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Abstract—Process automation is embracing wireless sensor-
actuator networks (WSANSs) in the era of Industrial Internet.
Despite the success of WSANs for monitoring applications,
feedback control poses significant challenges due to data loss
and stringent energy constraints in WSANs. Holistic control
adopts a cyber-physical system approach to overcome the chal-
lenges by orchestrating network reconfiguration and process
control at run time. In this paper, we explore efficient holistic
control designs to maintain control performance while reduc-
ing the communication cost. The contributions of this work
are four-fold: (1) We introduce a holistic control architecture
that integrates low-power wireless bus (LWB) and two control
strategies, rate adaptation and self-triggered control, specifically
proposed to reduce communication cost; (2) We design novel
wireless network mechanisms to support rate adaptation and
self-triggered control, respectively, in a multi-hop WSAN; (3) We
build a real-time network-in-the-loop simulator that integrates
MATLAB/Simulink and a three-floor WSAN testbed to evaluate
wireless control systems; (4) We empirically explore the tradeoff
between communication cost and control performance under
alternative holistic control approaches. Our case studies show
that rate adaptation and self-triggered control offer advantages in
control performance and energy efficiency, respectively, in normal
operating conditions. The advantage in energy efficiency of self-
triggered control, however, may diminish under harsh physical
and wireless conditions due to the cost of recovering from data
loss and physical disturbances.

Index Terms—industrial wireless control, multi-hop mesh net-
work, network reconfiguration, network-in-the-loop simulation,
cyber-physical systems

I. INTRODUCTION

Wireless sensor-actuator networks (WSANs) are being
adopted in industrial process automation for their advantages
in reducing deployment and maintenance costs. However,
while existing WSANs are usually used for monitoring, it
remains challenging to support feedback control loops over
WSAN:S. First, the control performance of industrial processes
can be affected by data losses in WSANS. In industry, control
performance is closely related not only to the factory’s profits,
but also machine operator’s safety and the environment. Sec-
ond, given the difficulty to replace batteries in harsh industrial
environments, it is crucial to improve the energy efficiency
of WSANs while maintaining control performance. Finally,
wireless control systems (WCS) must be resilient to both
disturbances to the physical plant and external interferences to
the wireless networks. Therefore, a practical and dependable
industrial WCS must meet the following requirements: (1)
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control performance, which brings economic benefits; (2)
energy efficiency, which reduces maintenance cost; and (3)
resiliency, which prevents accidents.

Traditionally, the wireless network and the physical process
are managed separately in a WCS at run time. The lack of
coordination between network and plant management forces
conservative designs that trade energy for control performance.
For example, a WCS may rely on high sampling rates to
guarantee control performance under worst-case conditions,
even though the same sampling rates may result in excessive
communication cost under normal conditions. Conversely, a
less conservative design may result in a fragile system vulner-
able to physical disturbances and/or wireless interference.

In contrast to the traditional approach, the holistic control
approach aims to enhance the resiliency and efficiency of WCS
by cojoining network reconfiguration and process control [22].
The core of holistic control is a holistic controller that gener-
ates not only control inputs to physical plants, but also network
configurations based on control needs at run time.

In this work we explore efficient holistic control designs to
maintain control performance at low energy cost. We develop
holistic control approaches that incorporate two alternative
strategies, rate adaptation (RA) and self-triggered control
(ST) [38], proposed specifically to improve the efficiency
of control systems. We note that RA introduces adaptation
in a traditional time-driven control approach, while ST is a
representative event-driven control approach. Exploring both
strategies in holistic control allows us to investigate the design
tradeoff involved in holistic control design. Specifically, the
contributions of this work are four-fold.

« We introduce a new holistic control architecture that inte-
grates multi-hop wireless networks running the Low-power
Wireless Bus (LWB) protocol and two alternative control
strategies, rate adaptation and self-triggered control;

o We design robust network adaptation mechanisms to support
rate adaptation and self-triggered control, respectively, in
multi-hop LWB networks;

o We build RT-WCPS, a real-time network-in-the-loop simula-
tor that integrates MATLAB/Simulink and a physical WSAN
testbed to evaluate wireless control systems;

o We empirically explore the tradeoff between communica-
tion cost and control performance under alternative holistic
control approaches.



Our case studies show that RA and ST offer advantages
in control performance and energy efficiency, respectively,
in normal operating conditions. The advantage in energy
efficiency of ST, however, may diminish under harsh physical
and wireless conditions due to the cost of recovering from data
loss and physical disturbances.

The rest of the paper is organized as follows: Sec. II reviews
related works on WCS designs. Sec. III introduces the system
architecture of holistic control system. Secs. IV and V detail
the control and network designs of RA and ST. Sec. VI
presents the real-time wireless cyber-physical simulator (RT-
WCPS), and Sec. VII analyzes the experimental results.

II. RELATED WORK

The problem of resilient and efficient wireless control has
been investigated in the fields of control theory, wireless
networks, and more recently network-control co-designs.

