EXPLORING DEEP LEARNING FOR EFFICIENT AND RELIABLE

MOBILE SENSING

Deep Learning Based Inference of Private Information Using Embedded Sensors in

Smart Devices

Yi Liang, Zhipeng Cai, Jiguo Yu, Qilong Han, and Yingshu Li

Digital Object Identifier:
10.1109/MNET.2018.1700349

ABSTRACT

Smart mobile devices and mobile apps have
been rolling out at swift speeds over the last
decade, turning these devices into convenient and
general-purpose computing platforms. Sensory
data from smart devices are important resources
to nourish mobile services, and they are regard-
ed as innocuous information that can be obtained
without user permissions. In this article, we show
that this seemingly innocuous information could
cause serious privacy issues. First, we demonstrate
that users’ tap positions on the screens of smart
devices can be identified based on sensory data
by employing some deep learning techniques. Sec-
ond, it is shown that tap stream profiles for each
type of apps can be collected, so that a user’s
app usage habit can be accurately inferred. In our
experiments, the sensory data and mobile app
usage information of 102 volunteers are collected.
The experiment results demonstrate that the pre-
diction accuracy of tap position inference can be
at least 90 percent by utilizing convolutional neural
networks. Furthermore, based on the inferred tap
position information, users’ app usage habits and
passwords may be inferred with high accuracy.

INTRODUCTION

The usage of smart mobile devices for person-
al and business purposes has grown increasingly
in popularity over the last decade. Unfortunate-
ly, mobile attacks have simultaneously explod-
ed and become more sophisticated, especially
when more and more users rely on mobile devic-
es to manage their financial and personal data.
Many services in smart devices are reliant on the
sensory data collected from the embedded sen-
sors. Those sensory data nourish the mobile app
design to provide incredibly convenient services
to people. In most mobile platforms, the sensory
data readings are considered non-sensitive and
can be easily collected without user permission.
Recent studies indicate that freely accessible built-
in sensors can be easily utilized by adversaries
to launch inference attacks [1-4]. Some recent
works mentioned that built-in sensors can be uti-
lized to recognize human activities [5] and infer
screen based input [2] based on the assumption
that different human activities or gestures can cre-
ate unique sensory data “patterns.”

In this article, we propose a novel approach to
identify user tap position even if we do not have any

historical sensory data of this particular user. Further-

more, we make use of the identified tap patterns

for each type of apps to further discover users’ app
usage habits and daily life patterns, which are defi-
nitely private information to most users.

Intuitively, different types of apps incur different
tap patterns due to the usage nature of each app.
For instance, users type frequently and fast in chat-
ting apps such as Snapchat and WeChat, while users
scroll down/up on screens and type occasionally
when reading news. Based on those observations,
we first investigate how to infer tap positions based
on sensory data, the inferred tap positions can
then help with deriving tap sequences, according
to which we can record the traces of tap events of
users when they use smart devices. A tap sequence
consists of a series of positions tapped by a user on
a screen. Tap sequences can help with distinguish-
ing different apps and predicting apps being used or
used before, which is referred to as a usage habit of
a user. Note that usage habit information is private
and can be used by adversaries to infer more private
information such as age, gender, etc.

In order to achieve the aforementioned
goals, we propose several models to encode tap
sequences and the intervals between taps in a tap
sequence. Specifically, n-gram is used to measure
the similarity distance between two tap sequences,
and a few machine learning models are applied
to recognize the app being used by a user. We
validate our work using the sensory data collect-
ed from 102 volunteers. The experimental results
demonstrate that our proposed deep learning
based method can predict tap sequences and infer
app usage habits with high accuracy. The key con-
tributions of our work are summarized as follows:
1. To the best of our knowledge, this is the first

work to demonstrate that tap sequence can
distinguish apps accurately, which reveals
the fact that seemingly innocuous sensory
data from smart devices can seriously threat-
en user privacy.

2. Several methods and models are proposed
and evaluated in this article. We employ
some traditional classification methods as
well as deep neural network to infer tap
positions. Our experiment results demon-
strate that deep learning methods, such as
Convolutional Neural Network (CNN), is
very effective for inferring tap sequences.
Furthermore, we propose a robust model to
infer app usage habits of a user.

