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Abstract

Smart mobile devices and mobile apps have 
been rolling out at swift speeds over the last 
decade, turning these devices into convenient and 
general-purpose computing platforms. Sensory 
data from smart devices are important resources 
to nourish mobile services, and they are regard-
ed as innocuous information that can be obtained 
without user permissions. In this article, we show 
that this seemingly innocuous information could 
cause serious privacy issues. First, we demonstrate 
that users’ tap positions on the screens of smart 
devices can be identified based on sensory data 
by employing some deep learning techniques. Sec-
ond, it is shown that tap stream profiles for each 
type of apps can be collected, so that a user’s 
app usage habit can be accurately inferred. In our 
experiments, the sensory data and mobile app 
usage information of 102 volunteers are collected. 
The experiment results demonstrate that the pre-
diction accuracy of tap position inference can be 
at least 90 percent by utilizing convolutional neural 
networks. Furthermore, based on the inferred tap 
position information, users’ app usage habits and 
passwords may be inferred with high accuracy.

Introduction
The usage of smart mobile devices for person-
al and business purposes has grown increasingly 
in popularity over the last decade. Unfortunate-
ly, mobile attacks have simultaneously explod-
ed and become more sophisticated, especially 
when more and more users rely on mobile devic-
es to manage their financial and personal data. 
Many services in smart devices are reliant on the 
sensory data collected from the embedded sen-
sors. Those sensory data nourish the mobile app 
design to provide incredibly convenient services 
to people. In most mobile platforms, the sensory 
data readings are considered non-sensitive and 
can be easily collected without user permission. 
Recent studies indicate that freely accessible built-
in sensors can be easily utilized by adversaries 
to launch inference attacks [1–4]. Some recent 
works mentioned that built-in sensors can be uti-
lized to recognize human activities [5] and infer 
screen based input [2] based on the assumption 
that different human activities or gestures can cre-
ate unique sensory data “patterns.”

In this article, we propose a novel approach to 
identify user tap position even if we do not have any 

historical sensory data of this particular user. Further-
more, we make use of the identified tap patterns 
for each type of apps to further discover users’ app 
usage habits and daily life patterns, which are defi-
nitely private information to most users.

Intuitively, different types of apps incur different 
tap patterns due to the usage nature of each app. 
For instance, users type frequently and fast in chat-
ting apps such as Snapchat and WeChat, while users 
scroll down/up on screens and type occasionally 
when reading news. Based on those observations, 
we first investigate how to infer tap positions based 
on sensory data, the inferred tap positions can 
then help with deriving tap sequences, according 
to which we can record the traces of tap events of 
users when they use smart devices. A tap sequence 
consists of a series of positions tapped by a user on 
a screen. Tap sequences can help with distinguish-
ing different apps and predicting apps being used or 
used before, which is referred to as a usage habit of 
a user. Note that usage habit information is private 
and can be used by adversaries to infer more private 
information such as age, gender, etc.

In order to achieve the aforementioned 
goals, we propose several models to encode tap 
sequences and the intervals between taps in a tap 
sequence. Specifically, n-gram is used to measure 
the similarity distance between two tap sequences, 
and a few machine learning models are applied 
to recognize the app being used by a user. We 
validate our work using the sensory data collect-
ed from 102 volunteers. The experimental results 
demonstrate that our proposed deep learning 
based method can predict tap sequences and infer 
app usage habits with high accuracy. The key con-
tributions of our work are summarized as follows:
1. To the best of our knowledge, this is the first 

work to demonstrate that tap sequence can 
distinguish apps accurately, which reveals 
the fact that seemingly innocuous sensory 
data from smart devices can seriously threat-
en user privacy.

2. Several methods and models are proposed 
and evaluated in this article. We employ 
some traditional classification methods as 
well as deep neural network to infer tap 
positions. Our experiment results demon-
strate that deep learning methods, such as 
Convolutional Neural Network (CNN), is 
very effective for inferring tap sequences. 
Furthermore, we propose a robust model to 
infer app usage habits of a user.
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3. All the experimental data are collected from 
real traces. We develop a new app on the 
Android system and run it on 102 volunteer 
smartphones. We “steal” data from their 
smart phones in a nontrivial way when they 
use their smartphones, and all the experi-
ment results validate our hypothesis that sen-
sory data can be easily utilized to carry out 
privacy attacks.
The rest of the article is organized as follows. 

