are not conserved when all the 
heterospecific effects that a species experiences have been averaged 
(for example, Supplementary Information Section 4).

Parameterizing the right-hand side of equation (3) requires 
full-factorial experimental designs, the size of which increases rap-
idly with increasing plant community size. However, even in cases 
where information is incomplete, our theoretical framework can be 
used to infer plant community characteristics by constraining the 
right-hand side of equation (3) within a realistic range of parameter 
values (rather than providing the exact value of each parameter). 
Observational data, as recently gathered in diverse forest ecosys-
tems9,11–13, can be used for this aim. To illustrate this potential, we 
analysed data from North American deciduous forests east of the 
hundredth meridian, aggregating surveys from 207,444 plots to 
2° ×  2° grid cells11 (Fig. 4a). Previous measures of conspecific and 
averaged heterospecific frequency dependence11 can be translated 
into the model parameters used in the current framework (equa-
tions (3) and (4), and Supplementary Information Section 5). 
Focusing on grid cells containing sufficient data for five or more 
tree species11 (Supplementary Information Section 5), we distin-
guished four community diversity classes (5–15, 15–25, 25–35 and 
≥ 35 species occurring in a grid cell; Fig. 4a). We used the previ-
ously derived measures for conspecific and averaged heterospe-
cific density dependence11 to calculate for each of these cells the 
average pairwise feedback experienced by the tree species present. 
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Fig. 3 | Effects of frequency-dependent feedback on plant community 
structure. a, Increasingly negative feedback increases the resilience of the 
coexistence equilibrium (measured as the absolute real part of the leading 
(and negative) eigenvalue27). b, Increasingly negative feedback increases 
species evenness within the stably coexisting community measured with 
Pielou’s evenness index (that is, the ratio between the actual and the 
maximum value of the Shannon–Wiener index). c, Even though community-
level feedback is determined by an analytical expression of the order σ −

ij
n 1, 

the strength of average pairwise feedback (that is, of the order σij
1)  

correlates well with the (rescaled) strength of this community-level 
feedback.
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Consistent with previous observations of feedback–diversity cor-
relations11,12, the average pairwise feedback became more strongly 
negative with increasing community diversity (see the coloured bars 
in Fig. 4b). A hitherto unanswered question, however, is whether 
these observed differences in feedback are indeed strong enough to 
drive (rather than correlate with) the variation in community diver-
sity. Therefore, we compared the pattern obtained from these obser-
vations with independently assembled theoretical communities 
that spanned the same range of diversity classes. In these theoreti-
cal communities, the differences in species diversity were entirely 
driven by variation in the strength of community-level feedback. 
The conspecific and heterospecific coefficients in these theoretical 
communities were varied over the same range as observed in the 
field data (Supplementary Information Section 5). The community 

assembly process was carried out as before (Fig. 2; see Methods). 
We found that the variation in pairwise feedback strength between 
these theoretical communities (grey bars in Fig. 4b) was similar to 
the variation empirically observed (Fig. 4b). Although a correlation 
between feedback and diversity has been previously observed in 
northern American deciduous forests11,12, application of the frame-
work developed here verifies that the observed variation in feedback 
is in theory strong enough to be a causal factor driving the observed 
variation in community diversity (Fig. 4).

Our results further suggest that in the absence of inherent fitness 
differences between species, a species’ experienced feedback will 
positively correlate with its relative abundance (equation (4)), as has 
been commonly observed in the field10,11,13,27. Although inherent fit-
ness differences may decouple this link between experienced feed-
back and relative abundance, we found that such differences would 
not undermine the stabilizing force of community-level negative 
feedback (Supplementary Information Section 7). Together, these 
results provide an explanation for recent observations of consistent 
signatures of negative feedback in tropical and temperate forest 
communities but declining slopes of feedback–abundance relation-
ships with increasing latitude13.

Quantitative studies of ecological networks have mainly focused 
on food webs and mutualistic networks15,28, or have focused on 
competition within a trophic level by studying networks that are 
symmetric (for example, mimicking overlap in resource use7) or 
anti-symmetric (where there is a winner and a loser in each two-way 
interaction5; see also ref. 3). Frequency-dependent feedback, as stud-
ied here, considers a community in which plants interact through a 
fully connected network but where interactions between species can 
be asymmetric (for example, species A strongly affects species B, 
but B only weakly affects A). Empirical evidence for specific mecha-
nisms creating this kind of interaction structure is rapidly increas-
ing. Examples include density-dependent seedling mortality9,10, 
plant–soil feedbacks initiated by invertebrate fauna29, soil patho-
gens21 or mycorrhizal associations27, and autotoxic effects of extra-
cellular self-DNA originating from plant litter30. Understanding the 
contribution of these mechanisms to plant community coexistence 
will be contingent on moving beyond the study of interactions 
between small numbers of species18–20. The theoretical framework 
presented here provides a crucial link between empirical estimates 
of frequency-dependent feedback and its consequences for commu-
nity stability and species diversity patterns.