Yi Liang, Zhipeng Cai, Yingshu Li are with Georgia State Univerisity; Jiguo Yu is with Qufu Normal University; Qilong Han is with Harbin Engineering University.

0890-8044/18/$25.00 © 2018 IEEE

IEEE Network - July/August 2018

3. All the experimental data are collected from
real traces. We develop a new app on the
Android system and run it on 102 volunteer
smartphones. We “steal” data from their
smart phones in a nontrivial way when they
use their smartphones, and all the experi-
ment results validate our hypothesis that sen-
sory data can be easily utilized to carry out
privacy attacks.

The rest of the article is organized as follows.
We introduce the background knowledge, fol-
lowed by tap position inference. We study how to
infer some private information based on inferred
tap positions. Our experiment results are present-
ed, and we introduce future research directions.
Finally, we conclude the article.

BACKGROUND KNOWLEDGE
SENSORS IN SMART DEVICES

With the emergence of smart devices with touch
screens, users rely more and more on smart devic-
es to deal with daily business, even for extremely
private and sensitive business involving personal
and financial data. In this article, we use smart-
phones as a case study. Nowadays, off-the-shelf
smartphones are equipped with sensors that can
provide various interaction functionalities. The
most common sensors include accelerometer,
gyroscope, and rotation vector. Each kind of sen-
sors can sense in three dimensions. We denote
the nine dimensions as A,, Ay Az Gy, Gy, Gy Ry,
R,, and R,, respectively. Tap actions on the screen
of a smartphone can be easily captured by these
sensors.

CORRELATION BETWEEN SENSORY DATA AND TAP POSITIONS

It is well known that malicious apps can steal sen-
sory data secretly because these sensors can be
accessed without user permission [6], resulting
in serious privacy issues. In this article, we first
show that what we type through the soft key-
board, which is the most common input method
in smartphones, can be inferred through sensory
data. Note that very sensitive information such
as passwords, PINs, social security numbers, and
credit card numbers are generally input through
the soft keyboard. Then, we demonstrate that cur-
rent running apps can also be identified by mining
sensory data. The information regarding running
apps is also sensitive. Unfortunately, most users
are not even aware of this fact.

It is not surprising that side channel information
can be utilized by attackers [2, 7, 8]. Many previ-
ous works have shown that the changing angle
and vibration of a touch screen on a smartphone
are highly correlated to tap positions. In Fig. 1, the
lines with different colors represent multiple taps
on the same position. Each sub-figure depicts a
specific dimension of a sensor. Similarity presents
in each of the nine dimensions of sensory data.
Then we derive the observation that a tap posi-
tion has unique sensory data patterns. Thus we
can infer tap positions according to sensory data.
Our experiment results show that we are able to
infer tap positions with 99 percent accuracy.

Furthermore, we observe that same kind of
apps share similar user interface layouts, e.g.,
chatting apps such as WeChat and Messenger.
Users carry out similar actions for the same kind

To infer the app usage of a user, we can record all the sensory data when the user uses an app. Based
on our tap position inference results, we can derive a tap sequence representing a unique pattern

for each kind of app. As long as we collect enough training data and tune our inference model well
enough, this inference model can be used to infer an app.

of apps. We believe that the similarity of the same
kind of apps is unique and can be used to dis-
tinguish different kinds of apps. Our experiment
results also validate this fact.

ATTACK MODEL

In our attack model, we assume users have been
tricked to install our malicious app on their smart-
phones so that we can collect their sensory data
[9]. The most common way is to develop an app
similar to a popular paid app and make it free in
the Android app store. Lots of careless users will
be tricked. Once a user launches the malicious
app, the app starts to collect sensory data secret-
ly. Then the malicious app can send the sensory
data back to our back-end to train our inference
models and launch inference attacks.

Our system consists of several components
including tap detection, keystroke recognition,
tap position inference, tap sequence pattern rec-
ognition, and app inference, as shown in Fig. 2.
Initially, a tap event is captured by the tap detec-
tion component when a user taps on the screen.
Then many features can be extracted from the
sensory data and easily associated with tap posi-
tions during our training process. If a user switch-
es to another app, we can detect a tap event
and record sensory data. The sensory data will
be compared with our training data to infer tap
positions.

