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ABSTRACT
As a city becomes smarter, the integrated networks of engineered

cyber and physical elements provide the capability to greatly im-

prove the quality of life of its citizens. In order to leverage these

capabilities to benefit all classes of society, we propose a framework

that balances the supply and demand of available resources while

maximizing the social welfare of people-in-need by utilizing cyber-

physical infrastructure in smart cities. We show through numerical

simulations that our proposed framework can reduce the amount

of resources wasted by 25% through intelligently assigning the lo-

cation of services and dynamically pairing resources to different

homeless populations.

CCS CONCEPTS
• Applied computing→ Law, social and behavioral sciences;
• Computer systems organization → Embedded and cyber-
physical systems;

KEYWORDS
Algorithmic services, fairness, allocation, community service, smart

city, service design, automation

1 INTRODUCTION
Every year, 3.5 million people in the US experience homelessness,

with 1 in 30 children becoming homeless [1]. Despite numerous

government-sponsored programs and efforts by nonprofit organiza-

tions, many homeless people live in abject conditions. According to

the the U.S. Conference of Mayors 2013 Status Report on Hunger &

Homelessness in 2013, 21% of people across the surveyed cities who

need emergency food assistance received none [2, 3]. Moreover, in
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all responding cities, emergency kitchens and food pantries had to

reduce the quantity of food each person could receive per visit. In

78% of those cities, they had to reduce the number of times a person

or family could visit a food pantry each month. In two-thirds of the

cities, facilities had to turn away people due to a lack of resources.

Another major problem is the lack of real-time coordination

among different community service efforts, which results in an inef-

ficient system where available supply is not matched with demand.

Despite recent successes in smart-city technologies and community-

driven capabilities, the act of managing and coordinating services

for communities of people in need is still a local, ad hoc effort. In

particular, some food banks constantly have excess supply, whereas

others do not have enough [4]. On the other hand, smaller food ser-

vice establishments such as restaurants and private citizens often

have perishable food to donate on a daily basis. These resources

often go to waste because the supply is usually in small quantities,

thus uneconomical for donors to transport it to distribution centers.

Rethinking smart city technologies to best serve those in need

is essential for improving their access to resources including food,

shelter and medical services. As a first step, we identify the prob-

lem of balancing supply and demand while maximizing the social

welfare of both people-in-need and other citizens by utilizing the

cyber-physical infrastructure in smart cities. We argue that by

intelligently managing the efforts of the city, NGOs and private

citizens, a smart city can optimally distribute the available supply

of food, temporary shelter, health care and other services. The main

contribution of this paper is an architecture for optimal resource

allocation and assignment that achieves this goal along with pre-

liminary numerical results that supports the proposed architecture.

2 SOCIALLY RESPONSIBLE SMART CITY
Even as technology permeates every corner of our lives today, the

homeless population remains a largely underserved population.

A major area where technology could have a large impact on the

quality of life of the homeless population is in information dissemi-

nation about donated food and services, and an efficient, real-time

management and distribution of donations. In this section, we start

by reviewing the existing technologies that currently serve different

people-in-need communities followed by the architecture of the

proposed system that enhances existing technologies to facilitate

the access of people-in-need to the available resources.

2.1 Existing Technologies
1. Homeless initiated (“Pull” model): In this model of in-

formation dissemination, homeless people are held responsible

https://doi.org/10.1145/3137133.3137163
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Figure 1: A cartoon of the architecture of the proposed solution.

for searching for the information they need. A California sur-

vey showed that 62% of homeless youth have access to feature

phones [5]. Cities like San Francisco, CA have launched websites

for the homeless that are accessible by phone and used geolocation

APIs in order to retrieve their location and to provide information

on food and shelters nearby [6]. Another piece of technology that

supports a pull model is the federally-provided voicemail accounts

that the homeless can access from free phone cabins. There are also

many free computer labs, such as in public libraries, which allow

the homeless to access the internet and search for data.

2. Community initiated (“Push” model): In this model, com-

munity coalitions and NGOs are responsible for delivering informa-

tion to the homeless. For example, the New York City Department

of Homeless Services deploys teams citywide to engage and en-

courage homeless individuals to move from the streets into existing

shelters and to utilize drop-in center services [7].

We refer to the smart cities that employ the later model as socially

responsible smart cities. To achieve this goal, we start by classifying

the available resource (food, shelter, medical, etc.) providers into

two broad categories based on location availability: (i) permanent

and (ii) mobile. Examples of the first resource category are perma-

nent shelters and food pantries. Examples of the second category

include mobile food trucks and clinics.