Methods
Strength of negative frequency-dependent feedback and species richness of 
communities. A random interaction matrix for 1,000 species was generated. From 
this matrix, communities were assembled, starting with two randomly selected 
species. Analytical calculation of the coexistence equilibrium (see equations (3)  
and (4)) and the relevant eigenvalues of the corresponding Jacobian matrix 
(Supplementary Information Section 3) were then calculated to assess whether 
this two-species coexistence equilibrium was stable. If coexistence was feasible and 
stable, another species was randomly selected and added to the community, after 
which the procedure was repeated. This process continued until the community 
was no longer locally stable, or until a predetermined species number was reached, 
at which point the community resilience (by means of the magnitude of the 
relevant eigenvalue with the maximal real part25) and evenness (using Pielou’s 
index) were assessed. Average feedback strengths in the 1,000-species matrix were 
varied by manipulating the strengths of conspecific effects relative to the strengths 
of heterospecific effects. In the simulations, conspecific coefficients ranged between 
0.05 and 0.3, and heterospecific coefficients ranged between 0.3 and 0.9 (refs 10,23). 
The subsets considered within these ranges varied along the feedback gradient 
(see Supplementary Information Section 6 for details). However, we verified that 
alternative parameterizations led to qualitatively similar feedback–community 
diversity relations (Supplementary Information Section 6).

Plant–soil feedbacks and the Forest Inventory and Analysis dataset. We analysed 
tree species diversity of forest plots located east of the hundredth meridian, which 
are part of the US Forest Service’s Forest Inventory and Analysis (FIA) dataset. 
These data were previously extracted and preprocessed11. In this previous work, the 
strength of density dependence was inferred from (maximum likelihood) fitting  
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a negative exponential relation between observed seedling densities and tree  
density in the surrounding plot. Here, we used the dataset described in ref. 31  
to obtain exponential coefficients, using cumulative basal area as the predictor 
variable for adult density. The dataset analysed in ref. 31 differed from ref. 11 in that 
it also included ecologically relevant joint absences of seedlings and adult trees 
within forest plots, which tends to increase coefficient values32. The exponential 
coefficients were used to calculate values for the conspecific frequency-dependent 
effect parameters, σii, and for the average heterospecific effect, σij, on each species 
(Supplementary Information Section 5). Theoretical results showed that average 
pairwise feedback (equation (1)) correlates well with community-level feedback 
(see Fig. 3c and Supplementary Information Sections 3 and 6). Average pairwise 
feedback could also be calculated for the FIA data selection, as it only requires 
information on the average of heterospecific effects that a tree species experiences11 
(Supplementary Information Section 5). We calculated average pairwise feedback 
strengths aggregating observations from different plots at the level of grid cells 
spanning 2° ×  2° (latitude ×  longitude)11 (Supplementary Information Section 5). 
In total, average pairwise feedback was calculated for 113 grid cells in which the 
average pairwise feedback could be calculated for five or more tree species (up to 
51 tree species). These calculated feedbacks were compared with a null prediction 
in which the associations between seedlings and adults within each grid cell were 
randomized (Supplementary Information Section 5). Patterns of feedback strength 
and observed community diversity in the corresponding grid cells were then 
compared with patterns in theoretical communities in which community diversity 
was determined by the strength of community-level feedback. As the data provided 
row-averaged values of heterospecific effects (that is, the off-diagonal entries of 
the community matrix; see equation (3)), the model parameters in simulations 
could be constrained; that is, varied over the same range as observed in the data, 
including the ranges assumed for within-row and between-row variation in 
heterospecific effects (Supplementary Information Section 5).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The MATLAB and R scripts written for this study only 
contain standard functions and analysis methods. Scripts are available from the 
corresponding author upon reasonable request.

Data availability. The US Forest Service’s FIA data that support the findings of 
this study are available from www.fia.fs.fed.us/tools-data/ under FIA Data Mart. 
The database subset that was used in the current study is available from the 
corresponding author upon reasonable request.
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