To infer the app usage of a user, we can record
all the sensory data when the user uses an app.
Based on our tap position inference results, we
can derive a tap sequence representing a unique
pattern for each kind of app. As long as we col-
lect enough training data and tune our inference
model well enough, this inference model can be
used to infer an app.

SENSORY DATA COLLECTION

To collect sensory data from smartphones secret-
ly, we design and implement a trojan app, named
Informer, on the Android platform which has two
parts, sensor reading service and host app. The
sensor reading service is responsible for gathering
sensory data from smartphones. The host app is
a luringly installed malicious app such as tools,
media, and games. We can “steal" sensory data
from users’ smartphones without users’ notice
because the sensors in smartphones can be
accessed without user permissions [6]. Informer
has two stages: training data collection and sen-
sory data recording. In the training data collection
stage, users interact with the host app so that the
tap positions and sensory data can both be col-
lected. Then we can extract the features of the
sensory data for different positions. In this way,
we can easily associate sensory data with tap posi-
tions to form an inference database. In the senso-
ry data recording stage, if a user is not interacting
with the host app, Informer cannot capture tap
events and positions. However, we can still infer

|EEE Network - July/August 2018

Amplitude

Amplitude

Amplitude

50

Index of sensor reading

(@ Ay

-144.5

-145

-145.5

-146

-146.5

-147

Index of sensor reading

@ &

50
Index of sensor reading

®

15 0.2
| T mﬁ
S 05k i =]
E ‘ £ 02}
) : o
051 ‘ : o4r a
-1 L -0.6 L
100 50 100 0 50 100
Index of sensor reading Index of sensor reading
) Ay 9 A;
1 0.3
sk . 02t
% % 0.1+ | K
s 0 =
£ E ofF 9
<< << B
05+ o1k H
-1 H -02 L
0 50 100 0 50 100
Index of sensor reading Index of sensor reading
® G ® G,
2
-10
—_— .
Mk 1 1 --————J__:l
5 (%) _\
< 3
2 = L
é 2 i s 0
= <C
13 :T O Ak
.
|
» — :./Jf. ,
- 1 -, 1
100 0 50 100 0 50 100
Index of sensor reading Index of sensor reading
Ry (h) Ry) R,

FIGURE 1. Similarity of sensory data for a same tap position.

tap positions. Because the sensor reading service
keeps recording sensory data which can be used
for inferring tap positions. In order to collect sen-
sory data for all the possible positions on a screen,
we design the layout of the host app carefully so
that a user has to tap all the possible positions on
a screen when interacting with Informer.

TRADITIONAL METHODS

Many approaches have been proposed for tap
detection and recognition [1, 2, 7]. However, our
experiment results show that the previous meth-
ods have some limitations. Initially, we believe
that sensory data should show very different pat-
terns for different tap positions in each dimension.
However, this is not always true. For instance, no
matter where you tap on the screen, there must
be a downward power impact on the smart-
phone. So the sensory data pattern is very simi-
lar for the A, axis regardless of tap positions. It is
then impossible to distinguish tap positions simply
based on the extracted features from an individ-
ual dimension. Thus, the methods in [7] and [2]
may not be effective.

We also find the correlation among axes is
unique for each tap position and is very stable,
as shown in Fig. 3, between the angle of roll and
pitch, which depicts the angle relation between
roll and pitch for different tap positions. It is
shown in each subfigure that different tap actions

at the same position result in highly similar cor-
relations among different types of sensory data.
Therefore, we consider not only the features of
each type of sensor data, but also the correlations
among different types of sensory data.

Tap Event Detection: In the training data col-
lection stage, our data collection app naturally
receives tap events. In the sensory data recording
stage, we can only derive tap events through sen-
sory data. Thus, in this stage, the main challenge
is to detect tap events, for which we only take
accelerometer into consideration. In our experi-
ments, we find that no matter where you tap on
the screen, there is a great impact on the accel-
erometer along axis A,. It is intuitive because all
tap actions result in a downward power on the
screen. Hence, we mainly utilize the sensory data
of A, to detect tap actions. We first normalize
raw sensory data, then set a threshold A for the
square sum SquareSum = (A)2. If the square sum
exceeds A, there is a peak candidate at time i.
We may obtain many peak candidates and we
need to filter out noises. There must be an interval
between two sequential tap actions, and the peak
width should fall into a constant range. So we set
another four thresholds for the peaks in A,, which
are the minimum peak interval length, minimum
peak height, minimum peak width, and maximum
peak width. Then, all tap actions can be captured
from the sensory data.

