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Abstract—Wireless Sensor-Actuator Networks (WSANs) are
being adopted as an enabling technology for Industrial Internet
of Things (IIoT) in process industries. Industrial applications
impose stringent requirements in reliability and real-time perfor-
mance on WSANs. To enhance reliability, industrial standards,
such as WirelessHART, embrace Time Slotted Channel Hopping
(TSCH) that integrates channel hopping and TDMA at the
MAC layer. Within a network governed by a same gateway,
WirelessHART prohibits channel reuse, i.e., concurrent trans-
missions in the same channel, to avoid interference between
concurrent transmissions. Preventing channel reuse however
negatively affects real-time performance. To meet the demand
for both reliability and real-time performance by industrial
applications, we propose a conservative channel reuse approach
designed to enhance the real-time performance while limiting
its impact on reliability in WSANs. In contrast to traditional
channel reuse designed to optimize performance at the cost of
reliability, our conservative approach introduces channel reuse
only when needed to meet the timing constraints of flows. Finally,
we present an algorithm to detect reliability degradation caused
by channel reuse so that channels can be reassigned to further
improve reliability. Experimental results based on two physical
testbeds show that our approach significantly improves real-time
performance while maintaining a high degree of reliability.

I. INTRODUCTION

With the emergence of Industrial Internet of Things (IloT),
wireless sensor-actuator networks (WSANs) are increasingly
employed as the communication technology for process moni-
toring and control due to their benefits in lowering deployment
and maintenance cost. In contrast to traditional wireless sen-
sor networks that require only best-effort service, industrial
WSANs must meet stringent real-time performance and relia-
bility requirements in dynamic environments. Failing to meet
deadlines may lead to safety threats, production inefficiency,
and financial loss. To meet such stringent requirements, indus-
trial WSAN standards, such as WirelessHART [1], incorporate
a set of salient features. It adopts a centralized network archi-
tecture and employs Time Slotted Channel Hopping (TSCH)
MAC [2]. To achieve reliable communication, channel reuse is
prohibited within a network based on the same gateway, i.e.,
in the same time slot only one transmission is allowed in each
channel. However, this policy can severely affect the real-time
performance and the capacity of the network.

While channel reuse has been explored in wireless sensor
networks, traditional approaches are unsuitable for indus-
trial WSANs with stringent reliability requirements. Earlier
solutions either deal with interference between concurrent
transmissions in a best-effort manner or schedule transmissions
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based on estimated interference. In practice, estimating inter-
ference incurs significant overhead and errors, especially in the
presence of temporal variations in real-world environments.
Moreover, traditional approaches are usually designed to maxi-
mize channel reuse. This aggressive approach to channel reuse,
combined with an inaccurate interference estimate, may cause
unacceptable degradation in network reliability for industrial
applications.

This paper explores channel reuse for industrial WSANs
that demand both real-time performance and reliability. The
contributions of this work are four-fold.

« We propose a conservative channel reuse approach that
introduces channel reuse only when necessary to meet
the timing constraints of existing data flows.

We design Reuse Conservatively (RC), a conservative
channel reuse algorithm that incorporates channel reuse
to meet the real-time performance constraints while mit-
igating its impact on reliability.

We develop a classifier to detect links with poor reli-
ability due to channel reuse so that these links can be
rescheduled to enhance network reliability.

We present experimental results based on two testbeds
that demonstrate RC significantly improves real-time per-
formance when compared to the standard WirelessHART
approach without channel reuse, while maintaining higher
reliability than aggressive channel reuse.

The rest of the paper is organized as follows. Section II
reviews related work. Section III describes the WirelessHART
network model. Section IV introduces the problem. Section
V details the channel reuse algorithm. Section VI describes
the classifier to detect reliability degradation due to channel
reuse. Section VII presents the experimental results. Section
VIII concludes the paper.

II. RELATED WORK

Industrial WSANs have been gaining attention in recent
years. Previous works have studied different aspects of in-
dustrial WSANSs including real-time scheduling, delay analy-
sis, routing algorithms, rate selection, and channel selection.
Comprehensive reviews of these efforts can be found in [3]-
[5]. These works followed existing industrial standards such
as WirelessHART, which does not allow channel reuse within
a network with the same gateway.

There have been extensive studies on interference measure-
ments in the past years. Masheshwari et al. [6] studied different
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interference models including hop-based, range-based, SINR-
based, and PRR-SINR models. Liu et al. [7] modeled inter-
ference based on the PRR-SINR relationship. Qiu et al. [8]
used a measurement-based model to estimate throughput,
and Zhou et al. [9] proposed a radio interference detection
protocol based on a thresholded-SINR model. Although SINR-
based models have been shown to be more realistic than
other approaches [10], estimating interference based on such
models involves multiple measurements (e.g., receiver sensi-
tivity, noise, aggregated interferences, etc.), which, in practice,
incurs significant overhead and complexity. Hence, we opt for
mitigating interference by increasing the hop distance between
concurrent transmissions on the same channel. More impor-
tantly, we reduce the impact of channel reuse on reliability
by introducing channel reuse only when needed to meet the
real-time performance requirements of existing flows.

