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Abstract—Wireless Sensor-Actuator Networks (WSANs) are
being adopted as an enabling technology for Industrial Internet
of Things (IIoT) in process industries. Industrial applications
impose stringent requirements in reliability and real-time perfor-
mance on WSANs. To enhance reliability, industrial standards,
such as WirelessHART, embrace Time Slotted Channel Hopping
(TSCH) that integrates channel hopping and TDMA at the
MAC layer. Within a network governed by a same gateway,
WirelessHART prohibits channel reuse, i.e., concurrent trans-
missions in the same channel, to avoid interference between
concurrent transmissions. Preventing channel reuse however
negatively affects real-time performance. To meet the demand
for both reliability and real-time performance by industrial
applications, we propose a conservative channel reuse approach
designed to enhance the real-time performance while limiting
its impact on reliability in WSANs. In contrast to traditional
channel reuse designed to optimize performance at the cost of
reliability, our conservative approach introduces channel reuse
only when needed to meet the timing constraints of flows. Finally,
we present an algorithm to detect reliability degradation caused
by channel reuse so that channels can be reassigned to further
improve reliability. Experimental results based on two physical
testbeds show that our approach significantly improves real-time
performance while maintaining a high degree of reliability.

I. INTRODUCTION

With the emergence of Industrial Internet of Things (IIoT),

wireless sensor-actuator networks (WSANs) are increasingly

employed as the communication technology for process moni-

toring and control due to their benefits in lowering deployment

and maintenance cost. In contrast to traditional wireless sen-

sor networks that require only best-effort service, industrial

WSANs must meet stringent real-time performance and relia-

bility requirements in dynamic environments. Failing to meet

deadlines may lead to safety threats, production inefficiency,

and financial loss. To meet such stringent requirements, indus-

trial WSAN standards, such as WirelessHART [1], incorporate

a set of salient features. It adopts a centralized network archi-

tecture and employs Time Slotted Channel Hopping (TSCH)

MAC [2]. To achieve reliable communication, channel reuse is

prohibited within a network based on the same gateway, i.e.,

in the same time slot only one transmission is allowed in each

channel. However, this policy can severely affect the real-time

performance and the capacity of the network.

While channel reuse has been explored in wireless sensor

networks, traditional approaches are unsuitable for indus-

trial WSANs with stringent reliability requirements. Earlier

solutions either deal with interference between concurrent

transmissions in a best-effort manner or schedule transmissions

based on estimated interference. In practice, estimating inter-

ference incurs significant overhead and errors, especially in the

presence of temporal variations in real-world environments.

Moreover, traditional approaches are usually designed to maxi-

mize channel reuse. This aggressive approach to channel reuse,

combined with an inaccurate interference estimate, may cause

unacceptable degradation in network reliability for industrial

applications.

This paper explores channel reuse for industrial WSANs

that demand both real-time performance and reliability. The

contributions of this work are four-fold.

• We propose a conservative channel reuse approach that

introduces channel reuse only when necessary to meet

the timing constraints of existing data flows.

• We design Reuse Conservatively (RC), a conservative

channel reuse algorithm that incorporates channel reuse

to meet the real-time performance constraints while mit-

igating its impact on reliability.

• We develop a classifier to detect links with poor reli-

ability due to channel reuse so that these links can be

rescheduled to enhance network reliability.

• We present experimental results based on two testbeds

that demonstrate RC significantly improves real-time per-

formance when compared to the standard WirelessHART

approach without channel reuse, while maintaining higher

reliability than aggressive channel reuse.

The rest of the paper is organized as follows. Section II

reviews related work. Section III describes the WirelessHART

network model. Section IV introduces the problem. Section

V details the channel reuse algorithm. Section VI describes

the classifier to detect reliability degradation due to channel

reuse. Section VII presents the experimental results. Section

VIII concludes the paper.

II. RELATED WORK

Industrial WSANs have been gaining attention in recent

years. Previous works have studied different aspects of in-

dustrial WSANs including real-time scheduling, delay analy-

sis, routing algorithms, rate selection, and channel selection.

Comprehensive reviews of these efforts can be found in [3]–

[5]. These works followed existing industrial standards such

as WirelessHART, which does not allow channel reuse within

a network with the same gateway.

There have been extensive studies on interference measure-

ments in the past years. Masheshwari et al. [6] studied different
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interference models including hop-based, range-based, SINR-

based, and PRR-SINR models. Liu et al. [7] modeled inter-

ference based on the PRR-SINR relationship. Qiu et al. [8]

used a measurement-based model to estimate throughput,

and Zhou et al. [9] proposed a radio interference detection

protocol based on a thresholded-SINR model. Although SINR-

based models have been shown to be more realistic than

other approaches [10], estimating interference based on such

models involves multiple measurements (e.g., receiver sensi-

tivity, noise, aggregated interferences, etc.), which, in practice,

incurs significant overhead and complexity. Hence, we opt for

mitigating interference by increasing the hop distance between

concurrent transmissions on the same channel. More impor-

tantly, we reduce the impact of channel reuse on reliability

by introducing channel reuse only when needed to meet the

real-time performance requirements of existing flows.

