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Abstract—Electrochemical energy storage (ES) units (e.g. bat-
teries) have been field-validated as an efficient back-up resource
that enhances resilience of distribution systems. However, using
these units for resilience is insufficient to justify their installation
economically and, therefore, these units are often installed in
locations where they yield the greatest economic value during
normal operations. Motivated by the recent progress in mobile
ES technologies, i.e. ES units can be moved using public trans-
portation routes, this paper proposes to use this spatial flexibility
to bridge the gap between the economically optimal locations
during normal operations and the locations where extra back-
up capacity is necessary during disasters. We propose a two-
stage optimization model that optimizes investments in mobile
ES units in the first stage and can re-route the installed mobile
ES units in the second stage to form dynamic microgrids (MGs)
and to avoid the expected load shedding caused by disasters.
Since the proposed model cannot be solved efficiently with off-
the-shelf solvers, even for relatively small instances, we apply
the progressive hedging algorithm. The proposed model and
algorithm are tested on a 15-bus radial distribution test system.

Index Terms—Mobile energy storage, grid resilience, micro-
grid, distribution system, progressive hedging

NOMENCLATURE

A. Sets and Indices
b ∈ B Set of buses
k ∈ K Set of energy storage units
l ∈ L Set of distribution lines
s ∈ S Set of scenarios
t ∈ T Set of time intervals
B. Parameters
ℵch/dis Charging/Discharging efficiency
αlts Contingency parameter of line l
γ Daily capital recovery factor
ωs Probability of scenario s
h Degradation slope of energy storage units
r(l) Receiving-end bus of line l
s(l) Sending-end bus of line l
Ek Energy rating of energy storage units [MWh]
P k Power rating of energy storage units [MW]
Bb Susceptance of bus b [Ω−1]
CE Energy rating price of energy storage units[$/MWh]
Cg
b Incremental cost of distributed generator [$]

CP Power rating price of energy storage units [$/MW]
CVoLL
b Value of lost load [$/MWh]

Gb Conductance of bus b [Ω]
K Power factor calculation coefficient
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NB The number of buses
NDG The number of distributed generators
NES The number of mobile energy storage units
NL The number of distribution lines
NO The number of lines in outage
NS The number of scenarios
NT The number of time intervals
P d
bts Real power demand [MW]
Qd
bts Reactive power demand [MVar]

Rl Resistance of distribution line l [Ω]
Sl Apparent flow limit of distribution line l [MVA]
Xl Reactance of distribution line l [Ω]
C. Binary Variables
σd
bts Load switch state variable: 1 if load at bus b is

connected to bus, 0 otherwise
σl
lts Line switch state variable: 1 if line l is closed, 0

otherwise
ukbts Transit route variable of ES unit in mobile mode: 1 if

ES unit k is located at bus b, 0 otherwise
xk Investment decision variable of energy storage unit: 1

if energy storage unit k is installed, 0 otherwise
zkb Stationary location variable of ES unit: 1 if ES unit k

is located at bus b, 0 otherwise
D. Variables
alts Squared current flow of distribution line l [p.u.]
ekts Energy state-of-charge [MWh]
f
p/q
lts Real/Reactive power flow of line l [MW/MVar]
p
ch/dis
kbts Charging/Discharging real power decision [MW]
pgbts Real power output of distributed generator [MW]
q
ch/dis
kbts Charging/Discharging reactive power decision [MVar]
qgbts Reactive power output of distributed generator

[MVar]
vbts Squared nodal voltage magnitude of bus b [p.u.]
IC Investment cost [$]
ECs Emergency cost of scenario s [$]
OCs Operation cost of scenario s [$]

I. INTRODUCTION

THE US power grid is vulnerable to natural disasters (e.g.
flooding, extreme winds, earthquakes) as they increase

the likelihood of critical equipment failures [1]. Distribution
systems are particularly affected by natural disasters due to the
compounding effect of line outages, radial topology, and lim-
ited back-up resources. Furthermore, a large-scale disaster can
affect a power grid in multiple locations causing the domino
effect, which may in turn spread power outages across large
geographical areas, even if some areas would not otherwise
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Fig. 1: The resilience enhancement steps [4] and the scope of this
paper (shaded).

be affected by the disaster [2]. Therefore, it is important to

contain the failures within distribution systems and prevent

their further propagation to the transmission system.

To continue operating and delivering power even in case of

such low probability, high-consequence events as hurricanes

and earthquakes [3], power grid resilience can be enhanced

by means of planning, response, and restoration. The response

step may be divided into preventive and emergency responses

based on whether it is prior to or after the event strikes.

Fig. 1 illustrates this classification and functional objectives

of each step. In the planning stage, a distribution system oper-

ator (DSO) builds a long-term investment plan of generation

resources and facility hardening. Utilizing such grid assets,

the DSO is better suited to accommodate abnormal conditions

caused by natural disasters (i.e. adaptation) or to restore the

normal system condition (i.e. recovery). The objective of

this paper is to illustrate that mobile energy storage (ES)

units are also economically and physically suitable for the

adaptation stage and thus enhance distribution resilience. For

this purpose, we propose an investment model that includes a

joint allocation and operation strategy for the mobile ES units

with microgrid (MG) formation.

A mobile ES unit, often referred to as “storage-on–wheels,”

is an emerging technology that takes the form of a trailer-

mounted electrochemical battery. Consolidated Edison of New

York is currently considering installing such mobile ES units

to reduce the impact of PV generation on their distribution

system in New York City and defer costly distribution up-

grades [5]. As reported in [5], each mobile ES unit will

feature a Lithium-ion battery that can store up to 800 kWh

of energy with the maximum charging/discharging duration of

10 hours. Compared to other resilience response resources, the

mobile ES units have multiple advantages. First, they are more

environmentally friendly than portable emergency generators

and can be used without unnecessary noise and air pollution.

