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Abstract—Process automation is embracing wireless sensor-
actuator networks (WSANs) in the era of Industrial Internet.
Despite the success of WSANs for monitoring applications,
feedback control poses significant challenges due to data loss
and stringent energy constraints in WSANs. Holistic control
adopts a cyber-physical system approach to overcome the chal-
lenges by orchestrating network reconfiguration and process
control at run time. In this paper, we explore efficient holistic
control designs to maintain control performance while reduc-
ing the communication cost. The contributions of this work
are four-fold: (1) We introduce a holistic control architecture
that integrates low-power wireless bus (LWB) and two control
strategies, rate adaptation and self-triggered control, specifically
proposed to reduce communication cost; (2) We design novel
wireless network mechanisms to support rate adaptation and
self-triggered control, respectively, in a multi-hop WSAN; (3) We
build a real-time network-in-the-loop simulator that integrates
MATLAB/Simulink and a three-floor WSAN testbed to evaluate
wireless control systems; (4) We empirically explore the tradeoff
between communication cost and control performance under
alternative holistic control approaches. Our case studies show
that rate adaptation and self-triggered control offer advantages in
control performance and energy efficiency, respectively, in normal
operating conditions. The advantage in energy efficiency of self-
triggered control, however, may diminish under harsh physical
and wireless conditions due to the cost of recovering from data
loss and physical disturbances.

Index Terms—industrial wireless control, multi-hop mesh net-
work, network reconfiguration, network-in-the-loop simulation,
cyber-physical systems

I. INTRODUCTION

Wireless sensor-actuator networks (WSANs) are being

adopted in industrial process automation for their advantages

in reducing deployment and maintenance costs. However,

while existing WSANs are usually used for monitoring, it

remains challenging to support feedback control loops over

WSANs. First, the control performance of industrial processes

can be affected by data losses in WSANs. In industry, control

performance is closely related not only to the factory’s profits,

but also machine operator’s safety and the environment. Sec-

ond, given the difficulty to replace batteries in harsh industrial

environments, it is crucial to improve the energy efficiency

of WSANs while maintaining control performance. Finally,

wireless control systems (WCS) must be resilient to both

disturbances to the physical plant and external interferences to

the wireless networks. Therefore, a practical and dependable

industrial WCS must meet the following requirements: (1)

control performance, which brings economic benefits; (2)

energy efficiency, which reduces maintenance cost; and (3)

resiliency, which prevents accidents.

Traditionally, the wireless network and the physical process

are managed separately in a WCS at run time. The lack of

coordination between network and plant management forces

conservative designs that trade energy for control performance.

For example, a WCS may rely on high sampling rates to

guarantee control performance under worst-case conditions,

even though the same sampling rates may result in excessive

communication cost under normal conditions. Conversely, a

less conservative design may result in a fragile system vulner-

able to physical disturbances and/or wireless interference.

In contrast to the traditional approach, the holistic control

approach aims to enhance the resiliency and efficiency of WCS

by cojoining network reconfiguration and process control [22].

The core of holistic control is a holistic controller that gener-

ates not only control inputs to physical plants, but also network

configurations based on control needs at run time.

In this work we explore efficient holistic control designs to

maintain control performance at low energy cost. We develop

holistic control approaches that incorporate two alternative

strategies, rate adaptation (RA) and self-triggered control

(ST) [38], proposed specifically to improve the efficiency

of control systems. We note that RA introduces adaptation

in a traditional time-driven control approach, while ST is a

representative event-driven control approach. Exploring both

strategies in holistic control allows us to investigate the design

tradeoff involved in holistic control design. Specifically, the

contributions of this work are four-fold.

• We introduce a new holistic control architecture that inte-

grates multi-hop wireless networks running the Low-power

Wireless Bus (LWB) protocol and two alternative control

strategies, rate adaptation and self-triggered control;

• We design robust network adaptation mechanisms to support

rate adaptation and self-triggered control, respectively, in

multi-hop LWB networks;

• We build RT-WCPS, a real-time network-in-the-loop simula-

tor that integrates MATLAB/Simulink and a physical WSAN

testbed to evaluate wireless control systems;

• We empirically explore the tradeoff between communica-

tion cost and control performance under alternative holistic

control approaches.