Several TDMA protocols leverage channel reuse to enhance

network capacity. Gronkvist et al. [11] and Brar et al. [12] pro-

posed scheduling policies based on spatial reuse TDMA pro-

tocol to maximize network throughput. The works presented

in [13]–[16] designed real-time scheduling strategies, which

incorporate channel reuse, to optimize network throughput

and latency. In contrast, our approach conservatively adopts

channel reuse to avoid its impact on network reliability. No-

tably, since WSAN traffic loads are known by the centralized

network manager in industrial settings, we therefore only need

enough channel reuse to meet the real-time requirements of

existing workloads.

There also exist scheduling algorithms customized for

TSCH networks that support channel reuse. Palettella et

al. [17] proposed TASA, a centralized traffic-aware scheduling

algorithm that improves network latency and power effi-

ciency. Accettura et al. [18] developed DeTAS, a decentral-

ized scheduling protocol for the 6TiSCH [19] network. In

contrast to our work, both algorithms always reuse channels

when transmissions are estimated not to interfere with each

other, while our approach introduces channel reuse only when

needed to meet the real-time requirements of the workload.

Duquennoy et al. [20] presented Orchestra, an autonomous

scheduling solution for 6TisCH networks. Transmissions may

be mapped to the same slot on the same channel, and hence

they must contend for a channel. While Orchestra incurs

channel reuse in a best-effort manner, our approach manages

channel reuse to reduce interferences by (1) introducing chan-

nel reuse conservatively and (2) avoiding interference by judi-

ciously scheduling channel reuse for concurrent transmissions.

A recent direction in wireless sensor networks is to exploit

synchronous transmissions. The Glossy-based approach [21]

provides a promising alternative to TSCH-based networks.

It offers efficient and fast network flooding by exploiting

constructive interference and capture effect allowing packets

to be received successfully in the presence of concurrent

transmissions. Zimmerling et al. [22], to the best of our

knowledge, was the first to combine Glossy-based Low-Power

Wireless Bus [23] and real-time scheduling. Our solution is

based on TSCH that has been adopted by the industry. Our

channel reuse approach also relies on the capture effect to

allow concurrent transmissions on a channel, and therefore it

represents a step to incorporate capture effects into industrial

standards such as WirelessHART.

III. BACKGROUND OF WIRELESSHART

We consider WirelessHART, a widely adopted industrial

wireless standard for process monitoring and control. The

network comprises a gateway, multiple access points, and

field devices. Each device is equipped with a half-duplex

radio compatible with the IEEE 802.15.4 standard. The access

points are wired to the gateway, which in turn is connected

to the network manager. The network manager is responsible

for the construction of routes and transmission schedules,

which are then distributed to the field devices. The centralized

approach enhances visibility and predictability of the network

operations.

The WirelessHART standard does not allow channel reuse

on a network governed by the same gateway. However, chan-

nels may be reused when multiple networks connected to

different gateways coexist. In this case, interferences may

occur if those networks are located close to each other. Our

approach enables channel reuse within a network governed

by the same gateway, thereby enhancing the capacity and

scalability of the network.

A. TSCH MAC

TSCH is a mode of operation of the IEEE 802.15.4e

standard. It is an attractive solution for real-time commu-

nication because it offers bounded communication latencies

and provides reliable communication. TSCH operates on a

2.4 GHz ISM band, and can use up to 16 IEEE 802.15.4

channels. To improve network resiliency to interference, TSCH

includes a channel hopping mechanism where each pair of

sender and receiver associating with a transmission switches to

a new channel at every time slot. Channels with extreme noises

can be blacklisted. While we focus on the WirelessHART

protocol as an example for channel reuse, our approach can

be generalized for other IIoT standards such as 6TiSCH [19]

that runs IPv6 over the TSCH network.

The network is globally time synchronized and time is

divided into 10 ms slots accommodating one transmission

and its acknowledgement (ACK). A time slot can either be

dedicated or shared. A dedicated slot permits exactly one

transmission to be scheduled within a channel. In a shared

slot, two senders contend for a channel to send a packet to

a common receiver using CSMA/CA. As a result, only one

transmission can be received successfully at the receiver. In

contrast to a shared slot, our channel reuse policy aims to

enable all concurrent transmissions on the same channel in a

dedicated slot to be received successfully at their receivers,

thereby improving performance and predictability over shared

slots.

B. TSCH Scheduling

WirelessHART adopts centralized scheduling where a trans-

mission schedule is generated at the network manager. The
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network manager has full knowledge of the network topology

in all channels and the traffic loads. It first computes routes for

network traffic, and then runs a scheduling policy to generate

a schedule by assigning a time slot number and a channel

offset to each transmission. Each time slot is subject to no

transmission conflict, and each channel is restricted by channel

constraint. Two transmissions conflict if they share a common

node, either a sender or a receiver. This is because of the

half-duplex nature of the IEEE 802.15.4 radio, which can

perform only one operation (transmission or reception) at a

time. Let M be the set of available channels. Traditionally,

to avoid interference, each slot can only accommodate |M |
concurrent transmissions. The channel offset is within the

range [0, |M | − 1]. It ensures that no transmission in a slot

will use the same channel. Each node computes the channel

hopping sequence at run-time following this formula:

logicalChannel = (ASN + channelOffset)mod|M |

where ASN (Absolute Slot Number) indicates the total number

of slots elapsed since the network started. Each pair of sender

and receiver then maps the logical channel to a physical

channel using a common mapping table. Our approach extends

WirelessHART by allowing multiple transmissions to share the

same channel in the same slot.

IV. PROBLEM DESCRIPTION

In this section, we first describe the flow model, and define

the communication and channel reuse graphs of a network.

Finally, we set the objectives of our channel reuse algorithm.

