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Abstract—Electrochemical energy storage (ES) units (e.g. bat-
teries) have been field-validated as an efficient back-up resource
that enhances resilience of distribution systems. However, using
these units for resilience is insufficient to justify their installation
economically and, therefore, these units are often installed in
locations where they yield the greatest economic value during
normal operations. Motivated by the recent progress in mobile
ES technologies, i.e. ES units can be moved using public trans-
portation routes, this paper proposes to use this spatial flexibility
to bridge the gap between the economically optimal locations
during normal operations and the locations where extra back-
up capacity is necessary during disasters. We propose a two-
stage optimization model that optimizes investments in mobile
ES units in the first stage and can re-route the installed mobile
ES units in the second stage to form dynamic microgrids (MGs)
and to avoid the expected load shedding caused by disasters.
Since the proposed model cannot be solved efficiently with off-
the-shelf solvers, even for relatively small instances, we apply
the progressive hedging algorithm. The proposed model and
algorithm are tested on a 15-bus radial distribution test system.

Index Terms—Mobile energy storage, grid resilience, micro-
grid, distribution system, progressive hedging

NOMENCLATURE
A. Sets and Indices

be B Set of buses

k € K Set of energy storage units
l € L Set of distribution lines

s €S Set of scenarios

t €T Set of time intervals

B. Parameters

Neb/dis - Charging/Discharging efficiency

Qts Contingency parameter of line [

0 Daily capital recovery factor

Ws Probability of scenario s

h Degradation slope of energy storage units
Receiving-end bus of line [

[)  Sending-end bus of line !

Energy rating of energy storage units [MWh]

Py, Power rating of energy storage units [MW]

B, Susceptance of bus b [Q271]

Energy rating price of energy storage units[$/MWh]
Cf Incremental cost of distributed generator [$]

Power rating price of energy storage units [$/MW]
CY°ML Value of lost load [$/MWHh]

Gy Conductance of bus b [2]

K Power factor calculation coefficient

The authors are with the Department of Electrical and Computer Engineer-
ing, Tandon School of Engineering, New York University, NY 11201 USA.
This work was supported in part by the US NSF Grant No. ECCS-1760540.

NB The number of buses

NPG  The number of distributed generators

NES  The number of mobile energy storage units

NL The number of distribution lines

NO The number of lines in outage

NS The number of scenarios

NT The number of time intervals

Pl,  Real power demand [MW]

Q.  Reactive power demand [MVar]

Ry Resistance of distribution line [ [{2]

S; Apparent flow limit of distribution line [ [MVA]

X; Reactance of distribution line [ [©]

C. Binary Variables

ol Load switch state variable: 1 if load at bus b is
connected to bus, 0 otherwise

J}ts Line switch state variable: 1 if line [ is closed, O
otherwise

Upts  Transit route variable of ES unit in mobile mode: 1 if

ES unit k is located at bus b, 0 otherwise
Ty Investment decision variable of energy storage unit: 1
if energy storage unit £ is installed, O otherwise
Stationary location variable of ES unit: 1 if ES unit k&
is located at bus b, 0 otherwise
D. Variables

Zkb

Qlts Squared current flow of distribution line [ [p.u.]
Clts Energy state-of-charge [MWh]
P4 Real/Reactive power flow of line | [MW /MVar]
Zg{sdls Charging/Discharging real power decision [MW]
D Real power output of distributed generator [MW]
qz};t/;hs Charging/Discharging reactive power decision [MVar]
Qs Reactive power output of distributed generator
[MVar]
Upts Squared nodal voltage magnitude of bus b [p.u.]
e Investment cost [$]
ECs; Emergency cost of scenario s [$]
OC;  Operation cost of scenario s [$]

I. INTRODUCTION

HE US power grid is vulnerable to natural disasters (e.g.

flooding, extreme winds, earthquakes) as they increase
the likelihood of critical equipment failures [1]. Distribution
systems are particularly affected by natural disasters due to the
compounding effect of line outages, radial topology, and lim-
ited back-up resources. Furthermore, a large-scale disaster can
affect a power grid in multiple locations causing the domino
effect, which may in turn spread power outages across large
geographical areas, even if some areas would not otherwise

1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT 10.1109/TSG.2018.2872521, IEEE

Transactions on Smart Grid

Resilience Preventive Emergency Resilience

Planning Response Response Restoration
<~——Planning %” Operations s
[ Adaptation th——Recovery —

Fig. 1: The resilience enhancement steps [4] and the scope of this
paper (shaded).

be affected by the disaster [2]. Therefore, it is important to
contain the failures within distribution systems and prevent
their further propagation to the transmission system.

To continue operating and delivering power even in case of
such low probability, high-consequence events as hurricanes
and earthquakes [3], power grid resilience can be enhanced
by means of planning, response, and restoration. The response
step may be divided into preventive and emergency responses
based on whether it is prior to or after the event strikes.
Fig. 1 illustrates this classification and functional objectives
of each step. In the planning stage, a distribution system oper-
ator (DSO) builds a long-term investment plan of generation
resources and facility hardening. Utilizing such grid assets,
the DSO is better suited to accommodate abnormal conditions
caused by natural disasters (i.e. adaptation) or to restore the
normal system condition (i.e. recovery). The objective of
this paper is to illustrate that mobile energy storage (ES)
units are also economically and physically suitable for the
adaptation stage and thus enhance distribution resilience. For
this purpose, we propose an investment model that includes a
joint allocation and operation strategy for the mobile ES units
with microgrid (MG) formation.