Several TDMA protocols leverage channel reuse to enhance
network capacity. Gronkvist et al. [11] and Brar et al. [12] pro-
posed scheduling policies based on spatial reuse TDMA pro-
tocol to maximize network throughput. The works presented
in [13]-[16] designed real-time scheduling strategies, which
incorporate channel reuse, to optimize network throughput
and latency. In contrast, our approach conservatively adopts
channel reuse to avoid its impact on network reliability. No-
tably, since WSAN traffic loads are known by the centralized
network manager in industrial settings, we therefore only need
enough channel reuse to meet the real-time requirements of
existing workloads.

There also exist scheduling algorithms customized for
TSCH networks that support channel reuse. Palettella et
al. [17] proposed TASA, a centralized traffic-aware scheduling
algorithm that improves network latency and power effi-
ciency. Accettura et al. [18] developed DeTAS, a decentral-
ized scheduling protocol for the 6TiSCH [19] network. In
contrast to our work, both algorithms always reuse channels
when transmissions are estimated not to interfere with each
other, while our approach introduces channel reuse only when
needed to meet the real-time requirements of the workload.
Duquennoy et al. [20] presented Orchestra, an autonomous
scheduling solution for 6TisCH networks. Transmissions may
be mapped to the same slot on the same channel, and hence
they must contend for a channel. While Orchestra incurs
channel reuse in a best-effort manner, our approach manages
channel reuse to reduce interferences by (1) introducing chan-
nel reuse conservatively and (2) avoiding interference by judi-
ciously scheduling channel reuse for concurrent transmissions.

A recent direction in wireless sensor networks is to exploit
synchronous transmissions. The Glossy-based approach [21]
provides a promising alternative to TSCH-based networks.
It offers efficient and fast network flooding by exploiting
constructive interference and capture effect allowing packets
to be received successfully in the presence of concurrent
transmissions. Zimmerling et al. [22], to the best of our
knowledge, was the first to combine Glossy-based Low-Power
Wireless Bus [23] and real-time scheduling. Our solution is
based on TSCH that has been adopted by the industry. Our
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channel reuse approach also relies on the capture effect to
allow concurrent transmissions on a channel, and therefore it
represents a step to incorporate capture effects into industrial
standards such as WirelessHART.

III. BACKGROUND OF WIRELESSHART

We consider WirelessHART, a widely adopted industrial
wireless standard for process monitoring and control. The
network comprises a gateway, multiple access points, and
field devices. Each device is equipped with a half-duplex
radio compatible with the IEEE 802.15.4 standard. The access
points are wired to the gateway, which in turn is connected
to the network manager. The network manager is responsible
for the construction of routes and transmission schedules,
which are then distributed to the field devices. The centralized
approach enhances visibility and predictability of the network
operations.

The WirelessHART standard does not allow channel reuse
on a network governed by the same gateway. However, chan-
nels may be reused when multiple networks connected to
different gateways coexist. In this case, interferences may
occur if those networks are located close to each other. Our
approach enables channel reuse within a network governed
by the same gateway, thereby enhancing the capacity and
scalability of the network.

A. TSCH MAC

TSCH is a mode of operation of the IEEE 802.15.4e
standard. It is an attractive solution for real-time commu-
nication because it offers bounded communication latencies
and provides reliable communication. TSCH operates on a
2.4 GHz ISM band, and can use up to 16 IEEE 802.15.4
channels. To improve network resiliency to interference, TSCH
includes a channel hopping mechanism where each pair of
sender and receiver associating with a transmission switches to
a new channel at every time slot. Channels with extreme noises
can be blacklisted. While we focus on the WirelessHART
protocol as an example for channel reuse, our approach can
be generalized for other IIoT standards such as 6TiSCH [19]
that runs IPv6 over the TSCH network.

The network is globally time synchronized and time is
divided into 10 ms slots accommodating one transmission
and its acknowledgement (ACK). A time slot can either be
dedicated or shared. A dedicated slot permits exactly one
transmission to be scheduled within a channel. In a shared
slot, two senders contend for a channel to send a packet to
a common receiver using CSMA/CA. As a result, only one
transmission can be received successfully at the receiver. In
contrast to a shared slot, our channel reuse policy aims to
enable all concurrent transmissions on the same channel in a
dedicated slot to be received successfully at their receivers,
thereby improving performance and predictability over shared
slots.

B. TSCH Scheduling

WirelessHART adopts centralized scheduling where a trans-
mission schedule is generated at the network manager. The



network manager has full knowledge of the network topology
in all channels and the traffic loads. It first computes routes for
network traffic, and then runs a scheduling policy to generate
a schedule by assigning a time slot number and a channel
offset to each transmission. Each time slot is subject to no
transmission conflict, and each channel is restricted by channel
constraint. Two transmissions conflict if they share a common
node, either a sender or a receiver. This is because of the
half-duplex nature of the IEEE 802.15.4 radio, which can
perform only one operation (transmission or reception) at a
time. Let M be the set of available channels. Traditionally,
to avoid interference, each slot can only accommodate |M |
concurrent transmissions. The channel offset is within the
range [0, |M| — 1]. It ensures that no transmission in a slot
will use the same channel. Each node computes the channel
hopping sequence at run-time following this formula:

logicalChannel = (ASN + channelO f f set)mod| M|

where ASN (Absolute Slot Number) indicates the total number
of slots elapsed since the network started. Each pair of sender
and receiver then maps the logical channel to a physical
channel using a common mapping table. Our approach extends
WirelessHART by allowing multiple transmissions to share the
same channel in the same slot.