A. Flow Model

A WSAN is shared by a set of end-to-end flows F =
{F1, F2, ...Fn}. For each flow Fi ∈ F , a source node Si

releases a packet at a periodic interval Pi. The packet must

be delivered to the destination Yi through a route φi within

the deadline Di where Di ≤ Pi. A route φi consists of a

sequence of links li1, li2, ...lik. A transmission over a link lij
is denoted as tij . Therefore, each flow Fi is characterized by

< Si, Yi, Di, Pi, φi >. A flow Fi is schedulable if all of its

packets are scheduled to meet their deadlines. A set of flows

F is schedulable only if all flows in F are schedulable.

In a fixed priority scheduling policy, each flow Fi is

assigned a fixed priority. A flow Fi has higher priority than a

flow Fk if i < k. Priorities are commonly assigned based on

deadlines or periods. The fixed priority scheduler schedules

transmissions of higher priority flows before transmissions

belonging to lower priority flows. It allocates the earliest

possible slot to each transmission.

B. Communication Graph vs Channel Reuse Graph

We consider two types of graphs in our network: (1) the

communication graph that is used for constructing routes from

a source to a destination for each flow and (2) the channel

reuse graph that is for estimating interferences when channel

reuse is adopted.

A communication graph Gc(V,E) consists of a set of

network devices V , and a set of links E. We use the Packet Re-

ception Ratio (PRR), a ratio of successfully received packets to

the total number of transmitted packets, to assess link quality.

Let M be a set of channels used and let PRR( �xy)i be the

PRR of a link �xy on channel i ∈ M . A bidirectional edge uv

is in E if PRR( �uv)i ≥ PRRt and PRR( �vu)i ≥ PRRt for

all channels i ∈ M where PRRt is a link selection threshold.

An edge must be bidirectional to support a transmission and its

acknowledgement. Due to channel hopping, links hop through

all channels so they must be reliable in all channels used.

Our channel reuse policy adopts a hop-based interference

model in which concurrent transmissions are allowed if a

sender of a transmission is at least k hops away from a

receiver of a concurrent transmission. Therefore, we construct

a channel reuse graph, which determines the channel reuse hop

count between nodes. We represent the channel reuse graph

as graph GR(V,E), where V is a set of network devices and

E is a set of edges between two devices. Due to the challenge

in directly measuring interference, we define an edge in the

channel reuse based on its PRR, which is already collected

by the network manager in order to construct the commu-

nication graph in the WirelessHART network. Specifically, a

bidirectional edge uv exists in E if for any channel i ∈ M ,

PRR( �uv)i > 0 or PRR( �vu)i > 0. Note that we consider any

channel here because each link cycles through all channels

through channel hopping. As the hop count between u and

v increases, interference is likely to diminish. We denote a

minimum channel reuse hop count between any node u and v

as ρ.

C. Objectives of Channel Reuse Policy

Given a real-time WSAN and a set of flows, the objective

of our channel reuse algorithm is to introduce concurrent,

channel-sharing transmissions such that all flows will meet the

deadlines. Note that, if no channel reuse is needed to meet the

deadlines, no concurrent transmissions will be scheduled on

the same channel. Channel reuse occurs only when needed to

make the deadlines. To further mitigate interference caused by

channel reuse, our secondary objectives are to (1) increase the

hop distance between transmissions sharing a channel and (2)

reduce the number of concurrent transmissions per channel.

The larger the hop distance between concurrent transmissions,

the more likely for both transmissions to succeed due to

capture effect. Scheduling more transmissions on the same

channel can make transmission failures more likely because

interferences are cumulative [6] [7]. Therefore, it is desirable

to schedule fewer concurrent transmissions on each channel.

V. CHANNEL REUSE ALGORITHM

In this section, we first introduce the channel reuse con-

straints, the concept of flow laxity, and then provide a detailed

description of our channel reuse algorithm.

A. Channel Reuse Constraints

The channel reuse constraints set up conditions that a

transmission must satisfy in order to be assigned a specific
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time slot and channel offset by a scheduler. The maximum

number of slots in a schedule is determined by the hyper-

period of a set of flows F , which is the least common multiple

of the periods of all the flows. Let |M | be the number of

channels used. A channel offset is in the range [0, |M | − 1].
Let H(Fi) be a set of flows with higher priority than Fi. At

slot s, Ts denotes a set of scheduled transmissions of H(Fi).
For each channel offset associated with slot s, Tsc ⊂ Ts is a

set of scheduled transmissions assigned to channel offset c. A

transmission tij can be scheduled in s, if tij does not conflict

with other transmissions in Ts (see Section III-B). If two

transmissions are assigned to a same slot and channel, they

must be at least ρ hops apart on GR(V,E). Therefore, any

transmission tij of Fi can be allocated a slot s and a channel

offset c if the following channel reuse constraints are satisfied:

1) Transmission conflict: tij = uv does not conflict with

xy ∈ Ts: u �= x and u �= y and v �= x and v �= y, for

all xy ∈ Ts.

2) Channel constraints:

a) If channel reuse is not allowed (ρ = ∞): chan-

nel offset c must not have been assigned to any

transmission, Tsc = ∅.

b) If channel reuse is allowed (ρ < ∞): given tij =
uv and xy ∈ Tsc: u must be at least ρ hops from

all y and all x must be at least ρ hops from v.