Our case studies show that RA and ST offer advantages

in control performance and energy efficiency, respectively,

in normal operating conditions. The advantage in energy

efficiency of ST, however, may diminish under harsh physical

and wireless conditions due to the cost of recovering from data

loss and physical disturbances.

The rest of the paper is organized as follows: Sec. II reviews

related works on WCS designs. Sec. III introduces the system

architecture of holistic control system. Secs. IV and V detail

the control and network designs of RA and ST. Sec. VI

presents the real-time wireless cyber-physical simulator (RT-

WCPS), and Sec. VII analyzes the experimental results.

II. RELATED WORK

The problem of resilient and efficient wireless control has

been investigated in the fields of control theory, wireless

networks, and more recently network-control co-designs.

In control theory, state observers [37] (e.g., extended

Kalman filter) have been introduced to handle packet loss and

communication latency in networked control systems. To re-

duce communication cost, aperiodic control has been proposed

as an alternative to periodic time-driven control. Examples

include event-triggered control [24], [26] and self-triggered

control [25]. However, existing implementation of aperiodic

control was based on a single-hop wireless network [5] instead

of the multi-hop WSANs that are widely adopted in process

industrials due to their flexibility and scalability in industrial

environments. Supporting aperiodic control on a multi-hop

WSAN is challenging because industrial WSAN standards

usually employ TDMA protocols for predictable communi-

cation. The aperiodic communication triggered by aperiodic

control is incompatible with the periodic, time-driven nature

of communication in industrial multi-hop WSANs.

In wireless networks, given latency, packet delivery, energy

consumption bounds by the control designers, on-line network

adaptations can achieve optimized energy-efficiency [28], re-

liability [9], and real-time performance [43] under various

wireless channel conditions and network topologies, but few

are cognizant of control performance directly.

In cyber-physical systems, recent effort on network-control

co-design aims to jointly optimize the wireless network and

control at design time [29]. Wireless network designs have

been tailored for control, e.g., sampling rate optimization [8],

[30] and asymmetric routing for control [19]. These efforts

focus on offline designs instead of online adaptation, which

limits the resiliency and efficiency of WCS operating in

dynamic conditions (e.g., under network interference and

physical disturbance).

In previous work [22], we proposed the concept of holistic

control that cojoins network management and physical control

at run time. As a simple proof of concept, we presented a

holistic control example that adjusts the numbers of transmis-

sions based on physical states. In this paper, we generalize the

designs of holistic control by incorporating more sophisticated

control approaches, namely RA and ST. The new control

approaches require more sophisticated network reconfiguration

mechanisms that are both efficient and robust. Furthermore, the

alternative control approaches (time-driven vs. event-driven)

allows us to explore the design tradeoff involved holistic

control in multi-hop WSANs.

Simulation tools are of vital importance to wireless con-

trol. Truetime [7] supports co-simulation of controller tasks,

network transmissions, and continuous plant dynamics. Wire-

less cyber-physical simulator (WCPS) [18] integrates MAT-

LAB/Simulink and TOSSIM [17]. However, those simulators

produce simulations that cannot always capture the real-world

behavior of WSANs. Network-in-the-loop simulations were

implemented in [27]. Experiments presented in [5] integrate

two double-tank systems with a single-hop wireless network.

[23] and [6] integrate two real inverted pendulums and a 13-

node WSAN multi-hop testbed, achieving sampling rates of

tens of millisecond. However, the physical plants in laboratory

settings used in those experiments cannot represent large-

scale industrial processes. In this work we design and imple-

ment a network-in-the-loop simulator which integrates MAT-

LAB/Simulink simulations and a 70-node WSAN testbed.

III. WIRELESS CONTROL SYSTEM ARCHITECTURE

Fig. 1 depicts the holistic wireless control architecture.

The holistic controllers (1) control the physical plants by

communicating with sensors and actuators through a multi-hop

WSAN, and (2) reconfigure the WSAN based on control needs

at run time. Multiple control loops share the same WSAN.

Fig. 1: Holistic WCS architecture.

