
Deuce: A Lightweight User Interface for Structured Editing

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh
University of Chicago

{brianhempel,justinlubin,gracelu,rchugh}@uchicago.edu

ABSTRACT

We present a structure-aware code editor, called Deuce, that is

equipped with direct manipulation capabilities for invoking auto-

mated program transformations. Compared to traditional refactor-

ing environments, Deuce employs a direct manipulation interface

that is tightly integrated within a text-based editing workflow. In

particular, Deuce draws (i) clickable widgets atop the source code

that allow the user to structurally select the unstructured text for

subexpressions and other relevant features, and (ii) a lightweight,

interactive menu of potential transformations based on the cur-

rent selections. We implement and evaluate our design with mostly

standard transformations in the context of a small functional pro-

gramming language. A controlled user study with 21 participants

demonstrates that structural selection is preferred to a more tradi-

tional text-selection interface and may be faster overall once users

gain experience with the tool. These results accord with Deuce’s

aim to provide human-friendly structural interactions on top of

familiar text-based editing.

CCS CONCEPTS

· Software and its engineering→ Integrated and visual develop-

ment environments; · Human-centered computing→ Human

computer interaction (HCI);

KEYWORDS

Structured Editing, Refactoring, Direct Manipulation

ACM Reference Format:

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A

Lightweight User Interface for Structured Editing. In ICSE ’18: 40th Interna-

tional Conference on Software Engineering , May 27śJune 3, 2018, Gothenburg,

Sweden.ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3180155.

3180165

1 INTRODUCTION

Plain text continues to dominate as the universal format for pro-

grams in most languages. Although the simplicity and generality

of text are extremely useful, the benefits come at some costs. For

novice programmers, the unrestricted nature of text leaves room

for syntax errors that make learning how to program more diffi-

cult [Altadmri et al. 2016]. For expert programmers, many editing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27śJune 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180165

tasksÐperhaps even the vast majority [Ko et al. 2005]Ðfall within

specific patterns that could be performed more easily and safely

by automated tools. Broadly speaking, two lines of work have,

respectively, sought to address these limitations.

Structured Editing. Structured editorsÐsuch as the Cornell Program

Synthesizer [Teitelbaum and Reps 1981], Scratch [Maloney et al.

2010; Resnick et al. 2009], and TouchDevelop [Tillmann et al. 2012]Ð

reduce the amount of unstructured text used to represent programs,

relying on blocks and other visual elements to demarcate structural

components of a program (e.g. a conditional with two branches, and

a functionwith an argument and a body). Operations that create and

manipulate structural components avoid classes of errors that may

otherwise arise in plain text, and text-editing is limited to within

well-formed structures. Structured editing has not yet, however,

become popular among expert programmers, in part due to their

cumbersome interfaces compared to plain text editors [Monig et al.

2015], as well as their restrictions that even transitory, evolving

programs always be well-formed.

Text Selection-Based Refactoring. An alternative approach in inte-

grated development environments (IDEs), such as Eclipse, is to

augment unrestricted plain text with support for a variety of refac-

torings [Fowler 1999; Griswold 1991; Roberts et al. 1997]. In such

systems, the user text-selects something of interest in the programÐ

an expression, statement, type, or classÐand then selects a transfor-

mation either from a menu at the top of the IDE or in a right-click

pop-up menu. This approach provides experts both the full flex-

ibility of text as well as mechanisms to perform common tasks

more efficiently and with fewer errors than with manual, low-level

text-edits. Although useful, this workflow suffers limitations:

(1) The text-selection mechanism is error-prone when the item to

select is long, spanning a non-rectangular region or requiring

scrolling [Murphy-Hill and Black 2008].

(2) All transformations must require a single łprimaryž selection

argument, and any additional arguments are relegated to a

separate Configuration Wizard window.

(3) The list of tools is typically very longÐeven in the right-click

menu where tools that are not applicable to the primary se-

lection are filtered outÐmaking it hard to identify, invoke, and

configure a desired refactoring [Mealy et al. 2007; Murphy-Hill

et al. 2009; Vakilian et al. 2012].