In control theory, state observers [37] (e.g., extended
Kalman filter) have been introduced to handle packet loss and
communication latency in networked control systems. To re-
duce communication cost, aperiodic control has been proposed
as an alternative to periodic time-driven control. Examples
include event-triggered control [24], [26] and self-triggered
control [25]. However, existing implementation of aperiodic
control was based on a single-hop wireless network [5] instead
of the multi-hop WSANSs that are widely adopted in process
industrials due to their flexibility and scalability in industrial
environments. Supporting aperiodic control on a multi-hop
WSAN is challenging because industrial WSAN standards
usually employ TDMA protocols for predictable communi-
cation. The aperiodic communication triggered by aperiodic
control is incompatible with the periodic, time-driven nature
of communication in industrial multi-hop WSAN:S.

In wireless networks, given latency, packet delivery, energy
consumption bounds by the control designers, on-line network
adaptations can achieve optimized energy-efficiency [28], re-
liability [9], and real-time performance [43] under various
wireless channel conditions and network topologies, but few
are cognizant of control performance directly.

In cyber-physical systems, recent effort on network-control
co-design aims to jointly optimize the wireless network and
control at design time [29]. Wireless network designs have
been tailored for control, e.g., sampling rate optimization [8],
[30] and asymmetric routing for control [19]. These efforts
focus on offline designs instead of online adaptation, which
limits the resiliency and efficiency of WCS operating in
dynamic conditions (e.g., under network interference and
physical disturbance).

In previous work [22], we proposed the concept of holistic
control that cojoins network management and physical control
at run time. As a simple proof of concept, we presented a
holistic control example that adjusts the numbers of transmis-
sions based on physical states. In this paper, we generalize the
designs of holistic control by incorporating more sophisticated
control approaches, namely RA and ST. The new control
approaches require more sophisticated network reconfiguration

mechanisms that are both efficient and robust. Furthermore, the
alternative control approaches (time-driven vs. event-driven)
allows us to explore the design tradeoff involved holistic
control in multi-hop WSANS.

Simulation tools are of vital importance to wireless con-
trol. Truetime [7] supports co-simulation of controller tasks,
network transmissions, and continuous plant dynamics. Wire-
less cyber-physical simulator (WCPS) [18] integrates MAT-
LAB/Simulink and TOSSIM [17]. However, those simulators
produce simulations that cannot always capture the real-world
behavior of WSANs. Network-in-the-loop simulations were
implemented in [27]. Experiments presented in [5] integrate
two double-tank systems with a single-hop wireless network.
[23] and [6] integrate two real inverted pendulums and a 13-
node WSAN multi-hop testbed, achieving sampling rates of
tens of millisecond. However, the physical plants in laboratory
settings used in those experiments cannot represent large-
scale industrial processes. In this work we design and imple-
ment a network-in-the-loop simulator which integrates MAT-
LAB/Simulink simulations and a 70-node WSAN testbed.

III. WIRELESS CONTROL SYSTEM ARCHITECTURE

Fig. 1 depicts the holistic wireless control architecture.
The holistic controllers (1) control the physical plants by
communicating with sensors and actuators through a multi-hop
WSAN, and (2) reconfigure the WSAN based on control needs
at run time. Multiple control loops share the same WSAN.
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Fig. 1: Holistic WCS architecture.
A. Physical control system

Sensors

In this paper, our control design and analysis model the
physical plant as a linear time-invariant system (LTT) described
by (1) since a wide variety of systems can be represented with
satisfactory accuracy by LTI model. The proposed wireless
network reconfiguration mechanisms however are not limited
to LTT systems, and are also applicable to nonlinear and time-
variant systems.

Xt+1 = Axt + Buy,y; = Cxy, (D
where ¢ is the time index, x; € R” is the state vector, u, € R”
is the input vector, y, € R? is the output vector, A € R"*",
B € R™, and C € RP*". We assume that the pair (A,B) is
controllable and that the pair (A,C) is observable. A linear
state feedback controller u#;, = Kx; renders the closed-loop
system asymptotically stable.

At at time ¢, a sensor sends its measurements y; to a remote
holistic controller over the multi-hop WSAN. On the controller
side, a state observer [37] estimates the states of the plant.
Based on the estimated state vector £, the feedback controller
generates the control command u, = KX; and sends it to the
actuator through the WSAN. The actuators then apply #; to



the physical plant. If u, fails to be delivered by the deadline,
the actuator reuses the control input of last period, &;_i.

The stability of this control system can be represented by
the Lyapunov function. System (1) is stable if there exists a
positive definite Lyapunov function [42]

Vix) = xtTth, 2)

such that
V(xi1)—V(x) =x" (A+BK) P(A+BK) — P)x, = —x Qx;,
(3)

where P, Q are positive definite matrixes, with P satisfying the
discrete-time Lyapunov equation:

(A+BK)"P(A+BK)—P=—Q. 4)

B. Wireless sensor-actuator network

1) Low-Power Wireless Bus (LWB): The WSAN extends
the LWB [12] protocol to support data communication and
network reconfiguration for holistic control. LWB is based on
Glossy [11], a fast-flooding protocol that exploits the construc-
tive interference among concurrent transmissions of radios
compatible with the IEEE 802.15.4 standard. The flooding
process is entirely driven by radio events, i.e., a transmission is
triggered by completing a packet reception, which drastically
speeds up the process. Under LWB, nodes take turns to flood
their packets using Glossy according to a global schedule [12].
A sink node is responsible for disseminating the schedule to
all nodes in the network.