IV. PROBLEM DESCRIPTION

In this section, we first describe the flow model, and define
the communication and channel reuse graphs of a network.
Finally, we set the objectives of our channel reuse algorithm.

A. Flow Model

A WSAN is shared by a set of end-to-end flows F' =
{F1, F»,...F,}. For each flow F; € F, a source node S;
releases a packet at a periodic interval P;. The packet must
be delivered to the destination Y; through a route ¢; within
the deadline D; where D; < P;. A route ¢; consists of a
sequence of links l;1,l;2,...lix. A transmission over a link I;;
is denoted as t;;. Therefore, each flow F} is characterized by
< 8.,Y;,D;, P, ¢; >. A flow F; is schedulable if all of its
packets are scheduled to meet their deadlines. A set of flows
F' is schedulable only if all flows in F' are schedulable.

In a fixed priority scheduling policy, each flow F; is
assigned a fixed priority. A flow F; has higher priority than a
flow Fj, if ¢ < k. Priorities are commonly assigned based on
deadlines or periods. The fixed priority scheduler schedules
transmissions of higher priority flows before transmissions
belonging to lower priority flows. It allocates the earliest
possible slot to each transmission.

B. Communication Graph vs Channel Reuse Graph

We consider two types of graphs in our network: (1) the
communication graph that is used for constructing routes from
a source to a destination for each flow and (2) the channel
reuse graph that is for estimating interferences when channel
reuse is adopted.
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A communication graph G.(V,E) consists of a set of
network devices V', and a set of links £. We use the Packet Re-
ception Ratio (PRR), a ratio of successfully received packets to
the total number of transmitted packets, to assess link quality.
Let M be a set of channels used and let PRR(2Y); be the
PRR of a link Y on channel ¢ € M. A bidirectional edge uv
is in E if PRR(ub); > PRR; and PRR(vi); > PRR; for
all channels ¢ € M where PRR; is a link selection threshold.
An edge must be bidirectional to support a transmission and its
acknowledgement. Due to channel hopping, links hop through
all channels so they must be reliable in all channels used.

Our channel reuse policy adopts a hop-based interference
model in which concurrent transmissions are allowed if a
sender of a transmission is at least k hops away from a
receiver of a concurrent transmission. Therefore, we construct
a channel reuse graph, which determines the channel reuse hop
count between nodes. We represent the channel reuse graph
as graph Gr(V, E), where V is a set of network devices and
FE is a set of edges between two devices. Due to the challenge
in directly measuring interference, we define an edge in the
channel reuse based on its PRR, which is already collected
by the network manager in order to construct the commu-
nication graph in the WirelessHART network. Specifically, a
bidirectional edge uv exists in F if for any channel i € M,
PRR(ub); > 0 or PRR(vtt); > 0. Note that we consider any
channel here because each link cycles through all channels
through channel hopping. As the hop count between u and
v increases, interference is likely to diminish. We denote a
minimum channel reuse hop count between any node u and v
as p.

C. Objectives of Channel Reuse Policy

Given a real-time WSAN and a set of flows, the objective
of our channel reuse algorithm is to introduce concurrent,
channel-sharing transmissions such that all flows will meet the
deadlines. Note that, if no channel reuse is needed to meet the
deadlines, no concurrent transmissions will be scheduled on
the same channel. Channel reuse occurs only when needed to
make the deadlines. To further mitigate interference caused by
channel reuse, our secondary objectives are to (1) increase the
hop distance between transmissions sharing a channel and (2)
reduce the number of concurrent transmissions per channel.
The larger the hop distance between concurrent transmissions,
the more likely for both transmissions to succeed due to
capture effect. Scheduling more transmissions on the same
channel can make transmission failures more likely because
interferences are cumulative [6] [7]. Therefore, it is desirable
to schedule fewer concurrent transmissions on each channel.

V. CHANNEL REUSE ALGORITHM

In this section, we first introduce the channel reuse con-
straints, the concept of flow laxity, and then provide a detailed
description of our channel reuse algorithm.

A. Channel Reuse Constraints

The channel reuse constraints set up conditions that a
transmission must satisfy in order to be assigned a specific



time slot and channel offset by a scheduler. The maximum
number of slots in a schedule is determined by the hyper-
period of a set of flows F', which is the least common multiple
of the periods of all the flows. Let |[M| be the number of
channels used. A channel offset is in the range [0, |M| — 1].
Let H(F;) be a set of flows with higher priority than F;. At
slot s, T denotes a set of scheduled transmissions of H (F;).
For each channel offset associated with slot s, T, C T is a
set of scheduled transmissions assigned to channel offset c. A
transmission ¢;; can be scheduled in s, if ¢;; does not conflict
with other transmissions in 7 (see Section III-B). If two
transmissions are assigned to a same slot and channel, they
must be at least p hops apart on Gg(V, E). Therefore, any
transmission t;; of F; can be allocated a slot s and a channel
offset c if the following channel reuse constraints are satisfied:

1) Transmission conflict: t;; = uv does not conflict with
zy € Ts: uw # x and u # y and v # x and v # y, for
all zy € Ts.