A. Physical control system

In this paper, our control design and analysis model the

physical plant as a linear time-invariant system (LTI) described

by (1) since a wide variety of systems can be represented with

satisfactory accuracy by LTI model. The proposed wireless

network reconfiguration mechanisms however are not limited

to LTI systems, and are also applicable to nonlinear and time-

variant systems.

xt+1 = Axt +But ,yt =Cxt , (1)

where t is the time index, xt ∈ R
n is the state vector, ut ∈ R

m

is the input vector, yt ∈ R
p is the output vector, A ∈ R

n×n,

B ∈ R
n×m, and C ∈ R

p×n. We assume that the pair (A,B) is

controllable and that the pair (A,C) is observable. A linear

state feedback controller ut = Kxt renders the closed-loop

system asymptotically stable.

At at time t, a sensor sends its measurements yt to a remote

holistic controller over the multi-hop WSAN. On the controller

side, a state observer [37] estimates the states of the plant.

Based on the estimated state vector x̂t , the feedback controller

generates the control command ut = Kx̂t and sends it to the

actuator through the WSAN. The actuators then apply ût to













(A) time-driven control with rate adaptation

(B) self-triggered control

Fig. 10: Response curve under normal condition.

Next we run each experiment for 20 rounds with different

initial values to statistically compare different management

approaches. Fig. 11 shows the performances of two loops

respectively. We use the mean absolute error (MAE) as the

metric of control performance, and the number of packets sent

through WSAN as the metric of network cost. Both RA and

ST can achieve similar control performances with fixed rate

of 1 Hz, with a network cost (# of packets) reduction of more

than 50%. Loop 2 has network cost reduction of more than

62% since it has shorter time constant. For both loops, ST is

more aggressive in saving network cost than RA.
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(B) performance of loop 2

Fig. 11: Performance under normal condition.

In reality, the total energy consumption of all flows, in-

cluding the synchronization cost, is of interest. Therefore, we

analyze power consumption over the WSAN in detail. We

collect the time spent in transmitting and listening per node

per second using the Energest module [10] provided Contiki

OS. The sum of transmitting and listening time is the radio-on

time of the collection period, and the node sleeps in the rest of

the period. We adopt the energy model in [39] to estimate the

energy cost based on transmitting and listening time. Fig. 12A

and Fig. 12B show that the results of energy cost are consistent

with that of duty cycle.

Fig. 12A shows the average and maximum energy costs

of all 70 nodes. The average energy cost is consistent with

the number of packets going through WSAN. RA and ST

save 40% energy, which is higher than energy cost of loop1

and loop2 alone in Fig. 11, since energy estimation includes

the cost of sending synchronization message every second.

However, in the case of the maximum energy cost, ST costs

more than RA, which can be explained by the fact that the

node incurs the maximum energy cost due to a high chance

of packet loss. In the face of packet loss, the node with the

self-triggered transmissions protocol keeps listening at a high

energy cost because of its recovery mechanism. Whereas the

node with the rate adaptation protocol applies its self-recovery

mechanism without extra energy cost. To verify this difference,

we analyze the power consumption of two nodes. Node 103

has a higher packet reception ratio than node 124. Fig. 12C

shows that self-triggered transmissions are not as efficient as

rate adaptation for node 124, due to its recovery mechanism.
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Fig. 12: Energy cost under normal condition.

C. Network interference

We operate WSAN over channel 22 (2.460 GHz) of

IEEE.802.15.4, and we introduce network interference by

continuously sending jamming packets over an overlapping

channel 11 (2.462 GHz) of WiFi. The average packet delivery

ratio is reduced to 65.9%. Fig. 13 shows the response curves

of RA and ST under network interference. In Plot (b), each dot

indicates that the actuator receives a packet. Both methods stay

longer at high rate than in normal condition to compensate the

impact of interferences. And both the network protocols can

recover from packet drops. Fig. 14 shows the statistical results



under network interference. In this case, both RA and ST

guarantee the control performance, at the cost of more energy

consumption than Sec. VII-B. ST consumes more energy than

RA, due to its packet loss recovery mechanism.

