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Abstract

Previous application of our focused transport equation for energetic ion test particle acceleration by numerous
active small-scale flux ropes to solar wind conditions near 1 au yielded the formation of hard power-law spectra
with high particle pressure. We present an extended theory where the focused transport equation is coupled to a
new MHD turbulence transport equation for coherent, quasi-2D magnetic island structures, based on nearly
incompressible (N I) MHD turbulence theory. The latter equation includes new expressions for the magnetic island
damping/growth rates that enable a self-consistent description of energy exchange between energetic particles and
flux ropes during flux-rope acceleration for four flux-rope acceleration scenarios identified in focused transport
theory. Revised, more detailed expressions for coherent acceleration in response to mean dynamic flux-rope
properties and for stochastic acceleration due to fluctuations in dynamic flux-rope properties are presented. A
comparison is made between the efficiencies of the different flux-rope acceleration scenarios for suprathermal
protons in the solar wind near 1 au. Dynamic flux-rope-induced pitch-angle scattering and stochastic acceleration
rates are compared with the corresponding rates generated by interaction with parallel-propagating Alfvén waves.
The results stress the importance of parallel guiding center motion acceleration by the parallel reconnection electric
field formed in merging flux ropes, combined curvature drift and generalized betatron acceleration in contracting/
merging flux ropes in the compressible limit (flux-rope compression acceleration), and the fluctuating magnetic
mirroring force in flux ropes for pitch-angle scattering.
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1. Energetic Particle Acceleration by Small-scale Flux
Ropes near Primary Current Sheets

One of the enduring unsolved problems in heliospheric space
physics is the observed formation of energetic ion power-law
spectra in the suprathermal energy range of ∼1–100 keV in the
solar wind that were found to exist in quiet and turbulent solar
wind conditions (e.g., Fisk & Gloeckler 2006; Dayeh et al. 2009;
Hill & Hamilton 2010). Besides using diffusive shock accelera-
tion (DSA) theory and modeling at traveling shocks to explain
these power laws (e.g., Zank et al. 2000; Giacalone 2005; Kóta
et al. 2005; Lee 2005; Li et al. 2005; Ng & Reames 2008; le
Roux & Webb 2012; Verkhoglyadova et al. 2015), other earlier
attempts involved traditional quasi-linear kinetic theories invok-
ing second-order Fermi acceleration via resonant particle
interactions with magnetohydrodynamic (MHD) waves. For
example, Fisk (1976) and Schwadron et al. (1996) proposed
energetic ion acceleration as a consequence of particles under-
going the magnetic analog of a Landau resonance with obliquely
propagating fast-mode magnetosonic waves. Others have
considered energetic ion acceleration involving the gyroresonant
interaction of particles with parallel-propagating Alfvén waves
(e.g., Isenberg 1987; Bogdan et al. 1991; Fichthner et al. 1996).
Another possibility is ion acceleration due to nonresonant particle
interactions with intermediate-scale compressive solar wind
velocity fluctuations (e.g., Fisk & Gloeckler 2008; Fisk et al.
2010; Antecki et al. 2013; Zhang & Lee 2013; Fisk &
Gloeckler 2014). The combination of DSA with downstream
second-order Fermi acceleration by parallel-propagating Alfvén
waves has been considered by Campeanu & Schlickeiser (1992),
Vanio & Schlickeiser (1998), and Ng & Reames (2008).

However, in recent years evidence has been accumulating for
the existence of small-scale flux ropes with cross sections
coinciding with wavelengths of magnetic turbulence in the
inertial range (i.e., cross-section scales of ∼0.01 au and less) in
the solar wind near Earth. In this paper small-scale flux ropes are
considered as coherent, quasi-2D nonlinear structures advected
with the large-scale solar wind flow consisting of a twist, or
island, magnetic field component in the 2D plane perpendicular
to an out-of-plane axial, or guide/background, magnetic field
component (e.g., Cartwright & Moldwin 2010). It has been
argued that small-scale flux-rope structures are generated locally
near 1 au through magnetic reconnection at primary current
sheets such as the heliospheric current sheet and primary current
sheets associated with interplanetary coronal mass ejections and
corotating interaction regions (e.g., Cartwright & Moldwin 2010;
Eriksson et al. 2015; Khabarova et al. 2015, 2016). Observational
evidence suggests active small-scale flux ropes that merge as a
consequence of magnetic reconnection at secondary current
sheets formed between neighboring magnetic islands (e.g., Song
et al. 2012; Khabarova et al. 2015, 2016; Zheng et al. 2017).
In situ observational evidence also supports the idea that solar
wind regions containing merging (reconnecting) small-scale flux
ropes near primary current sheets in the solar wind are
responsible for the energization of electrons and ions (Khabarova
et al. 2015, 2016; Khabarova & Zank 2017; Zheng et al. 2017).
Furthermore, there are indications that small-scale flux ropes can
be especially efficient accelerators when subject to strong plasma
compression (Khabarova et al. 2015, 2016; Guidoni et al. 2016).
For example, during interaction between the heliospheric current
sheet and interplanetary coronal mass ejections, magnetic
reconnection becomes more efficient at the disturbed heliospheric
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current sheet, and the production of small-scale flux ropes
intensifies. In addition, these structures experience strong
compression between the converging heliospheric current sheet
and the primary current sheets of interplanetary coronal mass
ejections, suggesting that island contraction and merging occur in
the compressible limit. This provides a possible explanation for
the observed strong enhancements in energetic particle fluxes up
to MeV energies behind traveling shocks (Khabarova et al. 2015;
Khabarova & Zank 2017), which prompted Zank et al. (2015a)
and le Roux et al. (2016) to theoretically investigate the
combination of DSA of energetic particles at shocks with
downstream acceleration of these particles by contracting and
merging small-scale flux ropes.

Simultaneous with these observational developments, micro-
scopic kinetic and macroscopic MHD simulations of turbulent
magnetic reconnection at single or multiple primary current
sheets emphasize that efficient particle energization can occur
(e.g., Ambrosiano et al. 1988; Oka et al. 2010; Li et al. 2015;
Guo et al. 2016). It appears that acceleration is especially
efficient in kinetic simulations when the plasma beta is
sufficiently small (Li et al. 2015; Guo et al. 2016). Efficient
acceleration is attributed to charged particles interacting with
and traversing numerous contracting and merging flux small-
scale magnetic islands or flux ropes formed by fast primary
current sheet reconnection involving a tearing-mode instability
or turbulence (e.g., Ambrosiano et al. 1988; Drake et al. 2006;
Oka et al. 2010). These simulations suggest that particles
temporary trapped in active small-scale islands are more likely
to be energized than particles interacting with the reconnection
electric field in the X-point regions between magnetic islands
because islands occupy a relative large volume compared to the
reconnection sites.

For energetic particles interacting with dynamic small-scale
flux ropes, basically three nonresonant acceleration scenarios
have emerged from full kinetic simulations as the main
contributors to particle energization (e.g., de Gouveia dal Pino
& Lazarian 2005; Drake et al. 2006; Oka et al. 2010; Drake
et al. 2013; Dahlin et al. 2014; Zank et al. 2014; Li et al. 2015;
Dahlin et al. 2016, 2017): (i) Energetic particles gain mainly
parallel kinetic energy when following the magnetic field of a
contracting magnetic island formed as a product of primary
current sheet reconnection. This can be understood in terms of
conservation of the second adiabatic invariant when the path
length along the magnetic field followed by the particle
between the endpoints of the contracting islands shortens with
time. Alternatively, and equivalently, acceleration can be
thought of as occurring predominantly as a result of curvature
drift in the direction of the motional electric field induced at the
contracting island endpoints (de Gouveia dal Pino &
Lazarian 2005; Drake et al. 2006; Li et al. 2015). (ii) Particles
gain mainly parallel kinetic energy when following the
magnetic field of two merging (reconnecting) neighboring
magnetic field islands. This also involves parallel kinetic
energy gain from conservation of the second adiabatic
invariant, but in this case the path length along the magnetic
field followed by the particle between the endpoints of the
merging structure effectively decreases in time because of field-
line straightening in the center of the merging structure from
the merging process (Drake et al. 2013). Also here the idea of
curvature drift acceleration applies because of curvature drift
occurring in the direction of the motional electric field induced
by the X-point outflow in the merging site. (iii) Parallel kinetic

energy gain occurs to the extent that particles temporarily
trapped in a merging magnetic island structure experience
parallel guiding center motion in the direction of the parallel
magnetic reconnection electric field generated in the secondary
current sheet diffusion region at the interface of two merging
islands (Pritchett 2008; Oka et al. 2010).
These acceleration scenarios were typically considered in the

limit of incompressible flux-rope contraction and merging
where the parallel kinetic energy gain in cases (i) and (ii) is
opposed by perpendicular kinetic energy loss from the betatron
acceleration mechanism due to the decrease in the flux-rope
magnetic field strength with time. Varying degrees of
perpendicular kinetic energy loss have been discussed for case
(ii), ranging from negligible loss if the particle distribution
maintains a beam-like distribution along the magnetic field, so
that acceleration approximates a first-order Fermi process
(Drake et al. 2006), to significant loss when the particle
distribution is nearly isotropic and acceleration becomes a
second-order Fermi process owing to strong particle scattering
(Drake et al. 2013; Zank et al. 2014; le Roux et al. 2015a).
The possibility of compressible flux-rope contraction and

merging in the solar wind, as suggested by observations
(Khabarova et al. 2015, 2016), was considered in Zank et al.
(2014) and le Roux et al. (2015a). In this case, both curvature
drift and betatron acceleration, due to an increasing flux-rope
magnetic field strength, contribute to kinetic energy gain, and
the particle acceleration is a first-order Fermi acceleration
process when the particle distribution is isotropic or nearly
isotropic. In the case of a beam-like particle distribution along
the magnetic field the compressible acceleration becomes
inefficient. Dmitruk et al. (2004) and Dmitruk & Matthaeus
(2006) discuss energetic ion acceleration in 3D MHD weakly
compressible turbulence with a strong uniform, out-of-plane
guide magnetic field, where it is predominantly perpendicular
kinetic energy gain associated with variations in the MHD
fields that matters. More recently, the role of compressibility in
particle acceleration by contracting and merging small-scale
flux ropes was investigated with full 2D kinetic simulations by
Li et al. (2018). This was done by comparing drift acceleration
due to compression with drift acceleration associated with shear
flow. Compression acceleration was found to be especially
important in the weak guide field limit, while shear-flow
acceleration rivaled compression acceleration when the guide
magnetic field becomes comparable to the reconnection
magnetic field component because of the increase in the
energetic particle anisotropy. In the case of a strong guide field
both these mechanisms are suppressed in favor of acceleration
by the parallel electric field.
The latter result is consistent with earlier particle simulations

where the flux-rope acceleration mechanisms discussed above
operate with varying levels of relative efficiency depending on
the relative strength of the guide/background magnetic field
perpendicular to the in-plane twist/island magnetic field of
flux-rope structures (e.g., Dahlin et al. 2014, 2016; Li
et al. 2015). From a 2D perspective, both the electric field
induced by island contraction and merging and the energetic
particle curvature drift velocity (acceleration cases (i) and (ii)),
being out-of-plane without a guide field, become predomi-
nantly in-plane in the presence of a strong guide field (le Roux
et al. 2016). In acceleration case (iii), a significant guide field is
beneficial (Dahlin et al. 2016), because then parallel guiding
center motion predominantly occurs along the guide field
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parallel to the out-of-plane reconnection electric field, thus
boosting the efficiency of particle acceleration compared to
acceleration cases (i) and (ii). A crucial question is to what
extent this 2D view of particle acceleration by small-scale flux
ropes will also apply in full 3D simulations in the presence of a
significant guide field. There is some support from Birn et al.
(1989) and Dmitruk et al. (2004), who found that with a
significant guide field magnetic reconnection still mainly
occurs in the 2D plane perpendicular to the guide field.
However, a key difference in 3D particle simulations with a
significant guide field appears to be the enhanced efficiency of
acceleration cases (i) and (ii) compared to 2D simulations
(Dahlin et al. 2017). This is because particle transport along the
guide field allow particles to efficiently exit flux-rope structures
to sample new contracting 3D island structures for further
acceleration. In 2D simulations particles tend to be trapped in
2D island structures (uniform flux ropes in the guide field
direction), where acceleration becomes less efficient as merging
and contraction come to an end.

2. Energetic Particle Acceleration by Small-scale Flux
Ropes in a Turbulent Plasma

So far, the discussion has emphasized particle energization by
local plasma regions of contracting and fast reconnecting
(merging) small-scale flux ropes generated in the vicinity of
large-scale primary current sheets through turbulent current sheet
reconnection. However, one can also approach this topic from the
perspective of MHD turbulence theory, simulations, and related
solar wind observations. Theoretical considerations and simula-
tions of MHD turbulence in the presence of a significant
background/guide magnetic field suggest that solar wind
turbulence can to lowest order be modeled in terms of a
combination of a dominant quasi-2D turbulence component of
coherent structures (small-scale magnetic islands) perpendicular
to the background/guide field and a minor parallel-propagating
Alfvén wave turbulence component (Shebalin et al. 1983; Zank
& Matthaeus 1992, 1993; Dmitruk et al. 2004; Zank et al. 2017),
a view that is consistent with analysis of solar wind observations
(Matthaeus et al. 1990; Bieber et al. 1996) and with the finding
that quasi-2D turbulence alone is not sufficient to explain
observed solar wind turbulence (Turner et al. 2012). A recent
analysis ofWind data to identify inertial-scale flux ropes indicates
that these structures are much more commonplace in the solar
wind near 1 au than previously thought. Zheng (2017), Zheng
et al. (2017), and Zheng & Hu (2018) identified an unprecedented
number of small-scale flux ropes at 1 au with scales in the
inertial range using the Grad–Shafranov reconstruction approach
(∼3500 per year on average) with a clear solar cycle dependence,
a number that is expected to grow when the data analysis shifts to
shorter timescales. Furthermore, an axial (out-of-plane) current
density distribution constructed from the Grad–Shafranov-based
data analysis yielded a non-Gaussian probability density function
(pdf) entirely consistent with the out-of-plane current density pdf
produced from compressible 2D MHD turbulence simulations
with a strong out-of-plane guide field, in which merging magnetic
island structures are a common occurrence (Greco et al. 2009).
This result, combined with the sheer number of small-scale flux
ropes being identified, suggests that the common occurrence of
small-scale flux ropes in the low-latitude solar wind near 1 au is a
natural consequence of local MHD turbulence evolution in a
highly conductive plasma with a strong guide field, independent
of additional flux-rope production at primary current sheets.

Furthermore, observational evidence of merging (magnetic
reconnection) of neighboring small-scale flux ropes at Earth
(Khabarova et al. 2015, 2016), including evidence on the basis of
Grad–Shafranov reconstruction of small-scale flux ropes (Zheng
& Hu 2016; Zheng 2017; Zheng et al. 2017), is consistent with
the concept of quasi-2D turbulence theory of an inverse cascade
of magnetic island energy to smaller wavenumbers.
Detailed analyses of high Lindquist number incompressible 2D

MHD turbulence simulations revealed the pervasive presence of
active multiscale magnetic islands separated by strong magnetic
field discontinuities in the form of secondary fast reconnecting
current sheets (Servidio et al. 2011). These intermittent
discontinuities were found to contribute to pdf’s of fluctuations
in the field strength that are strongly non-Gaussian on inertial
range scales and compare well with observed pdf’s in the solar
wind near 1 au (Greco et al. 2009; Servidio et al. 2011). Also on
this basis one might conclude that a background of small-scale
flux-rope structures exists in the solar wind, with additional local
sources of production near primary current sheets. In addition,
Trenchi et al. (2013) and Tessein et al. (2013, 2016) presented
observational evidence connecting energetic particle flux varia-
tions to magnetic field discontinuities that can be interpreted as
evidence of particle trapping in small-scale flux ropes and of local
particle energization at small-scale flux-rope structures, possibly
undergoing reconnection with neighboring flux ropes.
Simulations of particle acceleration in incompressible 2D

MHD turbulence solutions of highly conductive plasmas with a
uniform out-of-plane guide field also show the formation of
power-law particle spectra (e.g., Gray & Matthaeus 1992).
This is linked to the ubiquitous presence of small-scale
magnetic islands undergoing merging through fast reconnec-
tion (Servidio et al. 2011). More generally, weakly compres-
sible 3D MHD turbulence simulations that include a strong
guide field show that, in the 2D plane perpendicular to the
guide field, the 2D MHD turbulence picture of the formation of
a “sea” of active multiscale magnetic islands separated by
strong magnetic field discontinuities in the form of secondary
reconnecting current sheets remains largely intact (Dmitruk
et al. 2004). Simulation of ion and electron acceleration using
the compressible 3D MHD turbulence solution yields energetic
spectra with power laws, just as in the 2D case. This prompted
Dmitruk et al. to conclude that the 3D simulation with its strong
background/guide field can be interpreted reasonably in terms
of a quasi-2D MHD turbulence picture (Shebalin et al. 1983)
involving component reconnection (Birn et al. 1989), where
secondary current sheets between small-scale flux-rope
structures form in the guide field direction and merging or
reconnection of small-scale flux ropes mainly involves the
magnetic island component in the 2D plane perpendicular to
the guide field.

3. Motivation

3.1. Previous Theoretical Development

Based on the growing body of evidence for energetic particle
acceleration in solar wind regions with multiple dynamic small-
scale flux ropes, it is clear that a deeper theoretical understanding
of the observed formation of energetic ion power-law spectra at
suprathermal energies in the large-scale solar wind requires
investigation of the potential role of these structures. Based on the
overview above, we conclude that, irrespective of whether one
views the formation of active quasi-2D small-scale flux ropes in
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the turbulent solar wind as occurring mainly through reconnec-
tion locally at primary current sheets disturbed by solar wind
turbulence or as an intrinsic feature of a turbulent solar wind with
a significant background/guiding magnetic field, these coherent
structures in both cases are subject to the same dynamics of
contraction and merging (due to fast magnetic reconnection) that
can result potentially in efficient charged particle acceleration
according to the three acceleration scenarios outlined above.
However, simulation of charged particle transport and accelera-
tion in a “sea” of dynamic small-scale flux ropes using solutions
from MHD turbulence or kinetic models is time-consuming.
These approaches are currently not feasible for modeling
transport and acceleration of suprathermal charged particles in
the solar wind on large spatial scales. Thus, recent efforts by us
have attempted to unify the three main acceleration scenarios
discussed above through a large-scale kinetic focused transport
theory for suprathermal particles traversing numerous contracting
and merging inertial-scale magnetic islands with a strong
prescribed guide/background magnetic field (Zank et al. 2014;
le Roux et al. 2015a). This work extended previous steps in this
direction (e.g., de Gouveia dal Pino & Lazarian 2005; Drake
et al. 2006, 2013; Bian & Kontar 2013). A key characteristic of
our transport theory is that a distinction is made between
magnetic islands that contract and merge in an incompressible
and in a compressible fashion (Zank et al. 2014; le Roux
et al. 2015a; see Section 6). This flexibility enables us to
investigate observational evidence that suggests that compressible
contraction might be an important element in efficient particle
acceleration (Khabarova et al. 2015). Furthermore, our transport
theory distinguishes between coherent particle acceleration in
response to mean flux-rope properties and stochastic acceleration
in response to the variance in flux-rope properties such as the
contraction/merging flow velocity, the flux-rope magnetic field,
and the parallel reconnection electric field generated in merging
flux ropes (Bian & Kontar 2013; le Roux et al. 2015a, 2016).
Thus, energetic particle acceleration can also be modeled in cases
where the statistical probability of flux-rope contraction is
balanced by expansion to produce a zero mean contraction
electric field, for example (in simulations, alternating contractions
and expansions were detected to occur after merging of
neighboring flux ropes; Oka et al. 2010). Our theory also
includes the option for choosing between a quasi-linear transport
limit, where energetic particles propagate with undisturbed
guiding center motion (weak scattering limit), and a nonlinear
transport limit of diffusive guiding center motion (strong
scattering limit) along the magnetic field through small-scale
flux-rope structures (le Roux et al. 2015a, 2016).

3.2. New Theoretical Development

Our previous theoretical development efforts were limited to
modeling energetic particle acceleration by dynamic small-scale
flux ropes in the test particle limit (Zank et al. 2014; le Roux
et al. 2015a). However, applications of the theory in solar wind
conditions indicated that hard suprathermal power-law spectra
might form with high particle pressure (Zank et al. 2014,
2015a, 2015b; le Roux et al. 2015a, 2015b, 2016). This raises
the question of how the back-reaction of energetic particles on
small-scale flux ropes affects the efficiency of particle acceleration.
The main aim of this paper is to extend the kinetic transport
formalism of le Roux et al. (2015a) to enable a self-consistent
description of energetic particle acceleration by numerous dynamic
small-scale flux ropes on macroscopic scales. This is accomplished

by (i) deriving new growth/damping rate expressions for the total
energy density (kinetic plus magnetic) of the magnetic island
component of small-scale flux ropes based on conservation in the
exchange of energy between energetic particles and dynamic
magnetic island structures (it is assumed that flux-rope dynamics
and energy exchange between particles and flux ropes are mainly
confined to the magnetic island or twist component in the 2D plane
perpendicular to the prescribed strong guide/background magnetic
field component as discussed above) and (ii) deriving a new MHD
turbulence transport equation for modeling the transport of the total
energy density of magnetic islands, using the recently updated,
nearly incompressible (N I) MHD theory for turbulence transport
in a nonuniform solar wind medium (Zank et al. 2017) as a basis.
The island growth/damping rates are included in the MHD
magnetic island turbulence transport equation to complete a system
of closed equations for modeling self-consistent energetic particle
acceleration on large spatial scales in the solar wind.
Furthermore, the kinetic focused transport equation for

suprathermal particle transport and acceleration by small-scale
flux ropes of le Roux et al. (2015a, 2016) is presented in this
paper with revised and more detailed expressions of the
Fokker–Planck transport coefficients mmDI (pitch-angle scatter-
ing caused by small-scale flux ropes), mDp

I , mDp
I , and Dpp

I

(second-order Fermi acceleration due to small-scale flux ropes)
for four distinct acceleration cases present in focused transport
theory: (i) curvature drift and generalized betatron acceleration
(unified betatron and grad-B drift acceleration) in small-scale
flux ropes contracting and merging in the compressible limit,
(ii) curvature drift and generalized betatron acceleration in
small-scale flux ropes contracting and merging in the
incompressible limit, (iii) parallel guiding center motion
acceleration by the parallel reconnection electric field force
formed in merging small-scale flux ropes, and (iv) parallel
guiding center motion acceleration by the parallel noninertial
force associated with the acceleration of the plasma flow in
small-scale flux ropes. The last acceleration mechanism is
presented for the first time.
A new analysis is presented comparing the efficiency of the

four different flux-rope acceleration scenarios for suprathermal
protons with each other (for both coherent and stochastic
acceleration) and comparing the stochastic acceleration effi-
ciency of flux ropes with parallel-propagating Alfvén waves in
solar wind conditions at 1 au. The strength of pitch-angle
scattering for energetic protons at 1 au, induced through the
variance in the magnetic mirroring force present in small-scale
flux ropes, is compared with earlier estimates of the strength of
pitch-angle scattering in quasi-2D MHD turbulence associated
with the variance in the 2D turbulence magnetic Lorentz force
in prior quasi-linear theory approaches to 2D turbulence
(le Roux et al. 2004; le Roux & Webb 2007). Finally, pitch-
angle scattering rates by small-scale flux ropes are evaluated
against those associated with standard quasi-linear theory for
parallel-propagating Alfvén waves.

4. The Reconnection Electric Field and Plasma Drift
Velocity of Contracting and Merging Small-scale Flux

Ropes on MHD Scales

Our main interest is to use kinetic guiding center and its
close equivalent, focused transport theory, to model how highly
mobile energetic charged particles are energized on large
spatial scales in the solar wind when traversing numerous
contracting and reconnecting (merging) small-scale flux ropes
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that have turbulence inertial range (MHD) scales. For this
purpose our transport theory requires expressions for the
parallel electric field and for the plasma drift velocity
associated with magnetic flux-rope contraction and merging.

When particle energization by the reconnection electric field
is considered on microscopic scales much less than a thermal
ion gyroradius, that is, on thermal electron scales, the total
electric field E in the observer frame is often modeled using
standard MHD theory in terms of a generalized Ohm’s law
given by

= - ´ + ( )E U B E , 1e REC

where the reconnection electric field EREC is the electric field in
the plasma electron flow frame moving with a velocity Ue

relative to the observer frame. The reconnection electric field is
given by the expression
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where σ is the conductivity parameter associated with Coulomb
collisions, j is the current density, me is the electron mass, ne is
the electron number density, Pe is the electron pressure tensor,
and U≈ Ui is the average plasma flow velocity for ions and
electrons, typically dominated by ion flow Ui owing to ion
inertia. Thus, the induction equation for the evolution of the
magnetic field B in the observer frame reads

¶
¶

=  ´ ´ -  ´( ) ( )B
U B E

t
, 3e REC

where the last term indicates how the terms in the reconnection
electric field expression cause magnetic field propagation
relative to the plasma flow to enable reconnection at a current
sheet. The expression for EREC in Equation (2), simplified for a
small electron mass and approximate charge neutrality,
contains various nonideal collisionless MHD contributions
(electron pressure tensor gradient, and electron inertial terms)
and a contribution from the resistivity due to Coulomb
collisions, which can for the most part be ignored in our case
of a high-conductivity plasma such as the solar wind. A similar
expression for EREC can also be found using the electron
equation of motion (e.g., Scudder et al. 2015). From the
microscopic perspective, the different nonideal collisionless
contributions are large and comparable in small-volume current
sheet reconnection regions (e.g., Scudder et al. 2015), thus
playing a key role in collisionless reconnection in and near
primary and secondary current sheet layers, whereas away from
the current sheet regions these contributions become small
and one recovers the ideal MHD induction equation
¶ ¶ »  ´ ´( )B U Bt ( Ue≈ U).