2) Channel constraints:

a) If channel reuse is not allowed (p = c0): chan-
nel offset ¢ must not have been assigned to any
transmission, Ts. = 0.

b) If channel reuse is allowed (p < o00): given t;; =
uv and zy € T,.: u must be at least p hops from
all y and all x must be at least p hops from v.

B. Flow Laxity

A flow laxity helps anticipate if a packet belonging to a
flow can be delivered to meet its deadline or not. It indicates
how much delay a packet can tolerate. The higher the flow
laxity, the more a transmission can be delayed to later slots.
The concept of laxity has been used in [15] and [24] as a
heuristic for real-time scheduling. Our algorithm uses flow
laxity to assess if channel reuse is needed or if the current
channel reuse hop distance will allow a flow to meet its
deadline or not. Given a slot s that meets the channel reuse
constraints for t;;, a set of remaining transmissions of a flow
F; after t;; is denoted as Tpost,t;;- A flow laxity is defined
as the number of remaining time slots minus the number
of slots required to schedule transmissions in Tjpost ¢, Let
d; be a slot corresponding to F;’s deadline D;. For each
transmission ¢ € Tjpost,,,, We estimate the number slots in
an interval [s + 1,d;] that contains transmissions conflicting
with ¢ denoted as qz ld; Hence, the total number of slots
in [s + 1,d;] conflicting with transmissions in Tpost,t,; is
ZtEth,t” ¢ +1,4;- The minimum number of slots required
to schedule Tpos¢,¢,; 18 |Tpost,t,,; |- Therefore, the laxity of F;
when scheduled ¢;; at s is:

>

teTpost,f,ij

[s —di] — D

qg+1,di - ‘Tp05t1ti]‘ |

where s — d; is the number of slots in [s + 1,d;], and
ZtETwuﬁ ¢ +1,4; 18 the estimated number of conflicting
slots that cannot be allocated to transmissions in Tjpost ¢, ;-
Our channel reuse policy attempts to select slot s for ;;
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such that F;’s laxity is no less than 0. This means that after
scheduling ¢;; at slot s, there are enough slots to accommodate
the remaining transmissions of F; such that F; can deliver a
packet to the destination within its deadline.

C. Reuse Conservatively Algorithm (RC)

In this section, we provide a detailed description of our
Reuse Conservatively Algorithm (RC), which integrates our
channel reuse policy with a real-time fixed priority scheduling
as presented in Algorithm 1. The input of the algorithm is
a set of flows F, a channel reuse graph Gg(V, E), and the
minimum channel reuse hop count threshold p;. A larger p;
will lead to more reliable communication, but may reduce
the capacity of the network since channel reuse will be
adopted in a more restrictive fashion. In practice, to maintain
reliability, a network operator may select the largest channel
reuse hop count under which the workload is schedulable.
When the workload is schedulable without channel reuse,
RC will not introduce channel reuse (i.e., the hop count is
effectively infinity). The output is a transmission schedule S.
We schedule flows based on their priorities from the highest to
the lowest priority. The p variable keeps the current minimum
channel reuse hop distance. For each transmission #;;, p is first
initialized to oo, which means no channel reuse is allowed.

For every transmission t¢;;, the algorithm first executes
findSlot(). This function finds the earliest slot s and chan-
nel offset ¢ that comply with the channel reuse constraints
(see Section V-A) given the channel reuse hop count p. It
then calculates flow laxity following Equation 1 given t;;
is scheduled at s. If the computed laxity > 0, then ¢;; is
scheduled at slot s and assigned channel offset ¢, and the
algorithm proceeds to the next transmission. Otherwise, the
algorithm introduces channel reuse for ¢;; . We define the
network diameter as the maximum shortest distance between
two nodes in the network. When channel reuse is adopted,
p is set to Ar (i.e., the network diameter of Ggr(V,E)),
which gives the maximum channel reuse distance for this
network. The algorithm decreases the channel reuse hop count
p and repeats the findSlot() and calculateLazity() steps
until the calculated laxity > 0 or until p is less than the
minimum threshold p;. The algorithm terminates when all
transmissions of a flow set F' are scheduled, or when any
scheduled transmission fails to meet its deadline, which deems
F' unschedulable.

The algorithm adopts channel reuse conservatively, i.e.,
when lazity < 0. It introduces channel reuse with a larger
hop count first to mitigate interference. Note that when there
exist multiple channel offsets in slot s that meet the channel
reuse constraints, the algorithm chooses a channel with the
fewest number of scheduled transmissions to reduce channel
contention.