2.2 System Architecture
We propose a subscription-based service model in which (perma-

nent or mobile) food, medicine, shelter and other service providers

use mobile technology to declare the available supplies and their

location. This data is combined with crowdsourced real-time in-

formation of people-in-need population distribution reported vol-

untarily by private citizens (e.g. using mobile phone apps). The

crowdsourced information is filtered by a web server in order to

detect redundancies (e.g. same people-in-need reported by different

private citizens), mismatches, and/or outliers.

We note that the information collected does not provide a con-

tinuous stream for the location of people-in-need; it provides the

locations only as they are encountered by private citizens. Hence,

the next step is to use machine learning algorithms along withmath-

ematical models for population dynamics, historical data, home

prices, weather forecast and other features in order to augment this

sporadic stream of information to build a continuous estimate of

the density and location of needy communities.

The final step is to fuse the information provided by the resource

providers along with the estimate of the density and location of

needy communities to calculate an optimal strategy for dynamically

allocating resources to service locations (including routing infor-

mation for transporting food between locations where appropriate)

that minimizes the wastage of available resources while maximizing

the social welfare and satisfying a set of spatio-temporal specifica-

tions to be fulfilled (e.g. maximum homeless population density in

specific district at particular time, minimum number of meals an

individual needs per week, maximum distance traveled per day).

The overall architecture of the proposed system is shown in Fig-

ure 1. Concurrent efforts are being made to implement the proposed

system in collaboration with several NGOs and homeless service

organizations. While mobile technologies are being developed to

report the location of available resources and of people-in-need

(PiN), along with physically distinguishing characteristics (e.g., hair

color), mobile apps will be connected with community partners

who can address the immediate needs of PiNs. [9] However, in

the remainder of this paper, we focus only on the final step of the

proposed system, namely, resource allocation and assignment.

3 RESOURCE ALLOCATION AND ASSIGNMENT
We note that our proposed methodology generalizes to services

including temporary shelter and free medical treatment, but we will

focus in this section on the particular problem of food distribution

allocation and assignment. We denote by NNGO the number of

non-governmental organizations (NGOs) that are participating in

food resource supply. Similarly, we denote by NPiN the number of

people-in-need. Each NGO is a tuple: NGOi = (si , ci , ri ), where
i ∈ {1, 2, . . . ,NNGO} and si is the amount of food (services) available

at the ith NGO, ci is the x-y position of the NGO, and ri is the
radius of coverage or neighborhood around the NGO position for

which this NGO can serve. As discussed before, we consider both

permanent and mobile food suppliers where the location ci of the
former is fixed while the location ci of the later is free to be assigned
by our system. To differentiate between the two cases, we will use

the notation NGO
f
i and NGO

m
i where the superscripts f and m

stands for fixed and mobile, respectively. Similarly, each PiN is

a tuple: PiNj = (hj , lj , idj ), where j ∈ {1, 2, . . . ,NPiN} and hj is

the hunger level of the jth person-in-need person
1
and lj is his

location. Lastly, idj represents the physical traits reported on the

crowdsource mobile app. We assume that both hunger level hj and
food si have the same units, i.e., one unit of food is required to

reduce the hunger level by one unit.

The objective of our distribution algorithms is to (i) assign the

location of the mobile NGOs (resource allocation) and (ii) assign

PiNs to NGOs (resource assignment or pairing) in a manner that

maximizes the social welfare. In our framework we define social

welfare by three criteria: (1) percentage of individuals serviced (or

paired with NGO), (2) average hunger, and (3) percentage of food

waste. While one can argue that the first and second criterion are

redundant, it is important to note that the first criterion is needed

to promote fairness and prevent the case where only some PiN are

constantly serviced while others (in places that are far from NGOs)

are constantly kept with no service. Formally, we introduce a binary

indicator variable I (NGOi , PiNj ) which evaluates to one whenever

the jth PiN is assigned (or paired) with the ith NGO. Using this

notation, we can formally define the three social welfare objectives

as:

J
%serviced

=
1

NPiN

NNGO∑
i=1

NPiN∑
j=1

I (NGOi , PiNj )

1
For a thorough overview of different measures for assessing and measuring hunger

we refer the reader to [8].
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J
hunger

=
1

NPiN

NPiN∑
j=1

hj

Jwaste =

NNGO∑
i=1

si −
∑

j ∈{k | I (NGOi ,PiNk )=1}

hj

Therefore, the problem of maximizing the social welfare can be

defined as a search problem over the NGO locations ci and pairings
I (NGOi , PiNj ) such that:

maximize

ci , I (NGOi ,PiNj )
J
%serviced

+ J
hunger

+ Jwaste (1)

subject to : I (NGOi , PiNj ) = 1⇔ ∥c j − lj ∥ ≤ r j (2)

NNGO∑
i=1

I (NGOi , PiNj ) ≤ 1 (3)∑
j ∈{k | I (NGOi ,PiNk )=1}

hj ≤ si (4)

where the first constraint ensures that a PiN must be in the neigh-

borhood of an NGO to receive service, while the second constraint

ensures that a PiN is assigned to at maximum one NGO. This in turn

ensures that J
%serviced

increases only if more people are assigned

services. The maximum of J
%serviced

is achieved if and only if all

the individuals have been served. The third constraint ensures that

an NGO can not serve more than the available resources.