Furthermore, strict pollution standards in certain jurisdictions,

especially in metropolitan areas, prohibit the use of portable

emergency generators during normal operations, which reduce

their value to the distribution system. Second, unlike preven-

tive load shedding or adaptive microgrids, the mobile ES units

can be directly operated by the power grid operator and do not

require advanced communication infrastructure or engagement

with electricity consumers. Since the capital cost of ES units

is relatively high, it is important to ensure their economic

viability. Exploiting ES mobility for resilience applications can

enhance its value to the grid and create new revenue streams

to accelerate its cost recovery.

Provided there is a timely disaster forecast, the SO can

prevent critical failures, or at least mitigate their impacts, by

TABLE I. SURVEY OF PREVIOUS STUDIES

Formulation
Power

DG ES MG
Resilience Mobility of

Flow Stage Resources
[4] MILP DC-OPF � - - Response -
[8] MILP DC-OPF � - - Response -
[9] MILP DC-OPF � � � Planning -
[10] - FB Sweep � - � Planning -
[11] MINLP AC-OPF � � � Response -
[12] MIQP LinDistFlow � - � Response �
[13] MILP LinDistFlow � - � Planning �

∗ DG: Distributed Generator, ES: Energy Storage, MG: Microgrid

strategically placing flexible back-up resources (i.e. mobile

storage) [6]. Since the disaster forecasts are normally available

on a short notice (for instance, NOAA forecasts are available

48-168 hours ahead [7]), only a few alternative technologies

are physically suitable to be deployed, relocated or acti-

vated within this timeframe: portable emergency generators,

topology switching, preventive load shedding, or adaptive

microgrid. Table. I presents the previous literature on such

technologies and their comparison. Huang et al. [4] propose an

integrated method to utilize topology switching and preventive

load shedding for resilience response. Wang et al. [8] devise

a proactive operation strategy with topology switching and

generation re-dispatch through the Markov process. Zhang et

al. [9] formulate a planning problem that optimizes sizing and

siting of the photovoltaic generation and storage. Nassar et

al. [10] describe an adaptive self-adequate microgrid planning

with flexible boundaries. Wang et al. [11] develop a self-

healing strategy by partitioning a given distribution system

into self-adequate microgrids. The common thread of [4], [8]–

[10] is that they consider stationary resilience resources. Lei et

al. [12] consider mobile emergency generators and microgrid

formation in a mixed-integer quadratic program (MIQP). Ac-

cordingly, the model in [12] formulates two separate optimiza-

tion problems that sequentially pre-position and route mobile

emergency generators in real-time. Due to this separation, the

pre-positioning decisions are informed of the routing decisions

and thus might be sub-optimal. Sedzro et al. [13] describe

a similar planning framework considering controllability of

demand response and mobility of distributed generators (DGs),

leading to a mixed-integer linear program (MILP). However,

the models in [12], [13] disregard multi-temporal constraints,

while optimizing their planning decisions, and therefore are

not suitable for modeling ES units.

A typical state-of-the-art planning tool for stationary ES

units, [14], [15], is routinely formulated as a two-stage stochas-

tic MILP and considers ES units as stationary resources. In

these tools, the first stage optimizes the ES locations and

sizes, while the second stage fixes the first-stage decisions

and co-optimizes the operation of existing resources and

newly installed ES units. If the ES units were mobile, the

complexity of the planning tool would increase. First, the

ES mobility implies that the ES location is not fixed in the

second stage and needs to be optimized (so-called recourse

decisions). Second, the recourse decision on each mobile ES

unit is binary, where it attains the value of 1 if that unit

needs to be moved, or 0 if it stays. The two-stage stochastic

mixed-integer problems with binary recourse decisions are
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more computationally demanding, and often existing solution

strategies, e.g. Benders’ decomposition, perform poorly when

applied to such problems [16].

This computational complexity can be overcome by using

the progressive hedging (PH) algorithm [17], [18]. Recently,

the PH algorithm has gained attention in the context of a

two-stage stochastic unit commitment problem [19]. Unlike

Benders’ decomposition, the PH algorithm does not exploit

the two-stage structure of the underlying optimization and does

not separate the first- and second-stage decisions. Instead, the

PH algorithm partitions the original problem in a scenario-

based fashion and the first- and second-stage decisions are

optimized for each scenario independently. In each scenario-

based problem, the relaxation of the first-stage decision is

penalized with an exogenous penalty coefficient. The algo-

rithm iterates until the first-stage decisions across all sce-

narios converge with a given tolerance. The scenario-based

decomposition used in the PH algorithm is shown to be

an effective solution strategy for two-stage stochastic mixed-

integer problems with binary recourse decisions and, therefore,

it is applicable for planning tools with mobile ES units.

This paper builds on our preliminary work in [20] and

makes the following contributions:

1) It takes the perspective of the DSO and formulates the

optimization problem to decide on the investments in

mobile ES units. The proposed optimization is a two-

stage stochastic mixed-integer second order conic pro-

gram (MISOCP) with binary recourse decisions, which

accounts for the relocation of mobile ES units under

each specific scenario. This optimization achieves the

trade-off between the economic value of mobile ES units

during normal operations as previously investigated in

[14], [15], [21]–[25] for different applications, and their

ability to enhance distribution system resilience in case

of natural disasters.

2) Operation strategy of mobile ES units is devised for

both normal and emergency conditions and co-optimized

throughout all time-intervals before and after the event.

During the emergencies, ES units can travel among

buses and form dynamic microgrids by using their

spatial flexibility and optimizing the boundaries and

centroids of microgrids. Transit delay of mobile ES units

and switching decisions of distribution lines and loads

are also formulated in the optimization model.

3) The proposed optimization is solved using the PH al-

gorithm. The numerical results demonstrate that this

method outperforms off-the-shelf solvers in terms of the

computational performance. The numerical experiments

also suggest that the PH performance can be improved

by tuning externalities (e.g. penalty coefficients).

The remainder of this paper is organized as follows. Sec-

tion II describes the optimal operating strategies of mobile ES

units during normal and emergency operations. Given these

strategies, Section III presents a two-stage planning model that

optimizes investments in mobile ES units. The planning model

is solved using the PH algorithm as described in Section IV.