A mobile ES unit, often referred to as “storage-on—wheels,”
is an emerging technology that takes the form of a trailer-
mounted electrochemical battery. Consolidated Edison of New
York is currently considering installing such mobile ES units
to reduce the impact of PV generation on their distribution
system in New York City and defer costly distribution up-
grades [5]. As reported in [5], each mobile ES unit will
feature a Lithium-ion battery that can store up to 800 kWh
of energy with the maximum charging/discharging duration of
10 hours. Compared to other resilience response resources, the
mobile ES units have multiple advantages. First, they are more
environmentally friendly than portable emergency generators
and can be used without unnecessary noise and air pollution.
Furthermore, strict pollution standards in certain jurisdictions,
especially in metropolitan areas, prohibit the use of portable
emergency generators during normal operations, which reduce
their value to the distribution system. Second, unlike preven-
tive load shedding or adaptive microgrids, the mobile ES units
can be directly operated by the power grid operator and do not
require advanced communication infrastructure or engagement
with electricity consumers. Since the capital cost of ES units
is relatively high, it is important to ensure their economic
viability. Exploiting ES mobility for resilience applications can
enhance its value to the grid and create new revenue streams
to accelerate its cost recovery.

Provided there is a timely disaster forecast, the SO can
prevent critical failures, or at least mitigate their impacts, by

TABLE I. SURVEY OF PREVIOUS STUDIES

Formulation Power DG ES MG Resilience  Mobility of
Flow Stage Resources
[4] MILP DC-OPF v’ - - Response -
[8] MILP DC-OPF v’ - - Response -
[9] MILP DC-OPF v’ v v Planning -
[10] - FB Sweep v - V Planning -
[11] MINLP AC-OPF v v Vv Response -
[12] MIQP LinDistFlow v - v Response v
[13] MILP LinDistFlow v - v Planning v

* DG: Distributed Generator, ES: Energy Storage, MG: Microgrid

strategically placing flexible back-up resources (i.e. mobile
storage) [6]. Since the disaster forecasts are normally available
on a short notice (for instance, NOAA forecasts are available
48-168 hours ahead [7]), only a few alternative technologies
are physically suitable to be deployed, relocated or acti-
vated within this timeframe: portable emergency generators,
topology switching, preventive load shedding, or adaptive
microgrid. Table. I presents the previous literature on such
technologies and their comparison. Huang et al. [4] propose an
integrated method to utilize topology switching and preventive
load shedding for resilience response. Wang et al. [8] devise
a proactive operation strategy with topology switching and
generation re-dispatch through the Markov process. Zhang et
al. [9] formulate a planning problem that optimizes sizing and
siting of the photovoltaic generation and storage. Nassar et
al. [10] describe an adaptive self-adequate microgrid planning
with flexible boundaries. Wang et al. [11] develop a self-
healing strategy by partitioning a given distribution system
into self-adequate microgrids. The common thread of [4], [8]-
[10] is that they consider stationary resilience resources. Lei et
al. [12] consider mobile emergency generators and microgrid
formation in a mixed-integer quadratic program (MIQP). Ac-
cordingly, the model in [12] formulates two separate optimiza-
tion problems that sequentially pre-position and route mobile
emergency generators in real-time. Due to this separation, the
pre-positioning decisions are informed of the routing decisions
and thus might be sub-optimal. Sedzro et al. [13] describe
a similar planning framework considering controllability of
demand response and mobility of distributed generators (DGs),
leading to a mixed-integer linear program (MILP). However,
the models in [12], [13] disregard multi-temporal constraints,
while optimizing their planning decisions, and therefore are
not suitable for modeling ES units.

A typical state-of-the-art planning tool for stationary ES
units, [14], [15], is routinely formulated as a two-stage stochas-
tic MILP and considers ES units as stationary resources. In
these tools, the first stage optimizes the ES locations and
sizes, while the second stage fixes the first-stage decisions
and co-optimizes the operation of existing resources and
newly installed ES units. If the ES units were mobile, the
complexity of the planning tool would increase. First, the
ES mobility implies that the ES location is not fixed in the
second stage and needs to be optimized (so-called recourse
decisions). Second, the recourse decision on each mobile ES
unit is binary, where it attains the value of 1 if that unit
needs to be moved, or O if it stays. The two-stage stochastic
mixed-integer problems with binary recourse decisions are
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more computationally demanding, and often existing solution
strategies, e.g. Benders’ decomposition, perform poorly when
applied to such problems [16].

This computational complexity can be overcome by using
the progressive hedging (PH) algorithm [17], [18]. Recently,
the PH algorithm has gained attention in the context of a
two-stage stochastic unit commitment problem [19]. Unlike
Benders’ decomposition, the PH algorithm does not exploit
the two-stage structure of the underlying optimization and does
not separate the first- and second-stage decisions. Instead, the
PH algorithm partitions the original problem in a scenario-
based fashion and the first- and second-stage decisions are
optimized for each scenario independently. In each scenario-
based problem, the relaxation of the first-stage decision is
penalized with an exogenous penalty coefficient. The algo-
rithm iterates until the first-stage decisions across all sce-
narios converge with a given tolerance. The scenario-based
decomposition used in the PH algorithm is shown to be
an effective solution strategy for two-stage stochastic mixed-
integer problems with binary recourse decisions and, therefore,
it is applicable for planning tools with mobile ES units.

This paper builds on our preliminary work in [20] and
makes the following contributions:

1) It takes the perspective of the DSO and formulates the
optimization problem to decide on the investments in
mobile ES units. The proposed optimization is a two-
stage stochastic mixed-integer second order conic pro-
gram (MISOCP) with binary recourse decisions, which
accounts for the relocation of mobile ES units under
each specific scenario. This optimization achieves the
trade-off between the economic value of mobile ES units
during normal operations as previously investigated in
[14], [15], [21]-[25] for different applications, and their
ability to enhance distribution system resilience in case
of natural disasters.