Adopting LWB as the underlying communication protocol
brings significant benefits. Thanks to Glossy flooding, commu-
nication in LWB is topology independent. Additionally, fast
Glossy flooding achieves propagation latency within 10 ms
over 100 nodes (8 hops, 3 transmissions). We can take the
advantage to realize fast network reconfiguration by quickly
flooding new network configurations across the entire network,
an important feature as network reconfiguration is a key
element of holistic control.

2) Implicit scheduling of multi-rate LWB: Unlike prior
work [43] which uses a centralized scheduler node to operate
real-time scheduling algorithms, we tailored LWB for implicit
scheduling. In implicit scheduling, all nodes schedule them-
selves based on information from holistic controllers, such as
flooding rates or next event timers of each control loop.

We define a data flow of WSAN as f;;, which has a source
node s;; and a destination node d;;, where i € {1,2,3,...,n}
is the control loop index, and j € {1,2,3,...,m;} is the flow
index of the control loop i (/;). Accordingly, n is the number
of control loops, and m; is the number of data flows in /;. For
example, the control loop /; has two data flows fj; and fi2,
among which f1; is a sensing flow transmitting measurements
from a sensor node (s11) to a controller node (dq1), and fi»
is an actuation flow transmitting control command from a
controller node (si7) to an actuator (d;z). Note that a MIMO
control loop can have multiple sensing and actuation flows.
The update rate of control commands in the control loop /;
is denoted as R;. The operation period of /; is T; = Rii. We
assume the rates of the flows in one control loop are equal.

In implicit scheduling of data flows, each node stores a
static global schedule of all data flows, denoted by entries
fijlsij, dij, t;j], t;j is the relative time slot reserved for flow
fij in LWB period T = %. LWB operates at the highest rate of
all the control loops, R = ]n<11a<ani. Fig. 2 shows a simple static

schedule. We assume there are three control loops and each
loop has one flow. All loops have same rate Ry =R, =R3 = %
Thus, the rate of LWB is R = % Therefore, we get the static
schedule entries: f11[2,1,1], f21(3,4,2], 314, 1,3]. We can see
that in each period 7', the synchronization message S is flooded
by the sink node in the beginning of every period, followed
by three data slots assigned for three flows.
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Fig. 2: LWB with static global schedule. (fi1, node2 — nodel, %
Hz; fa1, node3 — noded, 3 Hz; f31, node4 — nodel, + Hz.)

This static schedule is a “worst-case-guaranteed” schedule
since it is designed based on the most strict latency re-
quirements of the control loops under worst-case conditions.
In other words, the WSAN operates at its highest rate and
resource cost when adopting this static schedule. Note that the
static schedule can be calculated offline using any scheduling
algorithm, such as earliest deadline first or rate monotonic. Be-
cause industrial process control systems are large-scale, most
of the sampling rates are lower than 1 Hz [41]. By adopting
fast Glossy flooding (flooding a packet over 100 nodes within
10 ms [11]), WSAN can guarantee the schedulability of tens
of data flows, which indicates the feasibility of the static
schedule. We refer interested readers to [15], [43] for network
designs with tighter real-time requirements.

To implement multi-rate LWB using implicit scheduling,
besides the static global schedule, the only information that all
nodes need are the rates of all the control loops R;. In order
to make the implicit scheduling work properly, the potential
T; of all the loops should be set to integral multiples of the
shortest period 7. Then each node can independently decide
whether to flood f;; or sleep at #;; within the time interval
[(k—1)T,kT],k = 1,2,3,..., depending on R;. Fig. 3 shows
an example of the implicit scheduling with the static schedule
in Fig. 2, where R; = %, R, = 5, and Ry = 7. All nodes
flood f1; at the first data slot of every period T, flood f>; at
the second data slot every other period T, and flood f3; at the
third data slot every 4T. They sleep at the rest blank data slots.
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Fig. 3: Implicit scheduling. (fi1, node2 — nodel, % Hz; f>1, node3
— noded, 5 Hz; f31, node4 — nodel, ;- Hz.)

In implicit scheduling, since each node stores the static
schedule, the network reconfiguration commands can be gen-
erated by any source nodes in WSAN distributively, in contrast
to centralized scheduling in which the whole schedule is sent
by the sink in the beginning of each period 7. We will
present how network reconfiguration signals, such as R;, are
disseminated in Sec. IV-B and V-B.



C. Holistic management

As shown in Fig. 4, we develop a holistic control archi-
tecture that bridges the gap between the plant control and
WSAN management. Based on the current status of physical
plants and WSAN, the holistic controller generates two kinds
of commands at the same time, one for dynamically adjusting
the network configuration, and the other for operating the
physical plants. In the following two sections, we focus on
two specific efficient holistic control designs: rate adaptation
and self-triggered control over a multi-hop mesh network.
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Fig. 4: Holistic management of WCSs.

IV. RATE ADAPTATION

The data flow rates of a WSAN have direct impacts on
control performance and energy cost. The higher the rates, the
better the control performance, but also the higher the energy
cost [8]. In this section, in order to ensure the control perfor-
mance while reducing the network energy cost, we adjust the
rates of the WSAN based on the changing control performance
during runtime. We will then introduce the holistic controller
design and the network design of rate adaptation.