However, our aim is to model energetic particle acceleration
by and transport through a “sea” of small-scale flux ropes in the
solar wind on inertial range (macroscopic) scales. The flux
ropes we consider have cross sections comparable to turbulence
wavelengths in the inertial range, as observed (e.g., Cartwright
& Moldwin 2010; Khabarova et al. 2015), and are classified as
a leading-order component of low-frequency solar wind MHD
turbulence in N I MHD theory (e.g., Zank et al. 2017). Viewed

on MHD scales, the nonideal collisionless terms that contribute
to the reconnection electric field Ee in Equation (2) are all
negligible when compared to the motional electric field term
(- ´U Be ) in Equation (1), and the observer frame electric field
simplifies to the standard motional electric field expression

= - ´ » - ´ ( )E U B U B. 4e

We decompose U and B according to
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distinguishing between the large-scale solar wind velocity U0

and magnetic field B0 and the random flux-rope flow velocity
δUI and magnetic field δBI. After inserting Equation (5) into
Equation (4) and doing standard Reynolds averaging, we find
that the mean observer frame electric field in the solar wind is

á ñ » - ´ + á ñ ( )E U B E , 60 0 REC

with
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so that
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t
. 80
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The last term in Equation (6), as expressed by Equation (7),
represents the magnetic island turbulence induced reconnection
electric field on macroscopic (inertial) scales, and the last term
in Equation (8) shows how the flux-rope turbulence associated
with this electric field causes the large-scale magnetic field to
move relative to the large-scale plasma flow to drive magnetic
reconnection at current sheets from a macroscopic-scale
perspective. Thus, the induction equation simplifies to an ideal
MHD induction equation in which a reconnection electric field
appears that is predominantly produced by inertial-scale
magnetic island turbulence. From this viewpoint, everywhere
that flux-rope turbulence exists in the solar wind, the magnetic
field is not frozen into the plasma flow. In passing, we note that
Eyink (2015) advocates a different averaging approach related
to renormalization group theory to avoid scale separation and
associated closure issues, which is beyond the scope of this
paper.
On MHD scales (scales larger than the ion inertial scale),

where the motional electric field predominantly determines the
solar wind electric field, the parallel electric field vanishes
because

= = - ´ = · · ( )E E b U B b 0, 9

where b is the unit vector in the magnetic field direction.
However, the parallel electric field effect is retained in our
focused transport equation and is introduced by the reconnec-
tion electric field in merging flux ropes on MHD scales, which
we estimate below to be mainly parallel to the background
magnetic field B0 near 1 au.
The existence of such a parallel reconnection electric field

can be understood by considering small-scale flux ropes as
consisting of a twist (magnetic island component) in the 2D
plane perpendicular to the axial component (see solar wind
observations by Cartwright & Moldwin 2010). Recent
observations at 1 au show that the axial (guide field) component
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of small-scale flux ropes is aligned with the Parker spiral
magnetic field direction (Zheng 2017). Furthermore, turbulence
observations (Smith et al. 2016) show that dá ñ »B B 0.1N

2
0
2 at

1 au, where δBN is the magnetic turbulence component
perpendicular to the ecliptic plane (meridional component) and
B0 is the magnitude of the background magnetic field
interpreted to be consistent with the Parker field model.
Assuming axisymmetric magnetic turbulence around B0, and
with the observation that ∼85% of inertial range magnetic
turbulence energy is in a quasi-2D turbulence component in the
2D plane perpendicular to B0 (Bieber et al. 1996; Weygand
et al. 2009; MacBride et al. 2010; Oughton et al. 2015;
turbulence fluctuation energy is mostly in vector components
with quasi-perpendicular wave vectors transverse to B0), we
get dá ñ »B B 0.17D2

2
0
2 .

These observations can be interpreted in terms of N I MHD
theory (Zank et al. 2017), where the equations for the quasi-2D
turbulence component allow for solutions of coherent magnetic
field structures that can be classified as magnetic islands with
plasma flow located in the 2D plane perpendicular to the
background magnetic field B0. In the theory B0 acts as a strong
axial or guide field component of the magnetic islands in solar
wind conditions near 1 au ( dá ñ =B BD2

2 1 2
0 , where ò is a

smallness parameter). On this basis we interpret small-scale
flux ropes at 1 au as having a twist (magnetic island) δBI and
flow component component δUI in the 2D plane perpendicular
to a relatively strong, locally uniform axial or guide field
component represented by the background magnetic field B0

(d ^B BI 0 and dá ñ =B BI
2 1 2

0 ), so that flux-rope dynamics
such as contraction and merging mainly involves the magnetic
island and flow component in this 2D plane (Shebalin
et al. 1983; Birn et al. 1989; Dmitruk et al. 2004). This implies
that the reconnection electric field produced in merging small-
scale flux ropes near 1 au should be mainly aligned with the
guide or background magnetic field B0 ( » )E EREC REC .
Furthermore, for such a relatively strong but weakly spatially
varying guide field, one can approximate energetic particle
guiding center transport at 1 au as occurring mainly along B0,
and thus along EREC , an ideal situation for particle acceleration
by the parallel reconnection electric field.

In our approach to modeling small-scale flux ropes, the magnetic
field unit vector b0 along the guide or background magnetic field
B0 is also the unit vector along the average magnetic field. This
follows because the unit vector along the magnetic field can be
approximated as

d» + »( ) ( )b b B bB , 10I0 0 0

because dá ñ B B 1I
2

0
2 in the strong guide field approximation.

Upon taking the ensemble average of b, the average field
direction becomes á ñ » ◦b b because we assume that dá ñ =B 0I

(the assumption of a random distribution of flux-rope structures
in the 2D plane perpendicular to B0 in quasi-2D MHD
turbulence). Accordingly, we introduce the parallel reconnec-
tion electric field by taking first the component of the
macroscopic motional electric field E=− U× B along the
average field direction b◦:

= - ´ · ( )◦E U B b . 11

Upon decomposing U and B in Equation (11) according to
Equation (5) and doing an ensemble average, we find that the

mean parallel electric field is

d d
d d

á ñ =-á ´ ñ

=-á ´ ñ = á ñ
 ·

( )
◦E U B b

U B E , 12
I I

I I REC

thus recovering the reconnection electric field expression of
Equation (7), because both d d ^U B B,I I 0.
When we consider the electric field (plasma) drift velocity on

MHD scales by inserting the motional electric field expression
(4), we find that

= ´ ´ = ^( ) ( )V b U b U , 13E

where U⊥ is the plasma flow perpendicular to the total magnetic
field. Upon decomposing b according to Equation (10) and U
according to Equation (5), and after applying the strong guide
field assumption d B B 1I 0 , we find that

d
d

= +
» +^ ^ ( )

V V V
U U . 14

E E EI

I

0

0

Therefore, the background plasma drift velocity » ^V UE0 0 ,
where U0⊥ is the background solar wind flow perpendicular to
the background/guide magnetic field B◦ and the flux-rope
plasma drift velocity d d»^ ^V UE I , where δ UI⊥ is the flux-rope
contraction/merging flow velocity in the 2D plane perpend-
icular to B◦.

5. The Role of Compressibility in the Evolution of Flux-
rope Magnetic Energy during Flux-rope Contraction and

Merging

Following Dahlin et al. (2016), Poynting’s theorem in the
limit of ideal MHD theory for a high-conductivity plasma can
be expressed as

k

m m

m m

¶
¶

+ 

= - -  - 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟·

· ( · ) ( · ) ( )

◦ ◦

◦ ◦

V

j E V V

t

B B

B B

2 2

2
, 15

E

E E

2 2

2 2

where VE is the plasma drift velocity, j is the net current density
for ions and electrons, and k = ( · )b b is the magnetic field
curvature vector. The magnetic tension force Ften exerted on a
plasma fluid element is related to magnetic field curvature
according to the expression

m

m
k

m

= 

= + 

( · )

( · ) ( )

◦

◦ ◦

F B B

b b
B B

B

1

. 16

ten

2

It then follows that the rate at which work is done by the
magnetic tension force on the plasma to advect it at the plasma
drift velocity can be expressed as

k
m

=· ( · ) ( )
◦

V F V
B

, 17E Eten

2

which is the last term in Poynting’s theorem (15) without a
minus sign. When a magnetic flux rope is contracting in the 2D
plane perpendicular to a locally uniform guide field, or two
such flux ropes with a common guide field are merging,
VE·κ>0, so that the magnetic tension force is doing positive
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work on a flux-rope plasma fluid element k m >(( · ) )◦V B 0E
2 .

According to Equation (15), the flux-rope magnetic field loses
energy, provided that the contraction or merging process is
sufficiently incompressible k (∣ · ∣ ∣ · ∣)V VE E and the
parallel electric field is sufficiently small. Thus, magnetic
flux-rope area conservation during contraction or merging in
the 2D plane perpendicular to the guide field releases magnetic
tension in these structures (circularization of contracting flux
ropes or field-line straightening of merging flux ropes in
X-point outflow regions in 2D plane as discussed by Drake
et al. 2006; Fermo et al. 2010; Drake et al. 2013), for example.

However, if the magnetic curvature contraction term (last
term in Equation (15)) is dominated by the compression term
(second-to-last term in Equation (15)) so that k (∣ · ∣VE
∣ · ∣)VE , the contraction or merging is strongly compressible
(∇· VE<0), resulting in an increase in flux-rope magnetic
energy instead. In this case the plasma environment is doing
positive mechanical work on the flux-rope structure, pushing
magnetic field lines together to enhance flux-rope magnetic
energy. Although it appears that small-scale flux ropes tend to
contract or merge predominantly incompressibly in discussions
of particle simulations (e.g., Drake et al. 2006; Dahlin
et al. 2016), and it is also thought of as intrinsically
incompressible in its manifestation as the quasi-2D turbulence
component in N I MHD theory of solar wind turbulence (Zank
et al. 2017), there is observational evidence to the contrary. For
example, when primary current sheets associated with inter-
planetary coronal mass ejections (ICMEs) interact with the
heliospheric current sheet, these structures are disturbed and
several small-scale flux-rope structures may be formed when
turbulent magnetic reconnection occurs in these structures. The
flux ropes, being trapped between the converging heliospheric
current sheet and the primary current sheets of ICMEs,
experience compression, which may lead to efficient particle
acceleration (e.g., Khabarova et al. 2015). However, it is
possible that the particles are bounded in space because they
cannot escape easily the region filled with small-scale flux
ropes, which implies more efficient acceleration. Furthermore,
in N I MHD theory of quasi-2D magnetic island turbulence,
incompressible flux ropes can be compressed by large-scale
density and flow velocity gradients in the nonuniform solar
wind (Zank et al. 2017; see also discussion of Equation (69) in
Section 8.2). Closer to the Sun, Guidoni et al. (2016) discuss
the possibility of strong plasma compression during magnetic
island contraction for islands propagating sunward during a
solar flare event.

It is interesting to note the relationship k = -· ·V bE

( · )b VE = s- + [ ( · )]Vb b 1 3i j ij E , where we express the
magnetic island curvature advection term VE·κ in terms of the
parallel component of the island plasma drift shear flow
- · ( · )b b VE . In this expression the shear-flow term has in
turn been related to the island plasma drift shear-flow tensor
s = ¶ ¶ + ¶[ V x V1 2ij Ei j Ej/ d¶ - ( · ) ]Vx 2 3i E ij with the aid
of the Cauchy–Stokes theorem (e.g., le Roux & Webb 2012; Li
et al. 2018). In the case of incompressible magnetic island
contraction where k ∣ · ∣ ∣ · ∣V VE E , k s» -·V b bE i j ij =
- ¶ ¶ + ¶ ¶[ ]b b V x V x1 2 i j Ei j Ej i = -  >· ( · )b b V 0E , sug-
gesting that island contraction or merging in this limit can be
modeled in terms of a negative parallel component of plasma
drift shear flow. For further discussion of the role of shear flow

and compression in magnetic island contraction and merging,
see Li et al. (2018).

6. A Guiding Center Kinetic Theory Perspective on the
Acceleration of Energetic Particles by Contracting and

Merging Flux Ropes—Role of Compressibility

Based on standard guiding center kinetic theory (Northrop 1963;
Kulsrud 1983; le Roux & Webb 2009), valid for a nearly
gyrotropic particle distribution with gyroradii much less than the
scale of the electromagnetic field in the plasma, one can express
the gyrophase-averaged energetic particle rate of change in kinetic
energy as

k
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E

E
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2

2
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where M is the magnetic moment of the energetic charged
particle, κ is the magnetic field curvature, m q= cos is
the cosine of the particle pitch angle so that m=v v , and

m= -^ ( )v v 1 2 1 2. Equation (18) has been simplified by
assuming fast charged particles ( = V v 1E ), neglecting
terms of higher than first order in V vE . Therefore, the effects
of polarization drift are not included in the discussion. Terms in
square brackets labeled with a “” symbol indicate gyrophase-
averaged parallel kinetic energy changes, whereas terms in
square brackets labeled with a “⊥” symbol are associated with
gyrophase-averaged perpendicular kinetic energy changes.
In the first line of Equation (18) it is shown how parallel

kinetic energy changes are associated with parallel guiding
center motion acceleration by the parallel electric field
component (first term) and curvature drift acceleration by the
perpendicular electric field component (second term). This is
followed by the second line of Equation (18), where
perpendicular kinetic energy changes are connected to betatron
acceleration by the electric field induced by the time variation
in the magnetic field strength B while conserving the magnetic
moment of the energetic particle (first term), grad-B drift
acceleration by the perpendicular electric field component
(second term), and parallel drift acceleration by the parallel
electric field component (last term).
Both the curvature drift and grad-B drift acceleration terms

in the first two lines of Equation (18) can be expressed in terms
of the plasma drift velocity VE as shown in the third and fourth
lines of Equation (18). The second term in the third line of
Equation (18) expresses curvature drift acceleration as a
consequence of the advection of the flux-rope magnetic
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curvature k = · ( · )b b b at the velocity VE because

k k= ´ =
f

 
· ( · ) ( )E b V

dK

dt
q

mv

qB
mv . 19E

2
2

In the case of flux-rope contraction or merging in the 2D plane
perpendicular to B0 when VE·κ>0, inevitably curvature drift
acceleration by the perpendicular electric field, induced by the
contraction or merging process, results in parallel kinetic
energy gain. Likewise, the center term in the fourth line of
Equation (18) expresses grad-B drift acceleration through the
advection of the perpendicular gradient of the flux-rope
magnetic field strength at the velocity VE due to flux-rope
contraction or merging processes. Hence,

=
´ 

= 
f

^ · ( · ) ( )E
B

V
dK

dt
q

M

q

B

B
M B, 20E2

resulting in perpendicular kinetic energy changes. Therefore,
perpendicular kinetic energy gain requires that the magnetic field
strength gradient have a component in the direction of the
contraction or merging velocity VE in flux ropes. In the fourth line
of Equation (18) we also see that the betatron acceleration term
¶ ¶M B t can be unified with the grad-B drift acceleration term

given by Equation (20), thus forming a generalized or Lagrangian
betatron acceleration term = ¶ ¶ + ( · )VMdB dt M t BE that,
besides describing particle acceleration from the time variation in
the flux-rope field strength, also models particle acceleration due to
the perpendicular spatial gradient in the flux-rope field strength
advected with plasma drift velocity (see discussion by Dahlin
et al. 2016).

The last term BdM/dt in the fourth line of Equation (18) is
equivalent to the parallel drift acceleration term (last term in the
second line) re-expressed in terms of the time variation of the
particle’s magnetic moment ( =  ´ · ( )E b bBdM dt q M q )
encountered by the propagating particle guiding center,
suggesting that conservation of the particle’s magnetic moment
(first adiabatic invariant) requires a small parallel electric field.
The second adiabatic invariant implies conservation of v s,
where s is distance along the curved magnetic field line (length
of curved magnetic field), which can be expressed as
á ñ = -f  ( )dv dt v ds dt s, thus relating the rate of increase
in parallel kinetic energy to the rate of decrease of the length of
the curved magnetic field due to flux-rope contraction or
merging in the 2D plane perpendicular to B0. In the limit of fast
particles ( v VE), a small parallel electric field, and a
magnetic field that is strongly curved k  [( · ) ]b B B,
expression (19) for curvature drift acceleration is a good
approximation for the total rate of change in parallel kinetic
energy. Accordingly, ká ñ = » -f  · ( )Vdv dt v ds dt sE ,
and the condition for the second adiabatic invariant to hold is
fulfilled (see also Drake et al. 2006; Dahlin et al. 2017). Zank
et al. (2014) combined conservation of the first and second
adiabatic invariants as the basis for constructing a simplified
flux-rope acceleration model for both compressible and
incompressible small-scale flux ropes.

Furthermore, comparing the terms for perpendicular kinetic
energy change in the fourth line with the corresponding terms in
the sixth line reveals that the generalized betatron acceleration in
the fourth line can be related to a combination of the VE·κ
and ∇· VE terms, assuming approximate magnetic moment

conservation (a small E value). Thus, generalized betatron
acceleration is determined by a competition between incompres-
sible flux-rope contraction or merging ( VE·κ>0) and
compressible contraction or merging (∇· VE<0). However,
such a competition does not appear in the curvature drift
acceleration term that depends only on VE·κ. To investigate this
issue further, it is useful to insert the relationships

k s= -  = - + · · ( · ) [ ( · )]V b b V Vb b 1 3E E i j ij E , intro-
duced in the last paragraph of Section 5, into the bottom two
lines of Equation (18). We find that

m

m s

= - 

- -

f
 ( · )

( ) ( )

V
dK

dt
qE v mv

mv b b

1

3

1

2
3 1 , 21

E

i j ij

2

2 2

where the ∇· VE term is recognizable as the standard Parker
cosmic-ray transport equation term for the combination of
curvature drift, grad-B drift, betatron, and parallel drift acceleration
that acts collectively as plasma drift compression acceleration and
produces net acceleration for the isotropic part of the energetic
particle distribution ( )f p0 (Kóta 1977; Webb et al. 1981).
Similarly, the last term in Equation (21) can be interpreted as a
combination of the parallel component of plasma drift shear tensor
acceleration associated with curvature drift acceleration with the
parallel component of plasma drift shear tensor acceleration
associated with unified grad-B drift, betatron, and parallel drift
acceleration. This combination can be viewed as the parallel
component of shear-flow tensor acceleration yielding net accel-
eration for the anisotropic part of the particle distribution related to
the second moment of the particle distribution ( )f p2 . Conclusions
made about the role of the moments of the energetic particle
distribution in acceleration involve (i) taking into account the full
transport term á ñ ¶ ¶fdK dt f K in guiding center kinetic theory,
where f is the particle distribution function; (ii) assuming a
Legendre moment expansion to the second moment for a nearly
isotropic particle distribution (see Equation (164) in Appendix D)
in which f1(p) is the first moment and f2(p) is the second moment
of the anisotropic part of the particle distribution; and (iii)
averaging over all μ values.
Upon decomposing the shear-flow tensor according to s =ij

s d- ( · )V1 3ij E ij
sh , where sb bi j ij

sh= ¶[ /b b V1 2 i j Ei ¶ +xj
¶b b Vj i Ej/¶ = ] · ( · )b b Vxi E in Equation (21), we find that

m

m

m
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+ - 
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E
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2 2

In addition to the Parker transport compression term, there is a
new compression term (third term in Equation (22)). Just like
the Parker compression term, the new term also combines
compression acceleration linked to curvature drift acceleration

m- ( ( · ))Vmv1 3 E
2 2 with compression acceleration asso-

ciated with unified betatron, grad-B drift, and parallel drift
acceleration m- - ( ( )( · ))Vmv1 3 1 2 1 E

2 2 . Different from
the Parker transport compression term that produces net
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acceleration for the isotropic part of the particle distribution
f0(p), the new compression term yields net acceleration for the
anisotropic part of the particle distribution related to f2(p). The
last term in Equation (22) combines the parallel component of
shear-flow acceleration associated with curvature drift accel-
eration ( m- · ( · )b b Vmv E

2 2 ) with the parallel component of
shear-flow acceleration linked to unified betatron, grad-B drift,
and parallel drift acceleration ( m- ( ) · ( · )b b Vmv 1 2 1 E

2 2 )
to form collectively a shear-flow acceleration term (reduced
shear-flow tensor without the compression term) that only
yields net acceleration for the anisotropic part of the energetic
particle distribution related to f2(p). Upon combining the two
∇· VE terms in Equation (22) and doing the substitution

k-  =· ( · ) ·b b V VE E , we find

m m k

m

= + -

- - 

f
 ( )( · )

( )( · ) ( )

V

V

dK

dt
qE v mv

mv

1

2
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1

2
1 . 23

E

E

2 2

2 2

Inspection of Equation (23) reveals that we recovered the
expression in the bottom two lines of Equation (18) in a slightly
different form. In the process we acquired an alternative
interpretation of the plasma drift compression term (center term
in Equation (23) and first term in the bottom line of
Equation (18)). We have determined that this term can also
be interpreted as a combination of curvature drift acceleration
with unified betatron, grad-B drift, and parallel drift accelera-
tion acting collectively as plasma drift compression accelera-
tion to yield net acceleration for both the isotropic and the
anisotropic parts of the energetic particle distribution. We also
found that the VE·κ term in Equation (23) can be viewed as a
combination of curvature drift acceleration with unified
betatron, grad-B drift, and parallel drift acceleration acting
collectively as plasma drift shear-flow acceleration that
produces only net acceleration for the anisotropic part of the
distribution.

6.1. Curvature Drift and Generalized Betatron Acceleration in
Contracting and Merging Small-scale Flux Ropes, the

Incompressible Limit

In the limit of incompressible flux-rope contraction or merging
(in the strong guide field limit we interpret this to mean magnetic
island area conservation during contraction or merging in the 2D
plane perpendicular to the guide/background magnetic field)

k< - = -  >· · · ( · )V b b VV0 0E E E . Then, from
Equations (18), (22), and (23) it follows that
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where we expressed the magnetic moment as =M
m¢ -( )M 1 2 . For incompressible magnetic island contraction

or merging k >( · )V 0E it is clear that curvature drift
acceleration must result in parallel kinetic energy gain, which
is associated with a negative parallel component for flux-rope
plasma drift shear flow as stated above (compare the terms in
square brackets associated with parallel kinetic energy changes
in Equation (24)). However, for generalized (Lagrangian)
betatron acceleration the result is perpendicular kinetic energy
loss (compare the first two terms in the square brackets in the
second line with the term in the second set of square brackets
in the third line), assuming approximate conservation of
the magnetic moment (neglecting the ¢BdM dt term in the
square brackets in the second line). This means that

= ¶ ¶ +  <( ( · ) )VMdB dt M B t B 0E . In this way we can
relate the perpendicular kinetic energy loss to a decreasing
magnetic field strength inside flux-rope structures when
following the plasma drift VE during incompressible flux-
rope contraction or merging. From Poynting’s theorem
(Equation (15)) we know that incompressible contraction or
merging of the flux-rope curved magnetic field results in
∂B/∂t<0, implying that betatron acceleration should be
associated with perpendicular kinetic energy loss. However,
because it appears that  >( · )VM B 0E near the endpoints in
contracting islands and in the X-point outflow regions of
merging islands, grad-B drift acceleration generates perpend-
icular kinetic energy gain for energetic particles. Thus,

<MdB dt 0 implies that perpendicular kinetic energy loss
from betatron acceleration dominates perpendicular kinetic
energy gain from grad-B drift acceleration in contracting and
merging flux ropes in the incompressible limit. The conclusion
that grad-B drift acceleration is of secondary importance is
consistent with the results of Pritchett (2008) and Dahlin et al.
(2014), for example.
In conclusion, energetic particle acceleration in incompres-

sible contracting and merging small-scale flux ropes is related
to negative parallel plasma drift shear-flow acceleration
involving a competition between parallel kinetic energy gain
from curvature drift acceleration and perpendicular kinetic
energy loss predominantly from betatron acceleration. By
combining the competing acceleration terms in each of the
bottom two lines of Equation (24), it follows that

m k

m

= -

=- - 

f
( )( · )

( ) · ( · ) ( )

V

b b V
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mv

mv

1

2
3 1

1

2
3 1 , 25
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revealing that net acceleration from the combination of the two
competing acceleration processes only involves the anisotropic
part of the distribution related to f2(p) when assuming an
expansion of the distribution to the second moment (nearly
isotropic distribution) and averaging the complete acceleration
term including the distribution function over all μ values. This
competition is illustrated in diagram form for ions in a
contracting small-scale flux-rope ion in Figure 1 and in two
neighboring merging flux ropes in Figure 2.
Inspection of Equation (25) reveals that for pitch angles

satisfying m > 1 32 , á ñ >fdK dt 0 so that curvature drift
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energization is more efficient than generalized betatron energy
loss during incompressible contraction/merging of small-scale
flux ropes. When μ2<1/3, betatron energy loss dominates
curvature drift energization. That is why the net acceleration
obtained from the two competing acceleration mechanisms
depends sensitively on the anisotropy characteristics of the
energetic particle pitch-angle distribution as discussed above.
Consider the following three possibilities: (1) If energetic
particles maintain a highly beamed pitch-angle distribution
(which requires negligible pitch-angle scattering), curvature
drift energy gain strongly dominates generalized betatron
energy loss, and for all practical purposes we have a first-order
Fermi acceleration mechanism as a consequence of incom-
pressible contraction or merging of curved flux-rope magnetic
fields (de Gouveia dal Pino & Lazarian 2005; Drake
et al. 2006, 2010). (2) If the energetic particle distribution
stays purely isotropic (extremely strong pitch-angle particle
scattering), we can average the last terms in Equation (25)
over all μ values to find á ñ =fdK dt 0, indicating that the
probability for curvature drift energy gain equals the
probability for betatron energy loss (Drake et al. 2010). This
supports the conclusion made above that net acceleration
requires and depends only on the anisotropic part of the
distribution. (3) The energetic particle distribution maintains a
particle distribution with a small pitch-angle anisotropy

(efficient pitch-angle scattering consistent with the diffusion
approximation). In this case particle energization by incom-
pressible contraction or merging of curved flux-rope magnetic
fields becomes a second-order Fermi acceleration process
(Drake et al. 2013; Zank et al. 2014; le Roux et al. 2015a). The
small anisotropy option is supported by self-consistent particle
simulations of turbulent magnetic reconnection and island
formation at stacked primary current sheets in the absence of a
guide field (Schoeffler et al. 2011; Drake et al. 2013), because
energetic particles are scattered by fluctuations generated by
plasma instabilities such as the firehose and magnetic mirror
instabilities, resulting in energetic charged particle distributions
with small anisotropies. However, in the presence of a strong
guide field, particle simulations suggest larger anisotropies
owing to weaker instabilities (Dahlin et al. 2017; Li et al.
2018).