Complexity: There can be at most N x L transmissions
scheduled where N is the size of I, and L is the max-
imum path length among all flows. For each transmission,
findSlot() is executed at most Ag + 1 times. For each slot,



the algorithm checks the channel reuse constraints, which takes
N x (|E| + |V |log|V|) because there can be no more than N
transmissions scheduled in each slot, and channel reuse hop
count computation on a graph Gg(V, E) takes |E|+|V |log|V|.
The upper-bound complexity of findSlot() is O(ARr * Ppaz *
Nx(|E|4|V]log|V])) where P, is the maximum possible
number of slots in a schedule, which associates with the
hyper-period of F'. The total complexity of our channel reuse
policy integrating with a fixed priority scheduling algorithm
is O(N% % L * Ag * Pz * (|E| + |V]iog|V])).

Algorithm 1: Reuse Conservatively (RC)

Input : A flow set F' ordered by priority, a conflict
graph Gg(V, E), the minimum channel reuse
hop distance p;
Output: A transmission schedule S
for each flow F; from Fy to Fn do
p 00 ;
for each transmission t;; of F; do
while p > p; do
< s,c>= findSlot(tj, p);
lazity = calculateLaxity(t;j, s);
if laxity > 0 then
| break;
else
if p = oo then
| P Ans
else
| pe=p—1

if s < d; then

| Schedule t;; at < s, ¢ >;
else

L return 0 ;

return S ;

VI. DETECTING RELIABILITY DEGRADATION CAUSED BY
CHANNEL REUSE

While conservative channel reuse can effectively mitigate
the impacts of channel reuse on reliability, it may lead to
reliability degradation in some cases. In such cases, we need to
detect links that suffer poor reliability caused by channel reuse,
so that these links can be reassigned to different channels or
time slots. A naive approach is to use a PRR threshold to
identify links affected by channel reuse, i.e., if the PRRs of
the links associated with channel reuse are lower than the PRR
threshold, then channel reuse may have caused packet loss
over these links. However, it is important to note that channel
reuse is not the only possible cause of transmission failures.
Dynamic changes in channel or environmental conditions and
external wireless interference may lead to changes in link
reliability as well. It is therefore important to distinguish
whether reliability degradation is caused by channel reuse or
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other factors so that the network manager can resolve the link
quality degradation according to the root causes. For example,
if a link’s PRR drops because of external interference instead
of channel reuse, removing channel reuse involving that link
would not necessarily improve its quality. Henceforth, we
propose a method to distinguish whether a link’s reliability
degradation is attributed to channel reuse. We address this
challenge by comparing a link’s PRR in the time slots when it
shares a channel with others and its PRR in the other time slots
when there is no channel reuse. Intuitively, if a link is highly
reliable in a contention-free channel, but performs poorly
when channel reuse is introduced, then the link’s reliability
is degraded due to channel reuse. Moreover, we minimize
detection overhead by leveraging statistics already collected
by the network manager of a WirelessHART network.

Each wireless node maintains a neighbor table, which
contains statistics pertaining to connectivity between a node
and its neighbors, e.g., PRRs, in all channels used. A node
learns these statistics based on regular data transmissions
and periodic neighbor-discovery packets, which are used to
update the topology of the network. The network manager
must also reserve enough slots for each node to broadcast
neighbor-discovery packets in all channels used. Since the
network topology does not change so frequently, these peri-
odic neighbor-discovery packets do not need to be scheduled
very often. Based on the schedule computed by the network
manager, each node has knowledge of time slots, channel
offsets, and its links, which are associated with channel reuse.
For each link involved in channel reuse, a node gathers link
statistics in two cases: (1) when a transmission on the link
occurs without channel reuse and (2) when a transmission over
the link shares a channel with other transmissions. A node
periodically reports these statistics to the network manager,
which then detects links affected by channel reuse based on
the following statistical test.

To detect links affected by channel reuse, our detection
policy adopts the Kolmogorov-Smirnov test (K-S test) [25]
to quantify the difference of link qualities under these two
cases. K-S test offers the benefits of making no assumption
about the distribution of data and making no restriction on the
data set size. A two-sample K-S test evaluates the difference
between two Empirical Cumulative Distribution Functions
(ECDF) of two data sets. In our case, we compare the PRR
distributions of a link [; when a transmission over [; is
scheduled with channel reuse (denoted PRR_DIST,(l;)),
and when a transmission takes place without channel reuse
(denoted PRR_DIST.s(l;)). In a statistical test, under the
null hypothesis, there is no significant difference between two
sample sets. K-S test computes the maximum distance between
ECDF of PRR_DIST,(l;) and PRR_DIST ;(l;). It calcu-
lates the p-value € (0,1), which determines the result of the
hypothesis test. The output of the K-S test is either accepting
or rejecting the null hypothesis at « significance level. The
null hypothesis is rejected when the p-value< «. Therefore,
for our detection policy, if the outcome of the K-S test is reject,
then we conclude that channel reuse degrades the reliability of



link /; since the PRR_DIST,(l;) differs significantly from
PRR_DISTc(l;). Otherwise, channel reuse only has subtle
or no impact on ;.