2) Operation strategy of mobile ES units is devised for
both normal and emergency conditions and co-optimized
throughout all time-intervals before and after the event.
During the emergencies, ES units can travel among
buses and form dynamic microgrids by using their
spatial flexibility and optimizing the boundaries and
centroids of microgrids. Transit delay of mobile ES units
and switching decisions of distribution lines and loads
are also formulated in the optimization model.

3) The proposed optimization is solved using the PH al-
gorithm. The numerical results demonstrate that this
method outperforms off-the-shelf solvers in terms of the
computational performance. The numerical experiments
also suggest that the PH performance can be improved
by tuning externalities (e.g. penalty coefficients).

The remainder of this paper is organized as follows. Sec-
tion II describes the optimal operating strategies of mobile ES
units during normal and emergency operations. Given these
strategies, Section III presents a two-stage planning model that
optimizes investments in mobile ES units. The planning model
is solved using the PH algorithm as described in Section IV.
Section V presents the case study that quantifies the usefulness
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Fig. 2: A schematic representation of scenario set S = SN U S¥,
which includes scenarios for normal operations in set S and
scenarios for emergency operations in S™. For example, if 5 scenarios
are used in each set S and S®, individual scenarios are indexed as
S1, 82, 83, 84, S5 and sg, S7, S8, S9, S10, respectively.

of mobile ES units. Section VI concludes the paper.

II. OPERATION OF MOBILE ES UNITS

This section describes the optimal operating strategies for
mobile ES units during normal and emergency operation
scenarios defined by sets SN and S¥, both are indexed by
s, that together constitute set S = SN U SE considered in the
proposed optimization. Fig. 2 displays a relationship between
scenario sets SN and S® and the numbering convention for
individual scenarios. Each scenario is assigned probability wg
such that Zse[ R R 1 and has the number of time

intervals denoted by set 7, indexed by ¢. The distribution
system has a radial topology, which is typical for US power
grids, where sets B and £, indexed by b and [, represent the
distribution buses (nodes) and lines (edges).

A. Normal Operation

We consider the case when the DSO uses mobile ES units
for performing spatio-temporal energy arbitrage during normal
operations. Although the mobility of ES can be leveraged
in this case, these resources are stationary during normal
operations as practiced by existing utilities, see [5].

The objective function of the DSO can be formulated as:

min Y w,-OCk, (1)
seSN
h -
OC,=Y CE-pf+ Y (‘100 C” (e +Pﬁ2§s)>,(2)

teT,beB ke, beBteT

where Eq. (1) minimizes the expected operating cost over
a set of normal scenarios. Eq. (2) computes the operating
cost for each scenario, which includes the generation cost of
distributed generation (DG) units and ES degradation cost. The
degradation cost is computed as explained in [26] and depends
on charging (pi}gts) and discharging (pg}zs) decision variables
and technology-specific degradation slope parameter h.

The DSO operations are constrained as (Vt€7T,s€S):

(fh)*+(f)<Sh VieL, (3a)
(fP ~aies- R~ aus- X1) <SP VIEL, (3b)

Vs s — 2(R fhy + X fily) + aws (R + X7)
(3¢)

= Ur(l),t,s» VZE‘Ca

p \2 q \2
Vi) i) <, iee ()
Its
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_Z(fllzs_alts' Rl) _pg7t7s+ GO *V0,t,s = 0)

(3e)
lr(1)=0
_Z(fl%s_alts'xl)_qg,t,s_BO'UO,t,s :07 (3f)
lr(1)=0
fé;S_ Z (fllzs_alts.Rl)_plg):ts+Ples+Gb'vbts
lr(l)=b
T, Ge)
_Zpkl;ts +Zpk:bts =0, VbeB,
ke ke
fl?ts_ Z (fl%s_a’ltS.Xl)_ql%ts+Qgts_Bb'vbts
l|rd(.l‘)*b Gh)
_qu;;s +Z qkbts =0, VbEB,
ke ke
P <pf,, <P, WbeBC, (3i)
Q¢ <qf, <Qy beBC, 3
V, <wups <Vy, VbEB. (3k)

Eq. (3¢)-(3h) model a computationally tractable SOC relax-
ation of the ac power flows for radial networks as introduced
in [27], where active and reactive power flows are f};, and
fiis and squared magnitude of nodal voltages at sending
and receiving buses of each line [ are vyq) and v, (). This
relaxation is exact for radial topologies, such as used in this
paper, under rather unrestrictive assumptions, see [28] for
details. In case of meshed networks, the SOC relaxation only
holds under the restrictive assumption of phase shifters in
strategic locations, [28]. If this assumption does not hold,
other ac power flow models (e.g. LinDistFlow [29]) can be
used instead. The apparent power flow limit, resistance and
reactance of each line are denoted by S;, R; and X;. Eq. (3e)-
(3f) enforce the active and reactive nodal power balance
for the root bus (denoted with index 0) of the distribution
system, i.e. the bus that connect the distribution system to
the transmission system. The active and reactive nodal power
balance constraints for other distribution buses are enforced
in (3g) and (3h), where Pg_ and QY,, are the active and
reactive power demand. Active and reactive power injections
of conventional generators are constrained in (31) and (3])
using their minimum and maximum limits (P, Pb Qb)
The nodal voltage magnitudes are constrained witFm the upper
(V') and lower (V) limits as given by (3k).