(4) Even when a transformation has no configuration options or

when the defaults are acceptableÐas is often the case [Murphy-

Hill et al. 2009]Ðthe user must go through a separate Configu-

ration Wizard to make the change. The user must, furthermore,

navigate to another pane within the Configuration Wizard to

preview the changes before confirming them.

Our Approach. Our goal is to enable a workflow that enjoys the

benefits of both approaches. Specifically, programs ought to be

Deuce: A Lightweight User Interface for Structured Editing ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

Table 1: Overview of the four head-to-head and two open-ended tasks. #LOC is non-blank lines of code in the starting program.

Name #LOC #Transforms Example Tool Sequence (with minimum number of transforms required)

One Rectangle 9 3 Swap Expressions; Move Definition; Swap Definitions

Two Circles 11 2 Create Function from Definition; Reorder Arguments

Three Rectangles 11 2 Creating Function by Merging Definitions; Rename

Four Rings 7 4 Remove Argument; Rename; Move Definition; Add Arguments

Four Squares 9 7 Create Function by Merging Definitions; Create Function from Arguments; Rename (5x)

Lambda Icon 10 8 Make Equal with Single Variable (6x); Introduce Variable; Rename

To give a flavor of the tutorial, Example 1 in ğ2 is adapted from

the steps that introduced the Make Equal tools. In addition to tool-

specific tutorial steps, we also dedicated a step for more practice

with target positions, independent of a specific tool, because the

notion of target positions was likely to be unfamiliar.

Tasks. After the tutorial, users worked on six tasks, each a different

program and a list of one or more edits to perform using code tools.

For some tasks, there were multiple different sequences of code

tool invocations that could lead to the desired result. The starting

programs ranged from 7 to 11 lines of code and required between

2 and 8 tool invocations (at minimum) to finish the tasks. Table 1

outlines the tasks. The Two Circles task was presented as Example 2

in ğ2. Extended task descriptions can be found in the Supplementary

Appendices [Hempel et al. 2018].

Before every task, the participant was given a read-only reading

period to understand the program before seeing the list of edits

to perform. To emulate a real-world scenario where the program-

mer knows what to accomplish but may not quite remember all

the steps, the task directions were written in a more natural style

without direct reference to tool namesÐfor example, łmove the

ring definition inside targetž instead of łinvoke Move Definition

on the ring definition with a target position inside target.ž

Each of the first four tasks (łhead-to-head tasksž) was performed

twice, once each in Traditional and Deuce Modes, resulting in

eight trials. The first four trials comprised each of the four tasks, in

random order and with one of the modes randomly chosen per trial.

For the next four trials, the order of tasks was, again, randomized,

each using the mode not chosen for the task in the first round.

After these eight trials, the user performed each of the last two

tasks (łopen-ended tasksž) once using the Combined ModeÐboth

Traditional and DeuceModes were available for use, to mix-and-

match the two modes however they saw fit.

For each task, comments showed what the desired final code

should look like, sometimes modulo minor whitespace differences.

The editor provided an indicator about whether the task was com-

pleted, giving the user the option to Give Up at any point if needed.

There was also a maximum time limit of six and twelve minutes

for each head-to-head and open-ended task, respectively, with no

indication about the time limit until and unless the user reached

the two and four minutes remaining mark, respectively.

4.3 Results

Participants reported between 2 and 10 years of programming ex-

perience (mean: 5.1), of which between 0 and 3 years involved func-

tional programming (mean: 0.76). 10 participants (48%) reported

no prior functional programming experience. 8 participants re-

ported using tools that supported automated refactoring (Eclipse,

IntelliJ, and PyCharm all received multiple mentions). 4 partici-

pants reported some prior exposure to previous versions of the

Sketch-n-Sketch project, but none reported knowledge of the

code tools presented in the study.

For the study itself, 8 users brought their own laptop, the remain-

ing 13 used ours. 15 participants used a mouse, and 6 relied on their

laptop’s trackpad. Each session took a mean of 1hr 44min (range:

1h 11m ś 2h 27m). Users spent between 23 and 66 minutes on the

tutorial (mean: 41) and 20 and 65 minutes on the tasks (mean: 44).