We introduce the background knowledge, fol-
lowed by tap position inference. We study how to 
infer some private information based on inferred 
tap positions. Our experiment results are present-
ed, and we introduce future research directions. 
Finally, we conclude the article.

Background Knowledge
Sensors in Smart Devices

With the emergence of smart devices with touch 
screens, users rely more and more on smart devic-
es to deal with daily business, even for extremely 
private and sensitive business involving personal 
and financial data. In this article, we use smart-
phones as a case study. Nowadays, off-the-shelf 
smartphones are equipped with sensors that can 
provide various interaction functionalities. The 
most common sensors include accelerometer, 
gyroscope, and rotation vector. Each kind of sen-
sors can sense in three dimensions. We denote 
the nine dimensions as Ax, Ay, Az, Gx, Gy, Gz, Rx, 
Ry, and Rz, respectively. Tap actions on the screen 
of a smartphone can be easily captured by these 
sensors.

Correlation Between Sensory Data and Tap Positions
It is well known that malicious apps can steal sen-
sory data secretly because these sensors can be 
accessed without user permission [6], resulting 
in serious privacy issues. In this article, we first 
show that what we type through the soft key-
board, which is the most common input method 
in smartphones, can be inferred through sensory 
data. Note that very sensitive information such 
as passwords, PINs, social security numbers, and 
credit card numbers are generally input through 
the soft keyboard. Then, we demonstrate that cur-
rent running apps can also be identified by mining 
sensory data. The information regarding running 
apps is also sensitive. Unfortunately, most users 
are not even aware of this fact.

It is not surprising that side channel information 
can be utilized by attackers [2, 7, 8]. Many previ-
ous works have shown that the changing angle 
and vibration of a touch screen on a smartphone 
are highly correlated to tap positions. In Fig. 1, the 
lines with different colors represent multiple taps 
on the same position. Each sub-figure depicts a 
specific dimension of a sensor. Similarity presents 
in each of the nine dimensions of sensory data. 
Then we derive the observation that a tap posi-
tion has unique sensory data patterns. Thus we 
can infer tap positions according to sensory data. 
Our experiment results show that we are able to 
infer tap positions with 99 percent accuracy.

Furthermore, we observe that same kind of 
apps share similar user interface layouts, e.g., 
chatting apps such as WeChat and Messenger. 
Users carry out similar actions for the same kind 

of apps. We believe that the similarity of the same 
kind of apps is unique and can be used to dis-
tinguish different kinds of apps. Our experiment 
results also validate this fact.

Attack Model
In our attack model, we assume users have been 
tricked to install our malicious app on their smart-
phones so that we can collect their sensory data 
[9]. The most common way is to develop an app 
similar to a popular paid app and make it free in 
the Android app store. Lots of careless users will 
be tricked. Once a user launches the malicious 
app, the app starts to collect sensory data secret-
ly. Then the malicious app can send the sensory 
data back to our back-end to train our inference 
models and launch inference attacks.

Our system consists of several components 
including tap detection, keystroke recognition, 
tap position inference, tap sequence pattern rec-
ognition, and app inference, as shown in Fig. 2. 
Initially, a tap event is captured by the tap detec-
tion component when a user taps on the screen. 
Then many features can be extracted from the 
sensory data and easily associated with tap posi-
tions during our training process. If a user switch-
es to another app, we can detect a tap event 
and record sensory data. The sensory data will 
be compared with our training data to infer tap 
positions.

To infer the app usage of a user, we can record 
all the sensory data when the user uses an app. 
Based on our tap position inference results, we 
can derive a tap sequence representing a unique 
pattern for each kind of app. As long as we col-
lect enough training data and tune our inference 
model well enough, this inference model can be 
used to infer an app.