Section V presents the case study that quantifies the usefulness

SN = {s1, · · · , s5}

SE = {s6, · · · , s10}

s1

t1 t24
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s6

s10
t2 t23

≈
≈

≈
≈

}
}

} S

Fig. 2: A schematic representation of scenario set S = SN ∪ SE,
which includes scenarios for normal operations in set SN and
scenarios for emergency operations in SE. For example, if 5 scenarios
are used in each set SN and SE, individual scenarios are indexed as
s1, s2, s3, s4, s5 and s6, s7, s8, s9, s10, respectively.

of mobile ES units. Section VI concludes the paper.

II. OPERATION OF MOBILE ES UNITS

This section describes the optimal operating strategies for

mobile ES units during normal and emergency operation

scenarios defined by sets SN and SE, both are indexed by

s, that together constitute set S = SN ∪ SE considered in the

proposed optimization. Fig. 2 displays a relationship between

scenario sets SN and SE and the numbering convention for

individual scenarios. Each scenario is assigned probability ωs

such that
∑

s∈
[
SN∪SE

] ωs = 1 and has the number of time

intervals denoted by set T , indexed by t. The distribution

system has a radial topology, which is typical for US power

grids, where sets B and L, indexed by b and l, represent the

distribution buses (nodes) and lines (edges).

A. Normal Operation

We consider the case when the DSO uses mobile ES units

for performing spatio-temporal energy arbitrage during normal

operations. Although the mobility of ES can be leveraged

in this case, these resources are stationary during normal

operations as practiced by existing utilities, see [5].

The objective function of the DSO can be formulated as:

min
∑
s∈SN

ωs ·OCs, (1)

OCs=
∑

t∈T ,b∈B
Cg

b ·p
g
bts+

∑
k∈K,b∈B,t∈T

(∣∣∣∣ h

100

∣∣∣∣CP
(
pchkbts + pdiskbts

))
, (2)

where Eq. (1) minimizes the expected operating cost over

a set of normal scenarios. Eq. (2) computes the operating

cost for each scenario, which includes the generation cost of

distributed generation (DG) units and ES degradation cost. The

degradation cost is computed as explained in [26] and depends

on charging (pchkbts) and discharging (pdiskbts) decision variables

and technology-specific degradation slope parameter h.

The DSO operations are constrained as (∀t∈T , s∈S):

(fp
lts)

2
+(fq

lts)
2≤S2

l , ∀l∈L, (3a)

(fp
lts−alts ·Rl)

2
+(fq

lts−alts ·Xl)
2≤S2

l , ∀l∈L, (3b)

vs(l),t,s − 2(Rl ·fp
lts +Xl ·fq

lts) + alts
(
R2

l +X2
l

)
= vr(l),t,s, ∀l∈L, (3c)

(fp
lts)

2
+ (fq

lts)
2

alts
≤ vs(l),t,s, ∀l∈L, (3d)
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−
∑

l|r(l)=0

(fplts−alts·Rl)−p
g
0,t,s+G0 ·v0,t,s=0, (3e)

−
∑

l|r(l)=0

(fqlts−alts·Xl)−qg0,t,s−B0 ·v0,t,s=0, (3f)

fpbts−
∑

l|r(l)=b
(fplts−alts ·Rl)−p

g
bts+P d

bts+Gb ·vbts

−
∑
k∈K

pdiskbts +
∑
k∈K

pchkbts =0, ∀b∈B,
(3g)

fqbts−
∑

l|r(l)=b
(fqlts−alts ·Xl)−qgbts+Qd

bts−Bb ·vbts

−
∑
k∈K

qdiskbts +
∑
k∈K

qchkbts =0, ∀b∈B,
(3h)

P g
b ≤ p

g
bts ≤ P

g

b , ∀b ∈ BG, (3i)

Qg

b
≤ qgbts ≤ Q

g

b , ∀b ∈ BG, (3j)

V b ≤ vbts ≤ V b, ∀b∈B. (3k)

Eq. (3c)-(3h) model a computationally tractable SOC relax-
ation of the ac power flows for radial networks as introduced
in [27], where active and reactive power flows are fplts and
fqlts and squared magnitude of nodal voltages at sending
and receiving buses of each line l are vs(l) and vr(l). This
relaxation is exact for radial topologies, such as used in this
paper, under rather unrestrictive assumptions, see [28] for
details. In case of meshed networks, the SOC relaxation only
holds under the restrictive assumption of phase shifters in
strategic locations, [28]. If this assumption does not hold,
other ac power flow models (e.g. LinDistFlow [29]) can be
used instead. The apparent power flow limit, resistance and
reactance of each line are denoted by Sl, Rl and Xl. Eq. (3e)-
(3f) enforce the active and reactive nodal power balance
for the root bus (denoted with index 0) of the distribution
system, i.e. the bus that connect the distribution system to
the transmission system. The active and reactive nodal power
balance constraints for other distribution buses are enforced
in (3g) and (3h), where P d

bts and Qd
bts are the active and

reactive power demand. Active and reactive power injections
of conventional generators are constrained in (3i) and (3j)
using their minimum and maximum limits (P g

b , Qg

b
, P

g

b , Q
g

b ).
The nodal voltage magnitudes are constrained within the upper
(V b) and lower (V b) limits as given by (3k).