A. Control design

We employ a similar adaptation algorithm proposed in [22]
(Alg. 1). The value of the Lyapunov function (2), regarded as
the metric of the control performance, provides the bounds of
the state error. Given (2),

au x| < V(x) < onllx|?, (5)
where ¢ and o are the smallest and largest eigenvalues
of P, respectively. Therefore we use the value of the Lya-
punov function to trigger the rate adaptation. Given a certain
customized state error bound, denoted as se = ||x||?, we
set the rate increasing threshold Vj;, = a||xs||*. Based on
(5), we have ||x||> < ||xse|[?, if V(x;) < V.. Furthermore,
we adopt a more stringent decreasing threshold to indicate
that the system performs well. The decreasing threshold is
Vi = A 01 ||xse| |, A € (0,1). If V(x;) remains below Vpyy, for
a customized time interval 7, the control system is regarded
in good condition.

Given (3),

V(1) = V(i) < =Bl P, (6)
where B is the smallest eigenvalue of Q. Given (5) and (6),
we can get the upper bound of the ideal Lyapunov function,
described by (7). We set this upper bound as the trigger of
succeeding rate increases.

B

V(aa) < (1= 25)V (). g

The rate adaptation algorithm of a holistic controller is
presented in Alg. 1, and its complexity is O(1).

Our rate adaptation strategy cannot mathematically guaran-
tee closed-loop system stability over the WSAN unless extra

ALGORITHM 1: Rate adaptation algorithm for /;

Input: x,, ¢, 7, fo =1, A, candidate rates (ascending):
{Ril ,R,‘z7 ...,Riq}, current Ri = R,’j, A,B,K,P, Q
Output: updated R;
Calculate V(x;) as defined in (2), and Vi, Vigss
if V(x,) remains below Vp, for a time interval of T, and
R; > R;; then
R; + R,'J;] y//R; decreases
else if V(x;) >V, and R; < R;; then
if last rate adaptation is a decrease then
R; + Rij+1;//R, increases
o< 1
end
if last rate adaptation is an increase and
V(x) > (1—£)0V(x,) then
Ri — Rij+1;//succeeding R; increases
o< 1
end

else
R; remains constant

end

assumptions are considered, which is a common approach in
the literature [3], [13]. The applicability of these assumptions
depends on the properties of the industrial process, thus we
avoid imposing a particular framework in this paper. Instead,
our algorithm takes a best-effort approach towards balancing
the closed-loop performance and network rate, which is a
practical heuristic in real-world scenarios. The relationships
between the rate and control performance are well studied, and
we refer interested readers to [32], [40]. If we set all potential
rates higher than the lowest stabilizing rate, the closed-loop
stability can be achieved.

B. Network reconfiguration

In this section, we present a run-time rate adaptation pro-
tocol for a mesh WSAN. We allow each holistic controller to
adjust the WSAN rate of its own loop, according to Alg. 1.

1) Candidate rates selection: Sec. IV-A considers when to
adjust the rate of each loop. The candidate rates are also
important design factors. To ensure that the rate transient
processes work properly, the potential rates of each loop need
to be designed intentionally. First, according to Sec. III-B2,
when the offline scheduler schedules data flow f;;, it reserves
time slots for R = ]max R;. LWB operates at the rate of R.

Second, the candidate pgrlod T; of all the loops should be set
to integral multiples of the shortest period T = E' Third, to
ensure that the rate adaptations work properly with packet loss
recovery, which will be discussed later in Sec. IV-B3, the rate
selection strategy should generate as many common time slots
among different candidate rates as possible for each flow, e.g.,
(737 7r) of (7,375 97)-

2) Network reconfiguration based on piggyback: The holis-
tic controller of /; adopts a piggyback mechanism to dissem-
inate a newly computed R; for data flows fi;,j = 1,2,...,m;.
The holistic controller of /; piggybacks R; with the actuation



command. Therefore the data field of the actuation packet is
[/i, Ri, Data;]. Because of the flooding nature of LWB, all
nodes in the network can receive this update. Once a node
receives an updated R;, it will calculate a new schedule based
on R;, as described in Sec. III-B2.

The distributed network reconfiguration based on piggyback
has several benefits over the conventional centralized network
reconfiguration. First, this piggyback mechanism helps reduce
energy cost by utilizing existing actuation data flows, saving
the time and energy needed to calculate and deliver the whole
schedule in every period. Second, the network reconfiguration
commands can be flooded by any source nodes in WSAN
distributively, in contrast to centralized scheduling, in which
the whole schedule should be sent by the sink. In addition,
implicit and distributed scheduling using piggyback is more
reliable than a centralized scheduler. Packet loss in implicit
scheduling affects only one loop, but the packet loss of
centralized scheduling can affect all data flows.

3) Packet loss recovery: If a node loses the packet with
the updated rate of /;, it will continue to use the current R;
until another actuation packet of /; is received. Therefore, it
is possible that, at the same time, different nodes along the
route of a flow are using different rates. Nevertheless, it is
still possible for nodes to eventually receive the update. If
all candidate rates share more common slots, as described in
Sec. IV-B1, the node will recover faster from packet loss.