6.2. Curvature Drift and Generalized Betatron Acceleration in
Contracting and Merging Small-scale Flux Ropes, the

Compressible Limit

When flux-rope contraction and merging occur in the
compressible limit (area reduction during contraction or merging
in 2D magnetic island plane perpendicular to the guide magnetic
field) so that k< - = -  >· · · ( · )V b b VV0 0E E E ,

Figure 1. Schematic diagram of energetic ion acceleration by a contracting quasi-2D flux rope in the incompressible limit. Shown is the island (twist) magnetic field
component BI of the flux-rope structure in the 2D plane perpendicular to the locally uniform guide field (axial) component B0 of the flux rope pointing into the page.
VE is the contraction velocity (plasma drift velocity) at the endpoints of the island, and κ=(b·∇) b is the magnetic curvature vector, which points in the same
direction as the contraction velocity VE. Thus, for a contracting island VE·κ>0. This ensures parallel kinetic energy gain from curvature drift acceleration by the in-
plane electric field EI≈− VE× B0 induced by contraction because á ñ >f·E Vq 0I C , where á ñfVC is the curvature drift velocity (see Equation (19)), but perpendicular
kinetic energy loss from generalized betatron acceleration (combination of betatron and grad-B drift acceleration) because <MdB dt 0 (see Equations (20) and (22)).
Since betatron acceleration generates perpendicular kinetic energy loss because of the decreasing magnetic field strength with time during contraction (see
Equation (15)) and grad-B drift acceleration results in perpendicular kinetic energy gain at the island endpoints, generalized betatron acceleration is dominated by
betatron kinetic energy loss.
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we find from Equations (18) and (22) that
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where the two∇· VE terms in the third line of Equation (26) are a
decomposition of the compression term ( · )Vmv1 3 E

2 , which
yields net acceleration for the isotropic part of the distribution f0(p)
(see Equation (21) and its discussion above), into parallel and
perpendicular kinetic energy changes. The two ∇· VE terms in
the fourth line of Equation (26) are a decomposition of
the compression term m - ( )( · )Vmv1 3 1 2 3 1 E

2 2 (see

Equation (22) and its discussion above), which produces net
acceleration for the second moment of the particle distribution
f2(p), into parallel and perpendicular kinetic energy changes.
Let us first concentrate on the compression terms for f0(p)

(those in the third line of Equation (26)) because they will
dominate acceleration for a nearly isotropic energetic particle
distribution. During contraction and merging in the com-
pressible limit, the dominant term ∇· VE<0 and the
relatively small term VE·κ>0. Thus, the term in the square
brackets in the first line containing VE·κ and the term in the
first set of square brackets in the third line containing ∇· VE

both suggest that curvature drift acceleration will contribute
to parallel kinetic energy gain during flux-rope compression.
By comparing the generalized betatron expression consisting
of the first two terms in the second line with the compression
term in the second set of square brackets in the third line, it
follows that the generalized betatron acceleration term will
result in perpendicular kinetic energy gain during flux-rope
compression (∇· VE<0) assuming approximate conserva-
tion of the magnetic moment ( » )dM dt 0 . Therefore,

Figure 2. Schematic diagram of ion acceleration by two merging (reconnecting), quasi-2D flux ropes in the incompressible limit. Shown is the island magnetic field BI

in the 2D plane perpendicular to a uniform guide field component B0 pointing into the page. VE is the X-point plasma outflow drift velocity in the merging area at the
center of the merging magnetic islands pointing in the same direction as the magnetic curvature vector κ. Thus, in the merging region (reconnecting area) VE·κ>0,
resulting in parallel kinetic energy gain from curvature drift acceleration and perpendicular kinetic energy loss from generalized betatron acceleration. Since betatron
acceleration results in perpendicular kinetic energy loss because of the decreasing magnetic field strength with time during the merging process (see Equation (15)) and
grad-B drift acceleration results in perpendicular kinetic energy gain in the merging island area, generalized betatron acceleration is dominated by betatron kinetic
energy loss. In the center of the merging area, the reconnection electric field = - ´E V BE IREC points into the page. Energetic particle guiding center motion along/
against B0 will result in parallel kinetic energy gain/loss from the reconnection electric field.
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= ¶ ¶ +  >( ( · ) )VMdB dt M B t B 0E , relating the
perpendicular kinetic energy gain to an increasing magnetic
field strength with time following the plasma drift flow in flux
ropes undergoing compression. Applying  ∣ · ∣ ·V VE E
k > 0 and ∇· VE<0 in Poynting’s theorem
(Equation (15)), it follows that ∂B/∂t>0, so that standard
betatron acceleration M(∂B/∂t) contributes to perpendicular
kinetic energy gain. Therefore, perpendicular kinetic energy
gain from generalized betatron acceleration can be explained
by standard betatron acceleration if grad-B drift acceleration
in contracting and merging magnetic islands is a minor
component, as discussed above, suggesting that what matters
is the increasing flux-rope field strength with time rather than
spatially. The compressible acceleration case is illustrated for
ions in a contracting small-scale flux rope in Figure 3.

Consider the compression terms in the bottom line of
Equation (26), which collectively yields net acceleration for the
relatively small second moment ( )f p2 of the particle distribu-
tion based on our moment expansion to the second moment for
a nearly isotropic particle distribution. For flux-rope compres-
sion (∇·VE<0) we find curvature drift acceleration resulting
in parallel kinetic energy loss (first term in the bottom line of
Equation (26)) and generalized betatron acceleration contribut-
ing to perpendicular kinetic energy gain (second term in the
bottom line). By combining again the compression acceleration
terms for curvature and betatron acceleration in each of the
bottom two lines of Equation (26), it follows that for flux-rope
compression

m
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The first compression term in Equation (27), associated with
f0(p), can be viewed as a first-order Fermi acceleration
mechanism because both curvature drift acceleration and
generalized betatron acceleration contribute to energy gain.
Therefore, net energy gain from the combination of the two
acceleration mechanisms occurs for all particle pitch angles
during flux-rope compression. The second compression term in
Equation (27) associated with f2(p) predicts net energy loss for
pitch angles μ2>1/3 when parallel kinetic energy loss from
curvature drift acceleration dominates, and net energy gain for
pitch angles μ2<1/3 when perpendicular energy gain from
generalized betatron acceleration dominates during flux-rope
compression. Consequently, in the case of a nearly isotropic
distribution maintained by frequent pitch-angle scattering,
particle energization associated with the anisotropic part of
the distribution related to f2(p) becomes a second-order Fermi
process (Zank et al. 2014; le Roux et al. 2015a). If the particle
distribution stays purely isotropic (extremely strong pitch-angle
scattering), we can average the last compression term in
Equation (27) over all μ values. This yields zero net energy
gain so that energy gain is determined by first-order Fermi
acceleration produced by the first compression term in
Equation (27) connected to f0(p).

To summarize, consider the key differences in combined
energetic particle curvature drift and generalized betatron
acceleration in flux ropes that contract and merge in the
compressible and incompressible limits. In the incompressible

limit there is a competition between parallel kinetic energy gain
from curvature drift acceleration and perpendicular perpend-
icular kinetic energy loss from generalized betatron accelera-
tion, which acts collectively in terms of a negative parallel
component of flux-rope plasma drift shear flow. The combined
acceleration only yields net energization when the particle
distribution is anisotropic because zero net acceleration occurs
for the isotropic part of the distribution. For a nearly isotropic
distribution expanded in Legendre polynomial moments to the
second moment, only the second moment f2(p) yields net
energization in the form of second-order Fermi or stochastic
acceleration due to efficient pitch-angle scattering. In contrast,
in the compressible limit there is both parallel kinetic energy
gain from curvature drift acceleration and perpendicular kinetic
energy gain from generalized betatron acceleration that act
collectively as plasma drift compression acceleration to yield
net acceleration for the isotropic part of the particle distribution
in terms of a first-order Fermi acceleration process. However,
additional compression acceleration issues from the anisotropic
part of the distribution, where there is a competition between
parallel kinetic energy loss from curvature drift acceleration
and perpendicular kinetic energy gain from generalized
betatron acceleration. In the limit of a nearly isotropic
distribution expanded up to the second moment, frequent
pitch-angle scattering turns this competition into a second-order
Fermi acceleration process, where only the second moment of
the particle distribution f2(p) produces net energization. Since
the isotropic part of the distribution is dominant, the probability
of first-order Fermi acceleration is higher. For a purely
isotropic distribution, there is no net energization from
second-order Fermi acceleration during flux-rope compression.
Net energization then solely stems from first-order Fermi
acceleration involving f0(p). It appears that if the limit of a
nearly isotropic particle distribution holds, one would expect
particle energization involving curvature drift and betatron
acceleration during compression acceleration to be more
efficient compared to when the same acceleration processes
are associated with incompressible shear-flow acceleration
because (i) first-order Fermi compression acceleration is most
likely to occur and (ii) its efficiency is not degraded by energy
losses. However, it is less clear whether compression
acceleration will be more efficient than incompressible shear-
flow acceleration when the particle distribution is strongly
anisotropic. For a further discussion of the role of shear flow
and compression in small-scale flux-rope acceleration from the
viewpoint of full kinetic simulations, see Li et al. (2018).

6.3. Parallel Guiding Center Motion Acceleration by the
Reconnection Electric Field of Merging Flux Ropes

Finally, consider the first term in Equation (18), which
represents parallel guiding center motion acceleration by the
parallel electric field component. We consider this component
to be the reconnection electric field generated as a consequence
of magnetic reconnection occurring in the 2D plane perpend-
icular to the guide field at secondary current sheets forming
between merging flux ropes, as discussed above. If a strongly
beamed ion pitch-angle distribution can be maintained in the
direction of the parallel electric field, only energy gain will
occur. For a completely isotropic energetic particle distribution,
when it is appropriate to average the first term in Equation (18)
over all pitch angles, the result is a zero net gain of parallel
kinetic energy because of the equal probability of energy gain
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and loss. In the case of a nearly isotropic distribution, both
energy gains and losses occur, and the parallel guiding center
motion acceleration by the parallel reconnection electric field in
merging flux ropes becomes a second-order Fermi acceleration
process. However, the difference is that the particle kinetic
energy rate of change for this acceleration mechanism is
proportional to particle speed, whereas for the combined
curvature drift and generalized betatron acceleration mechan-
isms it is proportional to particle speed squared. Thus, if
acceleration by the parallel reconnection electric field is
dominant at lower suprathermal energies, it might not be the
case at higher particle energies (e.g., le Roux et al. 2015b;
Dahlin et al. 2016).

Note that the discussion about a purely isotropic particle
distribution (or the isotropic part of the distribution) yielding
zero net particle acceleration for the latter two acceleration
cases only considered particle interaction with a single small-
scale flux rope. Further below we discuss whether this
conclusion also holds when energetic particles respond to
numerous contracting and merging magnetic islands. Besides
investigating particle acceleration in response to the mean
induced electric fields associated with numerous contracting

and merging small-scale flux ropes, we also analyze further
below how particle acceleration is affected in response to
statistical fluctuations of the electric fields (see also Bian &
Kontar 2013). These fluctuations are responsible for additional
second-order Fermi acceleration for each of the acceleration
mechanisms discussed above that should also be investigated.
Different from particle interaction with a single flux rope, we
find that these additional second-order Fermi acceleration
processes can occur for the isotropic part of the distribution for
each flux-rope acceleration case.

7. Classification of Flux-rope Acceleration Mechanisms in
the Focused Transport Equation

7.1. Relative Rates of Momentum Change

Before introducing our classification for the different flux-
rope acceleration mechanisms in focused transport theory, we
discuss the transformation of the standard guiding center
kinetic transport equation into an equivalent transport equation
commonly used in space physics applications, namely, the
standard focused transport equation (le Roux & Webb 2009; le
Roux et al. 2015a). In this approach, the focus shifts from

Figure 3. Schematic diagram of ion acceleration in a compressible contracting quasi-2D flux rope. Shown is the island magnetic field (twist component) BI in the 2D
plane perpendicular to a locally uniform guide field component B0 pointing into the page. In the compressible limit the divergence of the contraction velocity
∇· VE<0 results in perpendicular kinetic energy gain for energetic particles from the generalized betatron acceleration term >MdB dt 0 (see Equation (24)),
which combines the betatron acceleration term with the grad-B drift acceleration term. In this case the flux-rope magnetic field strength increases with time
(Equation (15)), so that both betatron and grad-B drift acceleration at the island endpoints contributes to perpendicular kinetic energy gain. Since VE·κ>0 for
compressible contraction, there is also parallel kinetic energy gain from curvature drift acceleration, but because k >∣ · ∣ ·V V 0E E in the compressible limit,
perpendicular kinetic energy gain from generalized betatron acceleration is dominant.
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describing energy changes in terms of guiding center motion,
drifts and particle gyration in the plasma electric fields, or
guiding center motion in the magnetic fields advected at the
nonuniform plasma drift velocity to energy changes associated
with guiding centers propagating in the total nonuniform
plasma flow. In the focused transport version, guiding center
kinetic theory terms for the rate of change in kinetic energy, as
presented in Equations (22) and (23), reappear as part of
similar-looking terms referring to the total plasma flow velocity
U, which we express in terms of a gyrophase-averaged relative
momentum rate of change:

m m
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The complete guiding center kinetic transport equation (not
shown) can be transformed into the focused transport equation
by (i) assuming the unspecified electric field of the plasma to be
the motional electric field E=− U× B, leading to the
replacement VE= U⊥, and (ii) transforming v from the
observer frame to the plasma flow frame according to

= ¢ +  bv v mU . Consequently, the total plasma flow velocity
= + ^U b UU appears as we move from a description where

particle velocity is transformed from the observer frame to the
nonuniform plasma drift frame ( VE-frame) to one where
particle velocity is transformed from the observer frame to the
frame of the total nonuniform plasma flow velocity (U-frame).
In the transformation process an additional acceleration term
appears referring to parallel guiding center motion acceleration
by the noninertial frame pseudo-force associated with the
parallel component of the acceleration of the plasma flow

·U bd dt with = ¶ ¶ + ( · )Ud dt t (for more details, see
le Roux & Webb 2007, 2009). Therefore, we can recover
exactly the guiding center theory expression for the rate of
change of kinetic energy given by Equation (23) from the
focused transport expression (28) by imposing the limit =U 0
in Equation (28), replacing U⊥ with VE, converting the shear-
flow term to the magnetic curvature advection term according
to k-  =· ( · ) ·b b V VE E , and multiplying Equation (28) by
the factor pv to convert the relative momentum rate of change
to the rate of change in kinetic energy.

Based on the discussion above of the different flux-rope
acceleration mechanisms from the perspective of guiding center
kinetic theory, as well as the close relationship between this
theory and focused transport theory as presented in
Equation (28), we classify and specify the different flux-rope
acceleration mechanisms appearing in the focused transport
equation using assumptions valid in the solar wind near 1 au
discussed in Section 4: (i) d d= + á ñ =( )U U U U 0I I0 ,

d d= + á ñ =( )B B B B 0I I0 , where U0 is the background solar
wind velocity, δUI is the small-scale flux-rope flow, B0 is the
background magnetic field also acting as the flux-rope axial or
guide field component (see discussion in Section 4), and δBI is
the small-scale flux-rope twist or magnetic island component;
(ii) the magnetic field direction d» + »( )◦ ◦b b B bBI 0

assuming the strong guide field limit dá ñ B B 1I
2 1 2

0 ; (iii)
dá ñ U U 1I

2 1 2
0 ; (iv) d ^U BI 0 and d ^B BI 0 vary spatially

predominantly in the 2D plane perpendicular to B0 .

On this basis, the relative gyrophase-averaged momentum
rate of change of energetic particles is decomposed into two
parts:

= +
f f f
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where á ñf( )p dp dt1 SW is the rate of momentum change due to
particle interaction with the nonuniform background solar wind
flow and magnetic field, and á ñf( )p dp dt1 I is the rate of
momentum change due to particle interaction with the nonuni-
form flow and magnetic field of contracting and merging active
small-scale flux ropes and the nonuniform parallel reconnection
electric field formed in merging small-scale flux ropes. Entirely
consistent with standard focused transport theory (e.g.,
Isenberg 1987; le Roux & Webb 2007),
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where Esurf refers to a nonmotional electric field component at
special surfaces such as the cross-shock electric field at shocks
(the background motional electric field is not included because
its parallel component = - ´ =· ·E b U B b 00 0 0 0 0 ). The
small-scale flux-rope acceleration mechanisms are classified
according to
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In Equation (32), the rate n IREC refers to the relative
gyrophase-averaged momentum rate of change sans the μ-
dependence due to energetic particle parallel guiding center
motion acceleration by the parallel reconnection electric field
formed in the reconnection zones of merging magnetic island
structures (as discussed in Section 4, in the strong guide field
limit both the field-aligned guiding center motion and the
reconnection electric field are predominantly along the guide
field B0). Consider the rate νACC in the second line of
Equation (32). This expression determines the relative
gyrophase-averaged rate of momentum change in response to
parallel guiding center motion acceleration by parallel
noninertial force FACC associated with the field-aligned

14

The Astrophysical Journal, 864:158 (51pp), 2018 September 10 le Roux, Zank, & Khabarova



component of the acceleration of the flow δUI of contracting
and merging flux ropes. The force has the vector component
expression

d d
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This flux-rope acceleration mechanism is a new addition to our
theory not considered in our initial theoretical development (le
Roux et al. 2015a). Finally, the rate n IINC determines the relative
gyrophase-averaged momentum rate of change for energetic
particles experiencing the combined acceleration effect of
curvature drift energy gain and generalized betatron energy loss
in contracting and merging small-scale flux ropes operating in
the incompressible limit (flux-rope parallel shear-flow accel-
eration), whereas n ICOM determines the combined gyrophase-
averaged acceleration effect of curvature drift and generalized
betatron energy gains when contracting and merging of small-
scale flux ropes occur in the compressible limit (flux-rope
compression acceleration).

7.2. Rate of Change of Pitch Angle

In the same way, the energetic particle gyrophase-averaged
pitch-angle rate of change in focused transport theory,
expressed in terms of má ñfd dt , where m q= cos (with θ the
particle pitch angle), can be decomposed into two contribu-
tions:

m m m
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where má ñfd dt SW is related to the rate of pitch-angle change due
to particle interaction with the nonuniform background solar
wind magnetic field and flow, and má ñfd dt I is connected to the
rate of pitch-angle change due to particle interaction with the
nonuniform magnetic field and flow of contracting and merging
active small-scale flux ropes and the parallel reconnection
electric field of merging flux ropes. Their expressions are
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Present in Equation (36) are the expressions n n n, , ,I I I
REC ACC INC

n ICOM, which, having determined the relative rate of change of p in
Equations (31) and (32), are likewise also determining the
associated rate of change of μ of energetic particles for the four
different flux-rope acceleration cases. However, there is an
additional contribution to the pitch-angle rate of change labeled

n IREF (first term of Equation (36)) with the approximate expression
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in the limit of a strong guide field (d B B 1I 0 ). For energetic
particles, this term should be the dominant contribution to the
total má ñfd dt I because n µ vI

REF is the only term in
Equation (36) that increases with particle speed. This term
refers to the magnetic mirroring force associated with the
nonuniform magnetic island (flux-rope twist) component field
strength δBI acting on energetic particles propagating along the
magnetic field, because we can rephrase Equation (37) in terms
of a parallel flux-rope mirroring force FREF with a vector
component

d
d» = - 

f

 ⎛
⎝⎜

⎞
⎠⎟· ( )B

F m
dv

dt
M

B
B , 38I
IREF 0

0

where M0 is the magnetic moment associated with the
background magnetic field. As discussed by Guidoni et al.
(2016), particles following the magnetic island field inside
small-scale flux ropes should encounter maximum field
strengths when they reach the center of the magnetic island,
resulting potentially in particle reflection in flux-rope center
regions.

8. The Coupled Kinetic-MHD Transport Equations for
Self-consistent Acceleration of Energetic Particles by

Numerous Contracting and Merging (Reconnecting) Small-
scale Flux Ropes

In le Roux et al. (2015a) we presented details of a derivation
of a focused transport equation with Fokker–Plank terms for
energetic charged particle nonresonant interaction with numer-
ous contracting and merging small-scale flux ropes. This was
accomplished using the standard guiding center kinetic
equation (Kulsrud 1983) as a starting point, followed by
transforming this equation into a focused transport equation
(le Roux & Webb 2009). We remind the reader that the derived
focused transport equation is restricted to particle energies
where the particle gyroradii rg=LI (LI is the characteristic
cross-sectional radius of the small-scale flux ropes considered),
which is ideal for studying energetic particles that are quasi-
trapped in these structures. Solar wind observations at 1 au
show small-scale flux ropes to have a characteristic cross
section up to ∼0.01 au near the heliospheric current sheet. For
comparison a suprathermal 1 keV proton at 1 au has a
gyroradius of ∼5×10−6 au. Thus, the theory applies to a
wide range of suprathermal particle energies that easily
includes MeV energies, making it suitable for studying
acceleration of suprathermal ions as observed in the solar
wind. A decomposition of the plasma flow and magnetic field
into a background solar wind component and a turbulent
magnetic island component was introduced, followed by a
perturbation analysis to model particle interaction with
numerous dynamic magnetic islands. This involved decom-
posing the relative particle acceleration rates in Equation (32)
and the pitch-angle rates of change in Equation (36) into mean
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and random fluctuating parts, that is,
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By allowing for mean acceleration rates, we can, for example,
model the acceleration effect if flux-rope contraction is more
probable than expansion (during early-time primary current
sheet reconnection), whereas taking the variance of fluctua-
tions, the acceleration rates enable us to simulate acceleration
when the probability of flux-rope contraction equals the
probability expansion and the mean acceleration rate is zero
(during later times when primary current sheet magnetic
reconnection gives way to a sea of intermittently merging
magnetic islands that expand and contract after merging; Oka
et al. 2010). The outcome of the perturbation analysis is a
modified focused transport equation that includes transport
terms for coherent particle acceleration by flux ropes in
response to mean flux-rope properties and Fokker–Planck
terms for stochastic particle acceleration due to statistical
fluctuations in flux-rope properties for each of the flux-rope
acceleration mechanisms. This equation was presented in le
Roux et al. (2015a) without the acceleration mechanism
associated with the acceleration of the flux-rope flow that we
include here. Furthermore, new, more detailed separate
expressions for the Fokker–Planck coefficients, for each of
the flux-rope acceleration scenarios listed in Equation (32), are
presented.

In this paper we extend the focused transport theory to
include a transport equation for total energy density (kinetic
plus magnetic energy density) of the magnetic island comp-
onent of small-scale flux ropes in the nonuniform solar wind
medium based on N I MHD theory (Zank et al. 2017). The
equation includes new expressions for the growth/damping
rates of magnetic island energy density, whose derivation is
based on total energy conservation in the exchange of energy
between energetic particles and flux ropes, thus coupling the
flux-rope transport equation to the focused transport equation.
We implicitly assume that energy exchange between small-
scale flux ropes in the inertial range and particles is dominated
by energetic (suprathermal particles) rather than thermal
particles. There is support from full particle simulations
indicating that, for small enough plasma β values, the magnetic
energy in magnetic islands is converted mostly into nonthermal
energy for both electrons and protons (Li et al. 2015), but the
range of β values for which this holds is not well known.
Provided that this condition is fulfilled, we can with this
extension simulate energetic particle acceleration by taking into
account the back-reaction of the energetic particles on flux
ropes, thus improving the estimation of acceleration efficiency
in cases where energetic test particle acceleration by flux
ropes is very efficient (Zank et al. 2014, 2015a, 2015b; le
Roux et al. 2015a, 2015b). To see the basic structure of the
two coupled equations, we present them compactly in the

following form:
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where the first equation is the focused transport equation for
energetic particles and the second equation is the transport
equation for total magnetic island energy density. The average
energetic particle distribution má ñ( )xf p t, , , is a function of
position x, momentum p, cosine of the pitch angle μ, and time
t. The distribution function is valid for nearly gyrotropic
particle phase-angle distributions in a mixed coordinate system
where position and time are measured in the fixed (observer)
frame and particle momentum is determined in the plasma flow
frame with velocity U= U◦+δ UI. In Equation (40)

 r d
d
p

= á ñ +
á ñ ( )◦ U
B1

2 8
41I I

I2
2

is the total average magnetic island energy density in the 2D
plane perpendicular to axial/guide magnetic field B◦, consist-
ing of the sum of the mean energy density of the magnetic
island flow (first term) and the mean energy density of the
island magnetic field (last term) in this plane.

8.1. The Focused Transport Fokker–Planck Equation for
Energetic Particle Interaction with Numerous Dynamic Small-

scale Flux Ropes

On the left-hand side of the top equation in Equation (40),
á ñ( )d f dt SW refers to the standard focused transport equation

for particle transport in a nonuniform background solar wind
flow U◦ and magnetic field B◦ (e.g., Isenberg 1987; le Roux &
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Webb 2007), which, expressed in conservation form, is
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Because of the interaction with the nonuniform solar wind flow
and magnetic field, particles experience advection in ordinary
space (á ñfxd dt SW), in momentum space (á ñfdp dt SW), and in

pitch-angle space ( má ñfd dt SW). The advection gyrophase-
averaged expressions are given by
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where Esurf refers to a nonmotional electric field component at
special surfaces such as the cross-shock electric field at shocks.

On the right-hand side of the top equation in Equation (40),
á á ñ á ññf· xd dt fI is the ensemble average of the divergence of
the differential particle flux, áá ñ ñfdp dt I is the ensemble averaged
rate of change of the particle momentum magnitude (kinetic
energy), and máá ñ ñfd dt I is the ensemble averaged rate of change
of the cosine of the particle pitch angle in response to mean flux-
rope dynamic properties. mm m mD D D D, , ,I

p
I

p
I

pp
I are Fokker–Planck

coefficients indicating the rate of change of the variance of p and μ
in response to the statistical fluctuations in flux-rope dynamic
properties, based on our assumption of flux-rope activity in the 2D
plane perpendicular to B0 as discussed above. Their expressions,
which combine all the different flux-rope acceleration mechanisms
as defined in Equations (32) and (36), are
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where mmDeff is the net pitch-angle scattering rate found by
adding the pitch-angle scattering rates from particle interac-
tion with Alfvén waves á ñmmDA and particle interaction with

small-scale flux ropes mmDI . The basic expressions for the
different flux-rope-induced relative acceleration and pitch-
angle scattering rates n n n n n, , , ,I I I I I

REC ACC INC COM REF that
appear decomposed into mean and fluctuating parts and
ensemble averaged in Equations (44) and (45) can be found
above in Equations (32) and (37). In the Fokker–Planck
coefficient expressions of Equation (45), τdec is the energetic
particle decorrelation time (the time interval on which
propagating energetic particles see decorrelated flux-rope
properties, such as the flux-rope flow, magnetic field, and
reconnection electric field, when interacting with many flux
ropes). The decorrelation time is estimated further below by
taking into account the time it takes for a particle to traverse a
magnetic flux-rope structure (see Section 9.2, below
Equation (73)).