Eq. (3g) and (3h) include power injections of mobile ES
units (pchkbts and pdiskbts are charging and discharging variables),
which are operated as follows (∀k∈K, t∈T , s∈S):

ekts = ek,t−1,s+
∑
b∈B

(
pchkbts·ℵch − pdiskbts/ℵdis

)
, (4a)

0 ≤ ekts ≤ Ek, (4b)

ek,t0,s = ek,t24,s = 0.5Ek, (4c)

0≤pchkbts ·ℵch≤P k ·zkb, ∀b∈B, (4d)

0≤pdiskbts/ℵdis≤P k ·zkb, ∀b∈B, (4e)∑
k∈K

zkb ≤ NES
b , ∀b ∈ B, (4f)

−K ·pchkbts≤qchkbts≤K ·pchkbts, ∀b∈B, (4g)

−K ·pdiskbts≤qdiskbts≤K ·pdiskbts, ∀b∈B. (4h)

Eq. (4a) relates the energy state of charge (ekts) and charging
and discharging decisions with imperfect, symmetric efficien-
cies ℵch =ℵdis<1. Adding Eq. (4a) makes the DSO problem
in Eq. (1)-(3) temporally constrained by relating the energy
state of charge for each mobile ES unit at time period t and
t − 1. Eq. (4b) limits the energy stored to Ek, while the
minimum level is set 0. We enforce in Eq. (4c) that the storage
unit is 50% charged at the first time interval of each scenario
and must remain in that state at the end of each scenario. Since
buses may differ in the their ability to accommodate mobile
ES units (e.g. space constraints), we enforce the maximum
limit on the number of mobile ES units that can be placed
at each bus in Eq. (4f). Eq. (4d)-(4e) limit the maximum
charging and discharging power to P k and binary variable
zkb ∈ {0, 1} indicates whether ES unit k is placed at but b
during normal operations. If zkb=1, energy can be withdrawn
from or injected in the ES unit; hence, zkb appears in the
right-hand side of Eq. (4d)-(4e). Eq. (4g) and (4h) relate the
reactive power injections of mobile ES units to their charging
and discharging power via parameter K that can be set by
the DSO based on their techno-economic preferences (e.g.
to maintain a given constant power factor). The product of
continuous and binary variables in (4d)-(4e) can be linearized
using the big-M rule, [30].

B. Emergency Operation

If a natural disaster is anticipated, the DSO prepares a
resilience response plan to mitigate the damage and socio-
economic losses. The response plan implies that now the DSO
can exploit the mobility of mobile ES units and other resilience
technologies (e.g. topology switching, microgrid formation,
etc). As a result, mobile ES units can be transported from
their stationary locations to deal with the disaster and thus,
the emergency operation decision has a dependency on the
stationary siting decision in normal operation. To optimize the
route and dispatch of mobile ES units, the DSO needs to co-
optimize the routing decisions with topology switching and
microgrid formation as given by the model in Eq. (5)-(8).

During emergency operations, the objective function of the
DSO is given by:

min
∑
s∈SE

ωs ·ECs, (5)

ECs=
∑

t∈T ,b∈B
Cg
b ·p

g
bts+

∑
k∈K,b∈B,t∈T

(∣∣∣∣ h100

∣∣∣∣CP
(
pchkbts + pdiskbts

))
+
∑

k∈K,b∈B,t∈T
CVoLL
b (1−σd

bts)p
d
bts.

(6)

Note that, unlike Eq. (2), Eq. (6) includes load shedding
penalized at the value of lost load (CVoLL

b ). The shed load
is decided based on the nodal active power demand (pdbts)
and binary decision σd

bts. In practice, σd
bts = 0 implies that

demand at bus b and time interval t under scenario s is fully
disconnected from the distribution system.
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Building on the normal operation model, the distribution

system in case of emergencies is modeled as (∀t∈T , s∈SE):

Eq. (3c)–(3f), (3i)–(3j), (7a)

(fp
lts)

2
+(fq

lts)
2≤

(
σl
lts ·Sl

)2
, ∀l ∈ L, (7b)

(fp
lts−alts ·Rl)

2
+(fq

lts−alts ·Xl)
2≤

(
σl
lts ·Sl

)2
, ∀l ∈ L, (7c)

fp
bts−

∑
l|r(l)=b

(fp
lts−alts ·Rl)−pgbts+σd

bts ·P d
bts+Gb ·vbts

−
∑
k∈K

pdiskbts +
∑
k∈K

pchkbts =0, ∀b∈B,
(7d)

fq
bts−

∑
l|r(l)=b

(fq
lts−alts ·Xl)−qgbts+σd

bts ·Qd
bts −Bb ·vbts

−
∑
k∈K

qdiskbts +
∑
k∈K

qchkbts =0, ∀b∈B,
(7e)

where binary line switching decision σl
lts is included in the

right-hand side of the apparent power flow constraints in

Eq. (7b)–(7c) and load shedding decision variable σd
bts is

added to the nodal power balance constraints in Eq. (7d)–(7e).

Using the line switching decisions, the microgrid formation

process is accounted for as (∀t∈T , s∈SE):∑
l∈L

σl
lts ≥ NL −max(NO, NES+NDG), (8a)

σl
lts = 0, ∀l∈LO. (8b)

Eq. (8a) ensures that the number of microgrids formed in

the distribution system is consistent with the number of DGs

(NDG) or mobile ES units (NES) available to the DSO. Thus,

if the number of outages (NO) caused by the disaster is

larger than the number of power sources, some parts of the

distribution system will remain without any power supply.

Eq. (8b) models outages of the distribution lines as given for

each specific disaster scenario. Relative to [12], [13], [31],

we improve the microgrid formation process by eliminating

the need in binary variables that assign a bus to a microgrid,

see [32] for details. Additionally, decisions σl
lts can be used

to change a network topology in order to improve resilience;

however this aspect is beyond the scope of this study.

Since emergency operations assume mobile ES units can be

transported, Eq. (4) is replaced with (s∈SE):

Eq. (4a)–(4b), (4g)–(4h), (9a)

ek,t0,s = 0.5·Ek, ∀k ∈ K, (9b)

0≤pchkbts ·ℵch≤P k ·ukbts, ∀k ∈ K, b∈B, t ∈ T , (9c)

0≤pdiskbts/ℵdis≤P k ·ukbts, ∀k ∈ K, b∈B, t ∈ T , (9d)∑
k∈K

ukbts ≤ NES
b , ∀b ∈ B, t ∈ T , (9e)

ukb1ts − ukb1,t+1,s ≤ 1− ukb2,t+τ,s, ∀k∈K,

b1 	=b2∈B, t∈T , τ ∈
[
1,· · ·,min(T d

b1,b2,t, N
t−t)

]
.