V. SELF-TRIGGERED CONTROL

Self-triggered control [25], an aperiodic event-driven control
design, improves the efficiency of the network. The first
single-hop wireless network protocol for aperiodic control is
presented in [5]. However, due to the lack of network protocol,
aperiodic control designs have not been adopted in multi-
hop mesh networks. In this section, we respectively introduce
control design and network design of self-triggered control.

A. Control design

Intuitively, self-triggered control triggers sensing and actua-
tion events only when certain control performance is predicted
to be lost. The self-triggered strategy we present in this
paper is motivated by [5]. The desired control performance
is defined by a decreasing function S(x,), upper bounding
the evolution of Lyapunov function V (x;): V(x;) < S(x;). The
time of the next sensing and actuation events is 7 = min{z >
ti—1|V (%) —S(x;) > 0}. Self-triggered control and its stability
are well studied in the literature. We refer interested readers
to [4], [14], [25]. Here, we adopt a feasible decreasing S(x;),
as follows:

() = Vo Je Vi), ®)
We induce the term yV(x,kfl)‘s, ¥,8 > 0, which makes the
decreasing rate of S(x;) adapt to the value of the Lyapunov
function (state error). That is, when V(x;_,) is large, which
indicates severe state error, the S(x;) decreases faster. There-
fore, the sensing and actuation events are more likely to be
triggered. On the other hand, when V(x; ) is small, which
indicates the current states are close to equilibrium point, the

S(x;) decreases slower. The sensing and actuation events are
unnecessary and less likely to be triggered.

B. Network protocol for self-triggered control

1) Self-triggered transmissions: Due to the predictive na-
ture of self-triggered control, the network knows a priori
when the event will be triggered by the holistic controllers.
Therefore, nodes know the next time when they should wake
up and flood data. Within the inter-transmission interval, the
nodes sleep. In this way, the energy costs of nodes can be
reduced compared with periodic control at the highest rate.

Similar to the network protocol of rate adaptation, the
holistic controller uses the piggyback mechanism to dissemi-
nate a newly computed time of next transmission 7'n; for all
data flows of /;. Again, Tn; should be integral multiples of
T. The holistic controller piggybacks Tn; with the actuation
command. Therefore the data field of the actuation packet is
[li, Tn;, Data;]. Because of flooding, all nodes in the network
can receive this update. In a node, each data flow has an event
timer. Once a node receives a Tn;, it will set the value of
Timer;; to Tn; and start counting down from the next period.
If the Timer;; expires in a node, the node will wake up and
flood in relative slots f;;. Fig. 5 shows an example of self-
triggered transmissions based on LWB. At the first period, f>;
is flooded, and node 3, which is the source of f»1, receives
and floods Tny = 3T at slot that is assigned for f>;. Therefore,
the next f21 is transmitted 37 later at the fourth period. At
the second period, fi; and f31 are transmitted, and Tn; =T,
Tn3 = 2T, respectively. Therefore, the next f; is transmitted
at the third period, and f3; at the fourth period.
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Fig. 5: Self-triggered transmission based on LWB (fi1, node2 —
nodel; f>1, node3 — node4; f31, node4 — nodel).

2) Packet loss recovery: If all nodes receive Tn;, and are
synchronized well, they will wake up and flood f;; at the same
time. However, unlike rate adaptation based on LWB, which
can self-recover from packet loss if the candidate rates have
been carefully selected, self-triggered transmissions based on
LWB are less resilient to packet loss. If a node fails to receive
Tn;, it is possible that it will not wake up at the right time
for the next transmission and will become unsynchronized
with other nodes for f;; forever. Therefore, it is of vital
importance to come up with effective and efficient strategies
to recover from packet loss. We propose the following packet
loss recovery strategy: if a node wakes up but does not receive
a packet with Tn;, it should re-awake at the highest rate R,
until another packet with Tn; is received.

VI. REAL-TIME WCPS

To experiment with wireless control over real-world
WSANSs, we develop a real-time wireless cyber-physical simu-
lator (RT-WCPS). In this section, we first present the architec-
ture of RT-WCPS. Then we analyze its real-time performance.



A. Architecture of RT-WCPS

RT-WCPS integrates MATLAB/Simulink Desktop Real-time
(SLDRT) [2] and a 3-floor WSAN testbed [33], [34]. The
architecture of RT-WCPS is shown in Fig. 6. Note that this
figure shows the architecture of one wireless control loop.
Several control loops can share the same WSAN.
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Fig. 6: Architecture of RT-WCPS.

SLDRT is used to simulate the physical part of the WCS:
physical plants, controllers, state observers, and physical dis-
turbance. In practice, industrial plants usually operate contin-
uously or at very high rates. However, the wireless communi-
cation and controller execute at a relatively low rate because
of the communication and computation latencies. Therefore,
SLDRT modules are operated at different rates in our design.

The 3-floor WSAN testbed is deployed on the 3rd to 5th
floors of Jolley Hall at Washington University in St. Louis, as
shown in Fig. 7. It consists of 70 TelosB motes. Each mote
is equipped with Chipcon CC2420 radio compliant with the
IEEE 802.15.4 standard and a TI MSP430 microcontroller.
40 Raspberry Pis with a backplane network are used for the
measurement and management of the wireless network [21].
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Fig. 7: 3-floor WSAN testbed in Jolley Hall of Washington University
in St. Louis (from left to right, third floor to fifth floor).