8.2. The N I MHD Magnetic Island Transport Equation with
Damping Effects from Acceleration of Energetic Particles by

Numerous Dynamic Small-scale Flux Ropes

On the left-hand side of the second equation in
Equation (40), ( )d dtI SW refers to a transport equation
describing the total small-scale flux-rope energy density òI
(see Equation (41) for definition) in the 2D plane perpend-
icular to the guide/background magnetic field in the
nonuniform background solar wind flowing with velocity
U0 (i.e., the total magnetic island or flux-rope twist
component energy density). This transport equation was
derived on the basis of the quasi-2D magnetic island structure
transport equations in Elsässer variables from N I MHD
turbulence theory for a nonuniform plasma medium (Zank
et al. 2017; see Appendix B for more details). Expressing the
derived transport Equation (158) in Appendix B in partial
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conservation form, we find
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where n is a unit vector along 2D flux-rope turbulence in the
2D plane perpendicular to B0, sC

I is the normalized cross
helicity of quasi-2D magnetic island structures defined as
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The parameter d d= á ñ á ñr U VI
I AIA
2 2 is the Alfvén ratio of the

mean flux-rope kinetic energy over the mean flux-rope
magnetic energy in the 2D plane perpendicular to B0
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0), LI is the characteristic size of flux
ropes in the 2D plane perpendicular to B0 (average cross-
sectional radius of magnetic island), and pr= ( )V B 4A0 0 0
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Equation (46) was derived assuming isotropic 2D turbulence
in the 2D plane perpendicular to B0, in which case a=1/2
(see discussion related to Equation (151) in Appendix B). This
implies that the unit vector n pointing along 2D turbulence has
an arbitrary direction in this 2D plane. Note that the second
term on the right-hand side contains the solar wind flow
velocity U0 but not the Alfvén velocity. The leading-order
description of N I MHD theory thus models 2D magnetic island
structures that are advected with the solar wind flow (zero
phase velocity), in contrast to previous MHD turbulence
models that also included Alfvén wave propagation effects
(e.g., Zhou & Matthaeus 1990; Zank et al. 2012). The reason
for this change becomes clear by noting that, for plasma beta
values appropriate in solar wind conditions (β∼1, β=1),
the leading-order MHD turbulence description of N I MHD
theory is a quasi-2D description without the Alfvén velocity
(Zank & Matthaeus 1993; Zank et al. 2017). The most widely
used MHD turbulence theory, on the other hand, is a 3D
incompressible MHD theory that yields a fully 3D description
to leading order that includes the Alfvén velocity (e.g., Zhou &
Matthaeus 1990; Zank et al. 2012). However, from the
perspective of N I MHD theory, this limit can only be

recovered when β?1, thus making it inappropriate for solar
wind applications.
Alternatively, we can express Equation (46) as
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where NL denotes the nonlinear terms in the last two lines of
Equation (54), and PI is the pressure of the quasi-2D magnetic
island turbulence related to òI through the relationship
 g= -( )P 1I I I , where

g s= + + -( ( ) ) ( )a1
1

2
1 4 1 . 50I D
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The combination  g g g= + = -( ( ))P P1I I I I I I I can be
viewed as the enthalpy of the quasi-2D magnetic island
structures. For magnetic island turbulence that is isotropic in
the 2D plane perpendicular to B0 (a=1/2), we find that
g s= +( )3 2I D

I . If, s = 0D
I , we recover the Alfvén wave

value γI=3/2 because then, as for Alfvén waves, =r 1I
A

(equipartition between flow and magnetic energy). Solutions of
the 2D turbulence transport equations of N I MHD theory for
the inner heliosphere (Zank et al. 2017) suggest that s  -1D

I

with increasing distance from the Sun so that, more
realistically, g  1I . Equation (54) is valid for a plasma beta
of order 1, thus making it suitable for application in the
supersonic solar wind. This includes solar wind conditions near
1 au (Zank et al. 2017), which are our main interest in this
paper.
To Equation (46) we add an equation from N I MHD theory

(Zank et al. 2017). The transport of the variance in the density
fluctuations associated with 2D magnetic island turbulence in
the nonuniform solar wind is given by
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According to the N I MHD theory in its most basic form, quasi-
2D flux-rope turbulence is intrinsically incompressible in a
uniform plasma medium. However, extended N I MHD theory,
as represented by Equations (46) and (51), applies to a
nonuniform plasma medium. These equations show how
compression of the background solar wind, modeled with the
expressions ∇· U0<0 and n·∇ρ0>0 (see the last two
lines of Equation (46) and the first two terms on the right-hand
side of Equation (51)), produces a variance in the flux-rope
density that contributes to enhancements in the total flux-rope
energy density òI. Just like the magnetic field and plasma flow
of flux ropes, the density variations are advected with the solar
wind plasma flow. This suggests that wherever the solar wind is
compressed strongly enough in regions filled with flux-rope
structures, the flux-rope structures themselves will experience
compression, resulting in an increase in the strength of the flux-
rope field δBI (see Equation (15)). This also suggests that flow
compression across shocks in the solar wind could be a source
of compressibility in small-scale flux ropes generated by
shocks.
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The terms on the right-hand side of the small-scale flux-rope
transport equation (second equation in Equation (40)) contain
the coefficients g á ñ( )fI

coh and g á ñ( )fI
stoch for modeling the

damping/growth of the magnetic island component of small-
scale flux ropes when energy is exchanged between energetic
particles and these structures. The coefficient
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represents the coherent damping rate of small-scale magnetic
islands when energetic particles are coherently accelerated in
response to the mean properties of active flux ropes. By
contrast,
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denotes the average stochastic damping/growth rate of the
magnetic island component of small-scale flux ropes when
energetic particles experience stochastic acceleration in
response to the fluctuating properties of active magnetic
islands (for more details about the derivation of these
expressions, see Appendix C). In Equation (53), second-order
Fermi acceleration is a combination of Dpp

I with ¶á ñ ¶ <f p 0
(typical for suprathermal particle spectra), resulting in damping
of the magnetic island energy density. However, particle
energy change through the combination of mD p

I with m¶á ñ ¶f
depends on the sign of m¶á ñ ¶f , thus allowing for the
possibility of growth in the magnetic island energy density. It is
interesting to note that g I

stoch depends on pitch-angle and
momentum gradients of the distribution as in standard quasi-
linear theory, but that gI

coh depends only on the particle
distribution function. This difference is reminiscent of the
discussion in weak plasma turbulence kinetic theory where
stimulated radiation emission is driven by momentum and
pitch-angle gradients of the particle distribution and sponta-
neous radiation emission is associated only with the particle
distribution itself (e.g., Yoon 2017).

9. Approximate Expressions for Energetic Particle Rates of
Momentum Magnitude and Pitch-angle Change for Each

Flux-rope Acceleration Case

9.1. Coherent Momentum Magnitude and
Pitch-angle Rates of Change

To make our theory useful for application to energetic
particle acceleration in dynamic small-scale flux ropes in the
solar wind near Earth (see discussions further below), we
derived approximate expressions for the average coherent
relative acceleration rates (sans the μ-dependence) for each of
the four different flux-rope acceleration cases listed in
Equation (32) (for more details, see Appendix A). The

expressions are
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With the aid of these expressions, approximations for the
complete average coherent acceleration rate expressions for
each of the four flux-rope acceleration cases listed in the second
line of Equation (44) can be found using the relationships
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In the expression for ná ñI
COM , s -[ ]1, 1I

COM . When flux
ropes experience only compressible contraction or merging,
s = +1COM
1 , whereas σCOM=−1 when compressible flux

ropes expand only. We specify σCOM=0 when the probability
of contraction is balanced by the probability for expansion. The
parameter d d= á ñ á ñr U VI

I AIA
2 2 is the Alfvén ratio of the mean

flux-rope kinetic energy over the mean flux-rope magnetic
energy in the 2D plane perpendicular to B0 ( dá ñ =VAI

2

d prá ñB 4I
2

0), LI is the characteristic size of flux ropes in the
2D plane perpendicular to B0 (average cross-sectional radius
of magnetic island), pr= ( )V B 4A0 0 0

1 2 is the Alfvén speed
associated with background/guide magnetic field, and
 p= B 8B0 0

2 is the energy density of the background/
guide magnetic field. Thus,  dá ñ = +( ) ( )B B r 1I I B

I2
0
2

A0 ,
and d dá ñ = á ñ( ) ( )U r B B VI

I
I A

2 1 2
A

1 2 2 1 2
0 0.

In the expression ná ñI
INC (second line of Equation (54)),

s -[ ]1, 1I
INC plays exactly the same role as s ICOM, but here we

refer to flux-rope contraction and merging in the incompres-
sible limit. In ná ñI

ACC (third line of Equation (54)),
s -[ ]1, 1I

ACC controls the net magnitude and direction of
the average noninertial force associated with the parallel
acceleration of the flux-rope flow when energetic particles
encounter multiple small-scale flux ropes. For example, if
s > 0I
ACC , particles with μ>0 (particles propagating in the

direction of B0) will be energized because then the net
noninertial force points in the direction of the guiding center
motion. Furthermore, LIr refers to the scale over which δUI

varies in the direction of the radial solar wind outflow from the
Sun (the sign of LIr indicates whether the gradient is positive or
negative). Also, in ná ñI

REC (fourth line of Equation (54)) σREC ò
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[−1, 1]. When s = +1I
REC , the reconnection electric fields of

neighboring merging flux-rope pairs all point in the direction
of B0; when s = -1I

REC , they point in the opposite direction of
B0; and s = 0I

REC indicates the reconnection electric fields of
multiple merging flux-rope pairs to be pointing randomly along
or in the opposite direction of B0. The expression for ná ñI

REC
also includes the sign of the net particle charge ∣ ∣q q , the ratio
of the net charge number over the mass number Z/A, and the
ion (electron) inertial length =d m V eBi e p e A, 0 0, where mp e, is
the proton (electron) mass. For ion acceleration one uses di,
whereas for electron acceleration one specifies de and sets
Z/A=1.

The expressions in Equation (54) can also be used to find
approximate expressions for the complete average coherent rate
of change in the cosine of the pitch angle μ for energetic
particles for each of the four different flux-rope acceleration
cases listed in the third line of Equation (44) by applying the
relationships
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However, for energetic particles, potentially the most
important contribution to the rate of change of μ comes from
the magnetic mirroring force present in small-scale flux ropes
(see Equations (36)–(38) and the related discussion). Taking
into account this effect, we derived the following approximate
expression for the average coherent pitch-angle rate of change
of energetic particles, which, without the μ-dependence, is
given by
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This expression models the effect of the average magnetic
mirroring force in the 2D plane transverse to B0 that energetic
particles encounter when traversing a volume of small-scale
flux ropes, assuming d B B 1I 0 and d ^B BI 0 (see discussion
in Section 7.2). In ná ñI

REF , s -[ ]1, 1I
REF . Thus, when s >I

REF
0, the mean magnetic mirroring force particles encounter when
traversing numerous flux ropes is such that particles propagat-
ing along the magnetic field (μ>0) will experience a
mirroring effect. Those propagating in the opposite direction
(μ<0) will experience a focusing effect. The opposite holds
when s < 0I

REF . When s = 0I
REF , the mean mirroring force

encountered by energetic particles crossing numerous flux
ropes is zero, resulting in a zero average coherent energetic
particle pitch-angle rate of change. The full approximate
expression for the average coherent pitch-angle rate of change
due to the mean magnetic mirroring force experienced by
energetic particles in multiple small-scale flux ropes can be

found by applying the relationship in the third line of
Equation (44) given by
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9.2. Stochastic Momentum Magnitude and
Pitch-angle Rates of Change

For the purpose of application to energetic particle
acceleration in dynamic small-scale flux ropes in the solar
wind near Earth as discussed below, the Fokker–Planck
scattering coefficients defined in Equation (45) were used as
a basis for deriving the following approximate expressions
(without the μ-dependence) for the variance in the particle
relative momentum magnitude/pitch-angle rates of change for
each of the flux-rope transport mechanisms listed in
Equations (31) and (36) (see Appendix A for further details):




























dn

dn
s

dn

dn
s

dn

á ñ »
+

á ñ »
+ +

+

´

á ñ »
+

á ñ »
- +

+

´

á ñ »
+

d

d

d

d

⎜ ⎟

⎜ ⎟⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

C a
r

r

V

L

C a
r r

r

V

L

a
r

r

V

L

U

v

C a
r r

r

Z

A

V

d

V

v

C a
r

V

L

v

V

1
,

2
1 4 1

1

,

1
,

4
1 4 1

1

,

1

1
, 59

I
I

I

I
A

I

I

B

I
I

I
C
I I

I

A

I

I

B

I
I

I

I
A I

B

I
I

I
C
I I

I

A

i e

A I

B

I
I I

A

I A

I

B

COM
2 A

A

0
2

2

INC
2 A

2
A

2

A
3

0
2

2

3

ACC
2 A

A

0
2

Ir
2

0
2

REC
2 2 A

2
A

2

A
2

2
0

2

2
0

2 2

REF
2

A

0
2

2
0

2

0

0

0

0

0

and




















dn dn s

dn dn
s

dn n

dn dn
s

á ñ »-

á ñ »-
+ +
+

´

á ñ »

á ñ »-
+ +
+

´

d

d

d

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

∣ ∣
( )

C
a V

L

v

V

C a
r r

r

V

L

v

V

C a
r r

r

q

q

Z

A

V

L

L

d

2
,

1 2 1

1

,

0,

1 2 1

1

,

60

I I
I C

I A

I A

I

B

I I
I

C
I I I

I

A

I A

I

B

I I
I

I I
I

C
I I I

I

A

I

I

i e

I

B

COM REF
0

2

2
0

INC REF
A A

1 2

A
2

0
2

2
0

2

ACC REF

REC REF
1 2 A A

1 2

A
3 2

0
2

2

3 2

0

0

0

where sC
I is the normalized cross helicity of quasi-2D magnetic

island structures (see Equation (47)) and the constant Cδ refers
to the assumption introduced by d d dá ñ = á ñd[ ( )]B C BI I

2 2 for
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closure purposes (see Appendix A). Furthermore, a=1/2
when making the simplifying assumption that 2D flux-rope
turbulence is on average isotropic in the 2D plane perpend-
icular to B0 (e.g., Zank et al. 2017). Definitions of the rest of
the parameters in Equations (59) and (60) can be found in
Section 9.1 below Equation (55).

Consider first the basic expressions for the Fokker–Planck
coefficients for the case of stochastic flux-rope compression
acceleration (combined curvature drift and generalized betatron
stochastic acceleration in flux ropes with compressible
dynamics) in Equation (45). The stochastic acceleration occurs
owing to fluctuations in the contraction/merging velocity and
the magnetic field of numerous magnetic islands. The
expressions are
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By inserting the approximate expressions for dná ñ( ) ( )I
ICOM

2 in
Equation (59) and dn dná ñ( )I I

ICOM REF in Equation (60) into the
basic Fokker–Planck coefficient expressions of Equation (61),
we find that
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where the average particle pitch-angle scattering rate
mm ( )T I

COM (variance in the particle pitch-angle rate of change

máD ñ Dt2 ) is the leading-order term in mmDCOM for energetic

particles associated with dná ñ( )I
REF

2 . Thus, mm ( )T I
COM can be

associated with the variance in the flux-rope mirroring force
encountered by energetic particles when interacting with
numerous compressible small-scale flux ropes. Its expression is
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Next, we consider the basic expressions for the Fokker–
Planck coefficients for the case of stochastic flux-rope parallel
shear-flow acceleration (combined curvature drift and general-
ized betatron stochastic acceleration in flux ropes with
incompressible dynamics) in Equation (45). Also in this case
the stochastic acceleration occurs owing to fluctuations in the
contraction/merging velocity and the magnetic field of

numerous magnetic islands. The expressions are
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By inserting the approximate expressions for dná ñ( ) ( )I
IINC

2 in
Equation (59) and dn dná ñ( )I I

IINC REF in Equation (60) into the
basic Fokker–Planck coefficient expressions in Equation (65),
we find
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and mmT is given by Equation (64). Note that the mean pitch-

angle scattering rate =mm mmT TINC COM (in the energetic particle
limit both expressions refer to the variance in the flux-rope
magnetic mirroring force that particles encounter during
interaction with multiple small-scale flux-rope structures).
For the case of fluctuations in the particle acceleration rate

due to variations in the noninertial force associated with the
parallel component of the acceleration of the flux-rope flow, the
basic expressions for the Fokker–Planck coefficients as
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presented in Equation (45) are









m dn dn t

m m dn dn

dn t

m dn t

= - á + ñ

= - á ñ

+ á ñ =

= á ñ

mm

m

m

( ) ( ) ( )

( ) ( ) [

( ) ] ( )

( ) ( ) ( )

D

D p

D

D p

1

4
1 2 ,

1

2
1

2 ,

. 68

I
I I

p I
I I

I
p I

pp I
I

ACC 2 2
REF ACC

2
dec

ACC 2
REF ACC

ACC
2

dec
ACC

ACC 2 2
ACC

2
dec

After inserting the approximate expressions for dná ñ( ) ( )I
IACC

2

in Equation (59) and dn dná ñ( )I I
IACC REF in Equation (60)

into the basic Fokker–Planck coefficient expressions in
Equation (68), we find that
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and, as before, =mm mmT TACC COM and mmT is expressed by
Equation (64).

Finally, consider fluctuations in the particle acceleration rate
associated with variations in the reconnection electric fields in
the diffusion regions at the center of merging small-scale flux
ropes. In this case the basic Fokker–Planck diffusion coefficient
expressions listed in Equation (45) are given by
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When we insert the approximate expressions for dná ñ( ) ( )I
IREC

2

in Equation (59) and dn dná ñ( )I I
IREC REF in Equation (60) into

the basic Fokker–Planck coefficient expressions in

Equation (71), we find the following:
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where =mm mmT TREC COM and mmT is expressed in Equation (64).
In the Fokker–Planck coefficient expressions above, mmT

contains τdec, which is the energetic particle decorrelation time
(the time interval on which propagating energetic particles see
decorrelated flux-rope properties [flux-rope flow, magnetic
field, and reconnection electric field] when interacting with
many flux ropes). The decorrelation time is estimated by taking
into account the time it takes for a particle to traverse a
magnetic flux-rope structure (crossing time), which in turn
depends on the particle propagation model. We consider two
limits. First, consider the weak scattering limit (quasi-linear
theory limit) in which a particle’s effective scattering time
t t d= á ñ L Uc I Isc
eff 2 1 2 (τc is the average magnetic island

dynamical timescale [nonlinear eddy turnover time or turbu-
lence correlation time]). In this limit we model τdec as a
competition between the average flux-rope crossing frequency
for undisturbed guiding center motion along the flux-rope
magnetic field (essentially propagation along the flux-rope
axial or guide field because of the strong guide field limit
we assume) and the frequency for particle advection by the
average magnetic island plasma flow across the guide field.
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Thus, the decorrelation time can be expressed approximately as
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where LI is the length of the flux-rope in the guide field
direction. L is generally thought to be considerably longer than
LI (the cross section of the flux-rope in the 2D plane
perpendicular to B0) in the N I MHD theory of quasi-2D
magnetic island turbulence (Zank et al. 2017) as observations at
1 au indicate (e.g., Weygand et al. 2011). In Equation (74),
the parameter d d= á ñ á ñr U VI

I AIA
2 2 is the Alfvén ratio of the

mean flux-rope kinetic energy over the mean flux-
rope magnetic energy in the 2D plane perpendicular to B0
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0), pr= ( )V B 4A0 0 0
1 2 is the Alfvén

speed associated with the background/guide magnetic field,
and  p= B 8B0 0

2 is the energy density of the background/
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Assuming the strong scattering limit (t t csc
eff ), we enter

the nonlinear transport limit of our theory, where energetic
particle guiding centers are assumed to diffuse along the flux-
rope magnetic field (mainly along the guide field). Random
disturbances in the guiding center trajectory in our theory can
be thought of as a product of energetic particles responding to
the magnetic mirroring force generated by the field-aligned
gradient in the flux-rope magnetic field strength. This can be
understood by considering a particle propagating inside a flux
rope in which the parallel field strength gradient varies not only
as a smooth function on spatial scales l?rg but also randomly
on smaller spatial scales l�rg owing to the presence of other
smaller-scale magnetic islands inside the flux rope that act as
magnetic scattering centers (e.g., Ambrosiano et al. 1988). In
addition, guiding center trajectories can also be randomly
distorted by interaction with other small-scale wave modes
present in flux-rope structures, such as Alfvén waves, which we
also consider. Thus, the effective particle scattering time tsc

eff is
determined from a competition between the particle scattering
frequency due to interaction with gyroscale Alfvén waves ná ñAsc
and the scattering frequency ná ñIsc due to interaction with
fluctuating magnetic mirroring forces generated in small-scale
flux ropes, resulting in parallel diffusion. As a result, the
particle decorrelation time τdec is determined by a competition
between the flux-rope crossing frequency due to parallel
diffusion mainly along the guide field and the crossing
frequency due to particle advection by the magnetic island
plasma flow across the guide field. This competition is captured
in the expression (for more details, see le Roux et al. 2015a)

t
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where t k=  LD I
2 eff1 is the flux-rope crossing time for

energetic particles diffusing basically along the flux-rope guide
field with an effective parallel diffusion coefficient k

eff1. The

parallel diffusion coefficient has the expression

k
n

=
á ñ

 ( )v1

3
, 76eff1

2

sc
eff1

where the effective scattering frequency is
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and n dn tá ñ = á ñ( )1 5I I
sc REF

2
dec (see Equations (169) and (170)

in Appendix D, where the diffusion approximation limit of our
theory is discussed), reflecting the competition between
gyroresonant scattering by Alfvén waves ná ñAsc and scattering
by mirroring forces ná ñIsc inside flux-rope structures as discussed
above.
In the limit of slow diffusion (t tc D), when particles are

advected with the plasma flow active in magnetic islands,
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As discussed in Appendix D.1, we consider this limit to be less
likely in the solar wind near 1 au based on our assessment that
flux-rope turbulence in these solar wind regions is subject to
the strong guide field limit. In the opposite limit of fast
diffusion (τD=τc),
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Assuming n ná ñ á ñI A
sc sc , which we find to be plausible in solar

wind conditions near 1 au as discussed below in Section 15,
and by working in the diffusion approximation, we solved a
nonlinear expression for the parallel diffusion coefficient due to
scattering by multiple small-scale flux-rope mirroring forces
(see Appendix D.1) and found the scattering frequency ná ñIsc
to be

n
p

d
d

á ñ »
á ñ

á ñ
d


( )C

a v

U

B B

L L

12

200
. 80I

I

I

I I
sc

2
2 2

2 1 2

2 2
0
4

3 2

Then the expression for τdec finally becomes
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where the ratio Cδ was introduced to enable the simplifying
substitution d d dá ñ = á ñd[ ( )]B C BI I

2 2 (see Appendix A). Further-
more, a=1/2 to indicate the assumption that 2D flux-rope
turbulence is on average isotropic in the 2D plane perpend-
icular to B0 (e.g., Zank et al. 2017) as is discussed in
Appendix B (see, e.g., Equation (151) and its discussion).
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10. Approximate Expressions for the Damping Rates of
Small-scale Magnetic Islands for Each Flux-rope

Acceleration Case

10.1. Coherent Damping Rates of
Small-scale Magnetic Islands

Upon inserting the expression for áá ñ ñf ( )dp dt I I (Equation
(44)) into the expression for g á ñ( )fI

coh (Equation (52)), the basic
expressions for the total magnetic island energy density coherent
damping rate in response to self-consistent coherent particle
acceleration by flux ropes for each of the four flux-rope acceleration
cases are
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After inserting the approximate expressions for the average
coherent relative acceleration rates (Equation (54)) into
Equation (82), we get the following expressions for the
coherent magnetic island energy density damping rates:
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10.2. Stochastic Damping Rates of Small-scale Magnetic
Islands

By inserting the expressions for m ( )Dp
I

I and ( )Dpp
I

I in

Equation (45) into the expression for g á ñ( )fI
stoch given by

Equation (53), we find the basic expressions for the total
magnetic island energy density stochastic damping rate in
response to self-consistent stochastic particle acceleration by
flux ropes for each of the four flux-rope acceleration cases.
They are
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Finally, we insert the approximate expressions for the variance in
the relative particle acceleration rates given by Equations (59)
and (60) into Equation (84) to acquire the following expressions
for the four different stochastic magnetic island energy density
growth/damping rates:


 ò òg
p

m

s
m

m
m

»-

´ +
¶á ñ
¶

+

´
¶á ñ
¶

-
¶á ñ
¶

mm
-

¥
⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( )

( )

d dpp v
pV

v
T

r
f

r
V

v

f
p

f

p

2

1

2
1

, 85

I
I

A

C
I I I A

COM
stoch

1

1

0

2 0 COM

A A
0

24

The Astrophysical Journal, 864:158 (51pp), 2018 September 10 le Roux, Zank, & Khabarova










ò ò

g
p

m m

s m
m

s

m m
m

m

» -

´
+

-

´ + + -
¶á ñ
¶

+
+ +

+

´ -
¶á ñ
¶

- -
¶á ñ
¶

mm
-

¥
⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

r
d dpp v

pV

v
T

r r
f

r r

r

V

v

f
p

f

p

2

1

1
3 1

1

2
1 1

1 4 1

1

6 1 2 3 1 ,

86

I
B

I
A

C
I I I

I
C
I I

I
A I

B

INC
stoch

A 1

1

0

2 0 2

A A
1 2 2

A
2

A
2

A

0

2 2

0

0


 ò òg
p

m

m

m
m

m

»

´

´ -
¶á ñ
¶

+
¶á ñ
¶

d

mm

-

-

¥

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

C r
L

L
d dpp v

V

v

U

v
T

f
p

f

p

2

2

1 , 87

I
I

I I

A

ACC
stoch 1

A
Ir

2

1

1

0

3

0
2

0
2

2












ò ò

g
p

m m

s m
m

s

m
m

m

» -
+

´

´ + + -
¶á ñ
¶

-
- +

+

´ -
¶á ñ
¶

+
¶á ñ
¶

mm

d

-

¥

-

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )
( )

∣ ∣

( ) ( ) ( )

( ) ( )
( ) ∣ ∣

( )

( )

r

q

q

Z

A

L

d
d dpp v p

V

v

V

v
T

C r r
f

a
r r

r

V

v

q

q

Z

A

L

d

f
p

f

p

2 1

1

2

1

2
1 1

8
1 4 1

1

1 .