Eq. (3g) and (3h) include power injections of mobile ES
units (pkbts and pkbtS are charging and discharging variables),
which are operated as follows (VkeK,t€T,s€S):

Chis = €k i1+ D (D R = P /RT®),  (4a)
beB

0 < exis < By, (4b)

€k to.s = Chitos,s = 0.5F, (40)

0<ph  RN<Py.2p, VHEB, (4d)

0<plis /RIS<Py.21y, VHEB, (4e)

szbSNIFS, Vb € B, (4f)

ke

— K Py S Qs < K- pkbts? VbeB, (4g)
— K -piins <ditys <K -piliys,  VHEB. (4h)

Eq. (4a) relates the energy state of charge (eg;s) and charging
and discharging decisions with imperfect, symmetric efficien-
cies RM =Rdis <1 Adding Eq. (4a) makes the DSO problem
in Eq. (1)-(3) temporally constrained by relating the energy
state of charge for each mobile ES unit at time period ¢ and
t — 1. Eq. (4b) limits the energy stored to FEj, while the
minimum level is set 0. We enforce in Eq. (4c) that the storage
unit is 50% charged at the first time interval of each scenario
and must remain in that state at the end of each scenario. Since
buses may differ in the their ability to accommodate mobile
ES units (e.g. space constraints), we enforce the maximum
limit on the number of mobile ES units that can be placed
at each bus in Eq. (4f). Eq. (4d)-(4e) limit the maximum
charging and discharging power to Pj and binary variable
ziy € {0,1} indicates whether ES unit k is placed at but b
during normal operations. If zy, =1, energy can be withdrawn
from or injected in the ES unit; hence, 2, appears in the
right-hand side of Eq. (4d)-(4e). Eq. (4g) and (4h) relate the
reactive power injections of mobile ES units to their charging
and discharging power via parameter K that can be set by
the DSO based on their techno-economic preferences (e.g.
to maintain a given constant power factor). The product of
continuous and binary variables in (4d)-(4e) can be linearized
using the big-M rule, [30].

B. Emergency Operation

If a natural disaster is anticipated, the DSO prepares a
resilience response plan to mitigate the damage and socio-
economic losses. The response plan implies that now the DSO
can exploit the mobility of mobile ES units and other resilience
technologies (e.g. topology switching, microgrid formation,
etc). As a result, mobile ES units can be transported from
their stationary locations to deal with the disaster and thus,
the emergency operation decision has a dependency on the
stationary siting decision in normal operation. To optimize the
route and dispatch of mobile ES units, the DSO needs to co-
optimize the routing decisions with topology switching and
microgrid formation as given by the model in Eq. (5)-(8).

During emergency operations, the objective function of the
DSO is given by:

min Z ws-ECS, (5)
scSE
pO=Y Ciatt 3 (|gglcr ot +5i0)
teT ,beB kek,beBteT (6)
+ Z CVOLL 1- Uliits)pl()its'
kek,beBteT

Note that, unlike Eq. (2), Eq. (6) includes load shedding
penalized at the value of lost load (Cy°M). The shed load
is decided based on the nodal active power demand (p,,)
and binary decision oy,.. In practice, of,, = 0 implies that
demand at bus b and time interval ¢ under scenario s is fully
disconnected from the distribution system.
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Building on the normal operation model, the distribution
system in case of emergencies is modeled as (Vt€ T, s€ SP):

Eq. 3¢)-(30), G3i)-Gj). (7a)
2 +(f3)° < (0hs-5)", VIeL, (7b)
(lezs—alts'Rz)2+(fﬁs—azts'Xz)QS(G}tS-Sz)Q, vier, (Tc)

flf)ta_z (flpzs_ Alts Rl) _p%ts +dets Pl;its+Gb “Ubts
lr(l)=b
_Zpg;:ts +Zp2}l;ts :Oa
kex kex
f&ts_z (flcés_ Qits 'Xl) - QEts +O'}()it5 'Qgts — By vpts
lr(l)=b

di I
= dis Y dins =0,

ke ke

(7d)
YbeB,

(7e)
vbe B,

where binary line switching decision o}, is included in the

right-hand side of the apparent power flow constraints in
Eq. (7b)—(7c) and load shedding decision variable crglts is
added to the nodal power balance constraints in Eq. (7d)—(7e).

Using the line switching decisions, the microgrid formation
process is accounted for as (Vi€ T, scSP):

> ol = N* — max(N©, N¥S 4 NPG), (8a)
lel
ol = 0, V1€ LO. (8b)

Eq. (8a) ensures that the number of microgrids formed in
the distribution system is consistent with the number of DGs
(NPS) or mobile ES units (NFS) available to the DSO. Thus,
if the number of outages (N©) caused by the disaster is
larger than the number of power sources, some parts of the
distribution system will remain without any power supply.
Eq. (8b) models outages of the distribution lines as given for
each specific disaster scenario. Relative to [12], [13], [31],
we improve the microgrid formation process by eliminating
the need in binary variables that assign a bus to a microgrid,
see [32] for details. Additionally, decisions J}ts can be used
to change a network topology in order to improve resilience;
however this aspect is beyond the scope of this study.

Since emergency operations assume mobile ES units can be
transported, Eq. (4) is replaced with (s € S®):

Eq. (4a)-(4b), (4g)-(4h), (9a)
ehitgs = 0.5-Ey, VkeK, (9b)
0<ph  RV<Ppupys, Ykek,beB,teT, (9c)
0<pdis /RIS <Ppupys, VkeK,beB,teT, (9d)
D s S NJS, WbEBLET, (%)
kel

Ukbyts — Wkby t41,s < 1 — Ukby t47,50 VEEK, 96

bi#beBteT,Te]l, -, rnin(ngl’bQ’t7 N*—t)].