Sensory Data Collection
To collect sensory data from smartphones secret-
ly, we design and implement a trojan app, named 
Informer, on the Android platform which has two 
parts, sensor reading service and host app. The 
sensor reading service is responsible for gathering 
sensory data from smartphones. The host app is 
a luringly installed malicious app such as tools, 
media, and games. We can “steal" sensory data 
from users’ smartphones without users’ notice 
because the sensors in smartphones can be 
accessed without user permissions [6]. Informer 
has two stages: training data collection and sen-
sory data recording. In the training data collection 
stage, users interact with the host app so that the 
tap positions and sensory data can both be col-
lected. Then we can extract the features of the 
sensory data for different positions. In this way, 
we can easily associate sensory data with tap posi-
tions to form an inference database. In the senso-
ry data recording stage, if a user is not interacting 
with the host app, Informer cannot capture tap 
events and positions. However, we can still infer 

To infer the app usage of a user, we can record all the sensory data when the user uses an app. Based 
on our tap position inference results, we can derive a tap sequence representing a unique pattern 
for each kind of app. As long as we collect enough training data and tune our inference model well 

enough, this inference model can be used to infer an app.
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tap positions. Because the sensor reading service 
keeps recording sensory data which can be used 
for inferring tap positions. In order to collect sen-
sory data for all the possible positions on a screen, 
we design the layout of the host app carefully so 
that a user has to tap all the possible positions on 
a screen when interacting with Informer.

Traditional Methods
Many approaches have been proposed for tap 
detection and recognition [1, 2, 7]. However, our 
experiment results show that the previous meth-
ods have some limitations. Initially, we believe 
that sensory data should show very different pat-
terns for different tap positions in each dimension. 
However, this is not always true. For instance, no 
matter where you tap on the screen, there must 
be a downward power impact on the smart-
phone. So the sensory data pattern is very simi-
lar for the Az axis regardless of tap positions. It is 
then impossible to distinguish tap positions simply 
based on the extracted features from an individ-
ual dimension. Thus, the methods in [7] and [2] 
may not be effective.

We also find the correlation among axes is 
unique for each tap position and is very stable, 
as shown in Fig. 3, between the angle of roll and 
pitch, which depicts the angle relation between 
roll and pitch for different tap positions. It is 
shown in each subfigure that different tap actions 

at the same position result in highly similar cor-
relations among different types of sensory data. 
Therefore, we consider not only the features of 
each type of sensor data, but also the correlations 
among different types of sensory data.

Tap Event Detection: In the training data col-
lection stage, our data collection app naturally 
receives tap events. In the sensory data recording 
stage, we can only derive tap events through sen-
sory data. Thus, in this stage, the main challenge 
is to detect tap events, for which we only take 
accelerometer into consideration. In our experi-
ments, we find that no matter where you tap on 
the screen, there is a great impact on the accel-
erometer along axis Az. It is intuitive because all 
tap actions result in a downward power on the 
screen. Hence, we mainly utilize the sensory data 
of Az to detect tap actions. We first normalize 
raw sensory data, then set a threshold l for the 
square sum SquareSum = (Azi)2. If the square sum 
exceeds l , there is a peak candidate at time i. 
We may obtain many peak candidates and we 
need to filter out noises. There must be an interval 
between two sequential tap actions, and the peak 
width should fall into a constant range. So we set 
another four thresholds for the peaks in Az, which 
are the minimum peak interval length, minimum 
peak height, minimum peak width, and maximum 
peak width. Then, all tap actions can be captured 
from the sensory data.

FIGURE 1. Similarity of sensory data for a same tap position.
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Feature Extraction: We can obtain an array 
of peak indices from the tap detection module. 
In our experiments, we use these peaks as an 
approximate index and cut off the small sections 
before and after these peak indices. Let us call 
these sections tap event windows which are pro-
cessed respectively. It means we extract features 
for each axis respectively so that we can combine 
all the features of the nine dimensions of senso-
ry data. The extracted features include the min, 
max, average, number of peaks and crests, and 
the index difference between min and max.