B. Flow Laxity

A flow laxity helps anticipate if a packet belonging to a

flow can be delivered to meet its deadline or not. It indicates

how much delay a packet can tolerate. The higher the flow

laxity, the more a transmission can be delayed to later slots.

The concept of laxity has been used in [15] and [24] as a

heuristic for real-time scheduling. Our algorithm uses flow

laxity to assess if channel reuse is needed or if the current

channel reuse hop distance will allow a flow to meet its

deadline or not. Given a slot s that meets the channel reuse

constraints for tij , a set of remaining transmissions of a flow

Fi after tij is denoted as Tpost,tij . A flow laxity is defined

as the number of remaining time slots minus the number

of slots required to schedule transmissions in Tpost,tij . Let

di be a slot corresponding to Fi’s deadline Di. For each

transmission t ∈ Tpost,tij , we estimate the number slots in

an interval [s + 1, di] that contains transmissions conflicting

with t denoted as qts+1,di
. Hence, the total number of slots

in [s + 1, di] conflicting with transmissions in Tpost,tij is∑
t∈Tpost,tij

qts+1,di
. The minimum number of slots required

to schedule Tpost,tij is |Tpost,tij |. Therefore, the laxity of Fi

when scheduled tij at s is:

[s− di]−
∑

t∈Tpost,tij

qts+1,di
− |Tpost,tij | (1)

where s − di is the number of slots in [s + 1, di], and∑
t∈Tpost,tij

qts+1,di
is the estimated number of conflicting

slots that cannot be allocated to transmissions in Tpost,tij .

Our channel reuse policy attempts to select slot s for tij

such that Fi’s laxity is no less than 0. This means that after

scheduling tij at slot s, there are enough slots to accommodate

the remaining transmissions of Fi such that Fi can deliver a

packet to the destination within its deadline.

C. Reuse Conservatively Algorithm (RC)

In this section, we provide a detailed description of our

Reuse Conservatively Algorithm (RC), which integrates our

channel reuse policy with a real-time fixed priority scheduling

as presented in Algorithm 1. The input of the algorithm is

a set of flows F , a channel reuse graph GR(V,E), and the

minimum channel reuse hop count threshold ρt. A larger ρt
will lead to more reliable communication, but may reduce

the capacity of the network since channel reuse will be

adopted in a more restrictive fashion. In practice, to maintain

reliability, a network operator may select the largest channel

reuse hop count under which the workload is schedulable.

When the workload is schedulable without channel reuse,

RC will not introduce channel reuse (i.e., the hop count is

effectively infinity). The output is a transmission schedule S.

We schedule flows based on their priorities from the highest to

the lowest priority. The ρ variable keeps the current minimum

channel reuse hop distance. For each transmission tij , ρ is first

initialized to ∞, which means no channel reuse is allowed.

For every transmission tij , the algorithm first executes

findSlot(). This function finds the earliest slot s and chan-

nel offset c that comply with the channel reuse constraints

(see Section V-A) given the channel reuse hop count ρ. It

then calculates flow laxity following Equation 1 given tij
is scheduled at s. If the computed laxity ≥ 0, then tij is

scheduled at slot s and assigned channel offset c, and the

algorithm proceeds to the next transmission. Otherwise, the

algorithm introduces channel reuse for tij . We define the

network diameter as the maximum shortest distance between

two nodes in the network. When channel reuse is adopted,

ρ is set to λR (i.e., the network diameter of GR(V,E)),
which gives the maximum channel reuse distance for this

network. The algorithm decreases the channel reuse hop count

ρ and repeats the findSlot() and calculateLaxity() steps

until the calculated laxity ≥ 0 or until ρ is less than the

minimum threshold ρt. The algorithm terminates when all

transmissions of a flow set F are scheduled, or when any

scheduled transmission fails to meet its deadline, which deems

F unschedulable.

The algorithm adopts channel reuse conservatively, i.e.,

when laxity < 0. It introduces channel reuse with a larger

hop count first to mitigate interference. Note that when there

exist multiple channel offsets in slot s that meet the channel

reuse constraints, the algorithm chooses a channel with the

fewest number of scheduled transmissions to reduce channel

contention.

Complexity: There can be at most N ∗ L transmissions

scheduled where N is the size of F , and L is the max-

imum path length among all flows. For each transmission,

findSlot() is executed at most λR + 1 times. For each slot,
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the algorithm checks the channel reuse constraints, which takes

N ∗ (|E|+ |V |log|V |) because there can be no more than N

transmissions scheduled in each slot, and channel reuse hop

count computation on a graph GR(V,E) takes |E|+|V |log|V |.
The upper-bound complexity of findSlot() is O(λR ∗Pmax ∗
N ∗ (|E|+ |V |log|V |)) where Pmax is the maximum possible

number of slots in a schedule, which associates with the

hyper-period of F . The total complexity of our channel reuse

policy integrating with a fixed priority scheduling algorithm

is O(N2 ∗ L ∗ λR ∗ Pmax ∗ (|E|+ |V |log|V |)).