Eq. (9b) limits the energy state of charge in the first time
interval only, i.e. there is no limit for the last time interval and
the ES unit can fully be discharged, if necessary. The routing
decisions on each mobile ES units are using binary variable
Upts that is set to 1 if mobile ES unit £ is at bus b during time

interval ¢ under scenario s. Otherwise, ugps = 0. In (9¢)-(9d),
binary variable uy:s decides if mobile ES units can be charged
or discharged. In other words, the role of ug:s in (9d)-(9c) is
similar to zy;, in (4d)-(4e), but ensures that the mobile ES units
can move between different buses. The limit on the maximum
number of ES units that can be simultaneously connected to
each bus is enforced in Eq. (9e). Eq. (9f) models the transition
delay on moving mobile ES unit from bus b; € B to bus
by € B, where Tl;il Dot is a given transition time between
buses by and be. Similarly to Eq. (4a), Eq. (9f) makes the
resulting optimization problem temporally constrained as it
relates decisions ugps and wgp ¢41,5. In practice, the value
of Tgil’b%t can be determined based on the availability and
length of transportation routes. Note that (9f) is structurally
equivalent to minimum up and down time constraints on
the on/off status of conventional generators modeled in UC
problems [19].

III. PLANNING WITH MOBILE ES UNITS

Using the operating models for normal and emergency
operation in Section II, this section builds a planning model
that optimizes investment decisions on mobile ES units. The
planning model is schematically shown in Fig. 3 with inter-
faces between the planning and operating decisions, as well as
the decisions made during normal and emergency operations.
The objective of this optimization is to allocate the mobile ES
units in such a way that these units are operated as stationary
resources during the normal operations and can be transported
to other locations, or among multiple other locations, in case
of natural disasters.

The planning problem is given as follows:

min |:’7~IC($]€)+

Z wS'OCS(Zk;b|xk) + Z ws'ECs(ukbts|xk) ) (loa)

seSN seSE
IC(zx) =Y (C* - Pp+C" Ey)-a (10b)
ke
szb <z, Vke K:7 (10c)
beB
Investment
Problem
OC;(zkpr) - EC,(ugpss|r)
Vs e SN Vs e S
A e
| |
: Normal Zkb Emergency |
| Operation Operation I
| |
|
: Zkb Ukbts U}m Uz(}zs :
|
| |
|

Fig. 3: Structure of the proposed planning problem with mobile ES
units and interfaces between the planning and operating decisions.
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> ukpes <wp, VR EK,tET,s€S (10d)
beB

Ukpotg,s =2k, Yk € K,b € B,s e SE, (10e)
Eq. 2)-(4), Vse SN, (10f)
Eq. (6)-(8), Vse SE. (10g)

Eq. (10a) minimizes the sum of the three terms. The first term
is the investment cost of mobile ES units, where parameter ~y
is a capital recovery factor that prorates the investment cost
on a daily basis using the net present value approach, [14].
The second and third terms represent the expected operating
cost during normal and emergency operations as computed
in Eq. (2) and Eq. (6), respectively. Eq. (10b) computes the
investment cost of installing mobile ES unit k£ based on its
power and energy ratings Pj and E}, priced at C* and CF,
respectively, as previously used in [14], [15]. The installation
decision is modeled by binary variable x;, € {O, 1}. Ifa, =1,
mobile ES unit £ is installed, otherwise z; = 0. Eq. (10c)
and (10d) relate zxp, and wgpes to the respective investment
decision (x). If z;, = 0, it follows from (10c) and (10d)
that no storage can be used during normal and emergency
operations. On the other hand, if x; = 1, 2z, is optimized
for all scenarios s € SN and wpps iS optimized for each
scenario s € SE. Eq. (10e) ensures that each mobile ES unit
is routed to its temporary locations during emergencies from
its stationary locations during normal operations. Eq. (10f)
and (10g) impose constraints for the normal and emergenecy
operations as explained in Section II.

As shown in Fig. 3, OCs(zkplzr) and ECs(ugpts|zr)
depend on binary variables xj, zx, and uyps. Binary deci-
sions xj constrain the placement of mobile ES units (zxp)
during normal operations and their routing decisions during
emergency operations (ugps). Furthermore, the binary rout-
ing decisions (ugps) also depend on the binary placement
decisions (zxp) as in Eq. (10e). This dependency makes the
planning problem in Eq. (10) a two-stage MISOCP with binary
recourse decisions.

IV. SOLUTION TECHNIQUE

The proposed two-stage stochastic MISOCP in Eq. (10)
is computationally demanding due to the co-optimization
of investment decisions for normal and contingency opera-
tions, binary recourse decisions, and multi-period optimization
within each scenario considered. Off-the-shelf solvers can be
used to solve the model, but their performance is limited for
large networks or instances with a large number of scenarios.
To solve this problem efficiently, we apply the PH algorithm
[18] to the proposed planning problem. As shown in Fig. 4,
the PH algorithm decomposes the original problem in (10)
into NS = card(S) subproblems. The decomposition exploits
the notion that the investment decisions (x) and the mobile
ES placement (z;) are common for all scenarios and that the
routing decisions (uyp:s) can be optimized for each scenario
individually. Accordingly, the decomposition yields N sub-
problems, where the integrality condition on xj and zp, is
relaxed. Since each subproblem has significantly fewer binary
decision variables than the original planning problem, it is

Tk Zkb

LA

d 1
Ukbtss Optsy Olts Lksy Zkbs Ukbtss Optss Olts
ch/dis ch/dis g g ch/dis ch/dis g g
DPots  2lpts  + Pots Dots bts 1 dbts  + Pots dbts

(a) Original problem (b) Decomposed subproblems

Fig. 4: Comparison of the original problem and PH decomposition.

TABLE II. COMPLEXITY OF THE ORIGINAL AND DECOMPOSED

PROBLEMS
Original problem Decomposed subproblem
Binary Ukbts, O—l(,lt‘s’ U}ts Ukbt O'gt, O—}t
variables Zkbs Tk Zkbs Tk
#of binary | NSNTINES (BN | NT[NES(NB+ 1)+ NT]
variables +NES(NB 1) +NES(NB4-1)
Conti ch/dis ch/dis ch/dis ch/dis
onfinuous kbtg o pbts Prot o gt
variables Dpres Tt Dpps Dy
# of continuous ANSNTNESNB ANTNESNB
variables +2NSNTNB +2NTNEB

computationally more tractable. Furthermore, all subproblems
can be solved in parallel, which further accelerates computing
performance. We compare the number of variables for the
original and each subproblem in Table II and note that the
advantage of the decomposition increases as N° increases.
When all subproblems are solved, decisions x and zx; can be
recovered based on their relaxed values for each subproblem.
The algorithm continues until convergence. The recovered
values are zj; and zj, respect constraints imposed by each
scenario and their multi-temporal dynamics.