88

I
I

I

I

B

I

i e

A

C
I I I

I
C
I I

I
A I

i e

I

B

REC
stoch

A
1 2

1 2

1

1

0

2 0 0

1 2
A A

1 2 2

A
2

A
2

A
1 2

0
2 1 2

2

0

0

11. The Coupled Kinetic-N I MHD Equations in the
Diffusion Approximation

As in le Roux et al. (2015a), we consider the possibility that
pitch-angle scattering by Alfvén waves and small-scale flux
ropes can result in a near-isotropic energetic particle distribu-
tion in momentum space for particle transport on large spatial
scales (the diffusion approximation). This enables us to write
down a pitch-angle-averaged diffusive equation for the large-
scale transport of energetic particles in dynamic small-scale
flux-rope regions with one less variable, which is useful for
computational efficiency. This can be done for either the quasi-
linear or nonlinear particle propagation limit of our theory.
Here we show only the diffusive approximation for the
nonlinear transport limit when the effective timescale for
particle scattering is shorter than the magnetic island dynamic
timescale (t t csc

eff ), as discussed in Section 8.1 below
Equation (46). We think that this limit might be more
appropriate for stronger turbulence conditions occurring behind
traveling shocks, for example, rather than in quiet solar wind
conditions.

The main differences compared to le Roux et al. (2015a)
are as follows: (i) more detailed, rederived expressions
are presented for the transport coefficients, such as for the
stochastic acceleration coefficient Dpp

I that includes the
acceleration effects of mDp

I and mD p
I on energetic particles;

(ii) a new transport coefficient for stochastic acceleration
involving the effect of fluctuations in the noninertial force due
to the acceleration of the flux-rope flow; (iii) the spatial
transport effects of mDp

I and mD p
I on energetic particles are

considered for the first time; (iv) a new N I MHD equation for
transport of the total magnetic island energy density (in the 2D
plane perpendicular to B0) in the nonuniform solar wind
medium that is coupled to the focused transport equation in the
diffusive approximation to facilitate self-consistent energetic
particle acceleration. Self-consistency is achieved with the
inclusion of flux-rope growth/damping coefficients appropriate
for a nearly isotropic energetic particle distribution. For
the interested reader, we present the detailed diffusive
approximation form of the coupled kinetic-N I MHD equations
in Appendices D and E. Specifically, in Appendix D we present
the Parker–Gleeson–Axford diffusive transport equation, and in
Appendix E we present the N I MHD transport equation with
growth/damping coefficients adjusted for nearly isotropic
energetic particle distribution functions.

12. Comparing Coherent Energetic Particle Acceleration
Rates for Different Small-scale

Flux-rope Acceleration Mechanisms

Standard kinetic theories for energetic particle interaction
with small-amplitude random wave turbulence (propagating
waves with random phases) typically describe the acceleration
process as a diffusion process in momentum space. This
utilizes Fokker–Planck coefficients that depend on the variance
in the electromagnetic fields of the wave turbulence. Usually,
acceleration as a coherent process in response to the mean
electromagnetic fields, which are assumed to be zero, is not
addressed. However, in the case of particle energization by
contracting and merging magnetic flux ropes, the possibility
exists that multiple flux ropes can have a mean contraction rate.
For example, at actively reconnecting primary current sheets in
the solar wind one can expect that numerous new contracting
flux ropes are being formed intermittently. Khabarova et al.
(2015, 2016) discuss how the heliospheric current sheet can act
as a source of contracting flux ropes whenever the current sheet
is disturbed. Khabarova et al. (2016) and Guidoni et al. (2016)
also discuss how magnetic flux ropes can experience
continuous compressible contraction at solar flare sites and
between the heliospheric current sheet and primary current
sheets associated with coronal mass ejections and corotating
interaction regions. Furthermore, merging of magnetic flux
ropes should produce a finite mean merging rate and perhaps a
finite mean reconnection electric field associated with the
merging process as well.
Inspection of the approximate expressions of the coherent

rates of relative momentum gain for the different flux-rope
acceleration cases (Equation (54)) reveals that in some cases a
stronger guide magnetic field (reduction in the ratio
dá ñB BI

2 1 2
0) will result in less efficient relative momentum

gain. Combined curvature drift and betatron momentum gain in
small-scale flux ropes that contract or merge in the compres-
sible limit and parallel guiding center motion momentum gain
in response to the parallel reconnection electric field force in
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merging flux ropes are not sensitive to an increased guide
magnetic field. Combined curvature drift and generalized
betatron momentum gain in small-scale flux ropes that contract
or merge in the incompressible limit ( dá ñ µ á ñf mṗ p B BI

INC 2
0
2) is

the most sensitive to an increased guide magnetic field. Finally,
parallel guiding center motion momentum gain in response to
the noninertial force associated with the parallel acceleration of
the flux-rope flow ( dá ñ µ á ñfṗ p B Bmu I

ACC 2 1 2
0) is sensitive to an

intermediate degree to an increase in the guide field strength.
This implies that coherent particle parallel guiding center
motion acceleration by the parallel reconnection electric field
increases in efficiency compared to net particle curvature drift
and generalized betatron acceleration in small-scale flux ropes
that contract and merge in the incompressible limit when the
guide field is increased relative to the magnetic island or twist
component consistent with kinetic particle simulations (Dahlin
et al. 2017; Li et al. 2018). It also means that combined
curvature drift and generalized betatron acceleration in small-
scale flux ropes that contract and merge in the compressible
limit will become relatively more efficient compared to
contraction and merging in the incompressible limit. However,
bear in mind that these conclusions are limited in that we do
account for a possible increase in the particle anisotropy and a
decrease in the level of compressibility with increasing guide
field strength (Dahlin et al. 2017; Li et al. 2018).

Comparison of the approximate average coherent energetic
particle rates of momentum gain listed in Equations (54)
and (55), assuming finite mean values for the contraction,
merging, and flow acceleration rates and for the reconnection
electric field of numerous contracting and merging small-scale
flux ropes, results in the following expressions for the
momentum gain rate ratios for the four flux-rope acceleration
cases discussed in this paper:
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where we introduced the simplification - »( ) ( )f p f p f0 2 0. In
Equation (89) the expressions for the acceleration rate ratios
were derived by including the weighting factor of the pitch-
angle anisotropy of the particle distribution function through
expansion of the particle distribution function to the second
moment in μ-space using Legendre polynomials (see
Appendix D, Equation (164) and its discussion), followed by
averaging the expressions over all μ values. Thus, in
Equation (89) f0(p) is the isotropic part of the energetic particle
distribution, the f1(p) term is the first-order anisotropy (odd
function in μ), and the f2(p) term is the second-order anisotropy
(even function in μ). By cutting off the expansion at the second
moment, we are, strictly speaking, limited to nearly isotropic
energetic particle distributions in which f0(p)?f1(p)?f2(p),
but in order to discuss the effect of significant particle
anisotropy on the acceleration rates, we will allow ourselves
the liberty to specify the maximum values f1,2(p)f0(p)/3 and
f2(p)f1(p). In the rest of this section we estimate and discuss
each of the coherent acceleration rate ratios listed in
Equation (89) for energetic protons experiencing acceleration
by small-scale flux ropes in solar wind conditions near 1 au.
The results are summarized for reference in Table 1.
Consistent with theory and observations for quasi-2D small-

scale flux-rope turbulence with cross sections in the inertial
range near 1 au (Smith et al. 2016; Zank et al. 2017), we apply
the strong guide field limit ( d = ( )B B O 1I 0 ). Then,

áá ñ ñ áá ñ ñ »f m f m˙ ˙ ( )p p O,
INC

,
COM 2 assuming that s s » 1I I

INC COM

and »( ) ( )f p f p3 12 0 (anisotropic particle pitch-angle distribu-
tion). This implies that, in the test particle limit, coherent
energetic particle energization for particles experiencing
the effect of a net contraction and merging rate from
multiple small-scale flux ropes is much more efficient when
these dynamic processes are predominantly compressive
( k ∣ · ∣ ·V VE E ) as compared to the case when contraction
and merging are mostly incompressible ( k ∣ · ∣ ·V VE E ).
As discussed above, this makes sense because in the case of
compressible flux ropes particles experience energization from
both curvature drift acceleration and generalized betatron
acceleration, whereas in the case of incompressible flux ropes
there is some competition between curvature drift energization
and generalized betatron energy loss.
For a nearly isotropic particle pitch-angle distribution, modeled

by assuming =( ) ( ) ( )f p f p O1 0 and =( ) ( ) ( )f p f p O2 0
2 ,

á ñ á ñ »f m f m˙ ˙ ( )p p O,
INC

,
COM 4 . In this case, the dominance of particle

acceleration by compressible flux ropes over incompressible flux
ropes is even more pronounced because acceleration by
incompressible flux ropes only involves the anisotropic part of
the particle distribution, whereas acceleration by compressible flux
ropes also involves the isotropic part of the distribution, which in
this case is the dominant part of the distribution. In the unlikely
situation of a purely isotropic distribution, f2(p)=0 and
acceleration by incompressible flux ropes ceases (the probability
of curvature drift momentum gain is balanced by the probability of
generalized betatron momentum loss; Drake et al. 2010) when
particles traverse numerous flux ropes with a mean contraction and
merging rate. According to Equation (89), one way for combined
curvature and generalized betatron acceleration in incompressible
flux ropes to be competitive with acceleration in compressible
flux ropes is to maintain a particle anisotropy of order
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»( ) ( )f p f p3 12 0 , together with a weaker guide field,
dá ñ »B B 1I

2 1 2
0 . Their is evidence from kinetic particle simula-

tions that for a guide field of approximately this strength the
energetic particle anisotropy can be sufficiently large that drift
acceleration associated with island flow compression is comparable
to drift acceleration associated with island shear flow (Li
et al. 2018).

Consider the case of coherent energetic particle parallel
guiding center motion energization assuming the existence of a
net quasi-parallel reconnection electric field from multiple
merging (reconnecting) small-scale flux ropes (áá ñ ñf mṗ ,

REC ).
Compared to the case of combined energetic particle curvature
drift and generalized betatron momentum gain by contracting and
merging flux ropes in the compressible limit (second line
of Equation (89)), we find near Earth that áá ñ ñf m˙ /p ,

REC

áá ñ ñf mṗ ,
COM ≈ ´ ( )( ) ( ( ))V v L L f f p5.7 10 3A I c

3
0

4 3
1 0 for ener-

getic protons assuming that s s » 1I I
REC COM . The maximum

small-scale flux-rope cross section size in the inertial range
» »L L 0.01 auI cmax , where Lc is the correlation scale of

turbulence at 1 au as discussed above, the ion inertial scale
di≈5.6×10−7 au, and dá ñ »B B 0.1I

2
0
2 at 1 au (Smith

et al. 2016). To estimate the ratio, we introduce a Kolmogorov
scaling for the total magnetic island energy density dá ñ( )B LI I

2 that
decreases in the inertial range as a function of the maximum flux-
rope cross section LI�Lc. This is accomplished according to the

relationship d dá ñ = á ñ-( ) ( ) ( )( )B L L L B LI I I c
s

I c
2 1 2 , where the index

s=5/3 for a Kolmogorov energy density spectrum. The
acceleration ratio decreases with increasing particle speed so
that combined coherent curvature drift and generalized betatron
momentum gain in compressible flux ropes becomes relatively
more important at higher suprathermal particle energies. How-
ever, domination of acceleration by compressible flux ropes near
1 au depends strongly on the maximum flux-rope cross section
under consideration. The energetic proton speed threshold, if
combined coherent curvature drift and betatron momentum gain
in compressible flux ropes is to dominate coherent parallel
guiding center motion momentum gain by the parallel reconnec-
tion electric field ( áá ñ ñ áá ñ ñf m f m˙ ˙p p,

COM
,

REC ), can be determined
from  ´ ( ) )( ( ) ( ))v U L L f p f p5.7 10 3I c0

2 4 3
1 0 . If we

choose flux-rope cross sections in the inertial range with
a maximum value of = =L L 0.01 auI c and assume that

»( ) ( )f p f p3 11 0 , we find that áá ñ ñ áá ñ ñf m f m˙ ˙p p,
COM

,
REC when

> ´v U 5.7 100
2, implying that curvature drift and generalized

betatron momentum gain in compressible flux ropes dominates
only for high kinetic proton energies T325MeV. Since the
observed suprathermal ion power-law spectra in the inner
heliosphere extend to 100 keV nucleon−1 (Fisk & Gloeck-
ler 2014), parallel guiding center motion momentum gain by the
mean parallel reconnection electric field dominates at all particle
speeds of relevance. However, if we consider flux ropes in the
inertial range with a smaller maximum cross section LI≈
10−4 au, that is, a reduction by a factor of a 100, we find that
áá ñ ñ > áá ñ ñf m f m˙ ˙p p,

COM
,

REC when >v U 1.20 , that is, for protons
with T>1.6 keV. In this case suprathermal energetic proton
momentum gain is dominated by curvature drift and generalized
betatron acceleration in the compressible limit.
Assuming instead a nearly isotropic particle distribution so that

=( ) ( )f p f p3 1 0 , and specifying ò=0.1, we find that if the
maximum flux-rope cross section LI≈Lc=0.01 au, then
áá ñ ñ > áá ñ ñf m f m˙ ˙p p,

COM
,

REC when v U 570 (T3.2MeV), indicat-
ing that coherent proton energization by the mean parallel
reconnection electric field dominates in the observed energy range
of energetic ions near 1 au. In this regard there is no qualitative
change compared to assuming a more strongly anisotropic
distribution. However, áá ñ ñ > áá ñ ñf m f m˙ ˙p p,

COM
,

REC when v U 2.60

(T>7 keV) for all flux-rope cross sections LI10−3 au. Thus,
because particle acceleration by the mean parallel electric field is
determined by the anisotropic part of the particle distribution
related to f1(p), a small anisotropy results in particle acceleration
being dominated by combined curvature drift and generalized
betatron momentum gain at suprathermal energies in compressible
flux ropes for larger flux-rope cross sections than possible in the
case of a strongly anisotropic distribution. Alternatively, consider-
ing again the maximum flux-rope cross section LI≈Lc=0.01 au,
combined with a further reduction in the anisotropy of the particle
distribution, then = =( ) ( )f p f p3 0.011 0

2 implies that
áá ñ ñ > áá ñ ñf m f m˙ ˙p p,

COM
,

REC when v U 5.70 (T32 keV) for
protons. Then, proton energization by the mean parallel reconnec-
tion electric field dominates at lower suprathermal energies,
whereas energization involving combined curvature drift and
generalized betatron acceleration in the compressible flux-rope
limit is more efficient at higher energies T32 keV. For
assuming a purely isotropic particle distribution f1(p)=0, there
is no net particle acceleration by the mean parallel reconnection
electric field because there is an equal probability for particle

Table 1
Ratios of Coherent Small-scale Flux-rope Acceleration Rates for Energetic

Protons

Acceleration Ratio Expression Value at 1 au

á ñ á ñf m f m˙ ˙p p,
INC

,
COM ( )f f0.1 3 2 0 =1

á ñ á ñf m f m˙ ˙p p,
REC

,
COM

´ ( )( )( )6 10 V

v

L

L

f

f
3

4 3 3A I

c

0 1

0

>1 if LI>10−4 au
and »f f3 11 0

<1 if f1/f0=1
á ñ á ñf m f m˙ ˙p p,

REC
,

INC
´ ( )( )( )6 10 V

v

L

L

f

f
4

2 3
A I

c

0 1

2

?1 if LI?di

á ñ á ñf m f m˙ ˙p p,
ACC

,
COM ( )( )0.32 U

v

f

f

30 1

0

=1

á ñ á ñf m f m˙ ˙p p,
ACC

,
INC ( )( )( )3.2 U

v

L

L

f

f

1 3
c

I

0 1

2

<1 if LI≈Lc and f1≈f2

>1 if f2/f1=1
á ñ á ñf m f m˙ ˙p p,

ACC
,

REC
´ - ( )5.2 10 L

L
4 c

I
au =1 if LI?di

Note. In the table we provide an overview of the simplified expressions and
estimated values of ratios of the coherent flux-rope acceleration rates for
energetic protons averaged over pitch angle and gyrophase. The estimates
were made for protons with kinetic energies 1 keV (v>U0, where U0 is
the solar wind speed) in solar wind flux-rope regions at 1 au. Flux-rope
cross sections LI were limited to values in the turbulence inertial range
(LcLIdi, where the turbulence correlation length Lc≈0.01 au is
specified to be the maximum cross section and the ion inertial scale
di≈6×10−7 au is assumed to be the minimum cross section). Energetic
particle anisotropies were restricted to intermediate and small values
(  f f f f3 1, 11,2 0 2 1 , where f0 is the zeroth moment or isotropic part and
f1,2 is the first [second] moment belonging to the anisotropic part of the
energetic particle distribution function). The distribution function was
expanded in terms of Legendre polynomials up to the second moment (see
Appendix D, Equation (164)). In the table, VA0 is the Alfvén speed
associated with the background solar wind magnetic field.
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motion along and opposite to the parallel reconnection electric field
force.

Using the same values as specified above, we find that
áá ñ ñf mṗ ,

REC /áá ñ ñf mṗ ,
INC ≈ ´ ( )( ) ( ( ) ( ))V v L L f p f p5.7 10 A I c

4
0

2 3
1 2

assuming s s » 1I
REC INC (third line of Equation (89)), implying

that áá ñ ñ áá ñ ñf m f m˙ ˙p p 1,
REC

,
INC for > ´ ( ) ( ( )v U L L f p5.7 10 I c0

3 2 3
1

( ))f p2 . For the case of an anisotropic energetic distribution with
»( ) ( )f p f p1 2 , áá ñ ñ áá ñ ñf m f m˙ ˙p p 1,

REC
,

INC for v U 2.60 (ener-
getic protons with T7 keV) for all flux-rope cross sections
LI10−7 au. In this case, domination of coherent particle
acceleration by combined curvature drift momentum gain and
betatron momentum loss in incompressible flux ropes over particle
acceleration by the mean parallel reconnection electric field is
restricted to considerably smaller flux-rope cross-section sizes
compared to compressible contracting and merging flux ropes.
Since small-scale flux-rope cross sections in the inertial range vary
approximately between diLILc au, where di≈5.6×10

−6,
and Lc≈0.01 au, this implies that áá ñ ñf mṗ ,

REC dominates for
energetic protons for flux ropes with cross sections in the inertial
range but does not dominate for smaller values in the dissipation
range. Assuming instead a nearly isotropic particle distribution with

= =( ) ( )f p f p 0.12 1 , áá ñ ñ áá ñ ñf m f m˙ ˙p p 1,
REC

,
INC for v U0

´ ( )L L5.7 10 I c
4 2 3, making it even more unlikely that domina-

tion of áá ñ ñf mṗ ,
INC can occur for flux ropes with cross sections in the

inertial range. One way for áá ñ ñf mṗ ,
INC to dominate, at least for the

smallest flux-rope cross sections in the inertial range, would require
maintaining a sufficiently strong particle anisotropy

»( ) ( )f p f p 12 1 combined with a weaker guide field so that
dá ñ »B B 1I

2 1 2
0 . This is in qualitative agreement with kinetic

simulation results (Dahlin et al. 2016, 2017; Li et al. 2018).
In the fourth line of Equation (89) we compare the coherent

particle momentum gain resulting from the mean parallel
acceleration of the flux-rope flow in multiple dynamic flux ropes
with the coherent momentum gain from the mean flux-rope
contraction and merging rate in the compressible limit. When
specifying LI≈LIr, s s » 1I I

ACC COM , and »( ) ( )f p f p3 11 0 , we
find áá ñ ñ áá ñ ñ »f m f m˙ ˙ ( ) ( )p p U v O,

ACC
,

COM
0 assuming the strong

guide field limit d = ( )B B OI 0 , where ò is a small parameter, at
1 au. This suggests that for suprathermal energetic particles with
speeds vU0 (protons with kinetic energy T1 keV),

áá ñ ñ áá ñ ñ <f m f m˙ ˙ ( )p p O,
ACC

,
COM . Thus, combined curvature drift

and generalized betatron energetic particle energization by
compressible flux ropes dominates parallel guiding center motion
energization by the parallel acceleration of the flux-rope
flow for proton kinetic energies T>1 keV, and the dominance
increases inversely with particle speed. This domination is further
enhanced for a nearly isotropic distribution assuming

=( ) ( ) ( )f p f p O3 1 0 . Also in this case, for a purely isotropic
particle distribution ( f1(p)=0) there is no net momentum
gain by energetic particles, because there is an equal probability
that energetic particles will propagate in the direction of
the noninertial force associated with the parallel acceleration of
the mean flux-rope flow and gain momentum, or move in the
opposite direction of the force and lose momentum.

If we compare the coherent momentum gain from the mean
acceleration of the flux-rope flow with coherent momentum
gain due to interaction with contracting and merging flux

ropes in the incompressible limit (fifth line of Equation (89)),
áá ñ ñf mṗ ,

ACC /áá ñ ñf mṗ ,
INC ≈ dá ñ( )( ) ( )( ( ) ( ))U v L L B B f p f pc I I0

1 3
0

2 1 2
1 2

assuming that s s » 1I I
ACC INC and that LImax≈Lc≈

0.01 au, where Lc is the correlation scale of turbulence at 1 au.
For a highly anisotropic energetic particle distribution with

»( ) ( )f p f p 11 2 we find that áá ñ ñ áá ñ ñf m f m˙ ˙p p 1,
ACC

,
INC for

particles with  ( )v U L L3.2 c I0
1 3 using the observation that

dá ñ »B B 0.1I
2

0
2 at 1 au. Thus, for LI=Lc, áá ñ ñ áá ñ ñf m f m˙ ˙p p,

INC
,

ACC

when v U 3.20 (T10 keV for energetic protons) and already
at low suprathermal proton speeds the dominating acceleration rate
is áá ñ ñf mṗ ,

INC . However, by limiting oneself to smaller maximum
flux-rope sizes in the inertial range LI10−5 au, one finds that

áá ñ ñ áá ñ ñf m f m˙ ˙p p,
ACC

,
INC for v U 3.20 or T10 keV for ener-

getic protons, so that for the bulk of the observed power-law
spectrum of ions at 1 au áá ñ ñf mṗ ,

ACC dominates áá ñ ñf mṗ ,
INC . For a

nearly isotropic distribution, assuming that = =( ) ( )f p f p2 1

0.1, áá ñ ñ áá ñ ñf m f m˙ ˙p p,
INC

,
ACC when  ( ) )v U L L32 c I0

1 3 . Thus, if

=L LI c, v U 320 , suggesting that áá ñ ñ áá ñ ñf m f m˙ ˙p p,
INC

,
ACC for

energetic protons with T1MeV. This implies that
áá ñ ñ áá ñ ñf m f m˙ ˙p p,

ACC
,

INC for the bulk of the observed power-law
spectrum of ions at 1 au. For smaller LI values this domination
extends to even higher particle speeds, leading to the conclusion
that for a nearly isotropic particle distribution áá ñ ñf mṗ ,

ACC is the
dominant acceleration rate for all flux-rope sizes in the inertial
range and for all proton energies in the observed energy range of
the power-law spectrum of energetic ions at 1 au.
Finally, consider the ratio of the rates of momentum gain in the

last line of Equation (89), the only ratio that does not depend on
the particle distribution. Both acceleration cases depend on the
anisotropic part of the energetic particle distribution f1(p) that
cancels out in the ratio. The ratio is independent of particle speed
(for nonrelativistic particles) because the relative rates of
momentum gain for both cases are inversely proportional to
particle speed (see Equation (54)). For energetic protons near 1 au
we find that áá ñ ñ áá ñ ñ » ´f m f m

-˙ ˙ ( )p p L L5.6 10 c I,
ACC

,
REC 4 at 1 au

assuming that s s » 1I I
ACC REC and LIr≈LI, implying that

áá ñ ñ > áá ñ ñf m f m˙ ˙p p,
ACC

,
REC at all suprathermal proton speeds, inde-

pendent of the size of the anisotropy in the energetic particle
distribution, for LI5.6×10−7 au. Thus, for all flux-rope cross
sections in the inertial range, áá ñ ñ > áá ñ ñf m f m˙ ˙p p,

REC
,

ACC .

13. Comparing Stochastic Energetic Particle Acceleration
Rates for Different Small-scale

Flux-rope Acceleration Mechanisms

In this section we estimate and compare the Fokker–
Planck momentum diffusion coefficients for the four main
small-scale flux-rope acceleration cases identified above for
suprathermal protons in solar wind turbulence conditions
near 1 au. These coefficients arise because energetic particles
experience stochastic acceleration when sampling statistical
fluctuations in the properties of numerous small-scale flux
ropes that they traverse. According to expressions (62), (66),
(69), and (72), the approximate expressions for the ratio of
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Note that, different from the case of coherent particle
acceleration, particle distribution function information does
not feature in the ratios for stochastic acceleration in
Equation (90). The reason is that when the stochastic
acceleration terms are averaged over all μ values, one finds
that all acceleration cases involve both the isotropic (see third
line of Equation (165) in Appendix D) and the anisotropic part
of the energetic particle distribution function. Thus, in the
ratios, the distribution function cancels out. For simplicity, the
μ-dependence of the ratio expressions is not shown. Estimates
of these expressions near 1 au presented below include
the approximation that the expressions in square brackets are
∼1. This approximation is supported by solutions of the N I

MHD equations for the transport of the leading-order quasi-2D
magnetic island turbulence component in the nonuniform solar
wind (Zank et al. 2017). According to these solutions, the
Alfvén ratio rA

I 0.1 and the normalized cross helicity
s » 0.3C
I near 1 au for the most plausible simulation that

includes magnetic-field-dominated 2D turbulence generation
by the shear-flow gradient that exists between fast and slow
solar wind streams.

Consider first the stochastic acceleration rate ratio
D Dpp pp

INC COM (first line of Equation (90)). Assuming that near
1 au dá ñ »B B 0.1I

2
0
2 (strong guide field limit) as discussed

above, »D D 0.01pp pp
INC COM . This implies that the second-order

Fermi acceleration of energetic protons associated with the
variance in the combined curvature drift and generalized
betatron acceleration rate due to fluctuations in the contraction
and merging rates of numerous contracting and merging flux
ropes is far more efficient near 1 au when contraction and
merging occur in the compressible limit compared to when

these processes occur in the incompressible limit. Comparable
acceleration rates would require relaxing the strong guide field
limit to dá ñ »B B 1I

2
0
2 .