IEEE Network - July/August 2018

Feature Extraction: We can obtain an array
of peak indices from the tap detection module.
In our experiments, we use these peaks as an
approximate index and cut off the small sections
before and after these peak indices. Let us call
these sections tap event windows which are pro-
cessed respectively. It means we extract features
for each axis respectively so that we can combine
all the features of the nine dimensions of senso-
ry data. The extracted features include the min,
max, average, number of peaks and crests, and
the index difference between min and max.

As previously mentioned, we not only extract
features for each axis respectively, but also take
the correlations among axes into consideration.
We extract a total of 136 features for each tap
action. It is very time-consuming and unneces-
sary to leverage all these 136 features to dis-
criminate different tap positions, because we do
not know which features contribute more to the
characteristics of a tap action’s sensory data for
different positions. If we can recognize the fea-
tures that have the strongest correlations with a
tap position, we can not only reduce noise but
also improve inference speed. We utilize principle
component analysis (PCA) to filter features. In
our experiments, after applying PCA, 10 features
result in almost the highest accuracy.

Tap Classification: To infer a tap position,
we adopt three methods, i.e., k-nearest neighbor
(KNN), decision tree, and SVM, to perform classi-
fication. In KNN, for each tap action, we calculate
the standard Euclidean distance between this tap
and all the taps in the training data set under the
new coordinate system. We check the majority
ones among the closest five taps, then label this
tap with the majority tap position.

CONVOLUTIONAL NEURAL NETWORKS

Traditional tap inference methods have some
non-negligible drawbacks, e.g., feature extraction
sacrifices data information. We propose to
employ Convolutional Neural Networks (CNN) to
infer tap positions. CNN is one of the most popu-
lar deep learning methods and has attracted much
attention [10]. In particular, CNN has become a
powerful tool in many areas, especially in image
recognition and natural language processing [11,
12]. CNN is a feed-forward artificial neural net-
work that consists of convolutional layers, pooling
layers and fully connected layers. The convolu-
tional layer and pooling layer can be viewed as a
whole and stacked together so that we can cre-
ate a CNN model as complex as possible. CNN
requires that the input data have sort of “spa-
tial” correlations, such as image data and digi-
tal signal data [13, 14]. In our experiments, we
observe that the unique patterns of tap actions
are described by the “shape” of the curve. The
“shape” of the sensory data curve shown in Fig.
1 can be considered as signal data that have spa-
tial correlation. Inspired by multi-channel image
processing, our sensory data can be naturally
treated as multi-channel images as there are nine
axes of sensory data for each tap action. Differ-
ent from image processing, where the input is a
2-dimensional array, our input is just a 1-dimen-
sional vector. It does not become more challeng-
ing to adopt CNN since we just need to adjust
the kernel shape accordingly. In our CNN based

Sensory (
data and Sensory

tap posmo data

Tap detection Tap detection
Start Epint Start pgkim
) |
Feature extraction Tap segment Feature extraction Tap segment
and deduction cut and deduction cut

Tap position training

Patterns learned

for tap position

BOa0n
DEo:
GOCEm

T Inferring the
most likely app

Tap similarity distance
based classification

classification
Tap streaming
Tap i
Inferred sequence modeling
position

|:> Tap |[Time [Tap-time
based || based || based

=

Graph
similarity gt

FIGURE 2. System overview.

model, the input data is 81 by 1, the kernel size
is 15 by 1, and 60 kernels are used in each layer.
The stride is set to 1.