Algorithm 1: Reuse Conservatively (RC)

Input : A flow set F ordered by priority, a conflict

graph GR(V,E), the minimum channel reuse

hop distance ρt
Output: A transmission schedule S

for each flow Fi from F1 to FN do

ρ ← ∞ ;

for each transmission tij of Fi do

while ρ ≥ ρt do

< s, c >= findSlot(tij , ρ);
laxity = calculateLaxity(tij , s);
if laxity ≥ 0 then

break;

else

if ρ = ∞ then

ρ ← λR;

else

ρ ← ρ− 1;

if s ≤ di then

Schedule tij at < s, c >;

else

return ∅ ;

return S ;

VI. DETECTING RELIABILITY DEGRADATION CAUSED BY

CHANNEL REUSE

While conservative channel reuse can effectively mitigate

the impacts of channel reuse on reliability, it may lead to

reliability degradation in some cases. In such cases, we need to

detect links that suffer poor reliability caused by channel reuse,

so that these links can be reassigned to different channels or

time slots. A naive approach is to use a PRR threshold to

identify links affected by channel reuse, i.e., if the PRRs of

the links associated with channel reuse are lower than the PRR

threshold, then channel reuse may have caused packet loss

over these links. However, it is important to note that channel

reuse is not the only possible cause of transmission failures.

Dynamic changes in channel or environmental conditions and

external wireless interference may lead to changes in link

reliability as well. It is therefore important to distinguish

whether reliability degradation is caused by channel reuse or

other factors so that the network manager can resolve the link

quality degradation according to the root causes. For example,

if a link’s PRR drops because of external interference instead

of channel reuse, removing channel reuse involving that link

would not necessarily improve its quality. Henceforth, we

propose a method to distinguish whether a link’s reliability

degradation is attributed to channel reuse. We address this

challenge by comparing a link’s PRR in the time slots when it

shares a channel with others and its PRR in the other time slots

when there is no channel reuse. Intuitively, if a link is highly

reliable in a contention-free channel, but performs poorly

when channel reuse is introduced, then the link’s reliability

is degraded due to channel reuse. Moreover, we minimize

detection overhead by leveraging statistics already collected

by the network manager of a WirelessHART network.

Each wireless node maintains a neighbor table, which

contains statistics pertaining to connectivity between a node

and its neighbors, e.g., PRRs, in all channels used. A node

learns these statistics based on regular data transmissions

and periodic neighbor-discovery packets, which are used to

update the topology of the network. The network manager

must also reserve enough slots for each node to broadcast

neighbor-discovery packets in all channels used. Since the

network topology does not change so frequently, these peri-

odic neighbor-discovery packets do not need to be scheduled

very often. Based on the schedule computed by the network

manager, each node has knowledge of time slots, channel

offsets, and its links, which are associated with channel reuse.

For each link involved in channel reuse, a node gathers link

statistics in two cases: (1) when a transmission on the link

occurs without channel reuse and (2) when a transmission over

the link shares a channel with other transmissions. A node

periodically reports these statistics to the network manager,

which then detects links affected by channel reuse based on

the following statistical test.

To detect links affected by channel reuse, our detection

policy adopts the Kolmogorov-Smirnov test (K-S test) [25]

to quantify the difference of link qualities under these two

cases. K-S test offers the benefits of making no assumption

about the distribution of data and making no restriction on the

data set size. A two-sample K-S test evaluates the difference

between two Empirical Cumulative Distribution Functions

(ECDF) of two data sets. In our case, we compare the PRR

distributions of a link li when a transmission over li is

scheduled with channel reuse (denoted PRR DISTr(li)),
and when a transmission takes place without channel reuse

(denoted PRR DISTcf (li)). In a statistical test, under the

null hypothesis, there is no significant difference between two

sample sets. K-S test computes the maximum distance between

ECDF of PRR DISTr(li) and PRR DISTcf (li). It calcu-

lates the p-value ∈ (0, 1), which determines the result of the

hypothesis test. The output of the K-S test is either accepting

or rejecting the null hypothesis at α significance level. The

null hypothesis is rejected when the p-value< α. Therefore,

for our detection policy, if the outcome of the K-S test is reject,

then we conclude that channel reuse degrades the reliability of
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link li since the PRR DISTr(li) differs significantly from

PRR DISTcf (li). Otherwise, channel reuse only has subtle

or no impact on li.

Our detection policy considers only links associated with

channel reuse. Its goal is to identify links whose reliability

is degraded by channel reuse. Let PRRr(li) be the PRR

of PRR DISTr(li). The policy first uses a PRR threshold

PRRt to identify links that fail to meet the reliability require-

ment, i.e., links with PRRr(li) < PRRt. It then performs K-

S test on such links to determine if reliability degradation is

caused by channel reuse or not. The following is the detection

policy:

• If PRRr(li) < PRRt, then perform K-S test on

PRR DISTr(li) and PRR DISTcf (li).

– If K-S test returns reject, then channel reuse degrades

link reliability.

– If K-S test returns accept, then li fails to meet the

reliability requirement due to other reasons.

• Otherwise, li meets the reliability requirement.

VII. EVALUATION

We evaluate our algorithm in terms of the following aspects:

(1) real-time performance (2) algorithm efficiency, i.e., the

amount of channel reuse and channel reuse hop count (3)

execution time (4) network reliability (5) applicability of

our detection policy in identifying links whose reliability is

degraded by channel reuse. To demonstrate the generality of

our approach, (1)-(3) are evaluated based on the collected

topologies from: (a) the 80-node Indriya testbed, deployed

at the National University of Singapore [26] (b) the 60-

node WUSTL testbed deploying across 3 floors. The topology

information includes the PRRs of all links in the network in all

16 channels. Based on the network topology and the traffic re-

quirements, the network manager constructs a communication

graph (with PRRt = 0.9) and a channel reuse graph. Then, it

generates routes and a schedule, which all field devices must

follow during run time. To measure reliability performance,

evaluation (4) and (5) are conducted on the WUSTL testbed,

which runs the WirelessHART protocol on TinyOS 2.1.2 and

TelosB motes [27].