The remaining time was spent on introductory remarks and the

exit survey. All users attempted all tasks. Two trials were discarded

because of tool malfunction, for a final total of 166 head-to-head

trials and 42 open-ended tasks suitable for analysis.

The tasks proved moderately difficult. On average, each partici-

pant successfully completed 71% of the trials and open-ended tasks

within the time limits, with 3 users completing them all and 1 user

failing to complete any. Figure 4 shows completion rates by task.

The One Rectangle and Lambda tasks had particularly low comple-

tion rates. Based on videos of failed attempts, many users struggled

with choosing appropriate toolsÐe.g. many chose Introduce Vari-

ables rather than Make Equal, and some chose Inline rather than

Move Definitions in an attempt to create a tuple definition. The tuto-

rial was not sufficient for everyone to remember and understand all

the tools needed for the tasks. The task descriptions may have also

presented obstaclesÐe.g. for Lambda, the phrase łDefine and use...ž,

along with (def [x y w h] ...) in the final code, may have led

some to use Introduce Variables, which would then require several

roundabout transformations to complete the task. We believe these

difficulties are largely independent of the user interface features.

We now address each of the research questions in turn.

Is either mode more effective for completing tasks?. Figure 5

breaks down completion rates for head-to-head tasks by mode. Be-

cause each was attempted twice, to assess possible learning effects

from already completing a task in the other mode, Figure 5 also

differentiates between the user’s first or second encounter with

each task. Visually, the data suggest that on the first encounter

with a task, Traditional Mode may better facilitate completion, and

is also a better teacher for the subsequent encounter with Deuce

Mode. In contrast, a first encounter with Deuce Mode may be less

helpful for the second encounter with Traditional Mode.

To control for learning effects, a mixed effects logistic regres-

sion model [Gelman and Hill 2007] was fit with lme4 [Bates et al.

2015] to predict task completion probability based upon fixed effect

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

5 RELATED WORK

We describe the most closely related ideas in structured editing and

refactoring. Ko and Myers [2006], Lee et al. [2013], and Omar et al.

[2017] provide more thorough introductions.

5.1 User Interfaces for Structured Editing

Compared to traditional text-selection and menus, several alterna-

tive user interface features have been proposed to integrate struc-

tured editing more seamlessly within the text-editing workflow.

Text Selection. Murphy-Hill and Black [2008] identify that text

selection-based refactoring is prone to error, particularly for state-

ments that span multiple lines and that have irregular formatting.

They propose two prototype user interface mechanisms, called Se-

lection Assist and Box View, to help. With Selection Assist, the user

positions the cursor at the start of a statement, and the entire state-

ment is highlighted green to show what must be selected (using

normal text-selection). With Box View, the editor draws a separate

panel (next to the code editor) that shows the tree structure of

the program with nested boxes. When selecting text in the editor,

the nested boxes are colored according to which code items are

completely selected. Similarly, the user can select a nested box in

the Box View to select the corresponding text in the code.

In contrast, our structural selection polygons are drawn directly

atop the code, at once helping to identify (like Box View) and select

(like Selection Assist), which aims to mitigate the context switching

overhead of Box View identified by Murphy-Hill and Black [2008].

Drag-and-DropRefactoring. Lee et al. [2013] propose a tool called

DNDRefactoring that eliminates the use of menus altogether.

They demonstrate how many common Eclipse refactorings can

be unambiguously invoked with a drag-and-drop gesture without

the need for any additional configuration. This is a compelling

workflow for situations in which the user can (a) readily identify

an intended refactoring based on a preconceived notion (e.g. its

name), (b) unambiguously invoke the intended refactoring by a

single-source, single-target drag-and-drop gesture, and (c) accept

the default configuration of the refactoring. It would be useful to

add drag-and-drop gestures to Deuce for transformations that sat-

isfy these three conditions. However, our user interface supports

situations when one or more of these three conditions fails to hold.