We note that this above search problem is highly combinato-

rial. To reduce the complexity of the search problem, we rely on a

sub-optimal solution in which we search for the NGO locations ci
separately from the PiN matching. That is, we search first over the

possible locations of the NGOs that potentially lead to maximizing

the pairing. Once we fix the NGOs locations, we search over all

possible pairings for these fixed locations, i.e., we solve instead the

following optimization problem subject to the previous constraints.

maximize

I (NGOi ,PiNj )
maximize

ci
J
%serviced

+ J
hunger

+ Jwaste

3.1 Resource Assignment and Pairing
We start by describing the algorithm for resource assignment and

pairing (the outer maximization in (1)) while assuming that all

NGO locations are fixed. We model the assignment problem as a

max-flow problem where available services si are the source of the
flow and the hunger level hj is the target of the flow. More details

regarding the assignment algorithm are included below:

Step 1: To generate a flow graph, each NGO and PiN is repre-

sented as a node. Edges exists between an NGO and a PiN when

the PiN lies within the reachable radius of the NGO (constraint (2)).

Each edge has a flow capacity of 1. Every node representing a PiN

is connected to the sink pseudo-node, which does not correspond

to any real PiN. The sink node is used to quickly identify if a PiN

has already been assigned to an NGO.

Step 2: For each NGOi , we attempt to push 1 unit of flow, corre-

sponding to a unit of food, to the first neighboring PiNj . If the edge

between the PiNj and the sink pseudo-node has not yet reached

capacity, then we know that this pairing between the NGOi and

PiNj is a valid pairing. If the edge between the PiNj and the sink

pseudo-node has reached capacity, signifying that this individual

Algorithm 1 Resource Pairing Algorithm

Input: PiN ,NGO
Output: pairs
1: function ResourcePairing(PiN , NGO ):

2: pairs = []

3: Generate flow graph д based on PiN and NGO
4: Sort PiN from hungriest to least hungry

5: Sort NGO from lowest to highest available resources

6: for NGOi in NGO do
7: for si units of flow do
8: for lj inside ri of ci do
9: if flow(PiNj , sink ) = 0 then
10: Append (NGOi , PiNj ) to pairs
11: Exit innermost for-loop

12: else reverseFlow(NGOi , PiNj , pairs )
13: return pairs
14: function reverseFlow(NGOi , PiNj , pairs ):
15: for NGOi′ , NGOi in PiNj .supplier s do
16: if flow(NGOi′, PiNj ) = 1 then
17: for each PiNj′ , PiNj inside ri′ of ci′ do
18: if flow(PiNj′, sink ) = 0 then
19: Remove (NGOi′, PiNj ) from pairs
20: Add (NGOi , PiNj ), (NGOi′, PiNj′ ) to pairs
21: return
22: else reverseFlow(NGOi′, PiNj′, pairs )

has already received flow from another NGOi′ , then we enter the

reverse flow stage. In this stage, we attempt to push flow reverse

through edge (NGOi′ , PiNj ) to a new neighbor PiNj′ . Then, we are

either able to reach the sink pseudo-node or otherwise attempt the

reverse flow process again. This process is repeated until either we

are able to successfully push flow to the sink pseudo-node or when

we have exhausted all possibilities.

Step 3: If there is extra food available at a supplier after assigning
food to all reachable individuals, then it is considered waste.

Note that the above max-flow algorithm optimizes only for

J
%serviced

and Jwaste. To optimize for J
hunger

as well, we order the

nodes that represents PiN according to their hunger level. There-

fore, the algorithm will always consider the PiNs with higher levels

of hunger before assigning resources to the other PiNs. This process

is summarized in Algorithm 1.

In Algorithm 1 line 4, we sort individuals by hunger and service

requests in that order. If a certain individual has been serviced by

a NGO in a previous round, his/her hunger will be reduced. This

individual effectively gets moved to the end of the list. This gives

the subsequent individuals on the list who were not serviced the

opportunity to be assigned to NGOs, and hence maximizing J
hunger

.