Our detection policy considers only links associated with
channel reuse. Its goal is to identify links whose reliability
is degraded by channel reuse. Let PRR,(I;) be the PRR
of PRR_DIST,(l;). The policy first uses a PRR threshold
PRR; to identify links that fail to meet the reliability require-
ment, i.e., links with PRR,.(l;) < PRR;. It then performs K-
S test on such links to determine if reliability degradation is
caused by channel reuse or not. The following is the detection
policy:

e« If PRR,(I;) < PRR;, then perform K-S test on

PRR_DIST,(l;) and PRR_DIST;(l;).
— If K-S test returns reject, then channel reuse degrades
link reliability.
— If K-S test returns accept, then [; fails to meet the
reliability requirement due to other reasons.

o Otherwise, [; meets the reliability requirement.

VII. EVALUATION

We evaluate our algorithm in terms of the following aspects:
(1) real-time performance (2) algorithm efficiency, i.e., the
amount of channel reuse and channel reuse hop count (3)
execution time (4) network reliability (5) applicability of
our detection policy in identifying links whose reliability is
degraded by channel reuse. To demonstrate the generality of
our approach, (1)-(3) are evaluated based on the collected
topologies from: (a) the 80-node Indriya testbed, deployed
at the National University of Singapore [26] (b) the 60-
node WUSTL testbed deploying across 3 floors. The topology
information includes the PRRs of all links in the network in all
16 channels. Based on the network topology and the traffic re-
quirements, the network manager constructs a communication
graph (with PRR; = 0.9) and a channel reuse graph. Then, it
generates routes and a schedule, which all field devices must
follow during run time. To measure reliability performance,
evaluation (4) and (5) are conducted on the WUSTL testbed,
which runs the WirelessHART protocol on TinyOS 2.1.2 and
TelosB motes [27].

We randomly generate a set of flows F' by varying source
and destination nodes. Each flow set contains two access
points, which are nodes with a high number of neighbors.
Following common characteristics of process monitoring and
control applications in process industries, sources of flows
generate packets periodically, and the periods of flows are
harmonic. The periods are uniformly selected from the range
P = [2%,2Y] where z < y. Given the period range P =
{2% 27+ | s*tF) if a flow Fj is assigned with P; = 27, then
its deadline D; is randomly picked from a range [271,27].

For each flow F; € F, the network manager generates a
single route from a source to a destination node based on the
shortest path algorithm and the types of traffic. We consider
two types of traffic for control applications: (1) centralized
traffic: a packet is generated by a source (sensor), and routed to
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a controller through an access point wired to a gateway; then a
control message issued by a controller, running on a computer
behind the gateway, is delivered to a destination (actuator)
and (2) peer-to-peer traffic: to enhance scalability, controllers
are implemented on field devices in the network, and a data
packet can be delivered directly from a source to a destination
node without going through the gateway. We run experiments
under source routing, which enables every link along the route
to retransmit a packet if the first transmission attempt fails.
Hence, a scheduler must reserve one more time slot for every
transmission over a link.

We adopt the Deadline Monotonic (DM) algorithm, which is
a commonly used fixed priority scheduling policy for real-time
systems. Under DM, a flow with the shortest deadline has the
highest priority. Our algorithm RC is compared against: (1)
DM with no channel reuse (NR): only one transmission can
be scheduled on each channel, and (2) DM with aggressive
channel reuse (RA): a channel is reused whenever possible,
i.e., a scheduler schedules transmissions at the earliest slot and
on a channel with at least p channel reuse hops. RA adopts
similar channel reuse approaches as traditional channel reuse
strategies, which always introduce channel reuse when an
interference model estimates that concurrent transmissions will
not interfere with each other. In addition, RA is also similar
to TASA [17], a centralized TSCH scheduling approach that
always allows transmissions to share a channel when p >
2. For a fair comparison, we set the minimum channel reuse
distance p; for RC to 2.

A. Real-Time Performance

We evaluate the effectiveness of our channel reuse policy
in enhancing real-time performance by using a schedulable
ratio as a metric. A schedulable ratio is a fraction of flow
sets that is schedulable. For each experiment, we generate
100 different flow sets. Figures 1 and 2 present schedulable
ratios based on the Indriya testbed topology. We compare RC
against NR and RA under a varying number of channels,
flows, and periods. Figures 1(a), 1(b), 2(a), and 2(b) show RA
and RC consistently outperform NR, especially when there
are a limited number of channels, i.e., when the number of
channels is from 3 to 5. Under the peer-to-peer traffic and the
period range P = [271,23], NR cannot successfully generate
any schedule for any number of channels as shown in Figure
2(b). Note that increasing the number of channels does not
always monotonically improve schedulability. Although more
channels enhance network capacity, at the same time, they
can degrade route diversity in the network and introduce more
transmission conflicts as observed in our previous study [28].