We randomly generate a set of flows F by varying source

and destination nodes. Each flow set contains two access

points, which are nodes with a high number of neighbors.

Following common characteristics of process monitoring and

control applications in process industries, sources of flows

generate packets periodically, and the periods of flows are

harmonic. The periods are uniformly selected from the range

P = [2x, 2y] where x < y. Given the period range P =
{2x, 2x+1, ...sx+k}, if a flow Fi is assigned with Pi = 2j , then

its deadline Di is randomly picked from a range [2j−1, 2j].

For each flow Fi ∈ F , the network manager generates a

single route from a source to a destination node based on the

shortest path algorithm and the types of traffic. We consider

two types of traffic for control applications: (1) centralized

traffic: a packet is generated by a source (sensor), and routed to

a controller through an access point wired to a gateway; then a

control message issued by a controller, running on a computer

behind the gateway, is delivered to a destination (actuator)

and (2) peer-to-peer traffic: to enhance scalability, controllers

are implemented on field devices in the network, and a data

packet can be delivered directly from a source to a destination

node without going through the gateway. We run experiments

under source routing, which enables every link along the route

to retransmit a packet if the first transmission attempt fails.

Hence, a scheduler must reserve one more time slot for every

transmission over a link.

We adopt the Deadline Monotonic (DM) algorithm, which is

a commonly used fixed priority scheduling policy for real-time

systems. Under DM, a flow with the shortest deadline has the

highest priority. Our algorithm RC is compared against: (1)

DM with no channel reuse (NR): only one transmission can

be scheduled on each channel, and (2) DM with aggressive

channel reuse (RA): a channel is reused whenever possible,

i.e., a scheduler schedules transmissions at the earliest slot and

on a channel with at least ρ channel reuse hops. RA adopts

similar channel reuse approaches as traditional channel reuse

strategies, which always introduce channel reuse when an

interference model estimates that concurrent transmissions will

not interfere with each other. In addition, RA is also similar

to TASA [17], a centralized TSCH scheduling approach that

always allows transmissions to share a channel when ρ ≥
2. For a fair comparison, we set the minimum channel reuse

distance ρt for RC to 2.

A. Real-Time Performance

We evaluate the effectiveness of our channel reuse policy

in enhancing real-time performance by using a schedulable

ratio as a metric. A schedulable ratio is a fraction of flow

sets that is schedulable. For each experiment, we generate

100 different flow sets. Figures 1 and 2 present schedulable

ratios based on the Indriya testbed topology. We compare RC

against NR and RA under a varying number of channels,

flows, and periods. Figures 1(a), 1(b), 2(a), and 2(b) show RA

and RC consistently outperform NR, especially when there

are a limited number of channels, i.e., when the number of

channels is from 3 to 5. Under the peer-to-peer traffic and the

period range P = [2−1, 23], NR cannot successfully generate

any schedule for any number of channels as shown in Figure

2(b). Note that increasing the number of channels does not

always monotonically improve schedulability. Although more

channels enhance network capacity, at the same time, they

can degrade route diversity in the network and introduce more

transmission conflicts as observed in our previous study [28].

Both RC and RA also yield higher schedulable ratios

compared to NR as the number of flows increases. Figure 1(c)

shows, under the centralized traffic, RA and RC achieve the

maximum of a 7.5X higher schedulable ratio than NR when

the number of flows is 40. Figure 2(c) also illustrates that with

the peer-to-peer traffic, as the number of flows reaches 120,

NR can no longer successfully generate schedules, while RA

and RC still obtain almost a 100% schedulable ratio. We also
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(a) #flows=30, P = 2
0∼2 (b) #flows=30, P = 2

−1∼3 (c) #ch=5, P = 2
0∼2

Fig. 1. Schedulable ratios under varying number of channels and flows based on the centralized traffic (Indriya).

(a) #flows=120, P = 2
0∼2 (b) #flows=120, P = 2

−1∼3 (c) #ch=5, P = 2
0∼2

Fig. 2. Schedulable ratios under varying number of channels and flows based on the peer-to-peer traffic (Indriya).

note that a flow path length based on the peer-to-peer traffic

is approximately two times shorter than the path length of

a flow under the centralized traffic. The results demonstrate

the benefits of channel reuse in enhancing scalability of the

network under heavy workloads and few available channels.

Notably, with lower traffic load, indeed channel reuse is not

needed since flows can be scheduled easily to meet their

deadlines. We repeat the experiments based on the WUSTL

testbed topology, and observe similar results (see Figure 3).

It can also be noticed that channel reuse is more effective

under the peer-to-peer traffic since it enables both RA and RC

to outperform NR with a significantly larger margin compared

to the centralized approach. The centralized traffic enforces all

packets to be routed through access points. As a result, it po-

tentially introduces more transmission conflicts near the access

points, which make channel reuse more difficult. Moreover, in

most cases, RC can achieve a schedulable ratio comparable

to RA. However, in the worst case, RC obtains a 22% lower

schedulable ratio than RA as shown in Figure 3(a).