In the second line of Equation (90) we compare the stochastic
acceleration rate Dpp

REC (variance in the parallel guiding center
motion acceleration rate) due to fluctuations in the parallel
reconnection electric field of numerous merging neighboring
small-scale flux ropes with Dpp

COM. Since µ ( )D D L vpp pp I
REC COM 2,

the ratio strongly decreases with increasing particle speed, but it
strongly increases with increasing flux-rope cross-sectional size LI.
Assuming a Kolmogorov spectrum for the flux-rope twist
component magnetic energy density as a function of LI, we
find that D Dpp pp

COM REC for particle speeds  ´v U 1.60

( )L L10 I c
3 4 3, where Lc≈0.01 au is the maximum cross section

for small-scale flux ropes in the inertial range near 1 au (Cartwright
& Moldwin 2010; Khabarova et al. 2015). This implies that Dpp

COM

dominates Dpp
REC for energetic protons provided that flux-rope cross

sections reside approximately in the inertial range with LI
10−4 au when v U 3.40 (T12 keV). Thus, for a range of the
largest small-scale flux-rope cross sections in the inertial range

 - L10 0.01 auI
4 , D Dpp pp

REC COM for energetic protons near
Earth.
Consider the third line in Equation (90), where we

compare Dpp
REC with Dpp

INC. As in the previous case, this ratio
decreases strongly with increasing particle speed and
depends sensitively on the value of LI. The main difference
is that whereas dµ á ñD D B Bpp pp I

REC COM 2
0
2, we now have

dµ á ñD D B Bpp pp I
REC INC

0
2 2 , resulting in larger ratios for

incompressible flux ropes in the strong guide field limit.
We find that D Dpp pp

INC REC for  ´ ( )v U L L1.1 10 I c0
4 2 3

for energetic protons assuming again a Kolmogorov
spectrum for the energy density of the flux-rope magnetic
island component as a function of LI. Compared to Dpp

COM,
one has to consider smaller LI values before reaching a point
where D Dpp pp

INC REC for energetic particles. We have to
reduce LI to LI10−7 au before Dpp

INC exceeds Dpp
REC at low

suprathermal speeds v U 5.10 or T26 keV. Given that
we estimated the ion inertial scale at 1 au to be
di≈6×10−7 au, which is approximately the scale at
which the turbulence inertial range crosses over to the
dissipation range, we conclude that Dpp

REC dominates Dpp
INC

for suprathermal protons for all small-scale flux-rope
cross sections in the inertial range. For domination Dpp

INC

to dominate just inside the inertial range would
require relaxing the strong guide field limit to the
level dá ñ »B B 1I

2
0
2 .

Next, we discuss the ratio D Dpp pp
ACC COM in Equation (90),

where Dpp
ACC represents stochastic acceleration of energetic

protons (variance in the parallel guiding center motion
acceleration rate) in response to statistical fluctuations in the
noninertial force associated with the field-aligned acceleration
of the flux-rope flow. Just as for D Dpp pp

REC COM,INC, D Dpp pp
ACC COM

decreases strongly with increasing particle speed, but unlike the
ratios D Dpp pp

REC COM,INC, this ratio does not depend on LI because
LIr is the heliocentric radial component of LI in the ratio
L LI Ir present in the expression D Dpp pp

ACC COM. Our estimate at

1 au shows that D Dpp pp
COM ACC for energetic protons with

 dv U C20
1 2 assuming »L L 1I Ir . Upon specifying Cδ≈1

(an appropriate choice considering that flux ropes
are intermittent nonlinear structures), it implies that

D Dpp pp
COM ACC when v U 20 or T4 keV for protons,
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thus largely covering the range of suprathermal energies of
accelerated ions in the solar wind near 1 au.

Consider the ratio D Dpp pp
ACC INC in the fifth line of Equation (90).

This ratio also decreases strongly with increasing particle speed,
just as D Dpp pp

ACC COM, but is comparatively strongly enhanced by
the factor dá ñ »( )B B 100I0

2 2 2 in the strong guide field limit at
1 au. Accordingly, it follows that D Dpp pp

INC ACC for energetic
protons with  ( )v U L L14.1 c I0

2 3. For LI=Lc≈0.01 au
(maximum flux-rope cross-sectional size in the inertial range at 1
au), D Dpp pp

INC ACC when v U 14.10 or T200 keV. Con-
sidering that the observed energetic ion spectra are power laws for
T0.1–1MeV at 1 au, it suggests that Dpp

ACC dominates
energization for practically all observed ion energies. This
dominance is further increased for smaller-scale flux ropes.

Finally, we estimate the ratio D Dpp pp
ACC REC. This ratio is

independent of particle speed since both stochastic acceleration
rates decrease as v−2 with increasing particle speed (nonrelativistic
particles). Upon assuming Cδ≈1, and that at 1 au »U V 10A0 0 ,
dá ñ »B B 0.1I

2
0
2 , LImax=Lc≈0.01 au, and di≈6×10

−7 au,
we obtain » ´ - ( )D D L L1.5 10pp pp c I

ACC REC 6 8 3, after specify-
ing a Kolmogorov spectrum to take into account the reduction in
total magnetic island energy density in the inertial range when
reducing the maximum considered flux-rope cross section from Lc
to a smaller value. This suggests that for LI≈Lc, D Dpp pp

REC ACC.
However, if one restricts oneself to small cross sections in the
inertial range LI5×10−5 au, one finds that D Dpp pp

ACC REC.

14. Comparing Second-order Fermi Acceleration Rates for
Small-scale Flux Ropes and

Parallel-propagating Alfvén Waves

First, we compare the second-order Fermi acceleration rate
of energetic protons due to fluctuations of small-scale flux-rope
dynamic properties in the quasi-linear limit of our theory with
second-order Fermi acceleration by parallel-propagating
Alfvén waves based on classical quasi-linear theory (e.g.,
Schlickeiser 1989; le Roux & Webb 2007) in the solar wind
near 1 au. In the quasi-linear limit (undisturbed guiding center
motion mainly in the guide field direction), energetic particles
see decorrelated flux-rope properties by crossing the flux rope
on a timescale t m»  ∣ ∣L vIdec , where LI is the length of the
flux ropes in the guide field direction, assuming that for fast
particles m dá ñ∣ ∣v UI

2 1 2 (see Equation (74) and its discussion
above). We find
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where the new parameters related to Alfvén waves are lA, the
bend-over scale separating the inertial range of the Alfvén

wave spectral magnetic energy density from the energy-
containing range at smaller wavenumbers, and dá ñBA

2 , a quantity
closely related to the average magnetic energy density of
Alfvén waves. For simplicity, the μ-dependence of the
expressions is not included. Upon specifying »r 0.1I

A (Zank
et al. 2017), » » ´ -

l L 3 10IA
2 au (Weygand et al. 2011),

d dá ñ á ñ »B B 4I
2

A
2 (Bieber et al. 1996; MacBride et al. 2010),

»L L 3I I (Weygand et al. 2011), and Cδ≈1, we find that

» –D D 0.016 0.055pp pp
ACOM for 1 keV–1MeV protons. Thus,

stochastic acceleration of energetic protons by Alfvén waves
dominates stochastic combined curvature drift and generalized
betatron acceleration due to fluctuations in small-scale flux-
rope properties in the compressible limit.
In the second line of Equation (91) we compare combined

stochastic curvature drift and generalized betatron acceleration
driven by fluctuations in small-scale flux-rope dynamics in the
incompressible limit with stochastic acceleration by Alfvén
waves. Since dá ñ »B B 0.1I

2
0
2 at 1 au (Smith et al. 2016),

implying a strong guide field limit, it is clear that stochastic
acceleration by Alfvén waves will dominate combined stochastic
curvature drift and generalized betatron acceleration in the
incompressible flux-rope limit even more strongly compared to
the compressible limit. Similarly, analysis of the expression in the
third line of Equation (91) shows that stochastic acceleration of
energetic protons by Alfvén waves dominates stochastic parallel
guiding center motion acceleration, due to fluctuations in the
noninertial force associated with the parallel acceleration of the
flux-rope flow, more strongly than it dominates combined
stochastic curvature drift and generalized betatron acceleration
in compressible flux ropes, assuming LI≈LIr and vU0 for
suprathermal particles.
Finally, consider D Dpp pp

AREC (bottom expression in

Equation (91)). We estimate at 1 au that » ´D D 4 10pp pp
AREC 4

for 1 keV protons dropping to » ´D D 1.3 10pp pp
AREC 2 for

1MeV protons because µ µ- -D D r ppp pp
A

g
REC 5 3 5 3. Thus, we

find that stochastic parallel guiding center motion acceleration
driven by fluctuations in the parallel reconnection electric field in
merging small-scale flux ropes strongly dominates stochastic
second-order Fermi acceleration by Alfvén waves in the range of
suprathermal energies observed for accelerated ion power-law
spectra at 1 au, assuming a Kolmogorov spectrum for Alfvén wave
magnetic field fluctuations. In conclusion, in the quasi-linear limit
of our theory, stochastic acceleration of suprathermal protons by
Alfvén waves is estimated to be more efficient for all the small-
scale flux-rope acceleration scenarios at 1 au except for stochastic
parallel guiding center motion acceleration by fluctuations in the
parallel reconnection electric field in merging small-scale flux
ropes. Stochastic acceleration by Alfvén waves is comparatively
efficient even though we assumed that there is four times more
energy in the magnetic island component of small-scale flux ropes
than in Alfvén waves at 1 au ( d dá ñ á ñ »B B 4I

2
A
2 ) as indicated by

the observations of Bieber et al. (1996) and MacBride et al. (2010),
for example.
Let us assume instead that the nonlinear transport limit

(strong scattering limit) of our kinetic theory for small-scale
flux ropes is more appropriate, considering that the fluctuation
energy measured for quasi-2D magnetic island structures far
exceeds that observed for Alfvén waves in the quiet solar wind
near 1 au as discussed above. After rederiving the ratio
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expressions in Equation (91), we find that
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having assumed that energetic particles in the strong scattering
limit see decorrelated flux-rope magnetic fields in the transport
limit of fast diffusion (τD=τc). In this limit the energetic
particle decorrelation timescale τdec is determined by expres-
sion (81). Upon specifying the same plausible parameter values
for 1 au in Equation (92) as we did in Equation (91), we find
that »D D 0.2pp pp

ACOM for 1 keV protons, increasing to ∼22.2 at
1 MeV. This indicates that second-order Fermi acceleration of
energetic protons might be dominated by Alfvén waves at low
suprathermal energies less than ∼11 keV based on a
Kolmogorov Alfvén wave magnetic energy density spectrum.
Combined stochastic curvature drift and generalized betatron
acceleration of energetic protons in compressible small-scale
flux ropes in response to fluctuations in flux-rope dynamic
properties appears to be more important above ∼11 keV in 1 au
solar wind conditions, thus reversing the result of our kinetic
theory in the quasi-linear limit at these energies.

Consider the ratio D Dpp pp
AINC for incompressible flux ropes in

Equation (92). Assuming that dá ñ »B B 0.1I
2

0
2 at 1 au (strong

guide field assumption), »D D 0.02pp pp
AINC for 1 keV protons,

increasing to ≈2.2 at 1 MeV. Thus, stochastic acceleration by
Alfvén waves strongly dominates combined stochastic curva-
ture drift and generalized betatron acceleration in response to
fluctuating dynamic properties of incompressible small-scale
flux ropes in the nonlinear limit of our theory at low
suprathermal proton energies. Combined stochastic curvature
drift and generalized betatron acceleration is only competitive
at higher particle energies of ∼1 MeV, which is in the vicinity
of the observed spectral rollover of energetic ions at 1 au.
Qualitatively, this result is in agreement with the result using
the quasi-linear limit of our kinetic transport theory, but the
dominance of stochastic acceleration by Alfvén waves is less
strong in the nonlinear limit.

In the third line of Equation (92) we have the ratio
D Dpp pp

AACC . Assuming Cδ≈1, we find for U0/v=1 (T≈
1 keV) that »D D 0.8pp pp

AACC . The ratio reduces to ≈0.08 at
1 MeV. For this range of suprathermal proton speeds,
stochastic acceleration by Alfvén waves is more efficient
compared to stochastic acceleration induced by fluctuations in
the noninertial force associated with the parallel acceleration of
the flux-rope plasma flow. Compared to the result for the quasi-
linear limit of our kinetic transport theory, energetic particle
stochastic acceleration produced by the acceleration associated

with the flux-rope flow is more competitive against stochastic
acceleration by Alfvén waves.
For the ratio D Dpp pp

AREC we find that » ´D D 5.5 10pp pp
AREC 5

for 1 keV protons, which reduces to » ´D D 5.5 10pp pp
AREC 4 at

1 MeV. In this case, stochastic parallel guiding center motion
acceleration in response to fluctuations in the parallel
reconnection electric field generated by merging flux ropes is
found to be far more efficient than stochastic acceleration by
Alfvén waves at all energies between 1 keV and 1MeV when
applying the nonlinear limit of our kinetic transport theory.
This is qualitatively in agreement with our result for the quasi-
linear limit of our theory. In the nonlinear limit, however, the
dominance is greater overall and continues to higher particle
energies.

15. Comparing Energetic Pitch-angle Scattering Rates for
Small-scale Flux Ropes and

Parallel-propagating Alfvén Waves

In earlier work based on quasi-linear kinetic theory the view
has emerged that 2D turbulence is inefficient in scattering
energetic particles (Bieber et al. 1994, 1996; le Roux et al.
2004). This can be seen from examining, for example, the
quasi-linear theory expressions in Section 4.1 in le Roux &
Webb (2007). Assuming a 2D turbulence component with a
correlation length scale l rD g2 in those expressions, we find
that the effective particle scattering frequency is given by

p d
t

»
á ñ

mm ( )T
B

B

2

3

1
, 93D2

2

0
2

dec

where particles see decorrelated 2D turbulence magnetic fields
on a timescale t t d» = á ñl Uc D Ddec 2 2

2 1 2. It has often been
assumed as a further simplification in quasi-linear kinetic
theories that energetic particles see decorrelated turbulence on
such short timescales that these particles will perceive the
turbulence to be static. Implementation of the static 2D
turbulence limit in Equation (93) implies that mmT 0

( dá ñ U 0D2
2 so that t  ¥dec ), suggesting that 2D turbulence

cannot result in pitch-angle scattering or parallel diffusion of
energetic particles. This occurs because particles in this theory
cannot see decorrelated static 2D turbulence if the turbulence,
on average, is statistically distributed axisymmetrically around
the background magnetic field, and perpendicular particle
transport is determined solely by gyromotion around the
background field. This explains the absence of gyromotion
effects in τdec of Equation (93) as an agent for decorrelation.
The inclusion of dynamic 2D turbulence in Equation (93)
( dá ñ ¹U 0D2

2 ), although more realistic, still produced relatively
inefficient pitch-angle scattering in 1 au solar wind conditions,
because dá ñ U UD2

2
0. As discussed in le Roux et al. (2004),

energetic particle pitch-angle scattering by dynamical 2D
turbulence at 1 au is less efficient than gyroresonant scattering
by parallel-propagating Alfvén wave turbulence even when
the 2D component dominates the Alfvén wave component
strongly, as observations near Earth show (Bieber et al.
1994, 1996).
However, in our focused transport approach, where quasi-2D

turbulence is represented by quasi-2D small-scale flux ropes,
the leading-order term in mmDI is determined by the variance in
the magnetic mirroring force that energetic particles encounter
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when propagating through multiple small-scale flux ropes. In
this case we find pitch-angle scattering for energetic particles to
be much more efficient compared to the results of previous
quasi-linear theory for 2D turbulence, as outlined in le Roux
et al. (2004) and le Roux & Webb (2007). This can be seen by
calculating the ratio mm mmD DI D2 , where mmDI refers to pitch-angle
scattering by small-scale flux ropes in the quasi-linear limit as
modeled in this paper, and mmD D2 refers to quasi-linear pitch-
angle scattering in 2D turbulence in le Roux & Webb (2007).
We find in the fast particle limit that

p d
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where t m»  ∣ ∣L vIcross is the particle crossing time of
small-scale flux ropes in the guide field direction assuming
undisturbed guiding center motion along the flux-rope
magnetic field. Upon assuming r 0.1I

A , dá ñ »B B 0.1I
2

0
2 ,

»L L 3I I and specifying fast particles with v V 10A0 , we

find that mm mmD D 18I D2 . Furthermore, assuming that the
nonlinear transport regime of our theory is more appropriate
in modeling particle scattering by numerous small-scale flux
ropes, we find that the particle pitch-angle scattering rate mmDI NL,

is considerably higher than predicted by mmDI QLT, following from
the quasi-linear limit of our theory. In the fast particle limit

mm mmD DI QLT I NL, , ≈ p ( )( ) ( )r L L20 3 I
I IA

1 2 dá ñ( )( )B B V vI A0
2 1 2

0 .
Upon assuming at 1 au that »L L 3I I , we find for v V 10A0

that mm mmD D 0.07I QLT I NL, , .
The larger pitch-angle scattering rate predicted with our

focused transport theory in comparison to earlier quasi-linear
theory predictions is the net result of key differences between
the earlier and the current theoretical approaches: (i) In the
focused transport theory approach pitch-angle scattering is
driven by the variance in the field-aligned spatial gradient of
the magnetic field strength in the form of the magnetic
mirroring force, whereas in the earlier quasi-linear pitch-angle
approach scattering is caused by the variance of the magnetic
Lorentz force. Thus, gradients in the magnetic field were not
considered. (ii) The energetic particle decorrelation time τdec
(time needed for energetic particles to experience decorrelated
flux-rope magnetic fields) in our focused transport approach is
determined by a competition between particle transport along
the background/guide field and the turbulence dynamic
timescale τc. This is because small-scale flux ropes are treated
as quasi-2D structures (instead of purely 2D structures)
that include a weaker spatial dependence along the guide/
background field direction. Therefore, in the strong guide field
limit particles tend to follow the guide field to see decorrelated
flux-rope magnetic fields in this direction. In earlier quasi-
linear theory τdec was modeled for a purely 2D turbulence
component that is uniform along the uniform background
magnetic field. In this case τdec is a competition between
gyromotion across the magnetic field and the turbulence
dynamic timescale τc because the option of particles seeing
decorrelated magnetic field turbulence along the background
field does not exist. Likewise, in earlier versions of N I MHD
turbulence theory for a homogeneous background plasma
medium the leading-order turbulence component is purely 2D
(e.g., Zank & Matthaeus 1993), while in recent, more realistic

versions of N I MHD turbulence theory for an inhomogeneous
background plasma the leading-order turbulence component is
quasi-2D (Hunana & Zank 2010; Zank et al. 2017).
To see how our pitch-angle scattering coefficient for

energetic particle interaction with numerous small-scale flux
ropes in the quasi-linear limit compares with the standard
quasi-linear theory pitch-angle scattering coefficient mmDA for
gyroresonant interaction with parallel-propagating Alfvén
waves (e.g., le Roux & Webb 2007), we derive the ratio
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assuming t t ccross and v?VA. In Equation (95), dá ñBA
2 is

related to the total energy density of Alfvén wave turbulence,
and lA is the value of the bend-over scale in the wave
turbulence energy density spectrum, both of which are closely
related to the wave turbulence correlation length. Considering
conditions in the solar wind near 1 au, we assume as above that
d dá ñ á ñ »B B 0.25DA

2
2
2 (Bieber et al. 1994, 1996), LI≈0.01 au

(Cartwright & Moldwin 2010; Khabarova et al. 2015),
» l LIA , and »L L 3I I (Weygand et al. 2009). We find that

mm mmD D 0.16I A for 1 keV protons, increasing to ∼0.5 at
1 MeV. The derived ratio is valid for a Kolmogorov Alfvén
wave spectrum. This suggests that energetic proton pitch-angle
scattering by Alfvén waves dominates pitch-angle scattering by
small-scale flux ropes in the quasi-linear limit, especially at
lower proton energies.
Note that these conclusions are based on taking the weak

scattering (quasi-linear) spatial transport limit of our theory for
particle scattering by small-scale flux ropes. Given that
observations show that d dá ñ á ñB B DA

2
2
2 at 1 au, one could

argue that the strength of particle scattering generated by the
variance in the mirroring force in small-scale flux ropes should
be estimated in the nonlinear regime of our theory, while
retaining the quasi-linear limit for particle scattering by Alfvén
waves. Then we find that
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assuming the fast diffusion limit for particle transport through
small-scale flux ropes τD=τc (see discussion following
Equation (75)). We estimated before that the fast diffusion
limit holds at 1 au if dá ñB B 0.2I

2
0
2 (le Roux et al. 2015a).

Observations at 1 au suggest that dá ñ »B B 0.1I
2

0
2 (Smith

et al. 2016), which supports our choice. Using this obser-
vation and estimating that d dá ñ = á ñ »( )U r B B VI

I A
2 1 2

A
2

0
2 1 2

0

4 km s−1 for »r 0.1I
A and »V 40A0 km s−1, the ratio mm mmD DI A

varies from ∼2.2 for 1 keV protons to ∼227 for MeV protons,
so that pitch-angle scattering of suprathermal protons by small-
scale flux ropes in the nonlinear limit of our theory is more
effective than pitch-angle scattering by Alfvén waves at all
suprathermal proton energies 1 keV. This supports earlier
work based on nonlinear extensions of quasi-linear theory, not
based on focused transport theory as discussed in this paper,
that also showed pitch-angle scattering by 2D turbulence to be
stronger than pitch-angle scattering by Alfvén waves in 1 au
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conditions (le Roux & Webb 2007; Shalchi et al. 2014) when
the energy in the 2D component dominates the energy in
Alfvén waves (Bieber et al. 1994, 1996). Specifying a steeper
Alfvén wave spectrum than the Kolmogorov spectrum
assumed, as suggested by some turbulence theories, simula-
tions, and solar wind observations (e.g., Shebalin et al. 1983;
Goldreich & Sridhar 1995; Horbury et al. 2008; Forman
et al. 2011), proton pitch-angle scattering in the nonlinear limit
of our theory is predicted to be strongly dominated by small-
scale flux ropes for all proton energies in the suprathermal
range 1 keV–1MeV.

16. Summary and Interpretation

Having extended the previous theoretical development of
Zank et al. (2014) and le Roux et al. (2015a), we presented a set
of equations that couples a kinetic focused transport equation
with Fokker–Planck scattering coefficients for energetic
charged particles to an MHD turbulence transport equation
based on N I MHD turbulence theory for coherent, quasi-2D
magnetic island structures (Zank et al. 2017). The coupled
equations enable the modeling of the self-consistent accelera-
tion of suprathermal charged particles interacting with and
traversing numerous dynamic (contracting and merging) quasi-
2D small-scale flux ropes with cross sections belonging to the
inertial range. The theory, despite being limited to energetic
particles with gyroradii less than the flux-rope cross section, is
ideal for studying ion acceleration by small-scale flux ropes for
the full range of suprathermal ion energies observed in the solar
wind near 1 au. The flux-rope structures that were modeled
comprise a magnetic island or twist component in the 2D plane
perpendicular to a strong, axial or guide field component that is
aligned with the large-scale magnetic field in the solar wind as
observations near 1 au suggest (e.g., Smith et al. 2016; Zheng
& Hu 2018). The energetic particle crossing of multiple flux
ropes was modeled in terms of guiding center motion
predominantly along the guide field direction and includes
pitch-angle scattering and parallel diffusion on large spatial
scales, thus capturing an important element in 3D simulations
of acceleration by small-scale flux ropes (e.g., Dahlin
et al. 2017). On more local spatial scales, energetic particle
transport in our theory was modeled either in the quasi-linear
limit of undisturbed guiding center motion or in the nonlinear
limit of diffusive guiding center motion in response to
fluctuations in the flux-rope magnetic mirroring force encoun-
tered in these structures, depending on the strength of magnetic
island turbulence considered. It was assumed that small-scale
flux-rope dynamics involving contraction, expansion, and
merging through magnetic reconnection and energy exchange
between particles and flux ropes involve mainly the magnetic
island or twist component in the 2D plane perpendicular to a
large-scale guiding magnetic field (Birn et al. 1989; Dmitruk
et al. 2004; Hunana & Zank 2010; Zank et al. 2017). Our quasi-
2D approach to small-scale flux ropes is consistent with the
view that solar wind turbulence is predominantly quasi-2D in
the presence of a strong background/guide field as suggested
by observations near 1 au, MHD turbulence theory, and
simulations (Shebalin et al. 1983; Matthaeus et al. 1990; Zank
& Matthaeus 1992, 1993; Bieber et al. 1996; Hunana &
Zank 2010; Turner et al. 2012).

Average energetic particle acceleration rate expressions were
presented for four small-scale flux-rope acceleration scenarios

present in focused transport theory: (1) combined curvature
drift and generalized betatron energization in small-scale flux
ropes contracting and merging in the compressible limit (flux-
rope compression acceleration; Zank et al. 2014; le Roux
et al. 2015a), (2) unified curvature drift energization and
generalized betatron energy loss in small-scale flux ropes
contracting and merging in the incompressible limit (flux-rope
parallel shear-flow acceleration; e.g., Drake et al. 2006, 2013),
(3) parallel guiding center motion energy gain and loss by the
parallel reconnection electric field force generated in merging
(reconnecting) flux ropes (e.g., Oka et al. 2010; Zank
et al. 2014; Dahlin et al. 2016), and (4) parallel guiding center
motion energy gain and loss produced by the parallel
noninertial force associated with the parallel acceleration of
the plasma flow in dynamic small-scale flux ropes. Whereas the
first three acceleration scenarios were discussed previously by
us and other authors, the fourth acceleration scenario is
presented by us here for the first time. An important element
of our theory presented in le Roux et al. (2015a) and in this
paper is that a distinction is made between coherent energetic
particle acceleration in response to mean dynamic flux-rope
properties and stochastic (second-order Fermi) particle accel-
eration in response to statistical fluctuations in flux-rope
dynamic properties (Bian & Kontar 2013).
In this follow-up to le Roux et al. (2015a), we present for the

first time the detailed expressions for the four Fokker–Planck
coefficients for energetic particle scattering in momentum
space ( mmDI [pitch-angle scattering], m mD D,p

I
p
I , and Dpp

I [sto-
chastic acceleration] for each of the four small-scale flux-rope
acceleration scenarios). Furthermore, to enable modeling of
self-consistent energetic particle acceleration, total energy
conservation in the exchange of energy between energetic
particles and magnetic islands was used to derive new
expressions for the growth/damping rates of the total flux-
rope energy density (kinetic plus magnetic) of magnetic
islands. The growth/damping coefficients were included in a
new MHD turbulence equation for the transport of the total
energy energy density of magnetic islands in a nonuniform
solar wind medium. The equation was derived from the quasi-
2D magnetic island turbulence transport equations in Elsässer
variables published in a recent, updated version of N I MHD
turbulence theory by Zank et al. (2017). The two coupled
focused transport-N I MHD equations were also derived in the
diffusion approximation (near-isotropic particle distribution
limit), resulting in a Parker–Gleeson–Axford diffusive trans-
port equation for energetic particles and an N I MHD transport
equation for magnetic island structures with growth/damping
coefficients adjusted for nearly isotropic energetic particle
distributions.
We analyzed our extended theory to determine coherent

relative rates of momentum gain for energetic protons in solar
wind regions with numerous dynamic small-scale flux ropes
near 1 au for all four flux-rope acceleration scenarios, assuming
finite mean quantities for their dynamics. Our expressions for
momentum gain suggest that combined curvature drift and
generalized betatron momentum gain in small-scale flux ropes
that contract or merge in the compressible limit and parallel
guiding center motion momentum gain in response to the
parallel reconnection electric field force in merging flux ropes
are not sensitive to an increase in the guide field strength B0. In
contrast, combined curvature drift and generalized betatron
momentum gain in small-scale flux ropes that contract or merge
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in the incompressible limit is the most sensitive to an increase
in B0 ( dá ñ µ á ñf mṗ p B BI

INC 2
0
2), whereas parallel guiding center

motion momentum gain in response to the noninertial force
associated with the parallel acceleration of the flux-rope flow is
sensitive to an intermediate degree to such an increase
( dá ñ µ á ñf mṗ p B BI

ACC 2 1 2
0). This implies that coherent particle

parallel guiding center motion acceleration by the mean parallel
reconnection electric field will gain in relative efficiency
compared to coherent particle curvature drift and generalized
betatron acceleration in small-scale flux ropes that contract and
merge in the incompressible limit when the guide field is
increased relative to the magnetic island or twist component
(increase in the ratio dá ñB BI

2
0
2). It also means that combined

curvature drift and generalized betatron acceleration in small-
scale flux ropes that contract and merge in the compressible
limit will become relatively more efficient compared to
contraction and merging occurring in the incompressible limit.
However, these conclusions are limited in the sense of not
accounting for a possible increase in particle anisotropy and a
decrease in the level of compressibility with increasing guide
field strength (Dahlin et al. 2017; Li et al. 2018).