There are many attractive advantages in using
CNN to address the classification problem. One
of the most powerful strengths of CNN is that we
do not have to extract the features of tap sensory
data manually. Inappropriate feature extraction
leads to catastrophic consequence for classifica-
tion. Even an experienced data analyst can hardly
guarantee the effectiveness of feature extraction.
While in CNN, all the important features are
“extracted” automatically during the weight
updating back-propagation process. The “spatial”
correlations are also accommodated through
parameter sharing. These superior strengths make
CNN very suitable for solving our classification
problem. This conclusion is also validated by our
experiment results, which show CNN significantly
outperforms the traditional methods.

APPLICATIONS OF TAP INFERENCE

Now we introduce two possible applications of
tap inference.

APP USAGE INFERENCE

A tap position can be inferred accurately as dis-
cussed earlier. So we can infer app usage based
on the obtained tap sequences. Intuitively, apps
with similar functions should have similar opera-
tion patterns. For example, in social media apps,
we can chat with friends and browse content
shared by friends. In news apps, we keep scan-
ning news until we find something attractive, then
we click the news link to read it carefully.

In this article, we explore the feasibility of infer-
ring app usage. A tap sequence refers to a series
of tap actions. First, we explain how to model
tap sequences and measure the similarity of tap
sequences.

Tap Sequence Modeling: In our experiments,
we divide a smart device's screen into nine zones
similar to a numeric-only keyboard on a smart-
phone, defined as TL = {ly, I, I3 - Ig}. We record
both the timestamp and tap position for each tap
event. Let t; be the timestamp for tap action T,

|EEE Network - July/August 2018

_'H -
_§ =
2 g
g 12F =
=) o
= e
3+ =
-14 L 1
-147 -146 -145 -144
Angle of roll
(a) Position 1
S S
k<] S
@ @
oo [sTe)
c c
<< <<
-140.5 -140 -139.5 -139
Angle of roll
(d) Position 4
-15
-155F
S S
=2 -l6f =
© ks
{5
™ 165 =
<< <<
-17
-175 L
-116 -1155 -115
Angle of roll

(g) Position 7

-6
-9
10k
S 8r
nkE =
o
K
[0o
12 £ -0
13
-14 L L 12 1 |
-146 -145 -144 -143 -145 -140 -135 -130
Angle of roll Angle of roll
(b) Position 2 () Position 3
-135 -10.5
_'|'| -
4t 5
£ sk
ks
2 ol
-145F <
-125F
-15 -13 1 1
-147 -146 -145 -144 -116.4 -116.2 -116 -115.8
Angle of roll Angle of roll
(e) Position 5 (f) Position 6
-14
14
15F &
3 -6
-6+ =
a.
k<] 18
-7 - L
f=
= 20t
-18
-19 L L L -22 I
-115.5 -115 -1145 -114 -113.5 -116 -114 -112
Angle of roll Angle of roll
(h) Position 8 (i) Position 9

FIGURE 3. Correlation between angle of roll and pitch.

The following three models are considered for

tap sequences.

Position Based Model: The most straightfor-
ward approach is to only take tap positions into
consideration. A tap sequence is recorded as a
series of tap positions sorted by timestamps, e.g.,
{l3, l4, I,', ey, IB} where l,' e TL.

Time Based Model: Our observation indi-
cates that the interval between a pair of consec-
utive tap actions is an important factor to infer
app usage. We model a tap sequence as a time
interval sequence {t; - t1, t3 - t, ... {;, = {1},
where t; - t;_q is the time interval between tap
action T; and tap action T;_q. In order to utilize the
n-gram algorithm, we categorize intervals into five
groups A = [0, 500ms), B = [500ms, 1000ms), C =
[1000ms, 1500ms), D = [1500ms, 2000ms), and
E =[2000ms, 2500ms). A time based sequence is
then represented by a sequence of time intervals,

such as {A, B, D}.

Hybrid Model: We take both tap positions and
time intervals into consideration. We model a tap
sequence as a list of tap positions and time inter-

vals. For example, {l3, A, I, B, I3, A, Is, C ... Iy, D}.

We group the tap sequences of the same type
of apps together to form a “profile” and utilize it
to determine to which type of apps the upcoming

tap sequence belongs.