The PH algorithm is implemented as explained in Algo-
rithm 1 and further detailed below:

e Step 1: The PH algorithm is initialized by setting the

iteration counter 7=0 and multipliers mgi:°>: wgizo): 0.

o Step 2: Each of N® subproblems is solved in parallel

to obtain binary decisions z,(;bzo) and xg:o). When all

subproblems are solved, we compute Z and T as the

weighted average of all subproblem solutions.
o Step 3: The iteration counter is updated, i.e. ¢ := ¢+1. For

each subproblem we update the value of PH multipliers

m and w® using the values of z,(:;l) and 2"V, Then
each relaxed subproblem is solved to obtain Zz(;bs and a;,(jg,
where the deviations of z,(;b) from % and xg) from 7 are
penalized using exogenous penalty coefficients p. and p,.
After all subproblems are solved, we use 2\, and "
to update the values of z and Z. The iterative process
continues until the mismatch ¢(*) is less than a given

tolerance e.
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Algorithm 1: PH Algorithm for Installing Mobile ES units
(i=0) . (1 0)

Step 1. i :=0,mg~ " :=0,w =0
Step 2. for s < 1 to NS do

z,(fbéo) x,(;é 0 argminy-I/C + OC; + EC;
end
T > wse z,ibgo), T+ Y ws- xgg 0

seES seS

Step 3. do

1 1+1

for s < 1 to NS do
m(l)<—m(Z b + Pz (2&71)—2)
W i) 4 ( (i 1)_5)
e T <—argmm7 IC + OC, + ECy +m{"-
(4)

zip + 5 ||Zkb—z|| +wd” @y, + & ||o 7|
end
Z Zws 2,52)9, T+ > ws- :vég)
g« ng ‘Zkbé ‘x&) fH
seS seS

while convergence: g () <€

()
return z,,

The convergence of Algorithm 1 is accelerated by setting
penalty coefficients p, and p, based on the cost coefficients
of relaxed variables xj; and zj:

~-IC
Po = —— (11a)
o) — fmno) +1
~v-IC
Pz = (11b)
A=0 _6=0) | ¢

nnn

Eq. (11) is a generalization of the cost proportional method
in [18], which exploits the fact that the PH algorithm is best-
performing when the penalty value is a multiple of unit cost in
the objective function. The PH implementation in Algorithm 1
also extends the use of penalty factors to two binary variables
xp, and zg, that are relaxed by the algorithm.

V. CASE STUDIES

We use the 15-bus radial distribution test system described
in [33] with one DG located at bus 11. The system dia-
gram is given in Fig. 6-(a). The mobile ES units considered
for installation have E,=IMWh, Pj,=0.15MW, R°h=Rdis=0.9,
CP=$1,000/kW and CF=$50/kWh [14] and the expected
lifetime is 10 years. These nameplate parameters for mobile
ES units are generally consistent with technical specifications
of the demonstration units used by Consolidated Edison of
New York, [5], and can be scaled to accommodate other
ES technologies. The transition time enforced in Eq. (9f)
is defined as Tyl , = min(|by — ba|,dp, ,) and dp, p, is
generated by using the shortest path algorithm where d;, 3,
is the number of lines between buses by and bs. For instance,
the transition time between bus O and 14 in Fig. 6 is set as
T84, = min(|0 — 14, do,14) = min(14, 3) = 3. The value of

lost load is Cy°Mt = $5,000/MWh. All simulations have been

carried out using Gurobi solver v7.5 on Julia 0.6.2 / JuMP
0.17 [34] on an Intel Xeon 2.6GHz processor with 20 Cores
and 40GB memory. The MIP gap is set 0.1%. Our code and
input data can be downloaded in [35].

A. Case Study 1: Investments in Mobile ES Units

The problem in Eq. (10) is solved with one normal and
one emergency scenarios, i.e. N° = 2. Probabilities for the
scenarios are artificially generated as ) _onws = 0.9 and
> scsews = 0.1. In each case, the emergency scenario is
modeled by an outage of line 4, 5, 6, or 13 at time interval
t = 6 hour. Each outage leads to a different potential load
shedding amount, thus representing a different level of severity
for the DSO. The resulting investment decisions are given in
Table III. First, no mobile ES units are installed in the case
without outages, i.e. operating ES units as a stationary resource
for normal operations does not create sufficient value to the
distribution system to economically justify their installation.
On the other hand, as the potential load shedding increases
from 21.9 kW to 152 kW for each of the four outages, the
need in mobile ES units increases and thus larger capacity
is installed. After installing and using mobiles ES units, no
load shedding occurs in all four outages. Thus, exploiting
mobility of ES units during emergencies yields a sufficient
added value for their installation and use during both normal
and emergency operations. The shift in installation decisions
among four outages is primarily driven by the prevented load
shedding, i.e. more severe outages require more ES capacity.

Fig. 5 displays the effect of the ES lifetime and the sym-
metric charging and discharging efficiency (Rh = Rdis = )
on the value of the objective function for the outage on line
4 as given in Table III. The value of the objective function

150 T T T
Area ll

ES Life-span = 6yrs
— — ES Life-span =8yrs ||

ES Life-span = 10yrs
— - —- ES Life-span = 12yrs
—— ES Life-span = 14yrs | 7|

2 ES units installed

Load shedding >0 Area lll

2 ES units installed
- Load shedding = 0

o
a

o
[S]

Area |

3 ES units installed
Load rhcddmg =0
80

Relative Change in Objective Value [%]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
ES Efficiency (R)

Fig. 5: Effect of the ES lifetime and the symmetric charging and
discharging efficiency (X% = X% = X) on the objective function
value. The reference point is obtained for the base case parameters.