(9f)

Eq. (9b) limits the energy state of charge in the first time

interval only, i.e. there is no limit for the last time interval and

the ES unit can fully be discharged, if necessary. The routing

decisions on each mobile ES units are using binary variable

ukbts that is set to 1 if mobile ES unit k is at bus b during time

interval t under scenario s. Otherwise, ukbts = 0. In (9c)-(9d),

binary variable ukbts decides if mobile ES units can be charged

or discharged. In other words, the role of ukbts in (9d)-(9c) is

similar to zkb in (4d)-(4e), but ensures that the mobile ES units

can move between different buses. The limit on the maximum

number of ES units that can be simultaneously connected to

each bus is enforced in Eq. (9e). Eq. (9f) models the transition

delay on moving mobile ES unit from bus b1 ∈ B to bus

b2 ∈ B, where T d
b1,b2,t

is a given transition time between

buses b1 and b2. Similarly to Eq. (4a), Eq. (9f) makes the

resulting optimization problem temporally constrained as it

relates decisions ukbts and ukb,t+1,s. In practice, the value

of T d
b1,b2,t

can be determined based on the availability and

length of transportation routes. Note that (9f) is structurally

equivalent to minimum up and down time constraints on

the on/off status of conventional generators modeled in UC

problems [19].

III. PLANNING WITH MOBILE ES UNITS

Using the operating models for normal and emergency

operation in Section II, this section builds a planning model

that optimizes investment decisions on mobile ES units. The

planning model is schematically shown in Fig. 3 with inter-

faces between the planning and operating decisions, as well as

the decisions made during normal and emergency operations.

The objective of this optimization is to allocate the mobile ES

units in such a way that these units are operated as stationary

resources during the normal operations and can be transported

to other locations, or among multiple other locations, in case

of natural disasters.

The planning problem is given as follows:

min

[
γ ·IC(xk)+

∑
s∈SN

ωs ·OCs(zkb|xk) +
∑
s∈SE

ωs ·ECs(ukbts|xk)

]
, (10a)

IC(xk) =
∑
k∈K

(
CP ·P k+CE ·Ek

)
·xk (10b)

∑
b∈B

zkb ≤ xk, ∀k ∈ K, (10c)

xk

σd
bts

ukbts

zkb

zkb

OCs(zkb|xk)

σl
lts

∀s ∈ SE∀s ∈ SN

ECs(ukbts|xk)

Fig. 3: Structure of the proposed planning problem with mobile ES
units and interfaces between the planning and operating decisions.
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∑
b∈B

ukbts ≤ xk, ∀k ∈ K, t ∈ T , s ∈ SE, (10d)

ukb,t0,s=zkb, ∀k ∈ K, b ∈ B, s ∈ SE, (10e)

Eq. (2)–(4), ∀s ∈ SN, (10f)

Eq. (6)–(8), ∀s ∈ SE. (10g)

Eq. (10a) minimizes the sum of the three terms. The first term

is the investment cost of mobile ES units, where parameter γ
is a capital recovery factor that prorates the investment cost

on a daily basis using the net present value approach, [14].

The second and third terms represent the expected operating

cost during normal and emergency operations as computed

in Eq. (2) and Eq. (6), respectively. Eq. (10b) computes the

investment cost of installing mobile ES unit k based on its

power and energy ratings P k and Ek priced at CP and CE,

respectively, as previously used in [14], [15]. The installation

decision is modeled by binary variable xk ∈
{
0, 1

}
. If xk = 1,

mobile ES unit k is installed, otherwise xk = 0. Eq. (10c)

and (10d) relate zkb and ukbts to the respective investment

decision (xk). If xk = 0, it follows from (10c) and (10d)

that no storage can be used during normal and emergency

operations. On the other hand, if xk = 1, zkb is optimized

for all scenarios s ∈ SN and ukbts is optimized for each

scenario s ∈ SE. Eq. (10e) ensures that each mobile ES unit

is routed to its temporary locations during emergencies from

its stationary locations during normal operations. Eq. (10f)

and (10g) impose constraints for the normal and emergenecy

operations as explained in Section II.

As shown in Fig. 3, OCs(zkb|xk) and ECs(ukbts|xk)
depend on binary variables xk, zkb and ukbts. Binary deci-

sions xk constrain the placement of mobile ES units (zkb)

during normal operations and their routing decisions during

emergency operations (ukbts). Furthermore, the binary rout-

ing decisions (ukbts) also depend on the binary placement

decisions (zkb) as in Eq. (10e). This dependency makes the

planning problem in Eq. (10) a two-stage MISOCP with binary

recourse decisions.

IV. SOLUTION TECHNIQUE

The proposed two-stage stochastic MISOCP in Eq. (10)

is computationally demanding due to the co-optimization

of investment decisions for normal and contingency opera-

tions, binary recourse decisions, and multi-period optimization

within each scenario considered. Off-the-shelf solvers can be

used to solve the model, but their performance is limited for

large networks or instances with a large number of scenarios.

To solve this problem efficiently, we apply the PH algorithm

[18] to the proposed planning problem. As shown in Fig. 4,

the PH algorithm decomposes the original problem in (10)

into NS= card(S) subproblems. The decomposition exploits

the notion that the investment decisions (xk) and the mobile

ES placement (zkb) are common for all scenarios and that the

routing decisions (ukbts) can be optimized for each scenario

individually. Accordingly, the decomposition yields NS sub-

problems, where the integrality condition on xk and zkb is

relaxed. Since each subproblem has significantly fewer binary

decision variables than the original planning problem, it is

s1

s2

sn−1

sn

s1

s2

sn−1

sn

xk, zkb

ukbts, σ
d
bts, σ

l
lts

p
ch/dis
bts , q

ch/dis
bts , pgbts, q

g
bts

ukbts, σ
d
bts, σ

l
lts

p
ch/dis
bts , q

ch/dis
bts , pgbts, q

g
bts

xks, zkbs

Fig. 4: Comparison of the original problem and PH decomposition.