Hybrid Editors. Compared to łfullyž structured editors, several

hybrid editor approaches augment text-based programs with addi-

tional information. Barista [Ko and Myers 2006] is a hybrid Java

editor where structure views can be implemented to present alter-

nate representations of structural items instead of text. For example,

an arithmetic expression may be rendered with mathematical sym-

bols, a method may be accompanied by interactive documentation

with input-output examples, and structures may be selectively col-

lapsed, expanded, or zoomed. Omar et al. [2012] introduce a similar

notion to structure views, called palettes, where custom displays

can be incorporated based on the type of a subexpression. For

example, a color palette can provide visual previews of different

candidate color values, and a regular expression palette can show

input-output examples for different candidate regular expressions.

In Greenfoot [Brown et al. 2016], program text is separated into

structural regions called frames, which are created and manipulated

with text- and mouse-based operations that are orthogonal to the

text-edits within a frame. Code Bubbles [Bragdon et al. 2010] allows

text fragments to be organized into working sets, which are collec-

tions of code, documentation, and notes from multiple files that

can be organized in a flexible way. Outside of the views, palettes,

frames, and working sets in the above hybrid editors, the user has

access to normal text-editing tools.

Our approach is complementary to all of the above: in places

where code fragmentsÐregardless of their granularity and their

relationship to alternative or additional pieces of informationÐare

represented in plain text, we aim for a lightweight user interface to

structurally manipulate it.

Refactoring with Synthesis. In contrast to direct manipulation

in DNDRefactoring and Deuce, Raychev et al. [2013] propose

a workflow where the user starts a refactoring with text-editsÐ

providing some of the changes after the refactoringÐand then asks

the tool to synthesize a sequence of refactorings that complete the

task. This text-based interface and the mouse-based interfaces of

DNDRefactoring and Deuce are complementary.

5.2 Program Transformations

Automated support for refactoring [Fowler 1999; Griswold 1991;

Roberts et al. 1997] has been aimed primarily at programs written

in class-based, object-oriented languages.

Refactoring for Functional Languages. HaRe [Brown 2008; Li

2006; Thompson and Li 2013] is a refactoring tool for functional

languages, such as Haskell, where featuresÐincluding first-class

functions (i.e. lambdas), local bindings, tuples, algebraic datatypes,

and type polymorphismÐlead to editing tasks that are different

from those supported in most typical refactoring tools for object-

oriented programs. Our user interface could be incorporated by

HaRe to expose the supported transformations with lightweight

direct manipulation. HaRe provides a larger catalog of transfor-

mations than our current implementation of Deuce. However, the

details of ourMove Definitions andMake Equal transformations are,

to the best of our knowledge, not found in existing tools.

6 CONCLUSION

Based on our experience and the results of our user study, we be-

lieve Deuce represents a proof-of-concept for how to achieve a

lightweight, integrated combination of text- and structured editing.

In future work, our design may be adapted and implemented for full-

featured programming languages and development environments,

incorporating additional well-known transformations (e.g. Fowler

[1999]; Thompson and Li [2013]). Additional direct code manipula-

tion gestures, as well as incremental parsing (e.g. the algorithm of

Wagner and Graham [1998] used by Barista [Ko and Myers 2006]),

could further help streamline, and augment, support for structured

editing within an unrestricted text-editing workflow.

ACKNOWLEDGMENTS

The authors thank Shan Lu, Elena Glassman, Aaron Elmore, Peter

Scherpelz, and Blase Ur for suggestions about this paper. This work

was supported by National Science Foundation Grant No. 1651794,

and a University of Chicago Liew Family Research Fellows Grant.

Deuce: A Lightweight User Interface for Structured Editing ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

REFERENCES
Amjad Altadmri, Michael Kölling, and Neil Christopher Charles Brown. 2016. The

Cost of Syntax and How to Avoid It: Text versus Frame-Based Editing. In Computer
Software and Applications Conference (COMPSAC).

Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting Linear
Mixed-Effects Models Using lme4. Journal of Statistical Software (2015).

Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung,
Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr. 2010.
Code Bubbles: Rethinking the User Interface Paradigm of Integrated Development
Environments. In International Conference on Software Engineering (ICSE).