Both RC and RA also yield higher schedulable ratios
compared to NR as the number of flows increases. Figure 1(c)
shows, under the centralized traffic, RA and RC achieve the
maximum of a 7.5X higher schedulable ratio than NR when
the number of flows is 40. Figure 2(c) also illustrates that with
the peer-to-peer traffic, as the number of flows reaches 120,
NR can no longer successfully generate schedules, while RA
and RC still obtain almost a 100% schedulable ratio. We also
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Fig. 2. Schedulable ratios under varying number of channels and flows based on the peer-to-peer traffic (Indriya).

note that a flow path length based on the peer-to-peer traffic
is approximately two times shorter than the path length of
a flow under the centralized traffic. The results demonstrate
the benefits of channel reuse in enhancing scalability of the
network under heavy workloads and few available channels.
Notably, with lower traffic load, indeed channel reuse is not
needed since flows can be scheduled easily to meet their
deadlines. We repeat the experiments based on the WUSTL
testbed topology, and observe similar results (see Figure 3).
It can also be noticed that channel reuse is more effective
under the peer-to-peer traffic since it enables both RA and RC
to outperform NR with a significantly larger margin compared
to the centralized approach. The centralized traffic enforces all
packets to be routed through access points. As a result, it po-
tentially introduces more transmission conflicts near the access
points, which make channel reuse more difficult. Moreover, in
most cases, RC can achieve a schedulable ratio comparable
to RA. However, in the worst case, RC obtains a 22% lower
schedulable ratio than RA as shown in Figure 3(a).

B. Algorithm Efficiency

We validate if RC indeed meets its goals in: (1) reducing
channel reuse and (2) increasing channel reuse hop distance
when channel reuse is adopted. We quantify the number of
transmissions per channel (Tx/channel), and the minimum
channel reuse hop count among senders and receivers of
concurrent transmissions on each channel. The results are
obtained from the experiments in Section VII-A. Figure 4
shows the distribution of different numbers of transmissions
per channel of RA and RC. With the peer-to-peer traffic
(Figure 4(b)), compared to RA, RC attains a higher proportion
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of 1 Tx/channel (no channel reuse), especially when there are
more available channels. In addition, the results demonstrate
that if a channel is reused, RC schedules fewer transmissions
on a channel than RA. While, under the centralized traffic
(Figure 4(a)), both RA and RC achieve comparable results,
except when the number of channels is 3, in which RC
achieves a ~10% higher proportion of 1 Tx/channel than RA.

Figures 5(a) and 5(b) plot the distribution of channel reuse
hop count under the peer-to-peer and centralized traffic, re-
spectively. Again, the peer-to-peer approach allows RC to in-
crease channel reuse hop count. For every number of channels,
RC has the highest proportion for 3-hop count, while RA has
the highest proportion for 2-hop count. With the centralized
traffic, both RA and RC are dominated by 2-hop channel
reuse. RC demonstrates that it meets its goals in mitigating
interferences by reducing Tx/channel and increasing channel
reuse hop count under the peer-to-peer traffic. However, it is
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less efficient with the centralized traffic because the centralized
approach introduces more transmission conflicts, which limit
the number of slots that can accommodate channel reuse.

C. Execution Time

We measure the execution time of the algorithms on a
Macbook Pro laptop with 2.7 GHz Intel core i7. For NR, RA,
and RC, we set the number of channels to 5 and the periods
P = [2°,22], and vary the traffic loads. The results are based
on the peer-to-peer traffic. Figure 6 compares the execution
time of NR, RA, and RC. NR obtains the smallest execution
time of 0.2 to 0.4 ms, when the number of flows increases
from 40 to 100. As the number of flows reaches 120, NR
can no longer successfully generate schedules. The execution
time of RA increases linearly from 1.2 ms to 1200 ms as
the number of flows increases from 40 to 160, respectively,
while RC incurs 115.1 ms to 290 ms, and sharply increases
to 990 ms when the traffic loads grow from 40, 140, to 160.
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Fig. 6. Algorithm execution time (in milliseconds).
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Fig. 7. WUSTL testbed topology when channels 11-14 are used.

RC requires less execution time than RA since RA attempts to
adopt channel reuse for every transmission, while RC is more
conservative. Although RC sparingly introduces channel reuse,
it obtains longer execution time than NR because it is required
to compute laxity for every transmission. A sudden increase
in RC’s execution time when the number of flows reaches 160
is the result of more workloads, and heavy computation for
channel reuse.

RC’s execution time is acceptable in the WirelessHART
network because a schedule does not need to be reconfigured
often. A schedule is recomputed only when the topology or
the traffic demands change significantly. Accordingly, Wire-
lessHART network maintenance is in frequent by design, e.g.,
it can take several minutes for a node to detect and report a
link failure to the network manager.

D. Network Reliability

Despite enhancing real-time performance, channel reuse
may degrade network reliability. We conduct experiments on
the 60-node WUSTL testbed (see Figure 7) to obtain the
reliability performance. The testbed runs TSCH MAC protocol
with 10 ms time slot and source routing at the network
layer. Source routing allows a sender to retransmit a packet
if its first transmission fails. We generate five different flow
sets consisting of 50 flows where 50% of flows release their
packets every 271 s, and the rest release their packets every
20 5. We run experiments on 4 channels with observed good
performance (channel 11 to 14) and set the transmission power
to 0 dBm. For each flow set, we enable a network to execute
the schedule for 100 times.