The interfaces between SLDRT and WSAN are socket
connections between the PCs that run SLDRT and the Pis,
and serial connections between the Pis and the end nodes. In
this way, the end nodes s;;,d;; of the sensing and actuation
flows f;; can be any nodes in the testbed.

B. Real-time network-in-the-loop simulation

Both SLDRT and the 3-floor WSAN testbed operate in real-
time. To evaluate the real-time performance of the RT-WCPS,
we measure the latency caused by each module. In our design,
sensing and actuation flows have the same overhead induced
by interfaces, since they have the same types of interfaces

between physical parts and WSAN as in Fig. 6, and all data
flows share the same WSAN with independent interfaces.
We use the latencies of one actuation flow as an illustrative
example. First, we adopt the Precision Time Protocol (PTP)
to synchronize the PC that runs SLDRT and the Pis. PTP is
a protocol used to synchronize clocks throughout a network.
It achieves clock accuracy in the sub-microsecond range [1].
Then, we record the completion timestamps of each module
on corresponding machines (1) the physical modules, (2) the
actuation flow from Simulink to 511, (3) the transmissions in
WSAN, (4) the actuation flow from d;; to Simulink. Finally,
we draw the timeline of RT-WCPS and analyze the latencies,
as shown in Fig. 8. We set the sampling period to ls, which
is the fastest update time supported by most industrial WSAN
products. From the timeline, the total overhead induced by
interfaces between Simulink and the node is less than 26 ms
(2.6%). More than 966 ms is reserved for communication over
the WSAN in each period, among which around 175 ms is
utilized for transmissions in this example. The results validate
the real-time performance of RT-WCPS. Please note that 26 ms
overhead is acceptable when we use RT-WCPS to simulate
industrial processes like oil refinery and mining, sampling
periods of which are usually longer than 1 s [41]. However,
it is not acceptable in faster sampling period of tens of
milliseconds. We will work on shortening this overhead in
the future. We refer interested readers to [15], [23], [43] for
network and WCS designs with tighter time requirements.
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Fig. 8: Timeline of RT-WCPS
VII. EVALUATION

In this section, we describe systematic trials of our wireless
control designs using RT-WCPS. On the physical side, to
represent an industrial process system, we use up to five 4-
state load positioning systems that share the same WSAN. On
the WSAN side, we evaluate the proposed network protocols
over a 70-node WSAN testbed [33], [34].

Because the state observer provides robust and theoretically
sound protection against loss of sensing information [20],
[35], [37], the WCSs are more sensitive to packet loss on
the actuation side of the WSAN [19]. Therefore, we focus on
comprehensive actuation-network-in-the-loop simulations. We
then empirically evaluate the tradeoff between rate adaptation
and self-triggered control in communication cost and control
performance under different operating conditions.

A. Systems settings

1) Physical system settings: We run simulations of a real-
istic load positioning system [16], [36], which positions a load
(L) using a motor with a ballscrew transmission. The motor
is attached rigidly to a movable base platform (B). The load
positioning is a 4-state nonlinear system as described in [16].



When the system is operated at low rates as in real industrial
applications, the stiffness of the ballscrew and the potential
energy stored in it are neglected in the model. The system can
be simplified as a 4-state linear system [36]:

Xy =Acx; +Beug,y, = Cexy, &)
where
0 1 0 0 0
1 1 k d 1 1
a— |0 TaGrtE) s w | g _ |m T
¢ 0 0 0 1 e 0 ’
0 ar _ks _dp _ 1
mp mp mpg mp

and C, = [1 0 0 O]. Here, d;, my, dg, mp, and kg
are parameters of the load and base platforms, such as the
mass, damping, and stiffness. The state vector is defined as
x, = [xr(t) x(t) xp(¢) xp(t)]", where x; is the displacement
of the load relative to the base platform, xp is the absolute
displacement of the base platform, and x and x are the speeds
of the relative and absolute movements accordingly. We will
stabilize the states of the load positioning system to the origin.

There are two kinds of plants. For the first kind, denoted as
PLANTI, dp =15, mg =100, dg = 10, mp = 10, kg =5, and
K =[-1.9393 —13.1373 0.0842 — 13.0264]. For the second
kind, denoted as PLANT?2, d;, =10, m; =15, dg =3, mg =15,
kg =2, and K =[-1.0076 —0.6317 —0.1954 —0.3814]. The
second kind of plants have lower mass and damping, therefore
their response time is shorter than that of PLANTI.

The rates of the controllers are fixed at 1 Hz, which
are the same as the highest rate R. For simplicity, on the
controller side, we discretize the continuous-time models using
Eluer discretization at 1 Hz. For each control loop, given the
discrete-time model, K, and Q, we can get P, o4, Q, and
B according to (4), (5), and (6), respectively. For all loops,
Q=1I, A=0.1, ||xe|]*=0.1,and y=1, § =2.