Tap Sequence Similarity: Now we discuss the
metrics for measuring the similarity between two

tap sequences. We mainly focus on n-gram similar-
ity and average element-wise matrix similarity [15].

n-gram similarity. The ratio of the common
subsequences of two tap sequences over the
total number of subsequences can be utilized to
measure their similarity [15]. Let S, be a set of
subsequences of length n appearing in one tap
sequence. Thus, for tap sequence Q = {q4, g, ...,
gn), S(Q) = (subseq | subseq = {q;, Gi1, ** Girn-1),
i€ [1, N+ 1 -nl}. The similarity of two sequenc-
es Qq and Q, is defined as

820N 8,0,
|54 (@)U S, Q)]

n-gram follows the assumption that two similar
apps should result in more common subsequenc-
es. The value of n is the number of the necessary
tap actions to complete an operation, and n var-
ies for different apps.

Average element-wise matrix similarity. We
construct a transition matrix based on a tap
sequence, where each node represents a tap
position. There are two ways to define the weight
of an edge from node /; to node ;. The first way
is to use the number of transitions from tap posi-
tions [; to I; over the total number of transitions.
The other approach is to use the average transi-
tion time from tap positions /; to I;. The similari-
ty between two tap sequences is defined as the

Distance(Q),0,) =1 (1)

IEEE Network - July/August 2018

average element-wise distance of their transition
matrices. For each type of app, we collect a large
number of tap sequences as training data. The
similarity between the tap sequences in the train-
ing data set and a coming tap sequence is utilized
to do the classification.

PASSWORD INFERENCE

Another important and more straightforward appli-
cation of tap inference is password inference. We
adopt a CNN based method for password infer-
ence where CNN outputs a probability vector for
each single tap action. Each entry in the vector rep-
resents the probability of this position being tapped.
We choose the tap sequence with the highest joint
probability as our inferred password. As users are
usually allowed to try three times when typing in
a password, our method outputs the top three
inferred passwords with the highest joint probabil-
ities. If the real password is one of these top three
ones, we consider the inference as correct.

EXPERIMENT RESULTS

We implemented our adversary app in an Android
system API level 23 and tested it with many kinds
of smartphones, including Samsung Galaxy S7
edge, Samsung Note 5, HUAWEI meta 9, HUA-
WEI Honor 8, LG G5, HTC M8, etc. Our volun-
teers held the smartphones with their left hand and
used their pointer fingers to tap on the screens.

TAP INFERENCE

We had 102 volunteers and the sensory data for
about 91,800 tap actions were collected. A smart-
phone screen is divided into nine zones. During
the training data collection stage, each volunteer
taps in each zone on the screen for at least 100
times. During the data recording stage, the volun-
teers use smartphones as usual. The average tap
inference accuracies are 62 percent, 38 percent,
69 percent, and 93 percent for KNN, Decision
Tree, SVM and CNN, respectively. For our CNN
based method, more than 95 percent of inference
accuracies are better than 80 percent, which is
very impressive.

The traditional methods mainly focus on fea-
ture extraction, which might sacrifice accuracy. As
shown in Fig. 4, for SVM and KNN, with only 10
features, we can have an accuracy of 80 percent.
As the number of features increases, the accu-
racy is not substantially improved. This validates
that feature extraction based methods may not be
effective in practice.

APP INFERENCE

For app inference, we classify the apps into seven
categories based on their functions, as shown in
Table 1.

We employ three tap sequence models as intro-
duced earlier. In the position based model (Tap)
and time based model (Interval), we use n-gram
distance to measure app similarity distance. For the
hybrid model, we adopt three similarity distance
methods: n-gram (Hybrid), graph-count (GC), and
graph-interval (GT). As introduced earlier, we build
a transition “graph” based on these nine tap posi-
tions. GC uses the number of average tap transi-
tion counts between different tap positions as the
edge weight, while GT utilizes the average transi-
tion time interval between different tap positions

0.8
0.6
5
It
3
<
0.4
02
—— K\
‘; - - -Decision tree
——SVM
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

The number of features

FIGURE 4. Impact of features.

Categories Apps
Game (TR) Temple Run, Paris Metro
Shopping (SP) TaoBao, Amazon
Video (VD) Youku, Iqiyi
Browser (BR) QQ browser, UC browser
Social media (SM) Weibo, Facebook
Instant chat (IC) WeChat, Messenger
Music player (MC) QQ Music, WangYi Yun Music

TABLE1. Apps in our experiments.

as the edge weight. The results are shown in Fig. 5.
Our hybrid model with n-gram (Hybrid) achieves
the best results.