B. Algorithm Efficiency

We validate if RC indeed meets its goals in: (1) reducing

channel reuse and (2) increasing channel reuse hop distance

when channel reuse is adopted. We quantify the number of

transmissions per channel (Tx/channel), and the minimum

channel reuse hop count among senders and receivers of

concurrent transmissions on each channel. The results are

obtained from the experiments in Section VII-A. Figure 4

shows the distribution of different numbers of transmissions

per channel of RA and RC. With the peer-to-peer traffic

(Figure 4(b)), compared to RA, RC attains a higher proportion

(a) #flows=150, P = 2
0∼2 (b) #ch=5, P = 2

0∼2

Fig. 3. Schedulable ratios under varying number of channels and varying
number of flows based on the peer-to-peer traffic (WUSTL).

of 1 Tx/channel (no channel reuse), especially when there are

more available channels. In addition, the results demonstrate

that if a channel is reused, RC schedules fewer transmissions

on a channel than RA. While, under the centralized traffic

(Figure 4(a)), both RA and RC achieve comparable results,

except when the number of channels is 3, in which RC

achieves a ∼10% higher proportion of 1 Tx/channel than RA.

Figures 5(a) and 5(b) plot the distribution of channel reuse

hop count under the peer-to-peer and centralized traffic, re-

spectively. Again, the peer-to-peer approach allows RC to in-

crease channel reuse hop count. For every number of channels,

RC has the highest proportion for 3-hop count, while RA has

the highest proportion for 2-hop count. With the centralized

traffic, both RA and RC are dominated by 2-hop channel

reuse. RC demonstrates that it meets its goals in mitigating

interferences by reducing Tx/channel and increasing channel

reuse hop count under the peer-to-peer traffic. However, it is
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(a) Centralized traffic (#flows = 60,
P = 2

0∼3)

      

>=5 

(b) Peer-to-peer traffic (#flows = 120,
P = 2

0∼2)

Fig. 4. Number of transmissions per channel under a varying number of
channels (Indriya).

(a) Centralized traffic (#flows = 60,
P = 2

0∼3)
(b) Peer-to-peer traffic (#flows = 120,
P = 2

0∼2)

Fig. 5. Channel reuse hop count under a varying number of channels (Indriya).

less efficient with the centralized traffic because the centralized

approach introduces more transmission conflicts, which limit

the number of slots that can accommodate channel reuse.

C. Execution Time

We measure the execution time of the algorithms on a

Macbook Pro laptop with 2.7 GHz Intel core i7. For NR, RA,

and RC, we set the number of channels to 5 and the periods

P = [20, 22], and vary the traffic loads. The results are based

on the peer-to-peer traffic. Figure 6 compares the execution

time of NR, RA, and RC. NR obtains the smallest execution

time of 0.2 to 0.4 ms, when the number of flows increases

from 40 to 100. As the number of flows reaches 120, NR

can no longer successfully generate schedules. The execution

time of RA increases linearly from 1.2 ms to 1200 ms as

the number of flows increases from 40 to 160, respectively,

while RC incurs 115.1 ms to 290 ms, and sharply increases

to 990 ms when the traffic loads grow from 40, 140, to 160.

Fig. 6. Algorithm execution time (in milliseconds).

Fig. 7. WUSTL testbed topology when channels 11-14 are used.

RC requires less execution time than RA since RA attempts to

adopt channel reuse for every transmission, while RC is more

conservative. Although RC sparingly introduces channel reuse,

it obtains longer execution time than NR because it is required

to compute laxity for every transmission. A sudden increase

in RC’s execution time when the number of flows reaches 160

is the result of more workloads, and heavy computation for

channel reuse.

RC’s execution time is acceptable in the WirelessHART

network because a schedule does not need to be reconfigured

often. A schedule is recomputed only when the topology or

the traffic demands change significantly. Accordingly, Wire-

lessHART network maintenance is in frequent by design, e.g.,

it can take several minutes for a node to detect and report a

link failure to the network manager.

D. Network Reliability

Despite enhancing real-time performance, channel reuse

may degrade network reliability. We conduct experiments on

the 60-node WUSTL testbed (see Figure 7) to obtain the

reliability performance. The testbed runs TSCH MAC protocol

with 10 ms time slot and source routing at the network

layer. Source routing allows a sender to retransmit a packet

if its first transmission fails. We generate five different flow

sets consisting of 50 flows where 50% of flows release their

packets every 2−1 s, and the rest release their packets every

20 s. We run experiments on 4 channels with observed good

performance (channel 11 to 14) and set the transmission power

to 0 dBm. For each flow set, we enable a network to execute

the schedule for 100 times.

Figure 8 presents box plots comparing Packet Delivery

Ratio (PDR) of NR, RA, and RC under 5 different flow sets.

A PDR is a fraction of packets successfully delivered to its

destination. RC achieves the median PDR at most 1% lower

than NR’s median PDR in flow sets 1, 4, and 5, whereas NR’s

median PDR surpasses that PDR of RA by a maximum of

2% under flow sets 1, 2, and 4. This shows that most of

the flows of both RC and RA can achieve good reliability

performance. In terms of worst-case reliability, RC clearly

outperforms RA. RC achieves lower worst-case PDRs than

NR by a margin of 3%, 0%, 8%, 3%, and 5% for flow

sets 1 to 5, respectively, while RA decreases the worst-case

PDRs by 29%, 18%, 22%, 31%, and 27% under flow sets

351



NR RA RC

0

0.2

0.4

0.6

0.8

1

P
D

R

NR RA RC

0

0.2

0.4

0.6

0.8

1

P
D

R

NR RA RC

0

0.2

0.4

0.6

0.8

1

P
D

R

NR RA RC

0

0.2

0.4

0.6

0.8

1

P
D

R

NR RA RC

0

0.2

0.4

0.6

0.8

1

P
D

R

FS 1 FS 2 FS 3 FS 4 FS 5

Fig. 8. Box plots of Packet Delivery Ratio (PDR) of 5 distinct flow sets where #flows=50, #ch=4,
P = 2

−1∼0

Fig. 9. Number of transmissions per channel under
RA and RC of 5 different flow sets.