2) WSAN settings: The network protocols for rate adap-
tation and self-triggered transmission use Contiki [31]. The
LWB operates at the rate R =1 Hz. The global static schedule
has one synchronization slot, with a length of 25 ms, and 2-5
data slots, with lengths of 18 ms. 70 nodes participate in the
transmissions. The synchronization packet is disseminated by
the sink node (node 164) every 1 s. The synchronization packet
size is 6 bytes, and the data packets are 25 bytes. Each data
slot is used to transmit the control command u, and network
reconfiguration signals R or Tn of each control loop. Fig. 7
shows the source and destination pairs of five actuation flows
over 3-floor WSAN. The transmission power is 0 dbm, and
the retransmission number is 3.

3) RT-WCPS settings: We simulate the WCSs using RT-
WCPS, which integrates a 70-node WSAN and SLDRT. We
simulated two control loops sharing a WSAN for statistical
results from Sec. VII-B to Sec. VII-E. Loop [; controls a
PLANTI. Loop /; controls a PLANT2. The SLDRT modules
of two loops are shown in Fig. 9. Each loop has its own holistic
controller, and the controllers and the actuators communicate
via actuation flows sharing the same WSAN. And we simulate
five control loops sharing a WSAN to show the scalability

of RT-WCPS in Sec. VII-F. Loops /i, I3, and /s control 3
PLANTIs separately. Loops /, and I4 control 2 PLANT?2s.
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Fig. 9: SLDRT modules of RT-WCPS.

As presented in Sec. VI-A, modules in Fig. 9 operate at
different rates. The physical plants run at 100 Hz. Controllers,
Kalman filters, and actuators run at 1 Hz. The “worst-case-
guaranteed” WSAN runs at 1 Hz, and WSAN can adjust its
rates and operate self-triggered transmissions during runtime,
based on control needs. In rate adaptation, we choose can-
didate rates: 1 Hz, 0.5 Hz, 0.25 Hz, which are reasonable
rates for our load positioning systems with time constants of
roughly 30 s. And they are also typical rates in industrial
process control [41]. In self-trigger transmission, to provide
robustness guarantees of the self-triggered control [5], we set
the upper bound of the inter-transmission interval as 10 s.

B. Normal network and physical conditions

We first evaluate the WCSs under normal conditions. The
WSAN operated on IEEE 802.15.4’s channel 26. The average
packet delivery ratio is 99.15%. And there is no physical dis-
turbance. We present the results of five sets of network-in-the-
loop simulations under the different management approaches:

(1) Rate adaptation (RA): Fig. 10A shows the response
curves of loop 1. Plot (a) shows the Lyapunov function V (x;).
The two dashed lines, from upper to lower, are the rate increase
and decrease thresholds. In plot (b), each dot indicates a
transmission (Tx), and the y-axis of the dot is the time of
the next Tx. Plots (c) and (d) show the control command u;,
and physical states x, respectively. When x is approaching the
origin, as indicated by the decreases of V(x;), if V (x;) is below
the decrease threshold for 7 = 10 s, the rate of the WSAN starts
to decrease, as shown in (b). The rate changes from 1 Hz (1
Tx every 1 s), to 0.5 Hz (1 Tx every 2 s) at t =53 s, then to
0.25 Hz (1 Tx every 4 s) at t = 64 s.

(2) Self-triggered control (ST): Fig. 10B shows the response
curve of ST. As shown in (b), since V(x;) decreases, the inter-
transmission interval changes from 1 s to 10 s at t = 48 .
When V (x,) increases at around 60 s to 90 s, Tn reduces to
1 5 as soon as the timer expires.

(3) Fixed rate time-driven control: Existing WSANS typi-
cally employ time-drive transmissions with fixed rates, so we
use three fixed rates of 1 Hz, 0.5 Hz and 0.25 Hz, denoted by
1, 2, 4 in following statistical results.
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Fig. 10: Response curve under normal condition.

Next we run each experiment for 20 rounds with different
initial values to statistically compare different management
approaches. Fig. 11 shows the performances of two loops
respectively. We use the mean absolute error (MAE) as the
metric of control performance, and the number of packets sent
through WSAN as the metric of network cost. Both RA and
ST can achieve similar control performances with fixed rate
of 1 Hz, with a network cost (# of packets) reduction of more
than 50%. Loop 2 has network cost reduction of more than
62% since it has shorter time constant. For both loops, ST is
more aggressive in saving network cost than RA.
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Fig. 11: Performance under normal condition.

In reality, the total energy consumption of all flows, in-
cluding the synchronization cost, is of interest. Therefore, we
analyze power consumption over the WSAN in detail. We
collect the time spent in transmitting and listening per node
per second using the Energest module [10] provided Contiki
OS. The sum of transmitting and listening time is the radio-on
time of the collection period, and the node sleeps in the rest of
the period. We adopt the energy model in [39] to estimate the

energy cost based on transmitting and listening time. Fig. 12A
and Fig. 12B show that the results of energy cost are consistent
with that of duty cycle.