TABLE II. COMPLEXITY OF THE ORIGINAL AND DECOMPOSED

PROBLEMS

Original problem Decomposed subproblem

Binary ukbts, σ
d
bts, σ

l
lts ukbt, σ

d
bt, σ

l
lt

variables zkb, xk zkb, xk

# of binary NSNT
[
NES(NB+1)+NL

]
NT

[
NES(NB+1)+NL

]

variables +NES(NB+1) +NES(NB+1)

Continuous p
ch/dis
kbts , q

ch/dis
kbts p

ch/dis
kbt , q

ch/dis
kbt

variables pgbts, q
g
bts pgbt, q

g
bt

# of continuous 4NSNTNESNB 4NTNESNB

variables +2NSNTNB +2NTNB

computationally more tractable. Furthermore, all subproblems

can be solved in parallel, which further accelerates computing

performance. We compare the number of variables for the

original and each subproblem in Table II and note that the

advantage of the decomposition increases as NS increases.

When all subproblems are solved, decisions xk and zkb can be

recovered based on their relaxed values for each subproblem.

The algorithm continues until convergence. The recovered

values are xk and zkb respect constraints imposed by each

scenario and their multi-temporal dynamics.

The PH algorithm is implemented as explained in Algo-

rithm 1 and further detailed below:

• Step 1: The PH algorithm is initialized by setting the

iteration counter i=0 and multipliers m
(i=0)
s =w

(i=0)
s =0.

• Step 2: Each of NS subproblems is solved in parallel

to obtain binary decisions z
(i=0)
kb and x

(i=0)
k . When all

subproblems are solved, we compute z and x as the

weighted average of all subproblem solutions.

• Step 3: The iteration counter is updated, i.e. i := i+1. For

each subproblem we update the value of PH multipliers

m
(i)
s and w

(i)
s using the values of z

(i−1)
kb and x

(i−1)
k . Then

each relaxed subproblem is solved to obtain z
(i)
kbs and x

(i)
ks ,

where the deviations of z
(i)
kb from z and x

(i)
k from x are

penalized using exogenous penalty coefficients ρz and ρx.

After all subproblems are solved, we use z
(i)
kbs and x

(i)
ks

to update the values of z and x. The iterative process

continues until the mismatch g(i) is less than a given

tolerance ε.
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Algorithm 1: PH Algorithm for Installing Mobile ES units

Step 1. i := 0,m
(i=0)
s := 0, w

(i=0)
s := 0

Step 2. for s ← 1 to NS do
z
(i=0)
kbs , x

(i=0)
ks ← argmin

z,x
γ ·IC +OCs + ECs

end
z ← ∑

s∈S
ωs · z(i=0)

kbs , x ← ∑
s∈S

ωs · x(i=0)
ks

Step 3. do
i ← i+ 1
for s ← 1 to NS do

m
(i)
s ←m

(i−1)
s + ρz ·

(
z
(i−1)
kb −z

)
w

(i)
s ←w

(i−1)
s + ρx ·

(
x
(i−1)
k −x

)
z
(i)
kbs, x

(i)
ks ←argmin

z,x
γ ·IC +OCs + ECs +m

(i)
s ·

zkb +
ρz

2 ‖zkb−z‖2+w
(i)
s ·xk + ρx

2 ‖xk−x‖2
end
z ← ∑

s∈S
ωs · z(i)kbs, x ← ∑

s∈S
ωs · x(i)

ks

g(i) ← ∑
s∈S

ωs ·
∥∥∥z(i)kbs − z

∥∥∥+
∑
s∈S

ωs ·
∥∥∥x(i)

ks − x
∥∥∥

while convergence : g(i) < ε

return z
(i)
kbs

The convergence of Algorithm 1 is accelerated by setting

penalty coefficients ρx and ρz based on the cost coefficients

of relaxed variables xk and zkb:

ρx =
γ ·IC

x
(i=0)
max − x

(i=0)
min + 1

, (11a)

ρz =
γ ·IC

z
(i=0)
max − z

(i=0)
min + 1

. (11b)

Eq. (11) is a generalization of the cost proportional method

in [18], which exploits the fact that the PH algorithm is best-

performing when the penalty value is a multiple of unit cost in

the objective function. The PH implementation in Algorithm 1

also extends the use of penalty factors to two binary variables

xk and zkb that are relaxed by the algorithm.

V. CASE STUDIES

We use the 15-bus radial distribution test system described

in [33] with one DG located at bus 11. The system dia-

gram is given in Fig. 6-(a). The mobile ES units considered

for installation have Ek=1MWh, P k=0.15MW, ℵch=ℵdis=0.9,

CP=$1,000/kW and CE=$50/kWh [14] and the expected

lifetime is 10 years. These nameplate parameters for mobile

ES units are generally consistent with technical specifications

of the demonstration units used by Consolidated Edison of

New York, [5], and can be scaled to accommodate other

ES technologies. The transition time enforced in Eq. (9f)

is defined as T d
b1,b2,t

= min(|b1 − b2|, db1,b2) and db1,b2 is

generated by using the shortest path algorithm where db1,b2
is the number of lines between buses b1 and b2. For instance,

the transition time between bus 0 and 14 in Fig. 6 is set as

T d
0,14,t =min(|0 − 14|, d0,14) =min(14, 3) = 3. The value of

lost load is CVoLL
b = $5,000/MWh. All simulations have been

carried out using Gurobi solver v7.5 on Julia 0.6.2 / JuMP

0.17 [34] on an Intel Xeon 2.6GHz processor with 20 Cores

and 40GB memory. The MIP gap is set 0.1%. Our code and

input data can be downloaded in [35].

A. Case Study 1: Investments in Mobile ES Units

The problem in Eq. (10) is solved with one normal and

one emergency scenarios, i.e. NS = 2. Probabilities for the

scenarios are artificially generated as
∑

s∈SN ωs = 0.9 and∑
s∈SE ωs = 0.1. In each case, the emergency scenario is

modeled by an outage of line 4, 5, 6, or 13 at time interval

t = 6 hour. Each outage leads to a different potential load

shedding amount, thus representing a different level of severity

for the DSO. The resulting investment decisions are given in

Table III. First, no mobile ES units are installed in the case

without outages, i.e. operating ES units as a stationary resource

for normal operations does not create sufficient value to the

distribution system to economically justify their installation.