TABLE III. INVESTMENT DECISIONS ON MOBILE ES UNITS

Line Outage no outage line 6 line 5 line 4 line 13
Potential OkW 21.9kW STkW 101kW 152kW
Load Shedding (bus 6) (bus 5-6) (bus 4-6) (bus 13-14)
NS installed 0 1 1 2 2
ES capacity OMWh IMWh IMWh 2MWh 2MWh
Initial ES bus - 2 5 land 12 0 and 12
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TABLE IV. OPTIMAL ROUTING DECISIONS AND STATE-OF-CHARGE FOR THE MOBILE ES UNIT DURING EMERGENCY SCENARIOS.

Time interval #
1 2 3 4 5| 6 7 8 9 10 | 11 12 13 14 15 16 17 18 19 20 | 21 22 23 24
S6 0 0 0 0 T| 1 1 1 1 1 T 0 0 0 0 0 T 1 1 1 1 1 1 1
s7 0 0 0 0o T| 1 1 1 1 1 T 0 0 0 0 0 T 1 1 1 1 1 1 1
Bus # S8 0 0 0 0o T|12 12 12 12 12 T 0 0 0 0 0 T 12 12 12 |12 12 12 12
S9 0 T 12 12 T| 13 13 13 13 13 13 T 12 12 12 | 12 12 T 13 13 13 13 13 13
sio| O T 1 1 T| T 3 3 3 3 3 T 2 2 2 2 2 T 3 3 3 3 3 3
se | 0.5 0.65 0.8 095 T[0.81 0.66 053 04 026| T 038 0.53 0.68 0.83{098 T 084 0.7 056|042 0.28 0.14 0
s7 [0.52 0.67 0.82 097 T[0.82 0.67 0.53 0.38 0.24| T 0.39 0.54 0.69 0.84{099 T 0.85 0.71 0.57|0.43 0.29 0.14 0
extss MWh| sg | 0.5 0.65 0.8 095 T|0.81 0.67 054 04 027| T 038 0.53 0.68 0.83{098 T 084 0.7 056|042 0.28 0.15 0
sg [0.61 T 0.76 091 T|[0.77 0.62 0.49 0.36 0.23|0.09 T 024 039 054(069 084 T 0.7 056|042 028 0.15 0O
s10/058 T 0.73 0.88 T| T 0.73 059 044 0.29|0.14 T 0.29 044 059(0.74 0.89 T 0.74 0.59|0.44 029 0.14 0
Labels ‘T’ defines that the mobile ES unit is in transit.
Main grid Main grid Main grid Main grid Main grid Main grid

MG1
(a) Benchmark case: (b) Emergency (c) Emergency
Stationary ES scenario Sg scenario s,

MG1 (1)
©
(d) Emergency (e) Emergency (f) Emergency
scenario Sg scenario Sq scenario Sy

Fig. 6: Placement of the (a) stationary ES unit and (b-f) mobile ES units with optimal routing directions during emergency scenarios
(s6—s10). Plot (a) also denotes the line indices. Plots (b-f) includes the bounds of the microgrids (MGs) formed by the mobile ES unit and
DG. Note that the mobile ES unit is placed at bus 0 during normal operations in plots (b-f). The block ‘Main grid’ refers to the rest of the
power system connected to the distribution system considered in this case study.

in Eq. (10a) reduces monotonically as the efficiency of ES
units increases regardless of the lifetime period considered.
Similarly, the longer lifetime period the lower value is attained
in the objective function. This is due to the fact that more
efficient and longer serving ES units reduce the investment
cost, while providing greater benefit to the system.

Accordingly, the curves in Fig. 5 have multiple areas, where
each area is differentiated by the number of mobile ES units
installed and the amount of load shedding. In Area I of
Fig. 5, three mobile ES units are needed to fully prevent
load shedding. However, as the efficiency of mobile ES units
increases, less units are installed. The breaking point between
Area II and Area III occurs at X" = R — (.65. The
difference in these two areas is in the amount of load shedding.
If Neh = R4S < (.65, the physical capacity of two mobile ES
units is not sufficient to fully prevent load shedding and the
residual load shedding is not sufficient to economically justify
installing the third unit. However, as the efficiency improves
and NN = RS > .65, two mobiles ES units become sufficient
to fully prevent load shedding. Notably, the effect of the ES
lifetime is most evident for ES units with a lower efficiency,
where it can increase the number of ES units needed (e.g.
three instead of two units as with NN = Ndis x~ (.55.)

B. Case Study 2: Effectiveness of the ES Mobility

This case study considers five normal and five emergency
scenarios (each emergency starts at time interval ¢ =6 hour),
i.e. N° = 10, and compares three cases. The probability set
for the scenarios is generated in the same way as Case Study 1.
The first case assumes that there is no ES installed, i.e. x; =0.
The second case assumes that the ES is a stationary resource
and cannot move at any time, i.e. zpp = Ukps, VI € T. This
case is consistent with the traditional ES investment problems
in [14], [15]. The third case stands for the proposed problem
in (10) and demonstrates the full range of benefits attained
with mobile ES units and microgrid formation.