Fig. 12A shows the average and maximum energy costs
of all 70 nodes. The average energy cost is consistent with
the number of packets going through WSAN. RA and ST
save 40% energy, which is higher than energy cost of loopl
and loop2 alone in Fig. 11, since energy estimation includes
the cost of sending synchronization message every second.
However, in the case of the maximum energy cost, ST costs
more than RA, which can be explained by the fact that the
node incurs the maximum energy cost due to a high chance
of packet loss. In the face of packet loss, the node with the
self-triggered transmissions protocol keeps listening at a high
energy cost because of its recovery mechanism. Whereas the
node with the rate adaptation protocol applies its self-recovery
mechanism without extra energy cost. To verify this difference,
we analyze the power consumption of two nodes. Node 103
has a higher packet reception ratio than node 124. Fig. 12C
shows that self-triggered transmissions are not as efficient as
rate adaptation for node 124, due to its recovery mechanism.
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Fig. 12: Energy cost under normal condition.
C. Network interference

We operate WSAN over channel 22 (2.460 GHz) of
IEEE.802.15.4, and we introduce network interference by
continuously sending jamming packets over an overlapping
channel 11 (2.462 GHz) of WiFi. The average packet delivery
ratio is reduced to 65.9%. Fig. 13 shows the response curves
of RA and ST under network interference. In Plot (b), each dot
indicates that the actuator receives a packet. Both methods stay
longer at high rate than in normal condition to compensate the
impact of interferences. And both the network protocols can
recover from packet drops. Fig. 14 shows the statistical results



under network interference. In this case, both RA and ST
guarantee the control performance, at the cost of more energy
consumption than Sec. VII-B. ST consumes more energy than
RA, due to its packet loss recovery mechanism.
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Fig. 13: Response curve under network interference.
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D. Physical disturbance

We introduce physical disturbance by adding a constant bias
to actuators from 120 s to 140 s. As shown in Fig. 15, both
RA and ST adapt rates to 1 Hz under the physical disturbance.
However, the time ST (¢ = 130 s) reacts to the disturbance is
later than RA (r = 126 s), since ST has longer Tn (10 s).
Fig. 16 shows the statistical results. As shown in Fig. 16A,
both RA and ST have similar MAE with a fixed rate of 1 Hz,
and can save more than 30% of the energy. However, as
shown in Fig. 16B, the ST performs worse than RA within the
interference interval. The longer 7n (10 s) makes ST response
to disturbance slower than time-driven management.

E. Both network and physical interferences

By introducing network interference as in Sec. VII-C to the
settings in Sec. VII-D, we run experiments with both network
and physical interferences. Fig. 17 shows the statistical results
that both RA and ST guarantee the control performance at
the costs of more energy consumption than in Sec. VII-D. ST
costs more energy than RA, due to the recovery mechanism.

To summarize, in normal physical and network condition,
RA and ST can achieve similar control performance to a
conventional fixed rate of 1 Hgz, while improving energy
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efficiency. Besides, ST is more aggressive in energy saving
than RA. However, when there are interferences, RA has better
performance and energy efficiency than ST, because ST has
an embedded recovery mechanism, which costs more energy
under packet loss, and a longer inter-transmission interval,
which makes ST response slowly to disturbance.

E. Scalability and flexibility of RT-WCPS

Although above experimental results are based on the
network-in-the-loop simulations of two control loops. RT-
WCPS has the scalability to operate more control loops. In



addition, it has the flexibility that end nodes of the data flows
can be any nodes in the testbed. As an example, we simulate
five control loops sharing a WSAN. Loops /1, I3, and /5 control
3 PLANTIs. Loops l; and I4 control 2 PLANT?2s. Fig. 7 shows
the source and destination pairs of five actuation flows over
3-floor WSAN. Table. I shows the MAEs and energy costs
in one round (200 s) of network-in-the-loop simulation under
normal condition. Loops /i, I3, and /5 have larger MAEs and
are more sensitive to different rates than /» and l4, since I
and [4 with lower mass and damping are easier and faster
to stabilize. Although there is some randomness in single
simulation, it is obvious that RA and ST can achieve similar
control performance with fixed rate of 1 Hz, while save energy

for more than 47%.
TABLE I: Performance of five-loop simulation

MAE1 | MAE2 | MAE3 | MAE4 | MAES | Energy (mW)
1 0.9666 | 0.2891 | 0.9509 | 0.2292 | 0.9630 5.2730
2 1.2529 | 0.3158 | 1.2800 | 0.2723 | 1.6537 3.0461
4 1.5129 | 0.3131 | 1.6886 | 0.2701 | 1.8859 2.0233
RA | 09435 | 0.2623 | 0.9458 | 0.2987 | 0.9671 2.7966
ST | 09764 | 03148 | 1.0243 | 0.3151 | 0.9943 2.5209

VIII. CONCLUSIONS

Wireless control faces significant challenges due to data loss
and energy constraints in WSANSs. In this paper, we present
two efficient holistic control designs for industrial process, rate
adaptation (RA) and self-triggered control (ST), that can not
only ensure control performance under wireless and physical
interferences, but also reduce network energy consumption.
Furthermore, we design two network reconfiguration mech-
anisms based on LWB to support RA and ST in multi-hop
WSAN:S. In addition, we build a real-time network-in-the-loop
simulation framework which integrates MATLAB/Simulink
and a three-floor WSAN testbed to experiment with wireless
control over real-world WSANs. Our empirical studies show
that both RA and ST offer advantages in control performance
and energy efficiency. The advantage in energy efficiency of
ST, however, diminishes under harsh physical and wireless
conditions due to the cost of recovering from data loss and
physical disturbances.
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