(A) time-driven control with rate adaptation

(B) self-triggered control

Fig. 13: Response curve under network interference.
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Fig. 14: Performance of double loops under network interference.

D. Physical disturbance

We introduce physical disturbance by adding a constant bias

to actuators from 120 s to 140 s. As shown in Fig. 15, both

RA and ST adapt rates to 1 Hz under the physical disturbance.

However, the time ST (t = 130 s) reacts to the disturbance is

later than RA (t = 126 s), since ST has longer T n (10 s).

Fig. 16 shows the statistical results. As shown in Fig. 16A,

both RA and ST have similar MAE with a fixed rate of 1 Hz,

and can save more than 30% of the energy. However, as

shown in Fig. 16B, the ST performs worse than RA within the

interference interval. The longer T n (10 s) makes ST response

to disturbance slower than time-driven management.

E. Both network and physical interferences

By introducing network interference as in Sec. VII-C to the

settings in Sec. VII-D, we run experiments with both network

and physical interferences. Fig. 17 shows the statistical results

that both RA and ST guarantee the control performance at

the costs of more energy consumption than in Sec. VII-D. ST

costs more energy than RA, due to the recovery mechanism.

To summarize, in normal physical and network condition,

RA and ST can achieve similar control performance to a

conventional fixed rate of 1 Hz, while improving energy
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Fig. 15: Response curve under physical interference.
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(B) time interval of physical interference: 120s – 180s

Fig. 16: Performance of double loops under physical interference.
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Fig. 17: Performance under network and physical interferences.

efficiency. Besides, ST is more aggressive in energy saving

than RA. However, when there are interferences, RA has better

performance and energy efficiency than ST, because ST has

an embedded recovery mechanism, which costs more energy

under packet loss, and a longer inter-transmission interval,

which makes ST response slowly to disturbance.

F. Scalability and flexibility of RT-WCPS

Although above experimental results are based on the

network-in-the-loop simulations of two control loops. RT-

WCPS has the scalability to operate more control loops. In



addition, it has the flexibility that end nodes of the data flows

can be any nodes in the testbed. As an example, we simulate

five control loops sharing a WSAN. Loops l1, l3, and l5 control

3 PLANT1s. Loops l2 and l4 control 2 PLANT2s. Fig. 7 shows

the source and destination pairs of five actuation flows over

3-floor WSAN. Table. I shows the MAEs and energy costs

in one round (200 s) of network-in-the-loop simulation under

normal condition. Loops l1, l3, and l5 have larger MAEs and

are more sensitive to different rates than l2 and l4, since l2
and l4 with lower mass and damping are easier and faster

to stabilize. Although there is some randomness in single

simulation, it is obvious that RA and ST can achieve similar

control performance with fixed rate of 1 Hz, while save energy

for more than 47%.
TABLE I: Performance of five-loop simulation

MAE1 MAE2 MAE3 MAE4 MAE5 Energy (mW)

1 0.9666 0.2891 0.9509 0.2292 0.9630 5.2730

2 1.2529 0.3158 1.2800 0.2723 1.6537 3.0461

4 1.5129 0.3131 1.6886 0.2701 1.8859 2.0233

RA 0.9435 0.2623 0.9458 0.2987 0.9671 2.7966

ST 0.9764 0.3148 1.0243 0.3151 0.9943 2.5209

VIII. CONCLUSIONS

Wireless control faces significant challenges due to data loss

and energy constraints in WSANs. In this paper, we present

two efficient holistic control designs for industrial process, rate

adaptation (RA) and self-triggered control (ST), that can not

only ensure control performance under wireless and physical

interferences, but also reduce network energy consumption.

Furthermore, we design two network reconfiguration mech-

anisms based on LWB to support RA and ST in multi-hop

WSANs. In addition, we build a real-time network-in-the-loop

simulation framework which integrates MATLAB/Simulink

and a three-floor WSAN testbed to experiment with wireless

control over real-world WSANs. Our empirical studies show

that both RA and ST offer advantages in control performance

and energy efficiency. The advantage in energy efficiency of

ST, however, diminishes under harsh physical and wireless

conditions due to the cost of recovering from data loss and

physical disturbances.
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