PASSWORD INFERENCE

Although it is also related to tap positions, pass-
word inference is harder because it is considered
as failed even with one single inference error. In
our experiments, we consider passwords with dif-
ferent lengths, including 638 4-digit passwords,
529 6-digit passwords, and 336 8-digit passwords.
If our top three candidates contain the correct
password, we consider it as correct. For 4-digit
passwords, the accuracy reaches 94.3 percent.
For 6-digit and 8-digit passwords, the accuracies
are 92 percent and 89.9 percent, respectively.

FUTURE RESEARCH DIRECTIONS

Detection and prevention of sensor-based
attacks. Attacks using sensory data are attracting
increasing attention. Smart devices embedded
with sensors provide attackers with opportunities
to perform inference attacks. On the other hand,
sensors can also be utilized to prevent and detect
such kind of attacks. For instance, based on the
battery consumption level, we can detect abnor-
mal sensory data collection activities since such
activities consume lots of power.

Deep learning-based inference. Deep learn-
ing approaches have been proven successful in
many areas. However, they have not been widely
adopted to prevent inference attacks. In our CNN
based model, we just employ a two-layer convolu-
tional and pooling network, which is very simple

|EEE Network - July/August 2018

Accuracy

R : - ; TR B SM
| = — ISP Bl IC
CvD = MC
M = BR
0.8 4 4
06 B []
04 - .
024 -
0.0 ’,
Tap Interval Hybrid GC @)

FIGURE 5. App inference accuracy.

and basic. A more complex CNN based model or
novel deep learning methods need to be devel-
oped to seek improved and stable results.

Fusion of multi-modal data. Data fusion can
help us derive more consistent and accurate
results. However, current research only focuses on
a specific type of sensory data. Smart devices are
usually equipped with many different kinds of sen-
sors, and user activities may be captured through
various sensors. Therefore, how to fuse multi-mod-
al data and make use of the fused data to prevent
attacks are worth a thorough investigation.

CoNCLUSION

Though smart devices are indispensable in
modern life, most people do not realize that
smartphones also threaten their privacy. Peo-
ple usually ignore the fact that sensory data can
be secretly collected from the sensors embed-
ded in smart devices without user permission.
In this article, we present the feasibility of infer-
ring users’ app usage habits solely based on sen-
sory data. More specifically, we propose three
improved traditional methods and one deep neu-
ral network method to infer users’ tap positions
by analyzing the secretly collected sensory data.
The extensive experiment results show that our
proposed methods achieve high accuracy and
are very effective for tap classification, app infer-
ence and password inference.

ACKNOWLEDGMENT

This work is partly supported by the Nation-
al Science Foundation (NSF) under grant
NO.CNS-1252292, 1704287, and 1741277;
the NSF of China under contract 61373083,
61370084, 61502116, 61371185 and 61373027;
the NSF of Shandong Province under contract
ZR2012FM023; and the China Postdoctoral Sci-
ence Foundation NO.2015M571231.

REFERENCES

[1] L. Cai and H. Chen, “Touchlogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” HotSec, vol. 11, 2011, pp. 9-9.

[2] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring User Inputs
on Smartphone Touchscreens Using On-Board Motion Sen-
sors,” Proc. 5th ACM Conf. Security and Privacy in Wireless
and Mobile Networks, 2012, pp. 113-24.

[31 M. Goel, J. Wobbrock, and S. Patel, “Gripsense: Using Builtin
Sensors to Detect Hand Posture and Pressure on Commod-
ity Mobile Phones,” Proc. 25th Annual ACM Symp. User
Interface Software and Technology, 2012, pp. 545-54.

[4] L. Pei et al., “Human Behavior Cognition Using Smartphone
Sensors,” Sensors, vol. 13, no. 2, 2013, pp. 1402-24.

[5] M. Fahim et al., “Daily Life Activity Tracking Application for

Smart Homes Using Android Smartphone,” 2012 14th Int’l.