A more detailed comparison of the coherent energetic
particle acceleration rates was done when accounting for the
level of anisotropy in the energetic particle distribution.
However, since the comparisons were done for a particle
distribution function expanded only to the second moment in
pitch-angle space using Legendre polynomials, the results,
strictly speaking, only apply to small to moderate anisotropies.
These estimates were made in the test particle limit and might
change when including a self-consistent exchange of energy
between energetic particles and flux ropes. We found the
following for energetic protons in the strong guide field limit
near Earth: (1) Only combined curvature drift and generalized
betatron momentum gain in flux ropes contracting and merging
in the compressible limit depends on both the isotropic and
anisotropic part of the particle distribution. The other three
acceleration scenarios depend solely on the anisotropic part of
the particle distribution, so that the coherent rate of momentum
gain can be small for a nearly isotropic distribution and is zero
for a purely isotropic distribution. (2) Flux ropes with a net
mean contraction and merging rate in the compressible limit
energize energetic protons coherently through combined
curvature drift and generalized betatron momentum gain much
more efficiently than flux ropes in the incompressible limit for
moderate size particle anisotropies and smaller. In the
incompressible limit the momentum gain involves the com-
bined net mean effect of curvature drift energization and
generalized betatron energy loss. This dominance is accentu-
ated for a nearly isotropic particle distribution. (3) We
concluded that for flux-rope cross sections LI in the inertial
range with LI10−4 au at 1 au, combined curvature drift and
generalized betatron coherent momentum gain in compressible
flux ropes can be more efficient than parallel guiding center
motion momentum gain by a mean parallel reconnection
electric field in merging flux ropes for moderate-size pitch-
angle anisotropies. However, for the largest small-scale flux-
rope cross sections in the range 10−4 auLI0.01 au, the
parallel reconnection electric field is more efficient in
accelerating energetic protons. Assuming a nearly isotropic
energetic particle distribution, the dominance of combined
curvature drift and generalized betatron momentum gain by
compressible flux ropes is extended to larger small-scale

flux-rope cross sections closer to the maximum size of
∼0.01 au in the inertial range. If the pitch-angle anisotropy is
small enough, combined curvature drift and generalized
betatron momentum gain by compressible flux ropes will be
more efficient for all flux-rope cross sections belonging to the
inertial range. (4) Coherent energetic proton parallel guiding
center motion energization by the mean parallel reconnection
electric field dominates coherent energization from combined
curvature drift momentum gain and generalized betatron
momentum loss in incompressible flux ropes for the full range
of flux-rope cross sections in the inertial range. This dominance
is further strengthened for nearly isotropic energetic particle
distributions. Thus, dominance of combined curvature drift and
generalized betatron acceleration over parallel guiding center
motion acceleration by the mean parallel reconnection electric
field only occurs for inertial-scale flux-rope cross sections
when net contraction and merging occur in the compressible
limit. (5) Coherent energetic proton parallel guiding center
motion momentum gain from the finite mean parallel
reconnection electric field generated by multiple merging flux
ropes is predicted to be more efficient compared to momentum
gain involving the mean parallel noninertial force associated
with the parallel component of the acceleration of the flux-rope
flow. (6) Energetic particle parallel guiding center motion
momentum gain by the finite mean noninertial force associated
with the parallel acceleration of the flux-rope flow is less
efficient than momentum gain from combined curvature drift
and generalized betatron acceleration in compressible flux
ropes, and this is even more so in the case of a nearly isotropic
particle distribution. (7) Energetic particle momentum gain
from the mean flux-rope parallel flow acceleration is estimated
to be less efficient than combined curvature drift and general-
ized betatron acceleration in incompressible flux ropes for
protons when LI≈0.01 au (maximum value in the inertial
range). However, in the case of a nearly isotropic energetic
particle distribution, acceleration by the noninertial force
dominates acceleration by incompressible flux ropes for
suprathermal particle energies for the entire range of flux-rope
cross sections in the inertial range.
In conclusion, for coherent energetic proton acceleration

associated with mean flux-rope dynamic properties in the
strong guide field limit for flux-rope cross sections in the
inertial range at 1 au, the two most efficient acceleration
scenarios involve combined curvature drift and generalized
betatron acceleration in contracting and merging flux ropes in
the compressible limit (coherent flux-rope compression accel-
eration) and parallel guiding center motion acceleration by the
parallel reconnection electric field of merging flux ropes. The
latter might dominate for the largest magnetic island cross
sections in the inertial range if the energetic particle pitch-angle
anisotropy is of moderate size, but for sufficiently small
anisotropies flux-rope compression acceleration is more
efficient for all flux-rope cross sections belonging to the
inertial range. In Section 5 observational evidence and
arguments were presented for the possibility of compressible
behavior imposed externally on small-scale flux ropes by
converging primary current sheets in the solar wind behind
traveling shocks. It was also argued in Section 8, based on N I
MHD theory (Zank et al. 2017), that spatial gradients in the
background solar wind flow and density can generate
compressibility in small-scale flux ropes, implying that the
compression of the solar wind flow across traveling shocks
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could result in the emission of compressive small-scale flux
ropes by these shocks.

A main difference between the efficiency of coherent
acceleration in response to mean flux-rope properties and
stochastic acceleration due to fluctuations in flux-rope proper-
ties for the four acceleration cases is the role of anisotropy in
the energetic particle distribution. In the case of stochastic
acceleration, both the isotropic and anisotropic parts of the
distribution function play a role in all four acceleration
scenarios. Thus, all four acceleration cases contribute to
particle acceleration, even when the particle anisotropy is
strictly zero in the quasi-linear transport limit of our theory.
When comparing ratios of coherent acceleration rates with
ratios for stochastic acceleration rates for the different
acceleration scenarios for energetic protons in solar wind
conditions near 1 au in the strong guide field limit, the results
are similar qualitatively for the most part. Quantitative
differences in the acceleration ratios are most noticeable when
near-isotropic energetic particle distributions are assumed, and
when acceleration due to the acceleration of the flux-rope flow
is considered. For the latter case the underlying reason appears
to be the difference in the expression for the relative coherent
rate of momentum gain ná ñI

ACC , where the dδUI/dt component
along δBI is the main contributor, and the expression for the
fluctuations in the relative rate of momentum gain δνACC,
where the dUd dtI component along B0 is the main component.

We find that second-order Fermi parallel guiding center
motion acceleration of suprathermal protons at 1 au associated
with fluctuations in the parallel reconnection electric field of
merging small-scale flux ropes is the only flux-rope accelera-
tion scenario in the quasi-linear spatial transport limit of our
theory that is more effective than second-order Fermi
acceleration by parallel-propagating Alfvén waves. However,
second-order Fermi acceleration by active small-scale flux
ropes in the nonlinear transport regime of our kinetic transport
theory is significantly more efficient when compared to the
quasi-linear limit of our theory. Consequently, in the former
limit, combined stochastic curvature drift and generalized
betatron acceleration, generated by fluctuations in the proper-
ties of small-scale flux ropes in the compressible limit, is
more effective than stochastic acceleration by Alfvén waves for
a wide range of suprathermal proton kinetic energies
T11 keV. The enhanced acceleration efficiency can be
attributed to the fact that, in the nonlinear transport regime
of our theory, energetic particles are modeled as having
diffusively distorted guiding center trajectories in response to
fluctuations in the flux-rope magnetic mirroring force encoun-
tered during traversal of small-scales flux ropes in the
background/guide field direction. Thus, the particles spend
more time in each active flux rope (that is, they are quasi-
trapped) and can experience more acceleration compared to the
quasi-linear regime. In the quasi-linear regime, particles
traverse flux ropes in the guide field direction more rapidly
owing to undisturbed guiding center motion, providing less
magnetic island contact time for acceleration.

In our current focused transport approach, the variance in the
magnetic mirroring force present in small-scale flux ropes plays
potentially an important role in energetic particle pitch-angle
scattering in solar wind conditions at 1 au. This explains our
finding that energetic particle pitch-angle scattering by small-scale
flux ropes in the quasi-linear spatial transport limit of our theory is
more efficient compared to previous quasi-linear kinetic theories

for particle interaction with 2D turbulence. This is because
previously particle scattering was determined by the variance in the
magnetic Lorentz force associated with 2D turbulence (Bieber
et al. 1994; le Roux & Webb 2007, 2009; Shalchi et al. 2014). In
addition, we found that energetic proton pitch-angle scattering by
small-scale flux ropes should be more efficient than pitch-angle
scattering by Alfvén waves, provided that the nonlinear spatial
transport limit of our theory is applicable, but less efficient than
pitch-angle scattering by Alfvén waves when we take the quasi-
linear limit. This raises the question of which limit of our theory
applies best to solar wind conditions near 1 au. Fits to observed
intensity time profiles of solar energetic events at 1 au using
focused transport theory suggest that the energetic ion parallel
mean free path l can vary widely between ∼2×10−2 au and
1 au during quiet solar wind conditions in the absence of
interplanetary shocks (Dröge 2005). Nonetheless, it appears that
l » L 0.01 auI max , where LImax is the maximum small-scale

flux-rope cross section, indicating scatter-free transport of energetic
particles through these structures, so that the quasi-linear limit of
our theory is more appropriate in quiet solar wind conditions.
However, one would expect that the values of l in the enhanced
turbulence levels behind traveling shocks should be significantly
smaller, providing potential conditions for the application of the
nonlinear transport limit of our theory.
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Appendix A
Energetic Particle Momentum and Pitch-angle Rates of
Change during Interaction with Small-scale Flux Ropes

A.1. Energetic Particle Momentum Rates of Change

According to focused transport theory, the relative energetic
particle momentum rate of change associated with a compres-
sive plasma flow U (see Equation (28)), omitting the
μ-dependence, is determined by the expression

n = - · ( )U. 97COM

We may decompose the plasma flow as

= + ( )U U U , 98I0

where U0 is the background solar wind flow velocity and UI is
the flux-rope plasma flow velocity associated with the flux-rope
dynamics of contraction, expansion, or merging of neighboring
flux ropes. Consistent with the discussion in Section 4, assume
that small-scale flux-rope dynamics near 1 au are confined
mainly to the 2D plane perpendicular to the background
magnetic field B0, which also serves as the guide field or axial
component/guide magnetic field of flux ropes (Birn et al. 1989;
Dmitruk et al. 2004; Hunana & Zank 2010; Zank et al. 2017;
Zheng & Hu 2018). If the guide field is specified to be locally
aligned with the z-axis ( =B eB z0 0 ), small-scale flux ropes can
be modeled as quasi-2D structures with a plasma flow given by

» +( ) ( )U e eU x y U x y, ,I Ix x Iy y. We assume that, statistically,
dynamical small-scale flux-rope structures are randomly
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distributed in the 2D plane perpendicular to B0, so that
dá ñ = á ñ =U U 0I I , which is likely to be consistent with

simulations of magnetic flux-rope formation in MHD turbu-
lence models and in kinetic particle simulations initiated with
multiple primary current sheet layers in the presence of a strong
guide field (Dmitruk et al. 2004; Drake et al. 2010). Then,

n
n n

=-  - 

= +

( · ) ( · )
( )

U U

, 99
I

I
COM 0

COM
SW

COM

where d=U UI I , nCOM
SW is the relative energetic particle

momentum rate of change associated with compression of the
background solar wind flow, and n = - · UI

ICOM is the
relative momentum rate of change for energetic particles
interacting with compressible quasi-2D small-scale flux ropes.
As discussed in Sections 6 and 7, the acceleration involves
energetic particles experiencing a combination of curvature
drift and generalized betatron energization when flux ropes
contract or merge in the compressible limit.

The average (coherent) relative momentum rate of change
for energetic particles responding to the mean properties of
contracting, expanding, and merging flux ropes in the
compressible limit can be expressed as
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where LI can be interpreted as the characteristic cross-
sectional radius of the flux ropes under consideration, and

s -[ ]1, 1I
COM is a parameter specifying the statistics of multi-

flux-rope contraction, expansion, or merging in the compres-
sible limit. In the case of contraction or expansion, s = +1I

COM

means that flux ropes only contract (energy gain), s = 0I
COM

indicates a balance between expanding and contracting flux
ropes (no net acceleration), and s = -1I

COM implies that flux
ropes only expand (energy loss). Upon defining the
Alfvén ratio for flux ropes as d d= á ñ á ñr U VI

I AIA
2 2

( d d prá ñ = á ñV B 4AI I
2 2

0) for flux-rope energy in the 2D plane
perpendicular to the guide field, implying that
d dá ñ = á ñU r V B BI

I
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2
A 0

2 2
0
2, we find that
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where the relationship





dá ñ
=

+
( )B

B r

1

1
102I

I
I

B

2

0
2

A 0

was introduced to express dá ñBI
2 in terms of the total

flux-rope energy density  r d d p= á ñ + á ñU B1 2 8I I I0
2 2 =

d p+ á ñ( )r B1 8I
IA
2 ( p= B 8B 0

2
0 ) perpendicular to B0.

Fluctuations in the relative particle momentum rate of
change are determined by

dn n n
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The variance in the relative momentum rate of change for
energetic particles responding to fluctuations in the dynamic
properties of numerous small-scale flux ropes in the compres-
sible limit can be expressed as follows:

dn d
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Assuming the flow of numerous small-scale flux ropes to be on
average isotropically distributed in the 2D plane perpendicular
to the guide field, we specify (Zank et al. 2017)

d d d d dá ñ = á ñ· ( )U UU U a , 105Ii Ij I I ij

where a=1/2, and off-diagonal terms, associated with
vorticity of the flow, are neglected for simplicity. Then,
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The magnetic field in the plasma is modeled using the
decomposition

= + ( )B B B , 107I0

where B0 is the axial/background/guide magnetic field
component and BI is the twist/magnetic island component of
the flux-rope structure confined to the 2D plane perpendicular
to B0 as discussed above. Just as for the flux-rope flow,
á ñ =B B0 because we assume that dá ñ = á ñ »B B 0I I . This
corresponds to considering flux-rope structures that are
randomly orientated around B0 as discussed above. Thus, in
expression (106), d d dá ñ = á ñ[ ( )]B BI I

2 2 . To maintain simplicity,
we assume that d d dá ñ = á ñd[ ( )]B C BI I

2 2 , where Cδ is a constant.
Thus, finally,
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after introducing expression (102).
Next, we consider the relative energetic particle momentum

rate of change related to a nonuniform incompressible plasma
flow (see discussion in Sections 5, 6.1, and 7.1), which in
focused transport theory is expressed as

n = - · ( · ) ( )b b U, 109INC

where b is the unit vector along B. Note that the perpendicular
flow component =Û VE, where VE is the plasma drift
velocity, so that kn = ·VEINC for U⊥, where k = ( · )b b
is the magnetic field curvature. Within the context of flux-rope
dynamics, Equation (109) refers to the particle acceleration rate
in response to the curved magnetic field of the flux-rope
structure undergoing incompressible contraction or merging at
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the plasma drift velocity VE (see Section 6.1). Thus, the
variance in the relative energetic particle acceleration rate νINC
can be linked to statistical fluctuations in the flux-rope
contraction/merging velocity (Bian & Kontar 2013), as well
as variations in the flux-rope magnetic curvature that particles
encounter when crossing many active flux ropes, as is
discussed further below.

If the magnetic field is decomposed according to
Equation (107), the magnetic field unit vector b can be
decomposed according to

=
+
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» +
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b
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B
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0
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0
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where b0 is the unit vector along B0. The expression in the
second line of Equation (110) comes from assuming a strong
guide field B B 1I 0 and ^B BI 0, implying that b≈b0.
Upon inserting Equations (98) and (110) into the expression for
νINC,
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where n INC
SW is the relative particle momentum rate of change

associated with the incompressible component of the back-
ground solar wind flow, and n IINC is the relative momentum rate
of change of energetic particles undergoing combined curva-
ture drift and generalized betatron acceleration when interact-
ing with quasi-2D small-scale flux ropes contracting and
merging in the incompressible limit. The simplified expressions
in the third line of Equation (111) result from assuming

B B 1I 0 in the first line of Equation (111) and assuming,
consistent with a quasi-2D flux-rope geometry, that

 » ¶ ¶ »( · ) ( )b U Uz x y, 0I I0 and  =· ( · )b B U 0I I0 in
the second line of Equation (111), when defining locally that
b z0 -axis (Hunana & Zank 2010; Zank et al. 2017).
Accordingly, we can express the relative mean (coherent)

particle momentum rate of change in response to mean flux-
rope dynamical properties in the incompressible limit to be
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after applying d=B BI I , d=U UI I , d dá ñ = á ñU r V B BI
I

A I
2

A 0
2 2

0
2,

and Equation (102). As for compressible flux ropes, we
introduce a parameter s -[ ]1, 1I

INC to determine the statistics
of multi-flux-rope incompressible contraction and expansion,
or merging. In the case of contraction or expansion, s = +1I

INC

means that flux ropes are contracting only, s = 0I
INC indicates a

balance between expanding and contracting flux ropes, and
s = -1I
INC implies that flux ropes are expanding only.
The expression for statistical fluctuations in the relative

particle momentum rate of change is determined by
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Therefore, the variance in the relative momentum rate of
change for particles responding to fluctuations in the dynamical
properties of numerous small-scale flux ropes in the incom-
pressible limit is
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In Equation (114) we simplified the analysis with the
replacement   á ñ·B B LI I I

2 1 2 , thus reducing the number
of terms by introducing an estimate of the average magnitude
of the gradient of the flux-rope flow along the flux-rope
magnetic field in the 2D plane perpendicular to B0. The first
term in the third line of Equation (114) can be simplified as
follows:
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In Equation (115) we applied the condition for isotropic 2D
flux-rope turbulence in the 2D plane perpendicular to B0,
d d d d dá ñ = á ñ·B BB B aIi Ij I I ij (a=1/2), and used the definition

of the Alfvén ratio to specify á ñ = á ñU r V B BI
I

A I
2

A 0
2 2

0
2. The first

term models the effect of fluctuations in the flux-rope magnetic
field curvature on the variance in the acceleration rate.
Following the same approach, we can express the second term
in the third line of Equation (114) as
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where we specified d d d d dá ñ = á ñ·U UU U aIi Ij I I ij (a=1/2) and
d dá ñ = á ñU r V B BI

I
A I

2
A 0

2 2
0
2. Thus, expression (116) equals

expression (115), although expression (116) focuses on the
contribution of fluctuations in the flux-rope contraction/
merging velocity to the variance in the acceleration rate (Bian
& Kontar 2013; le Roux et al. 2015a).

Consider the first term in the last line of Equation (114). We
find that
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where we applied d d d d dá ñ = á ñ·B UB U aIi Ij I I ij (a=1/2) and
introduced the normalized cross helicity parameter for flux-
rope turbulence
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This term is different from the first two terms in that both
fluctuations in the flux-rope magnetic curvature and contraction/
merging velocity make a contribution to the variance in the
acceleration rate. The fourth and last terms in the last line of
Equation (114) have the same structure as the third term, thus
yielding the same simplified result:
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Combining the simplified expressions (115)–(117) and (119)
derived for the four terms in the bottom two lines of
Equation (114), we obtain
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where, after inserting BI=δBI, we enforced closure by
assuming that d d dá ñ = á ñd[ ( )]B C BI I

2 2 , for Cδ a constant, and
used expression (102).

We defined the relative energetic particle momentum rate of
change associated with the parallel acceleration of the plasma
flow in focused transport theory (see Section 7.1) as
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where the total time derivative following the plasma flow is
= ¶ ¶ + ( · )Ud dt t . After decomposing the plasma flow

according to Equation (98) and the magnetic field direction

according to Equation (110), Equation (121) becomes
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where n IACC is the relative particle acceleration rate caused by
parallel guiding center motion acceleration by the noninertial
force associated with the parallel component of the acceleration
of the flux-rope flow in the 2D plane perpendicular to B0. The
simplified expressions in the third line of Equation (122) result
from assuming that U U 1I 0 (an appropriate assumption for
quasi-2D flux-rope turbulence in the supersonic solar wind near
1 au) and B B 1I 0 (the strong guide field assumption
discussed above) in the first line and that U U 1I 0 in the
second line of Equation (122).
The average relative energetic particle momentum rate of

change, due to the parallel mean acceleration of the flux-rope
flow encountered by energetic particles in a region of multiple
small-scale flux ropes, is
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where = ( · )n eL LI rIr (n is the unit vector along UI, and er is
the unit vector along the background radial solar wind
outflow) is the flux-rope cross-sectional radius component in
the direction of the background radial solar wind outflow
U0. In the case of 2D flux-rope turbulence that is statistically
isotropic in the 2D plane perpendicular to B0, unit
vector n has an arbitrary direction in this 2D plane. To
derive Equation (123), we applied dá ñ = á ñ =B B 0I I ,
¶ ¶ »∣ ∣U t UI I

2/  » ∣( · ) ∣ ( ))U UL U U U LI I I I I0 0
2 because

U U 1I 0 , introduced the Alfvén ratio rA
I through the

relationship d dá ñ = á ñU r V B BI
I

A I
2

A 0
2 2

0
2, used the substitution

(102), and defined a parameter s -[ ]1, 1I
ACC that controls

the magnitude and direction of the mean noninertial force
associated with the parallel acceleration of the plasma flow in
multiple small-scale flux ropes. If s > 0I

ACC , particles with
μ>0 (guiding center motion along the magnetic field) will
experience energization because the average noninertial force
then has a component in the direction of the guiding center
motion.
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Fluctuations in the relative energetic particle momentum rate
of change n IACC are modeled as

dn n n= - á ñ

=- + + +

»- 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟· ·

( · ) ·

( )

U
b

B U
b

B

U U b

v

d

dt B v

d

dt B

v

1 1

1
,

124

I

I I I I

I

ACC ACC ACC

0
0

0
0

0 0

because B B 1I 0 and á ñUI = dá ñ =U 0I . Thus, the variance in
the relative particle momentum rate of change due to
fluctuations in the flux-rope flow velocity is
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To derive the expression, we applied the condition for
isotropic 2D turbulence in the 2D plane perpendicular to
B0, d d d dá ñ = á ñ·U UU U aIi Ij I I ij, the relationship dá ñ =UI

2

dá ñr V B BI
A IA 0
2 2

0
2, and expression (102).

Finally, we consider the relative energetic particle momen-
tum rate of change νREC in response to the parallel electric field
component. The parallel electric field is considered only in the
background/guide magnetic field direction, enabling us to
introduce the reconnection electric field that we argued to be
mainly in the guide field direction in the solar wind at 1 au (see
discussion in Section 4). The expression for νREC is

n = · ( )E
b

q

p
, 126REC 0

where on MHD scales the electric field is defined as E=−
U× B (see discussion in Section 4). Upon decomposing the
plasma flow and magnetic field according to Equations (98)
and (107),
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where nREC
SW is the relative particle momentum rate of change in

response to the background electric field. n IREC is the relative
particle momentum rate of change due to particle parallel
guiding center motion acceleration by the parallel reconnection
electric field force generated by the merging of two neighbor-
ing flux ropes in the 2D plane perpendicular to B0. Note that,
because the parallel component of the background electric field

= - ´E U BSW 0 0 is zero, nREC
SW only contributes to the

background particle acceleration rate due to fluctuations in
the magnetic field BI generated by flux-rope structures.
However, because we neglected in all other flux-rope
acceleration cases small fluctuations in the background particle
acceleration rates generated by flux-rope structures in favor of
the background particle acceleration rates themselves, we set
n = 0REC
SW in our focused transport theory.
The relative average (coherent) energetic particle momentum

rate of change for particles responding to a net mean parallel
reconnection electric field in numerous merging flux ropes is
expressed as
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where = ∣ ∣r p q Bg 0 is the energetic particle gyroradius for
μ=0 with q the net energetic particle charge, Z is the atomic
number, A is the mass number, di/e is the proton/electron
inertial scale, and s -[ ]1, 1I

REC is a parameter that defines the
net magnitude and direction of the mean parallel reconnection
electric field of numerous merging flux-rope structures. A value
of s > 0I

REC , for example, implies that the net parallel
reconnection electric field force is pointing in the direction of
energetic ions propagating along the magnetic field with μ>
0. Equation (128) was derived using the relationships
d dá ñ = á ñ( )U r V B BI

I
A I

2 1 2
A

1 2
0

2 1 2
0, Equation (102), and

= ( )( )d r Z A V vi e g A0 for nonrelativistic particle speeds. For
ions we use = ( )( )d r Z A V vi g A0 , and for electrons we specify

=d r V ve g A0 (Z/A=1).
Statistical fluctuations in the energetic particle acceleration

rate n IREC are determined by the expression
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where we assumed n = 0REC
SW as discussed above. The variance

in the relative energetic particle momentum rate of change in
response to fluctuations in the dynamic properties of merging
flux ropes can be expressed as
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The term in the second line of Equation (130) can be simplified
as follows:

  d d d dá ñá ñ = á ñá ñ· ·
( )

U U B BU U B B b b a2 ,

131
ijk lmn Ij Im Ik In i l I I I I0 0

2

by applying the conditions for isotropic 2D flux-rope
turbulence in the 2D plane perpendicular to B0, which
are d dá ñ = á ñ·U UU U aIj Im I I jm and dá ñ = á ñ·B BB B aIk In I I kn,
where a=1/2, and using     d= = 2imn lmn mni mnl il. Follow-
ing the same approach, the term in the third line of
Equation (130) can be expressed as

  d d d dá ñá ñ = á ñá ñ· ·
( )

U U B BU U B B b b a2 .