1 to 5, respectively, compared to NR. This is because RC

adopts channel reuse more conservatively compared to RA

as shown in Figure 9. It is important to note that worst-case

reliability is important in industrial applications because severe

data loss can degrade stability and control performance and

may lead to system failure. Although RC may still suffer

from interferences due to channel reuse, in exchange for a

much higher schedulable ratio, advances in networked control

have contributed control designs that can tolerate packet losses

systems (e.g., [29] and [30]). Our approach is suitable for such

resilient control systems.

E. Links Affected by Channel Reuse

In this section, we evaluate our detection policy in terms of

its applicability to identify links whose reliability is degraded

by channel reuse under both RA and RC approaches. In this

set of experiments, we generate 50 peer-to-peer flows, which

release a packet every 1 s. By default, a WirelessHART node

must deliver a health report to the network manager every

15 minutes (=1 epoch). In each epoch, we obtain the PRR

distribution consisting of 18 samples. We also calculate the

overall PRR of each link in each epoch. Note that we consider

the PRR distribution of each link over all channels used.

We run experiments under a clean environment on channel

11 to 14. We then generate external interference using WiFi in

order to demonstrate that our detection policy can differentiate

unreliable links caused by channel reuse from those caused

by external interference. Because every node in the WUSTL

testbed is connected to a Raspberry PI through a USB port

for testbed management and instrumentation, we set up three

pairs of Raspberry PIs, one pair on each floor, to generate

interference on WiFi channel 1, which overlaps with 802.15.4

channels 11 to 14. For each pair of raspberry PIs, one is set

up as a server (receiver), and another is a client sending 1

Mbps UDP traffic. We set the significance level α to 0.05 and

PRRt to 0.9. We run the experiments for 6 epochs. There are

95 and 20 links associated with channel reuse when the flow

set is scheduled by RA and RC, respectively.

With RA under clean environment, there are 10 links whose

reliability is below PRRt under channel reuse. Because only

links with PRR ≥ PRRt are used for communication, this

link quality degradation is therefore caused by channel reuse

because there exists no external interference. After WiFi traffic

is injected to cause external interference on the network, we
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Fig. 10. PRRs of rejected and accepted links failing to meet the reliability
requirement when scheduled by RA and RC.

observe 18 links with PRR < PRRt. Out of the 18 links

with low PRRs, our detection policy determines that only 14

cases (including all the 10 links with low PRRs in the clean

environment) are attributed to channel reuse (reject), while

transmission failures over the other 4 links are caused by

external interference (accept). Our detection policy correctly

detects all 10 links that suffered from channel reuse in the

clean environment. Note that those same links are likely to

remain vulnerable to channel reuse under external interference.

Moreover, the additional 4 rejected links were also rejected

by the K-S test in the clean environment. This indicates that

channel reuse had a negative impact on these links. However,

as their PRRs still met the reliability requirement in the clean

environment, these links do not need to be rescheduled. When

under external interference, however, the external interference

degrades the PRRs of the links while the effect of channel

reuse remains. Our policy hence includes these links among

the links that require channel reuse to be avoided.

We run similar experiments using RC to generate a sched-

ule. In the clean environment, all links satisfy the reliability

requirement, while under external interference, our detection

policy identifies two rejected links and no accepted link with

PRR < PRRt . Again, the two rejected links were also re-

jected by the K-S test in the clean environment demonstrating

that they were affected by channel reuse. But because their

PRRs were above PRRt in the clean environment, we do not

need to readjust the schedule for these links. Due to RC’s more

conservative channel reuse policy, fewer number of links suffer

from link quality degradation due to channel reuse compared

to RA.
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Fig. 11. Rejected links failing to meet the reliability requirement in each
epoch under external interference.

Figure 10 compares the PRRs of links that fail to meet

the reliability requirements for both rejected and accepted

cases when transmissions are scheduled by RA and RC. It

can be observed that rejected links consistently achieve better

performance on a contention-free channel but obtain low

PRR when a channel is reused. While accepted links attain

poor reliability performance for both cases. This result shows

that our detection policy can effectively distinguish if link

quality degradation is a result of channel reuse or external

interference. Figure 11 presents rejected links in each epoch

when transmissions are scheduled by RA and RC. The result

demonstrates that our detection policy consistently obtains

almost the same set of rejected links over the course of the

experiments under external interference.

VIII. CONCLUSION

WSANs have become an enabling technology for many

IIoT applications that impose strict demands for real-time and

reliable performance. In contrast to traditional approaches de-

signed to maximize channel reuse, we propose a conservative

channel reuse to enhance the real-time performance of indus-

trial WSANs while mitigating the impact of channel reuse

on network reliability. We further design a classifier to detect

reliability degradation caused by channel reuse. Experimental

results from two testbeds demonstrate that conservative chan-

nel reuse significantly outperforms the traditional industrial

WSANs without channel reuse in real-time performance, while

achieving higher reliability than aggressive channel reuse.
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