The cases with stationary and mobile ES units are compared
in Fig. 6, which illustrates the ES placement at bus number 0
during normal operations (s; — s5) and illustrates the routing
directions of the single ES unit installed for each emergency
scenario (sg — S10). Additionally, Table IV itemizes the
mobile ES location and its energy state of charge under
each emergency scenario; these results are also visualized in
Fig. 7 and Fig. 8. Between these two cases, the ES placement
decisions during normal operations differ. The stationary ES
unit is installed at bus 4 during normal operations and cannot
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Fig. 7: Optimal routing decisions of the mobile ES unit for each
emergency scenario (se—s10).

change its location for emergencies, as shown in Fig. 6-(a).
As a result, of this placement decisions, the stationary ES unit
can only provide back up support and form a microgrid for
upstream outages. For example, in case of outages of lines 5, 8,
or 12, the stationary ES unit at bus 4 will not be able to provide
back up power supply. On the other hand, the mobile ES unit
is installed at bus O during normal operations, see Fig. 6-
(b)-(f). From this location, the mobile ES unit can be routed
to a different location as necessitated by the needs of each
individual emergency scenario and form a microgrid using
line and load switches. In these results, the optimization routes
mobile ES units among closely located buses since it requires
less transition time, as modeled by Eq. (9f), and increases
the ES usage for reducing load shedding. Furthermore, the
routing decision on mobile ES unit are co-optimized with the
DG at bus 11 to improve distribution system performance.
Thus, two microgrids are formed under emergency scenarios
in Fig. 6-(b),(c),(f), where one is sourced by the mobile ES
unit transported from bus 0, where it is located during normal
operations, and the other one is sourced by the DG located at
bus 11. On the other hand, the emergency scenarios in Fig. 6-
(d),(e) lead to load shedding at buses 4-6 since the installation
of the second ES unit is not economically justified and there
is no DG available.

Since the capacity of the mobile ES unit is limited, it
occasionally needs to replenish the stored energy and therefore
commutes between the microgrid location and the unaffected
part of the distribution system. For example, as shown in
Table IV for emergency scenario (sg), the mobile ES unit
travels between bus 0 and bus 1 four times during the course of
the optimization horizon. All emergency scenarios have unique
routing decisions, which differ based on the severity of each
emergency scenario. This difference emphasizes the usefulness
of mobile ES units in accommodating unique features of
specific emergency scenarios.

Table V compares the three cases considered in terms of the
total load shedding and objective value. First, using mobile ES
units reduces the total lost load (computed as D, -z > 7 (1—
ol )ps,) across all considered emergency scenarios relative
to the other two cases. Thus, the average load shedding is
reduced by 10.52% compared to the case with stationary ES
units due to the mobility of ES units. Second, the case with

State-of-Charge (SoC) [MWh]

1 4 8 12 16 20 24
Time [h]

Fig. 8: State-of-charge of the mobile ES unit (variable eyp:s) for
each emergency scenario (se—S10)-

mobile ES units returns the least-cost objective function value
among all three cases.

TABLE V. EFFECTS OF THE ES MOBILITY ON LOAD SHEDDING

Lost Load, MWh Average | i ctive

S6 St S8 S9 510 Lost Load, Value, $

MWh ’

Without ES | 440 519 673 445 331 182 2877.20
Stationary ES | 3.29 4.07 564 335 2.18 371 2393.99
Mobile ES | 291 3.65 523 295 184 3.32 2200.05

C. Computational Performance

Table VI compares the proposed PH implementation and
the brute-force (BF) implementation (i.e. solving the proposed
optimization directly using the Gurobi solver) in terms of their
computational performance and optimality with a different
number of scenarios. The BF approach is only able to solve
the case with two scenarios, and it is 6x times faster while the
objective functions and the investment decision on mobile ES
units are nearly identical to that of the PH implementation.
The BF becomes incapable of completing the task within
the time limit (12 hours) for more than two scenarios. The
PH implementation, on the other hand, returns the optimal
solution within 8 hours for all cases. To assess computational
scalability of the proposed model and PH implementation
to larger networks, we carry out experiments on the IEEE
37- and 123-bus systems, [36]. Table VII demonstrates CPU
times for these simulations. As expected, the CPU times
monotonically increase for larger networks. On the other
hand, the effect of increasing the number of scenarios is not
monotonic, similarly to the results in Table VI. This effect

TABLE VI. PERFORMANCE OF THE BF AND PH IMPLEMENTATIONS

# of Objective value, $ CPU time, s
scenarios BF PH BF PH
2 1,930.3 1,966.2 1,193 7,686
4 N/A 2,165.2 N/A 8,912
6 N/A 2,513.6 N/A 10,695
8 N/A 2,376.3 N/A 8,067
10 N/A 2,200.1 N/A 10,912
20 N/A 2,265.3 N/A 10,066
40 N/A 1,891.8 N/A 18,218
60 N/A 1,874.0 N/A 12,456
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TABLE VII. COMPUTATION TIME [S] OF PH IMPLEMENTATIONS - 37 AND
123 BUS SYSTEMS

# of scenarios 20 40 60
IEEE 37-bus system 11,964 16,511 13,411
IEEE 123-bus system | 17,345 | 14,008 | 16,301

is due to paralleling subproblems computation, which enables
the PH implementation to have roughly the same amount of
CPU time regardless of the number of scenarios. This implies
that using parallel computations allows for accommodating an
even larger number of scenarios without further computational
complexity.

VI. CONCLUSION

This paper describes an approach to optimize investments
of the DSO in mobile ES units. The ability of mobile ES
units to move between different locations is used to trade-
off the least-cost operations during normal operations and
the need to enhance power grid resilience in case of natural
disasters. The proposed optimization is a two-stage stochastic
MISOCP with binary recourse decisions, which account for the
relocation of mobile ES units under specific disaster scenarios.
The proposed optimization is solved using the PH algorithm.
The numerical experiments reveal that the mobile ES reduce
the operating costs and the total amount of load shedding
caused by natural disasters relative to the cases without ES
units or with stationary ES units.
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