Conf. IEEE Advanced Communication Technology (ICACT),

2012, pp. 241-45.

Google, 2017, Android Developer, https: //developer.

android.com/.

[71 A.). Aviv et al., “Practicality of Accelerometer Side Channels
on Smartphones,” Proc. 28th Annual Computer Security
Applications Conference, 2012, pp. 41-50.

[8] E. Miluzzo et al., “Tapprints: Your Finger Taps Have Finger-

prints,” Proc. 10th Int’l. Conf. Mobile Systems, Applications,

and Services, 2012, pp. 323-36.

X. Liu et al,, “When Good Becomes Evil: Keystroke Inference

with Smartwatch,” Proc. 22nd ACM SIGSAC Conf. Computer

and Communications Security, 2015, pp. 1273-85.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,”
Nature, vol. 521, no. 7553, 2015, pp. 436-44.

[11] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural
Network for Image-Based Sequence Recognition and Its
Application to Scene Text Recognition,” IEEE Trans. Pattern
Analysis and Machine Intelligence, 2016.

[12] L. Xu , “Deep Convolutional Neural Network for Image
Deconvolution,” Advances in Neural Information Processing
Systems, 2014, pp. 1790-98.

[13] M. Zeng et al., “Convolutional Neural Networks for Human
Activity Recognition Using Mobile Sensors,” 2074 6th Int’l.
Conf. IEEE Mobile Computing, Applications and Services
(MobiCASE), 2014, pp. 197-205.

[14] J. Yang et al., “Deep Convolutional Neural Networks on
Multichannel Time Series for Human Activity Recognition,”
in 1JCAI, 2015, pp. 3995-4001.

[15] G. Wang et al,, “You Are How You Click: Clickstream Anal-
ysis for Sybil Detection,” Usenix Security, vol. 14, 2013.

[6

[9

BIOGRAPHIES

Y1 LIANG (yliang5@gsu.edu) is currently a Ph.D. student in the
Department of Computer Science at Georgia State University.
He received his M.S. degree in computer science from the Uni-
versity of Science and Technology of China. His research inter-
ests include privacy preservation and social networking.

ZHIPENG CAl (zcai@gsu.edu) is an associate professor in the
Department of Computer Science at Georgia State University. He
received his B.S. degree from Beijing Institute of Technology, and
his M.S. and Ph.D. degrees in computing science from the Universi-
ty of Alberta. His research interests include big data, privacy aware
computing, wireless networks, and optimization theory. He is an
associate editor for IEEE Transactions on Knowledge and Data Engi-
neering, IEEE Transactions on Vehicular Technology, and IEEE Access,
among others. He is the recipient of the NSF CAREER Award.

JIGUO YU received the Ph.D. degree in the School of Mathemat-
ics from Shandong University in 2004. Since 2007 he has been
a professor in the School of Computer Science, Qufu Normal
University, Shandong, China. He is currently a professor in the
School of Information Science and Engineering, Qufu Normal
University. His main research interests include wireless networks,
distributed algorithms, peer-to-peer computing and graph theory.
In particular, he is interested in designing and analyzing algo-
rithms for many computationally difficult problems in networks.
He is a senior member of the CCF (China Computer Federation).

QILONG HAN received the Ph.D. degree in computer science from
Harbin Institute University, Harbin, China, in 2006. He is currently
a professor and Deputy Dean in the College of Computer Science
and Technology, Harbin Engineering University. His research inter-
ests include data security and privacy, mobile computing, distribut-
ed and networked systems. He has more than 70 publications as
edited books and proceedings, invited book chapters, and tech-
nical papers in refereed journals and conferences. He is a senior
member of CCF, and the Chair of CCF YOCSEF Harbin.

YINGSHU Li (yili@gsu.edu) received her Ph.D. and M.S. degrees
from the Department of Computer Science and Engineering at the
University of Minnesota-Twin Cities. She received her B.S. degree
from the Department of Computer Science and Engineering at
Beijing Institute of Technology, China. She is currently an associate
professor in the Department of Computer Science at Georgia
State University. Her research interests include wireless networking,
sensor networks, sensory data management, social networks, and
optimization. She is the recipient of an NSF CAREER Award.

IEEE Network - July/August 2018