As previously mentioned, we not only extract 
features for each axis respectively, but also take 
the correlations among axes into consideration. 
We extract a total of 136 features for each tap 
action. It is very time-consuming and unneces-
sary to leverage all these 136 features to dis-
criminate different tap positions, because we do 
not know which features contribute more to the 
characteristics of a tap action’s sensory data for 
different positions. If we can recognize the fea-
tures that have the strongest correlations with a 
tap position, we can not only reduce noise but 
also improve inference speed. We utilize principle 
component analysis (PCA) to filter features. In 
our experiments, after applying PCA, 10 features 
result in almost the highest accuracy.

Tap Classification: To infer a tap position, 
we adopt three methods, i.e., k-nearest neighbor 
(KNN), decision tree, and SVM, to perform classi-
fication. In KNN, for each tap action, we calculate 
the standard Euclidean distance between this tap 
and all the taps in the training data set under the 
new coordinate system. We check the majority 
ones among the closest five taps, then label this 
tap with the majority tap position.

Convolutional Neural Networks
Traditional tap inference methods have some 
non-negligible drawbacks, e.g., feature extraction 
sacrifices data information. We propose to 
employ Convolutional Neural Networks (CNN) to 
infer tap positions. CNN is one of the most popu-
lar deep learning methods and has attracted much 
attention [10]. In particular, CNN has become a 
powerful tool in many areas, especially in image 
recognition and natural language processing [11, 
12]. CNN is a feed-forward artificial neural net-
work that consists of convolutional layers, pooling 
layers and fully connected layers. The convolu-
tional layer and pooling layer can be viewed as a 
whole and stacked together so that we can cre-
ate a CNN model as complex as possible. CNN 
requires that the input data have sort of “spa-
tial” correlations, such as image data and digi-
tal signal data [13, 14]. In our experiments, we 
observe that the unique patterns of tap actions 
are described by the “shape” of the curve. The 
“shape” of the sensory data curve shown in Fig. 
1 can be considered as signal data that have spa-
tial correlation. Inspired by multi-channel image 
processing, our sensory data can be naturally 
treated as multi-channel images as there are nine 
axes of sensory data for each tap action. Differ-
ent from image processing, where the input is a 
2-dimensional array, our input is just a 1-dimen-
sional vector. It does not become more challeng-
ing to adopt CNN since we just need to adjust 
the kernel shape accordingly. In our CNN based 

model, the input data is 81 by 1, the kernel size 
is 15 by 1, and 60 kernels are used in each layer. 
The stride is set to 1.

There are many attractive advantages in using 
CNN to address the classification problem. One 
of the most powerful strengths of CNN is that we 
do not have to extract the features of tap sensory 
data manually. Inappropriate feature extraction 
leads to catastrophic consequence for classifica-
tion. Even an experienced data analyst can hardly 
guarantee the effectiveness of feature extraction. 
While in CNN, all the important features are 
“extracted” automatically during the weight 
updating back-propagation process. The “spatial” 
correlations are also accommodated through 
parameter sharing. These superior strengths make 
CNN very suitable for solving our classification 
problem. This conclusion is also validated by our 
experiment results, which show CNN significantly  
outperforms the traditional methods.

Applications of Tap Inference
Now we introduce two possible applications of 
tap inference.

App Usage Inference
A tap position can be inferred accurately as dis-
cussed earlier. So we can infer app usage based 
on the obtained tap sequences. Intuitively, apps 
with similar functions should have similar opera-
tion patterns. For example, in social media apps, 
we can chat with friends and browse content 
shared by friends. In news apps, we keep scan-
ning news until we find something attractive, then 
we click the news link to read it carefully.

In this article, we explore the feasibility of infer-
ring app usage. A tap sequence refers to a series 
of tap actions. First, we explain how to model 
tap sequences and measure the similarity of tap 
sequences.

Tap Sequence Modeling: In our experiments, 
we divide a smart device's screen into nine zones 
similar to a numeric-only keyboard on a smart-
phone, defined as TL = {l1, l2, l3 … l9}. We record 
both the timestamp and tap position for each tap 
event. Let ti be the timestamp for tap action Ti.

FIGURE 2. System overview.
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The following three models are considered for 
tap sequences.