3.2 Resource Allocation
In the case where we have only permanent food suppliers, we can

directly apply the pair-generating algorithm described in the previ-

ous subsection. Otherwise, we need to determine and recommend

new locations for the mobile providers. In this scenario, we first

obtain the resource pairing assignments from considering the re-

sources provided by only the permanent NGOs. This allows us to

identify the remaining individuals that were unassigned to any

NGO. We would like to provide resources to these unserviced PiN

by moving the mobile providers towards them. In other words, we

would like to identify k cluster centers from the subpopulation of

unassigned individuals, where k is the number of mobile providers

available. This type of clustering problem is commonly solved by

applying the K-Means algorithm.
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Algorithm 2 Supplier Resource Distribution

Input: PiN ,NGO = NGO f + NGOm

1: procedure ResourceDistribution(PiN , NGO ):

2: pairs = ResourcePairing(NGO f )
3: k = count(NGOm )
4: if k > 0 then
5: centers = MobileSupplierPlacement(pairs, PiN , k )
6: Update locations of NGOm

to centers
7: pairs = ResourcePairing(NGO )

8: Distribute food according to pairs
9: functionMobileSupplierPlacement(pairs, PiN , k ):
10: centers, unfed = []

11: for PiNi in PiN do
12: if PiNi not in pairs then unfed .append(PiNi )

13: if count(unfed ) < k then
14: centers = unfed
15: else: db_model = DBSCAN.fit(unfed )
16: kmeans_model = KMeans.fit(db_model .core_points, k )
17: centers = kmeans_model .cluster_centers
18: return centers

However, applying K-means directly to unpaired PiNs forces

every individual to be assigned to some center. Therefore, some

individuals may be located far from its assigned cluster. These

individuals would pull on the cluster center, potentially shifting the

center’s location such that it no longer coversmost of the population

density in the cluster. To remove the effect of these outliers, we first

apply the Density-based spatial clustering of applications with noise

(DBSCAN) algorithm to the unpaired population. The DBSCAN

is able to distinguish between core points, those that are a part of

a high density area, and non-core points, those that lie far from

neighboring points. Finally, we apply K-means to the subset of core

points to find reliable cluster centers. This process is summarized in

Algorithm 2. Once the location for the mobile centers are identified,

we rerun the pairing algorithm using the resource contributions

from both stationary and mobile NGOs.

4 SIMULATION RESULTS
In order to test our resource allocation and assignment algorithms,

we built a bounded 2-dimensional grid environment containing

simulated NGOs and PiNs. Each tile in the grid corresponds to a

roughly 330 feet by 330 feet city block. Multiple PiNs can occupy

the same tile and share this space with an NGO, but only at most

one NGO is allowed to be located per tile. We emulate a few simple

migratory patterns in the following manner. Each PiN is randomly

assigned one of four possible movement patterns: (1) stationary, (2)

strictly along a horizontal path, (3) strictly along a vertical path,

and (4) looping along a rectangular path. At each time step, the

PiNs move according to their designated movement patterns.

Here, we present a comparison between the traditional resource

allocation method in which NGOs distribute resources to PiNs in

the vicinity without coordinating with other providers, and our pro-

posed method of resource distribution while assuming the ground-

truth location of all homeless people is known. Our results are

based on an environment set to 13 tiles wide by 11 tiles long with 1

permanent supplier, 2 mobile suppliers, and 50 PiNs.

As shown in Figure 2, our proposed method shows a 25% re-

duction in food waste and average hunger, while theconsistently

reaching almost the same number of individuals. We can under-

stand and explain the improvements from the perspective of our

algorithm design. In the traditional allocation method, certain indi-

viduals could repeatedly receive resources from multiple centers,
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Figure 2: Performance of our framework vs traditional allocation
methods across different criteria for measuring social welfare.

while slightly farther individuals would remain neglected. Our al-

gorithm specifically avoids feeding the same individual multiple

times unless other individuals have been first considered. This has

a two-fold effect: (1) we reduce the amount of food waste since we

are no longer over-feeding select individuals, and (2) we reduce

hunger across more individuals.

5 CONCLUSIONS
While there have been a handful of recent initiatives using mobile

technology to broadcast information about available resources to

the homeless, to our knowledge, none have taken a formal modeling

approach to ensure optimal resource distribution by coordinating

multiple providers. In this paper, we take the first steps towards

creating socially responsible smart cities. In particular, we propose a

framework to allocate mobile resources and pair them with people-

in-need in a manner that maximizes social welfare. We show that by

smartly coordinating the efforts of NGOs, a smart city can reduce

the resources wasted by 25%. In the future, we would like to adjust

our algorithm to take into account how NGOs can share resources.

We also plan to continue developing other aspects of our cyber-

physical framework, such as crowd-sourced information gathering,

population location prediction, and real-time implementation of

the proposed framework.
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