132
ijk lmn Ij Im Ik In i l I I I I0 0

2

Consider the term in the fourth line of Equation (130). In this
case

  d d

d d

á ñá ñ

= - á ñá ñ· · ( )U B B U

U B B U b b

a2 , 133

ijk lmn Ij In Ik Im i l

I I I I

0 0

2

because we specified d d d dá ñ = á ñ·U BU B aIj In I I jn and á ñ =B UIk Im

dá ñ·B Ua I I km and applied     d= - = -2inm lmn imn lmn il. In the
same way we find that the term in the bottom line of
Equation (130) becomes

  d d
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a2 . 134
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After inserting expressions (131)–(134) into Equation (130),
we obtain
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after implementing the expression for the normalized cross helicity
sC
I given by Equation (118), using the relationship involving the

Alfvén ratio rA
I defined by dá ñ = á ñU r V B BI

I
A I

2
A 0

2 2
0
2, enforcing the

closure assumption d d dá ñ = á ñd[ ( )]B C BI I
2 2 after applying =BI

dBI , inserting the expression = ( )( )( )r d Z A V v1 1g i e A, 0 , and
applying Equation (102).

A.2. Energetic Particle Pitch-angle and Combined Pitch-angle
and Momentum Rates of Change

The energetic particle pitch-angle rate of change is expressed
in terms of md dt (m q= cos , where θ is the particle’s pitch
angle). In focused transport theory there is a contribution to

md dt from the magnetic mirroring force defined as

n = ( · ) ( )bv . 136REF

By decomposing the magnetic field unit vector b according to
Equation (110), valid for B B 1I 0 (strong guide field
assumption), it follows that
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where nREF
SW refers to the energetic particle pitch-angle rate of

change for particles experiencing the magnetic mirroring force
associated with the nonuniform background solar wind
magnetic field, which also serves as the axial or guide magnetic
field component of flux-rope structures, and n IREF represents the
energetic particle pitch-angle rate of change for particles
responding to the magnetic mirroring force associated with the
nonuniform flux-rope twist (island) magnetic field component.
We express the average (coherent) energetic particle pitch-

angle rate of change in response to the mean magnetic
mirroring force that particles encounter when traversing
numerous flux ropes in the guide field direction as
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where s -[ ]1, 1I
REF . Thus, when s > 0I

REF , the mean
magnetic mirroring force that particles encounter when
traversing numerous flux ropes is such that particles propagat-
ing along the magnetic field (μ>0) will experience a
mirroring effect. Those propagating in the opposite direction
(μ<0) will experience a focusing effect. The opposite holds
when s < 0I

REF . When s = 0I
REF , the mean mirroring force

encountered by energetic particles crossing numerous flux
ropes is zero, resulting in a zero average (coherent) energetic
particle pitch-angle rate of change.
Fluctuations in the energetic particle pitch-angle rate of

change encountered by particles when traversing numerous flux
ropes are determined by
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The variance in the energetic particle pitch-angle rate of change
due to fluctuations in BI (fluctuations in the magnetic mirroring
force) encountered by energetic particles when traversing
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numerous flux ropes can be expressed as
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Expression (140) was derived by applying the condition for
isotropic 2D turbulence in the 2D plane perpendicular to
B0, namely, d d d d dá ñ = á ñ·B BB B aIi Ij I I ij with a=1/2,
applying BI=δ BI, and using the closure assump-
tion d d dá ñ = á ñd[ ( )]B C BI I

2 2 .
Consider now the coupling of terms involving fluctuations in

the relative particle momentum rates of change and the particle
pitch-angle rates of change for the different flux-rope
acceleration mechanisms that appear in our kinetic transport
theory. For compressible contracting and merging flux ropes
we derive the following approximate expression for the term
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where we specified the condition for isotropic 2D turbulence
in the 2D plane perpendicular to B0, namely, d dá ñ =U BIi Ij

d d dá ñ·U Ba I I ij with a=1/2, introduced the definition for

normalized cross helicity sC
I expressed in Equation (118),

applied d=B BI I , and used the closure assump-
tion d d dá ñ = á ñd[ ( )]B C BI I

2 2 .
For incompressible contracting and merging flux ropes we

derived an approximate expression for the term dn dná ñI I
INC REF

given by
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where the first term in the last line of Equation (142) represents the
effect of fluctuations in the flux-rope magnetic field BI and the last
term in the same line accounts for the effect of fluctuations in the

flux-rope contraction/merging velocity UI. In Equation (142) we
introduced the replacement   á ñ·B B LI I I

2 1 2 in the first line,
thus reducing the number of terms by including an estimate
of the average magnitude of the gradient of the flux-rope flow
along the flux-rope magnetic field in the 2D plane perpendicular to
B0. In the second line we assumed isotropic 2D turbulence in the
2D plane perpendicular to B0, namely, d dá ñ =B BIi Ij

d d dá ñ·B Ba I I ij and d d d d dá ñ = á ñ·U BU B aIi Ij I I ij with a=1/2,
made use of the definition of normalized cross helicity (118),
introduced the approximations á ñ  á ñ-·U L U LI I I I

1 2 1 2 and
á ñ  á ñ-·B L B LI I I I

1 2 1 2 , and used the expression for the
magnetic island Alfvén ratio rA

I given by á ñ =UI
2 1 2

á ñ( )r V B BI
A IA

1 2
0

2 1 2
0. In the third line we applied d=B BI I

and used the closure assumption d d dá ñ = á ñd[ ( )]B C BI I
2 2 .

A simplified expression for dn ná ñI I
ACC REF can be derived as

follows:
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We expressed  =·U U L0 0 Ir in the first line of
Equation (143) because for a radial solar wind outflow the
flux-rope cross-sectional radius is LIr. We assumed in the
second line of Equation (143) that d d d d dá ñ = á ñ·U BU B aIi Ij I I ij

with a=1/2 to specify isotropic 2D turbulence in the 2D
plane perpendicular to B0. This led to the inner product

-·b LI0
1 in the third line of Equation (143). However, because

^-L bI
1

0, =-·b L 0I0
1 , resulting in dn ná ñ = 0I I

ACC REF .
Finally, the expression for dn dná ñI I

REC REF is derived as
follows:
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where the first term in the last line of Equation (144) represents
the effect of fluctuations in the flux-rope magnetic field BI and
the last term in the same line accounts for the effect of
fluctuations in the flux-rope contraction/merging velocity UI.
In the second line of Equation (144) we applied the conditions
d d d d dá ñ = á ñ·U BU B aIj Il I I jl and d d d d dá ñ = á ñ·B BB B aIk Il I I kl

with a=1/2 for isotropic 2D turbulence in the 2D plane
perpendicular to B0, whereas in the third line of Equation (144)
we introduced the definition of normalized cross helicity (118),
inserted the approximations á ´ ñ  á ñ- ·L U b U LI I I I

1
0

2 1 2 and
á ´ ñ  á ñ- ·L B b U LI I I I

1
0

2 1 2 , and used the expression
á ñ = á ñ( )U r V B BI

I
A I

2 1 2
A

1 2
0

2 1 2
0. In the fourth line we made

use of the closure assumption d d dá ñ = á ñd[ ( )]B C BI I
2 2 after

applying BI=δBI and set = ( )( )( )r d Z A V v1 1g i e A, 0 .

Appendix B
An N I MHD Transport Equation for the Mean Total
Energy Density of the Magnetic Island Component of

Small-scale Flux Ropes

The equation for the transport of the total energy density of
the magnetic island or twist component of small-scale flux-rope
structures in the nonuniform solar wind that we couple to the
focused transport equation to model self-consistent particle
acceleration is based on nearly incompressible (N I) MHD
theory (Zank et al. 2017). This theory, mainly developed in the
early 1990s (e.g., Zank & Matthaeus 1992, 1993), was
expanded more recently to include the important extension to
the inhomogeneous solar wind flow (Hunana & Zank 2010).
N I MHD theory addresses the underlying incompressibility of
solar wind turbulence. The N I MHD description also relates
typical solar wind plasma beta values of order one or less to the
observed leading-order quasi-2D turbulence nature of solar
wind MHD turbulence (e.g., Matthaeus et al. 1990; Bieber
et al. 1994; Zheng & Hu 2018). Zank et al. (2017) continued
this work with a detailed application to solar wind turbulence,
rewriting the N I MHD system of equations in terms of Elsässer
variables in which distinct descriptions of quasi-2D and slab
turbulence (parallel-propagating Alfvén waves) emerge natu-
rally, as do the nonlinear couplings between these two
turbulence modes. For plasma beta order one or less solar
wind regions, an N I MHD formulation describing the transport
of majority quasi-2D and minority slab turbulence throughout
the nonuniform solar wind was undertaken, and a promising
preliminary comparison of theory and observations was
accomplished (Adhikari et al. 2017). Zank et al. (2017) also
illustrates with a purely 2D solution of the quasi-2D turbulence
equations in the 2D plane perpendicular to background
magnetic field B0 in a uniform solar wind medium that the
quasi-2D component can be linked to nonlinear, dynamic
coherent magnetic island structures in this 2D plane advected
with the solar wind flow. The solution can be viewed as a
small-scale (MHD-scale) flux-rope structure where the magn-
etic island is the twist component and B0 acts as a large-scale
axial or guide field for the flux-rope structure. Observations
indicate the apparently ubiquitous existence of such quasi-2D
small-scale flux-rope structures in the solar wind, including that
the background magnetic field B0 acts as a strong out-of-plane
guide field for these structures (e.g., Bieber et al. 1996;
Cartwright & Moldwin 2010; Khabarova et al. 2015; Oughton
et al. 2015; Smith et al. 2016; Zheng 2017; Zheng & Hu 2018).

To model quasi-2D small-scale (inertial-scale) magnetic
island turbulence transport in the nonuniform solar wind
medium, including the assumption that the background
magnetic field represents a strong guide field component for
these structures, we adopt the lowest-order version of N I MHD
theory in Elsässer variables presented by Zank et al. (2017).
The equation is
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where the nonuniform Elsässer variables for quasi-2D flux-rope
turbulence are defined as
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restricted locally by d d ^ =( ) ( )B U B ex y x y B, , ,I I z0 0 , approxi-
mately, and by d B B 1I 0 .
Following Zank et al. (2017), this equation can be converted

into a partially closed transport equation for á ñ = á ñ  · ( )Z Z ZI I I
2

by taking the dot product of Equation (145) with respect to ZI and
by specifying the following definitions and approximations: (i)
Introduce

d dá ñ = á ñ - á ñ = · ( )Z Z U V E , 147I I I AI D
I2 2

where ED
I is the residual flux-rope energy determining the

difference between the average kinetic and magnetic energy of
the magnetic island component of small-scale flux ropes. (ii)
Replace the two nonlinear terms on the right-hand side of
Equation (145) as follows:
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is the average timescale for the nonlinear interaction of
magnetic islands resulting in energy loss due to a forward
cascade of energy to smaller-scale islands. (iii) Use the result
that
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for the third term on the left-hand side of Equation (145) after
taking the dot product of this term with respect to ZI . The
result (Equation (150)) implies that dá ñ = á ñ   ·Z ZZ Z aIi Ij I I ij.
This relationship can be found by assuming that 2D magnetic
island turbulence is nearly isotropic in the 2D plane
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where a=1/2 for 2D turbulence (Zank et al. 2017). These
expressions ignore off-diagonal terms (terms with ¹i j), so
that magnetic helicity and vorticity effects associated with
magnetic island structures are neglected for simplicity. (iv)
Introduce a unit vector ^n B0 in the direction of 2D turbulence
and specify in the term in the second line of Equation (145) the
replacement
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Because of the assumption of isotropic 2D turbulence in the 2D
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This equation agrees with Equation (68) in Zank et al. (2017).
Next, we convert the two equations in Equation (153) into a

partially closed equation for total magnetic island energy ET
I

(that is, the sum of kinetic and magnetic energy) in the 2D
plane perpendicular to B0 by taking the average of the two
equations and by introducing
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where EC
I is the cross helicity of 2D flux-rope turbulence, sC

I is
cross helicity normalized to ET

I , and sD
I is residual flux-rope

energy ED
I (see Equation (147)), also normalized to ET

I . The
resultant transport equation for total 2D magnetic island

energy is
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Finally, we convert Equation (155) into a transport equation
for the total magnetic island energy density òI in the 2D plane
perpendicular to B0 by multiplying Equation (155) by 1/2ρ0,
by defining

 r= ( )E
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and by simplifying the ensuing equation with the continuity
equation for the background solar wind
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Appendix C
The Energy Exchange Rate between the Magnetic Island
Component of Small-scale Flux Ropes and Energetic

Charged Particles

Here we derive the growth/damping rate of small-scale flux-
rope energy in the 2D plane perpendicular to B0 based on the
assumption of total energy conservation in the energy exchange
between the magnetic island component of flux ropes and
energetic charged particles. Following the approach of Ng et al.
(2003), we express the focused transport Equation (40) in
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Thus, the average kinetic energy rate of change of energetic
particles interacting with the magnetic island component of
small-scale flux ropes áD D ñT t I is governed by
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On assuming total energy conservation in the energy exchange
between energetic particles and small-scale magnetic islands,
the average rate of change of total magnetic island energy
density d dtI is determined by
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where d dtc is the average rate of change of energetic particle
energy density found after integrating over particles distributed
in nested spherical shells in momentum space. In
Equation (162), the term in the second line refers to the energy
exchange rate associated with coherent energetic particle
acceleration in response to mean flux-rope dynamic properties,
whereas the last two terms in the bottom line refer to the energy
exchange rate generated by stochastic energetic particle
acceleration in response to statistical fluctuations in flux-rope
dynamics. On the basis of Equation (162) we express the
average, relative damping/growth rate of total magnetic island

flux-rope energy density as
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where gI
coh refers to the flux-rope growth/damping rate in

response to coherent particle acceleration and γstoch indicates
the flux-rope growth/damping rate due to stochastic particle
acceleration.

Appendix D
The Parker–Gleeson–Axford Transport Equation for

Energetic Particle Interaction with Small-scale Flux Ropes

To derive the focused transport Equation (40) in the diffusive
limit, we apply the standard technique of expanding the
energetic particle distribution function in terms of moments in
μ-space involving Legendre polynomials in μ=cos θ, where
θ is the energetic particle pitch angle. Expanded up to the
second moment, the distribution function is
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allowing us to derive the zeroth, first, and second moments of
the focused transport equation. In this paper, both the zeroth
and first moments of the focused transport equations are
extended to include the spatial transport and acceleration
effects of mDp

I and mD p
I on energetic particles in the diffusion

approximation (compare with Equations (39)–(47) of le Roux
et al. 2015a). The moment expressions are
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where the fourth line of the zeroth moment (Equation (165))
and the third line of the first moment (Equation (166)) contain
new terms related to the coefficients mDp

I and mD p
I for both

incompressible and compressible contracting and merging
small-scale flux ropes that were omitted in le Roux et al.
(2015a; see their Equations (49) and (51)). The first- and
second-moment expressions are simplified to enable simple
closure in the zeroth-moment equation in terms of a diffusive
transport equation. After inserting the expressions for f1(p) and
f2(p) into the zeroth-moment equation, one finds a closed,
extended Parker transport equation for the isotropic part
of the energetic particle distribution function =( )xf p t, ,0
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where k
eff1 and k

eff2 are parallel diffusion coefficients that
combine energetic particle pitch-angle scattering by Alfvén
waves ( ná ñAsc is the mean scattering frequency of energetic
particles caused by gyroresonant interaction of particles with
parallel-propagating Alfvén waves) and by small-scale flux
ropes ( ná ñIsc

1 and ná ñIsc
2 are the mean scattering frequencies of

energetic particles interacting with multiple small-scale flux
ropes). In our theory, the leading-order effect that contributes to
energetic particle pitch-angle scattering is the variance in the
magnetic mirroring force that particles encounter when
interacting with numerous small-scale flux ropes (see discus-
sion below Equation (62) in Section 9.2). Thus, the expressions
for the flux-rope-induced particle scattering frequencies are
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In the last line of Equation (165), Equation (167), and the
first line of Dpp

I in Equation (169) the matrix ssh represents the
large-scale plasma shear-flow tensor (e.g., Earl et al. 1988),
which can be expressed in index notation as
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Compared to le Roux et al. (2015a; see their Equations (55)–
(56)), there are new energetic particle large-scale spatial
advection and adiabatic energy change terms containing the
average speeds mUp

I and mU p
I (first and second lines of

Equation (168)), and the momentum diffusion coefficients
Dpp
I are extended (see new additions to Dpp

I in the second line
from the bottom of Equation (169)), all involving the effects of
small-scale magnetic islands through the Fokker–Planck
scattering coefficients =m mD Dp

I
p
I . Energetic particle large-scale

spatial advection and adiabatic energy change terms containing
the average speedsUI

RECU and UREF
I were defined previously in

le Roux et al. (2015a) in their Equations (55)–(56), although
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the expression for URECU
I is extended in this paper. The

expanded speed expression URECU
I includes the effects of the

parallel components of both the mean reconnection electric
field in merging flux ropes and the mean acceleration of the
flux-rope magnetic island flow and of the parallel components
of the nonmotional electric field across special surfaces in the
solar wind and of the acceleration of the solar wind flow.

Assuming n= á ñ =U 0I I
REF REF , one can express the Parker

transport Equation (169) in conservation form as a Gleeson–
Axford transport equation
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is the Compton–Getting factor for transforming the differential
current density between inertial frames (e.g., Gleeson &
Axford 1968). If we also put =U 0I

RECU , use the fact that

mUp
I is independent of p in the nonlinear spatial transport limit

of our theory, and assume that n ná ñ á ñI A
sc sc (pitch-angle

scattering of energetic particles by magnetic islands dominates
pitch-angle scattering by parallel-propagating Alfvén waves in
the nonlinear transport limit of our theory as discussed in
Section 15), an alternative conservation form of Equation (168)
(Parker transport equation in conservation form) is
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D.1. Parallel Diffusion Induced by Fluctuating Magnetic
Mirroring Forces in Small-scale Flux Ropes

When pitch-angle scattering of energetic particles is
dominated by small-scale flux ropes rather than by
Alfvén waves ( n ná ñ á ñI A

sc sc ), the effective particle scattering
frequency ná ñ( )
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eff1 2 in Equation (169) simplifies to ná ñ =( )
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1 2 defined by Equation (170). Then, the

expression for the parallel diffusion coefficient is
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given by Equation (140) in Appendix A, the ratio Cδ was
introduced to enable the simplifying substitution
d d dá ñ = á ñd[ ( )]B C BI I

2 2 (see Appendix A), and a=1/2 for
isotropic flux-rope turbulence in the 2D plane perpendicular
to B0.
In the limit of slow diffusion (τc=τD, where t =c
dá ñL UI I

2 1 2 is the mean magnetic island flow crossing time
in the 2D plane perpendicular to the guide field and
t k=  

( )LD I
2 eff1 2 is the mean energy particle parallel diffusion

crossing time of flux ropes in the guide field direction,
approximately), when particles are advected with the magnetic
island flow (see discussion below Equation (75) in Section 9.2)
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in the solar wind near Earth (Weygand et al. 2011), the
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solar wind near Earth (strong guide field limit), we conclude
that the slow diffusion limit is probably not applicable in solar
wind conditions near Earth.
In the opposite and more likely limit of fast diffusion
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In Equations (177) and (179) the parameter d d= á ñ á ñr U VI
I AIA
2 2

is the Alfvén ratio of the mean flux-rope kinetic energy over the
mean flux-rope magnetic energy in the 2D plane perpendicular
to B0 ( d d prá ñ = á ñV B 4AI I

2 2
0), pr= ( )V B 4A0 0 0

1 2 is the Alfvén
speed associated with the background/guide magnetic field,
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D.2. Second-order Fermi Acceleration by Small-scale Flux
Ropes in the Diffusion Approximation

Consider now the expressions for second-order Fermi
acceleration in response to fluctuations in the magnetic field
and plasma flow of the magnetic island component of small-
scale flux ropes for each acceleration scenario. We find that
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These expressions have been derived in the nonlinear transport
limit of our theory by assuming the strong scattering limit
(t t csc

eff ), fast diffusion (τD=τc), and that n ná ñ á ñI A
sc sc as

estimated in Section 15. Accordingly, the expression for τdec is
determined by Equation (179).

In the case of Dpp
COM (combined energetic particle stochastic

curvature drift and generalized betatron acceleration by
compressible small-scale flux ropes), the second term in the
first line of Equation (174), or equivalently the second term in
the square brackets of the second line of Equation (174),
represents the contribution of mD p

COM in the diffusion approx-
imation to the acceleration. The expression in square brackets
in the second line predicts that =D 0pp

COM if the Alfvén ratio
=r 1I

A and the normalized cross helicity s = 1C
I for the

magnetic island component of small-scale flux ropes. This
agrees with earlier kinetic theories for energetic particle
interaction with 2D turbulence not based on focused transport
theory (e.g., le Roux et al. 2004; le Roux & Webb 2007). The
conditions for =D 0pp

COM also correspond to the requirements
for =D 0pp

A in kinetic theory for particle gyroresonant
interaction with parallel-propagating Alfvén waves in the

diffusion approximation (e.g., Schlickeiser 1989; le Roux &
Webb 2007). In the Alfvén wave case s = 1C

A refers to
Alfvén waves propagating forward or backward along the
background magnetic field and =r 1A

A holds for Alfvén waves.
However, as discussed in Section 11, probably more appro-
priate values for small-scale magnetic island turbulence near
1 au are »r 0.1I

A and s » 0.3C
I based on N I MHD theory

simulations of quasi-2D turbulence transport in the supersonic
solar wind (Zank et al. 2017). Then, in the numerator of the
expression in square brackets in the second line of
Equation (174) the first term rA

I dominates. Thus, at 1 au the
contribution of mD p

I to second-order Fermi acceleration in Dpp
COM

can be neglected.
Consider the second stochastic acceleration case Dpp

INC in
Equation (174) (stochastic curvature drift and generalized
betatron acceleration by incompressible small-scale flux ropes),
where a new second term appears in the square brackets in the
first line of Dpp

INC and in the square brackets in the second and
third lines of Dpp

INC owing to mD p
INC. As before, when »r 0.1I
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I , the first term rA

I in the numerator of the square
brackets dominates, so that the contribution of mD p
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negligible. The last two stochastic acceleration cases in
Equation (174) (Dpp
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REC) do not contain new

contributions from mD p
I . Nonetheless, =D 0pp
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A and

s = 1C
I , just as was found on the focused transport level (see

Equation (72)). Also here the numerator of the expression in
square brackets can be approximated by the first term rA

I

assuming »r 0.1I
A and s » 0.3C

I .

D.3. Energetic Particle Advection and Adiabatic Energy
Changes Induced by Small-scale Flux Ropes in the Diffusion

Approximation

Consider the new advection speed terms =m mU Up
I

p
I in the

Parker transport Equation (168) generated by fluctuations in
small-scale flux-rope properties. The expressions of these
terms, which depend on whether we consider stochastic
curvature drift and generalized betatron acceleration in
compressible or incompressible small-scale flux-rope turbu-
lence, are
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If one assumes values for compressible small-scale flux ropes
also applicable to parallel Alfvén waves propagating mainly
along or in the opposite direction of the magnetic field ( =r 1I

A

and s = 1C
I ) and applies the limit that n ná ñ á ñI A

sc sc (particle
scattering by small-scale flux ropes dominates scattering by
Alfvén waves), we find = = m mU U Vp p A

COM COM
0 in the non-

linear spatial transport limit of our theory. This suggests that
energetic particles tend to be advected at the background
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Alfvén speed in the guide field direction by small-scale flux ropes
just as one would get for energetic particle gyroresonant interaction
with parallel-propagating Alfvén waves. However, inserting the
more appropriate values »r 0.1I

A and s » 0.3C
I at 1 au (Zank

et al. 2017), we find that = » - »m mU U V0.17p p A
COM COM

0

- » -U0.017 70 km s−1, which is considerably less than the
background Alfvén speed (weak advection effect). Inserting the
same more plausible values for rA

I and sC
I into the advection speed

expression associated with incompressible flux ropes (last line of
Equation (181)) and specifying dá ñ »B B 0.1I

2
0
2 (strong guide

field limit appropriate at 1 au), the advection speed drops by an
order of magnitude compared to the compressible flux-rope limit,
becoming insignificant.

Let us also analyze the advection speed URECU
I (see

Equation (169)) imparted to energetic particles when these
particles respond to the average properties of numerous small-
scale flux ropes. Since we estimated at 1 au that ná ñI
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ACC in Section 10.1,
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Inserting the usual 1 au values as above, we find that
» ( )U V v V75.5I

A ARECU 0
2

0 for the most optimistic case when
s » 1I
REC (all the parallel reconnection electric fields of

merging flux ropes pointing in the same direction along the
magnetic field). Then, for protons at 1 keV, »U V0.76I

ARECU 0.
Because of the strong inverse speed dependence of the
expression, already at ∼10 keV, the advection speed drops to
a value of » »U V0.08 3I

ARECU 0 km s−1, indicating that at
higher proton energies the advection speed will become
insignificant.

Finally, there is the advection speed UREF
I associated with

the average mirroring force that particles encounter when
crossing numerous small-scale flux ropes (see Equation (169)).
The expression is
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Assuming that s » 1I
REF , we find that » -U V34I

AREF 0, thus
yielding an unphysically large advection speed, much larger
than the background Alfvén speed. A sensible advection speed

<U VI
AREC 0 requires setting s 0.03I

REF , perhaps indicating
the unlikeliness of energetic particles traversing numerous flux
ropes experiencing a significant mean mirroring force. The rms
of the magnetic island dynamic velocity dá ñ =UI
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1 2 km s−1 at 1 au. This value appears

to be a sensible upper bound for the different flux-rope-induced
advection velocities estimated above for energetic particles
(except for the last case, which appears to be unphysical).

Appendix E
The N I MHD Transport Equation for the Magnetic Island
Component of Small-scale Flux Ropes with Magnetic Island
Growth/Damping Rates in the Diffusion Approximation

By inserting the moment expansion expression for the
distribution function (Equation (164)) into the expression for
gI
coh given by Equation (163) or Equation (52) (the damping rate

for the magnetic island component of small-scale flux ropes
associated with coherent particle acceleration) and integrating
Equation (163) over all particle pitch angles, we find that
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sented for all the flux-rope damping rates in this section were
derived assuming strong scattering t t csc

eff , fast diffusion
(t tD c), and that n ná ñ á ñI A

sc sc . Accordingly, the energetic
particle decorrelation timescale τdec is defined by expression (179).
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