Position Based Model: The most straightfor-
ward approach is to only take tap positions into 
consideration. A tap sequence is recorded as a 
series of tap positions sorted by timestamps, e.g., 
{l3, l4, … li, … , l8} where li  TL. 

Time Based Model: Our observation indi-
cates that the interval between a pair of consec-
utive tap actions is an important factor to infer 
app usage. We model a tap sequence as a time 
interval sequence {t2 – t1, t3 – t2, ... tn – tn–1}, 
where ti – ti–1 is the time interval between tap 
action Ti and tap action Ti–1. In order to utilize the 
n-gram algorithm, we categorize intervals into five 
groups A = [0, 500ms), B = [500ms, 1000ms), C = 
[1000ms, 1500ms), D = [1500ms, 2000ms), and 
E = [2000ms, 2500ms). A time based sequence is 
then represented by a sequence of time intervals, 
such as {A, B, D}.

Hybrid Model: We take both tap positions and 
time intervals into consideration. We model a tap 
sequence as a list of tap positions and time inter-
vals. For example, {l3, A, l1, B, l4, A, l5, C … l9, D}.

We group the tap sequences of the same type 
of apps together to form a “profile” and utilize it 
to determine to which type of apps the upcoming 
tap sequence belongs.

Tap Sequence Similarity: Now we discuss the 
metrics for measuring the similarity between two 

tap sequences. We mainly focus on n-gram similar-
ity and average element-wise matrix similarity [15].

n-gram similarity. The ratio of the common 
subsequences of two tap sequences over the 
total number of subsequences can be utilized to 
measure their similarity [15]. Let Sn be a set of 
subsequences of length n appearing in one tap 
sequence. Thus, for tap sequence Q = {q1, q2, …, 
qN}, Sk(Q) = {subseq|subseq = {qi, qi+1, …, qi+n–1}, 
i  [1, N + 1 – n]}. The similarity of two sequenc-
es Q1 and Q2 is defined as

Distance(Q1,Q2 ) = 1−
Sn (Q1)∩ Sn (Q2 )
Sn (Q1)∪ Sn (Q2 )

.
 	

(1)

n-gram follows the assumption that two similar 
apps should result in more common subsequenc-
es. The value of n is the number of the necessary 
tap actions to complete an operation, and n var-
ies for different apps.

Average element-wise matrix similarity. We 
construct a transition matrix based on a tap 
sequence, where each node represents a tap 
position. There are two ways to define the weight 
of an edge from node li to node lj. The first way 
is to use the number of transitions from tap posi-
tions li to lj over the total number of transitions. 
The other approach is to use the average transi-
tion time from tap positions li to lj. The similari-
ty between two tap sequences is defined as the 

FIGURE 3. Correlation between angle of roll and pitch.
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average element-wise distance of their transition 
matrices. For each type of app, we collect a large 
number of tap sequences as training data. The 
similarity between the tap sequences in the train-
ing data set and a coming tap sequence is utilized 
to do the classification.

Password Inference
Another important and more straightforward appli-
cation of tap inference is password inference. We 
adopt a CNN based method for password infer-
ence where CNN outputs a probability vector for 
each single tap action. Each entry in the vector rep-
resents the probability of this position being tapped. 
We choose the tap sequence with the highest joint 
probability as our inferred password. As users are 
usually allowed to try three times when typing in 
a password, our method outputs the top three 
inferred passwords with the highest joint probabil-
ities. If the real password is one of these top three 
ones, we consider the inference as correct.

Experiment Results
We implemented our adversary app in an Android 
system API level 23 and tested it with many kinds 
of smartphones, including Samsung Galaxy S7 
edge, Samsung Note 5, HUAWEI meta 9, HUA-
WEI Honor 8, LG G5, HTC M8, etc. Our volun-
teers held the smartphones with their left hand and 
used their pointer fingers to tap on the screens.

Tap Inference
We had 102 volunteers and the sensory data for 
about 91,800 tap actions were collected. A smart-
phone screen is divided into nine zones. During 
the training data collection stage, each volunteer 
taps in each zone on the screen for at least 100 
times. During the data recording stage, the volun-
teers use smartphones as usual. The average tap 
inference accuracies are 62 percent, 38 percent, 
69 percent, and 93 percent for KNN, Decision 
Tree, SVM and CNN, respectively. For our CNN 
based method, more than 95 percent of inference 
accuracies are better than 80 percent, which is 
very impressive.