On the other hand, as the potential load shedding increases

from 21.9 kW to 152 kW for each of the four outages, the

need in mobile ES units increases and thus larger capacity

is installed. After installing and using mobiles ES units, no

load shedding occurs in all four outages. Thus, exploiting

mobility of ES units during emergencies yields a sufficient

added value for their installation and use during both normal

and emergency operations. The shift in installation decisions

among four outages is primarily driven by the prevented load

shedding, i.e. more severe outages require more ES capacity.

Fig. 5 displays the effect of the ES lifetime and the sym-

metric charging and discharging efficiency (ℵch = ℵdis = ℵ)

on the value of the objective function for the outage on line

4 as given in Table III. The value of the objective function
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Fig. 5: Effect of the ES lifetime and the symmetric charging and
discharging efficiency (ℵdis = ℵdis = ℵ) on the objective function
value. The reference point is obtained for the base case parameters.

TABLE III. INVESTMENT DECISIONS ON MOBILE ES UNITS

Line Outage no outage line 6 line 5 line 4 line 13
Potential

0kW
21.9kW 51kW 101kW 152kW

Load Shedding (bus 6) (bus 5-6) (bus 4-6) (bus 13-14)

NES installed 0 1 1 2 2
ES capacity 0MWh 1MWh 1MWh 2MWh 2MWh

Initial ES bus - 2 5 1 and 12 0 and 12
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TABLE IV. OPTIMAL ROUTING DECISIONS AND STATE-OF-CHARGE FOR THE MOBILE ES UNIT DURING EMERGENCY SCENARIOS.

Time interval #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s6 0 0 0 0 T 1 1 1 1 1 T 0 0 0 0 0 T 1 1 1 1 1 1 1
s7 0 0 0 0 T 1 1 1 1 1 T 0 0 0 0 0 T 1 1 1 1 1 1 1

Bus # s8 0 0 0 0 T 12 12 12 12 12 T 0 0 0 0 0 T 12 12 12 12 12 12 12
s9 0 T 12 12 T 13 13 13 13 13 13 T 12 12 12 12 12 T 13 13 13 13 13 13
s10 0 T 1 1 T T 3 3 3 3 3 T 2 2 2 2 2 T 3 3 3 3 3 3
s6 0.5 0.65 0.8 0.95 T 0.81 0.66 0.53 0.4 0.26 T 0.38 0.53 0.68 0.83 0.98 T 0.84 0.7 0.56 0.42 0.28 0.14 0
s7 0.52 0.67 0.82 0.97 T 0.82 0.67 0.53 0.38 0.24 T 0.39 0.54 0.69 0.84 0.99 T 0.85 0.71 0.57 0.43 0.29 0.14 0

ekts, MWh s8 0.5 0.65 0.8 0.95 T 0.81 0.67 0.54 0.4 0.27 T 0.38 0.53 0.68 0.83 0.98 T 0.84 0.7 0.56 0.42 0.28 0.15 0
s9 0.61 T 0.76 0.91 T 0.77 0.62 0.49 0.36 0.23 0.09 T 0.24 0.39 0.54 0.69 0.84 T 0.7 0.56 0.42 0.28 0.15 0
s10 0.58 T 0.73 0.88 T T 0.73 0.59 0.44 0.29 0.14 T 0.29 0.44 0.59 0.74 0.89 T 0.74 0.59 0.44 0.29 0.14 0

Labels ‘T’ defines that the mobile ES unit is in transit.
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Fig. 6: Placement of the (a) stationary ES unit and (b-f) mobile ES units with optimal routing directions during emergency scenarios
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DG. Note that the mobile ES unit is placed at bus 0 during normal operations in plots (b-f). The block ‘Main grid’ refers to the rest of the
power system connected to the distribution system considered in this case study.

in Eq. (10a) reduces monotonically as the efficiency of ES

units increases regardless of the lifetime period considered.

Similarly, the longer lifetime period the lower value is attained

in the objective function. This is due to the fact that more

efficient and longer serving ES units reduce the investment

cost, while providing greater benefit to the system.

Accordingly, the curves in Fig. 5 have multiple areas, where

each area is differentiated by the number of mobile ES units

installed and the amount of load shedding. In Area I of

Fig. 5, three mobile ES units are needed to fully prevent

load shedding. However, as the efficiency of mobile ES units

increases, less units are installed. The breaking point between

Area II and Area III occurs at ℵch = ℵdis = 0.65. The

difference in these two areas is in the amount of load shedding.

If ℵch = ℵdis ≤ 0.65, the physical capacity of two mobile ES

units is not sufficient to fully prevent load shedding and the

residual load shedding is not sufficient to economically justify

installing the third unit. However, as the efficiency improves

and ℵch = ℵdis > 0.65, two mobiles ES units become sufficient

to fully prevent load shedding. Notably, the effect of the ES

lifetime is most evident for ES units with a lower efficiency,

where it can increase the number of ES units needed (e.g.

three instead of two units as with ℵch = ℵdis ≈ 0.55.)

B. Case Study 2: Effectiveness of the ES Mobility

This case study considers five normal and five emergency

scenarios (each emergency starts at time interval t=6 hour),

i.e. NS = 10, and compares three cases. The probability set

for the scenarios is generated in the same way as Case Study 1.

The first case assumes that there is no ES installed, i.e. xk=0.

The second case assumes that the ES is a stationary resource

and cannot move at any time, i.e. zkb = ukbts, ∀t ∈ T . This

case is consistent with the traditional ES investment problems

in [14], [15]. The third case stands for the proposed problem

in (10) and demonstrates the full range of benefits attained

with mobile ES units and microgrid formation.