Figure 8 presents box plots comparing Packet Delivery
Ratio (PDR) of NR, RA, and RC under 5 different flow sets.
A PDR is a fraction of packets successfully delivered to its
destination. RC achieves the median PDR at most 1% lower
than NR’s median PDR in flow sets 1, 4, and 5, whereas NR’s
median PDR surpasses that PDR of RA by a maximum of
2% under flow sets 1, 2, and 4. This shows that most of
the flows of both RC and RA can achieve good reliability
performance. In terms of worst-case reliability, RC clearly
outperforms RA. RC achieves lower worst-case PDRs than
NR by a margin of 3%, 0%, 8%, 3%, and 5% for flow
sets 1 to 5, respectively, while RA decreases the worst-case
PDRs by 29%, 18%, 22%, 31%, and 27% under flow sets
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1 to 5, respectively, compared to NR. This is because RC
adopts channel reuse more conservatively compared to RA
as shown in Figure 9. It is important to note that worst-case
reliability is important in industrial applications because severe
data loss can degrade stability and control performance and
may lead to system failure. Although RC may still suffer
from interferences due to channel reuse, in exchange for a
much higher schedulable ratio, advances in networked control
have contributed control designs that can tolerate packet losses
systems (e.g., [29] and [30]). Our approach is suitable for such
resilient control systems.

E. Links Affected by Channel Reuse

In this section, we evaluate our detection policy in terms of
its applicability to identify links whose reliability is degraded
by channel reuse under both RA and RC approaches. In this
set of experiments, we generate 50 peer-to-peer flows, which
release a packet every 1 s. By default, a WirelessHART node
must deliver a health report to the network manager every
15 minutes (=1 epoch). In each epoch, we obtain the PRR
distribution consisting of 18 samples. We also calculate the
overall PRR of each link in each epoch. Note that we consider
the PRR distribution of each link over all channels used.

We run experiments under a clean environment on channel
11 to 14. We then generate external interference using WiFi in
order to demonstrate that our detection policy can differentiate
unreliable links caused by channel reuse from those caused
by external interference. Because every node in the WUSTL
testbed is connected to a Raspberry PI through a USB port
for testbed management and instrumentation, we set up three
pairs of Raspberry Pls, one pair on each floor, to generate
interference on WiFi channel 1, which overlaps with 802.15.4
channels 11 to 14. For each pair of raspberry PIs, one is set
up as a server (receiver), and another is a client sending 1
Mbps UDP traffic. We set the significance level o to 0.05 and
PRR; to 0.9. We run the experiments for 6 epochs. There are
95 and 20 links associated with channel reuse when the flow
set is scheduled by RA and RC, respectively.

With RA under clean environment, there are 10 links whose
reliability is below PRR; under channel reuse. Because only
links with PRR > PRR; are used for communication, this
link quality degradation is therefore caused by channel reuse
because there exists no external interference. After WiFi traffic
is injected to cause external interference on the network, we
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Fig. 9. Number of transmissions per channel under
RA and RC of 5 different flow sets.
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observe 18 links with PRR < PRR;. Out of the 18 links
with low PRRs, our detection policy determines that only 14
cases (including all the 10 links with low PRRs in the clean
environment) are attributed to channel reuse (reject), while
transmission failures over the other 4 links are caused by
external interference (accept). Our detection policy correctly
detects all 10 links that suffered from channel reuse in the
clean environment. Note that those same links are likely to
remain vulnerable to channel reuse under external interference.
Moreover, the additional 4 rejected links were also rejected
by the K-S test in the clean environment. This indicates that
channel reuse had a negative impact on these links. However,
as their PRRs still met the reliability requirement in the clean
environment, these links do not need to be rescheduled. When
under external interference, however, the external interference
degrades the PRRs of the links while the effect of channel
reuse remains. Our policy hence includes these links among
the links that require channel reuse to be avoided.

We run similar experiments using RC to generate a sched-
ule. In the clean environment, all links satisfy the reliability
requirement, while under external interference, our detection
policy identifies two rejected links and no accepted link with
PRR < PRR; . Again, the two rejected links were also re-
jected by the K-S test in the clean environment demonstrating
that they were affected by channel reuse. But because their
PRRs were above PRR; in the clean environment, we do not
need to readjust the schedule for these links. Due to RC’s more
conservative channel reuse policy, fewer number of links suffer
from link quality degradation due to channel reuse compared
to RA.
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Figure 10 compares the PRRs of links that fail to meet
the reliability requirements for both rejected and accepted
cases when transmissions are scheduled by RA and RC. It
can be observed that rejected links consistently achieve better
performance on a contention-free channel but obtain low
PRR when a channel is reused. While accepted links attain
poor reliability performance for both cases. This result shows
that our detection policy can effectively distinguish if link
quality degradation is a result of channel reuse or external
interference. Figure 11 presents rejected links in each epoch
when transmissions are scheduled by RA and RC. The result
demonstrates that our detection policy consistently obtains
almost the same set of rejected links over the course of the
experiments under external interference.

VIII. CONCLUSION

WSANs have become an enabling technology for many
IIoT applications that impose strict demands for real-time and
reliable performance. In contrast to traditional approaches de-
signed to maximize channel reuse, we propose a conservative
channel reuse to enhance the real-time performance of indus-
trial WSANs while mitigating the impact of channel reuse
on network reliability. We further design a classifier to detect
reliability degradation caused by channel reuse. Experimental
results from two testbeds demonstrate that conservative chan-
nel reuse significantly outperforms the traditional industrial
WSANSs without channel reuse in real-time performance, while
achieving higher reliability than aggressive channel reuse.
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