The traditional methods mainly focus on fea-
ture extraction, which might sacrifice accuracy. As 
shown in Fig. 4, for SVM and KNN, with only 10 
features, we can have an accuracy of 80 percent. 
As the number of features increases, the accu-
racy is not substantially improved. This validates 
that feature extraction based methods may not be 
effective in practice.

App Inference
For app inference, we classify the apps into seven 
categories based on their functions, as shown in 
Table 1.

We employ three tap sequence models as intro-
duced earlier. In the position based model (Tap) 
and time based model (Interval), we use n-gram 
distance to measure app similarity distance. For the 
hybrid model, we adopt three similarity distance 
methods: n-gram (Hybrid), graph-count (GC), and 
graph-interval (GT). As introduced earlier, we build 
a transition “graph” based on these nine tap posi-
tions. GC uses the number of average tap transi-
tion counts between different tap positions as the 
edge weight, while GT utilizes the average transi-
tion time interval between different tap positions 

as the edge weight. The results are shown in Fig. 5. 
Our hybrid model with n-gram (Hybrid) achieves 
the best results.

Password Inference
Although it is also related to tap positions, pass-
word inference is harder because it is considered 
as failed even with one single inference error. In 
our experiments, we consider passwords with dif-
ferent lengths, including 638 4-digit passwords, 
529 6-digit passwords, and 336 8-digit passwords. 
If our top three candidates contain the correct 
password, we consider it as correct. For 4-digit 
passwords, the accuracy reaches 94.3 percent. 
For 6-digit and 8-digit passwords, the accuracies 
are 92 percent and 89.9 percent, respectively.

Future Research Directions
Detection and prevention of sensor-based 

attacks. Attacks using sensory data are attracting 
increasing attention. Smart devices embedded 
with sensors provide attackers with opportunities 
to perform inference attacks. On the other hand, 
sensors can also be utilized to prevent and detect 
such kind of attacks. For instance, based on the 
battery consumption level, we can detect abnor-
mal sensory data collection activities since such 
activities consume lots of power.

Deep learning-based inference. Deep learn-
ing approaches have been proven successful in 
many areas. However, they have not been widely 
adopted to prevent inference attacks. In our CNN 
based model, we just employ a two-layer convolu-
tional and pooling network, which is very simple 

FIGURE 4. Impact of features.
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TABLE 1. Apps in our experiments.

Categories Apps

Game (TR)
Shopping (SP)

Video (VD)
Browser (BR)

Social media (SM)
Instant chat (IC)

Music player (MC)

Temple Run, Paris Metro
TaoBao, Amazon

Youku, Iqiyi
QQ browser, UC browser

Weibo, Facebook
WeChat, Messenger

QQ Music, WangYi Yun Music
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and basic. A more complex CNN based model or 
novel deep learning methods need to be devel-
oped to seek improved and stable results.

Fusion of multi-modal data. Data fusion can 
help us derive more consistent and accurate 
results. However, current research only focuses on 
a specific type of sensory data. Smart devices are 
usually equipped with many different kinds of sen-
sors, and user activities may be captured through 
various sensors. Therefore, how to fuse multi-mod-
al data and make use of the fused data to prevent 
attacks are worth a thorough investigation.

Conclusion
Though smart devices are indispensable in 
modern life, most people do not realize that 
smartphones also threaten their privacy. Peo-
ple usually ignore the fact that sensory data can 
be secretly collected from the sensors embed-
ded in smart devices without user permission. 
In this article, we present the feasibility of infer-
ring users’ app usage habits solely based on sen-
sory data. More specifically, we propose three 
improved traditional methods and one deep neu-
ral network method to infer users’ tap positions 
by analyzing the secretly collected sensory data. 
The extensive experiment results show that our 
proposed methods achieve high accuracy and 
are very effective for tap classification, app infer-
ence and password inference.
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FIGURE 5. App inference accuracy.
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