The cases with stationary and mobile ES units are compared

in Fig. 6, which illustrates the ES placement at bus number 0
during normal operations (s1 − s5) and illustrates the routing

directions of the single ES unit installed for each emergency

scenario (s6 − s10). Additionally, Table IV itemizes the

mobile ES location and its energy state of charge under

each emergency scenario; these results are also visualized in

Fig. 7 and Fig. 8. Between these two cases, the ES placement

decisions during normal operations differ. The stationary ES

unit is installed at bus 4 during normal operations and cannot
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Fig. 7: Optimal routing decisions of the mobile ES unit for each
emergency scenario (s6−s10).

change its location for emergencies, as shown in Fig. 6-(a).
As a result, of this placement decisions, the stationary ES unit
can only provide back up support and form a microgrid for
upstream outages. For example, in case of outages of lines 5, 8,
or 12, the stationary ES unit at bus 4 will not be able to provide
back up power supply. On the other hand, the mobile ES unit
is installed at bus 0 during normal operations, see Fig. 6-
(b)-(f). From this location, the mobile ES unit can be routed
to a different location as necessitated by the needs of each
individual emergency scenario and form a microgrid using
line and load switches. In these results, the optimization routes
mobile ES units among closely located buses since it requires
less transition time, as modeled by Eq. (9f), and increases
the ES usage for reducing load shedding. Furthermore, the
routing decision on mobile ES unit are co-optimized with the
DG at bus 11 to improve distribution system performance.
Thus, two microgrids are formed under emergency scenarios
in Fig. 6-(b),(c),(f), where one is sourced by the mobile ES
unit transported from bus 0, where it is located during normal
operations, and the other one is sourced by the DG located at
bus 11. On the other hand, the emergency scenarios in Fig. 6-
(d),(e) lead to load shedding at buses 4-6 since the installation
of the second ES unit is not economically justified and there
is no DG available.

Since the capacity of the mobile ES unit is limited, it
occasionally needs to replenish the stored energy and therefore
commutes between the microgrid location and the unaffected
part of the distribution system. For example, as shown in
Table IV for emergency scenario (s6), the mobile ES unit
travels between bus 0 and bus 1 four times during the course of
the optimization horizon. All emergency scenarios have unique
routing decisions, which differ based on the severity of each
emergency scenario. This difference emphasizes the usefulness
of mobile ES units in accommodating unique features of
specific emergency scenarios.

Table V compares the three cases considered in terms of the
total load shedding and objective value. First, using mobile ES
units reduces the total lost load (computed as

∑
b∈B

∑
t∈T (1−

σd
bts)p

d
bts) across all considered emergency scenarios relative

to the other two cases. Thus, the average load shedding is
reduced by 10.52% compared to the case with stationary ES
units due to the mobility of ES units. Second, the case with
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Fig. 8: State-of-charge of the mobile ES unit (variable ekbts) for
each emergency scenario (s6−s10).

mobile ES units returns the least-cost objective function value
among all three cases.

TABLE V. EFFECTS OF THE ES MOBILITY ON LOAD SHEDDING

Lost Load, MWh Average Objective
s6 s7 s8 s9 s10

Lost Load, Value, $MWh
Without ES 4.40 5.19 6.73 4.45 3.31 4.82 2877.20

Stationary ES 3.29 4.07 5.64 3.35 2.18 3.71 2393.99
Mobile ES 2.91 3.65 5.23 2.95 1.84 3.32 2200.05

C. Computational Performance

Table VI compares the proposed PH implementation and
the brute-force (BF) implementation (i.e. solving the proposed
optimization directly using the Gurobi solver) in terms of their
computational performance and optimality with a different
number of scenarios. The BF approach is only able to solve
the case with two scenarios, and it is 6x times faster while the
objective functions and the investment decision on mobile ES
units are nearly identical to that of the PH implementation.
The BF becomes incapable of completing the task within
the time limit (12 hours) for more than two scenarios. The
PH implementation, on the other hand, returns the optimal
solution within 8 hours for all cases. To assess computational
scalability of the proposed model and PH implementation
to larger networks, we carry out experiments on the IEEE
37- and 123-bus systems, [36]. Table VII demonstrates CPU
times for these simulations. As expected, the CPU times
monotonically increase for larger networks. On the other
hand, the effect of increasing the number of scenarios is not
monotonic, similarly to the results in Table VI. This effect

TABLE VI. PERFORMANCE OF THE BF AND PH IMPLEMENTATIONS

# of Objective value, $ CPU time, s
scenarios BF PH BF PH

2 1,930.3 1,966.2 1,193 7,686
4 N/A 2,165.2 N/A 8,912
6 N/A 2,513.6 N/A 10,695
8 N/A 2,376.3 N/A 8,067

10 N/A 2,200.1 N/A 10,912
20 N/A 2,265.3 N/A 10,066
40 N/A 1,891.8 N/A 18,218
60 N/A 1,874.0 N/A 12,456
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TABLE VII. COMPUTATION TIME [S] OF PH IMPLEMENTATIONS - 37 AND
123 BUS SYSTEMS

# of scenarios 20 40 60
IEEE 37-bus system 11,964 16,511 13,411
IEEE 123-bus system 17,345 14,008 16,301

is due to paralleling subproblems computation, which enables
the PH implementation to have roughly the same amount of
CPU time regardless of the number of scenarios. This implies
that using parallel computations allows for accommodating an
even larger number of scenarios without further computational
complexity.

VI. CONCLUSION

This paper describes an approach to optimize investments
of the DSO in mobile ES units. The ability of mobile ES
units to move between different locations is used to trade-
off the least-cost operations during normal operations and
the need to enhance power grid resilience in case of natural
disasters. The proposed optimization is a two-stage stochastic
MISOCP with binary recourse decisions, which account for the
relocation of mobile ES units under specific disaster scenarios.
The proposed optimization is solved using the PH algorithm.
The numerical experiments reveal that the mobile ES reduce
the operating costs and the total amount of load shedding
caused by natural disasters relative to the cases without ES
units or with stationary ES units.
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