Christopher Brown. 2008. Tool Support for Refactoring Haskell Programs. Ph.D. Disser-
tation. University of Kent.

Neil Christopher Charles Brown, Amjad Altadmri, and Michael Kölling. 2016. Frame-
Based Editing: Combining the Best of Blocks and Text Programming. In Conference
on Learning and Teaching in Computing and Engineering (LaTiCE).

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic
and Direct Manipulation, Together at Last. In Conference on Programming Language
Design and Implementation (PLDI).

Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc.

Andrew Gelman and Jennifer Hill. 2007. Data Analysis Using Regression and Multi-
level/Hierarchical Models. (2007).

William G. Griswold. 1991. Program Restructuring as an Aid to Software Maintenance.
Ph.D. Dissertation. University of Washington.

Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Direct
Manipulation. In Symposium on User Interface Software and Technology (UIST).

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Lightweight
User Interface for Structured Editing. (2018). Extended version of ICSE 2018 paper
available as CoRR abs/1707.00015.

Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. 2005. Design Requirements for
More Flexible Structured Editors from a Study of Programmers’ Text Editing. In
Human Factors in Computing Systems (CHI).

Andrew J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework for
Enabling New Tools, Interaction Techniques and Views in Code Editors. In Human
Factors in Computing Systems (CHI).

Yun Young Lee, Nicholas Chen, and Ralph E. Johnson. 2013. Drag-and-Drop Refactoring:
Intuitive and Efficient Program Transformation. In International Conference on
Software Engineering (ICSE).

Huiqing Li. 2006. Refactoring Haskell Programs. Ph.D. Dissertation. University of Kent.
John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond.

2010. The Scratch Programming Language and Environment. Transactions on
Computing Education (TOCE) (2010).

Erica Mealy, David Carrington, Paul Strooper, and Peta Wyeth. 2007. Improving Usabil-
ity of Software Refactoring Tools. In Australian Software Engineering Conference
(ASWEC).

Jens Monig, Yoshiki Ohshima, and John Maloney. 2015. Blocks at Your Fingertips:
Blurring the Line Between Blocks and Text in GP. In IEEE Blocks and Beyond
Workshop (BLOCKS AND BEYOND).

Emerson Murphy-Hill and Andrew P. Black. 2008. Breaking the Barriers to Successful
Refactoring. In International Conference on Software Engineering (ICSE).

Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2009. How We Refactor,
and How We Know It. In International Conference on Software Engineering (ICSE).

Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan
Aldrich, andMatthewA. Hammer. 2017. Toward Semantic Foundations for Program
Editors. In Summit on Advances in Programming Languages (SNAPL).

Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers. 2012. Active
Code Completion. In International Conference on Software Engineering (ICSE).

Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac-
toring with Synthesis. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA).

Christoph Reichenbach, Devin Coughlin, and Amer Diwan. 2009. Program Metamor-
phosis. In European Conference on Object-Oriented Programming (ECOOP).

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silver-
man, and Yasmin Kafai. 2009. Scratch: Programming for All. Communications of
the ACM (CACM) (2009).

Don Roberts, John Brant, and Ralph Johnson. 1997. A Refactoring Tool for Smalltalk.
Theory and Practice of Object Systems (1997).

Friedrich Steimann and Jens von Pilgrim. 2012. Refactorings Without Names. In
International Conference on Automated Software Engineering (ASE).

Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment. Commun. ACM (1981).

Simon Thompson and Huiqing Li. 2013. Refactoring Tools for Functional Languages.
Journal of Functional Programming (2013).

Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, Manuel Fahndrich, and Sebas-
tian Burckhardt. 2012. TouchDevelop: App Development on Mobile Devices. In
International Symposium on the Foundations of Software Engineering (FSE).

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P. Bai-
ley, and Ralph E. Johnson. 2012. Use, Disuse, and Misuse of Automated Refactorings.
In International Conference on Software Engineering (ICSE).

Tim A. Wagner and Susan L. Graham. 1998. Efficient and Flexible Incremental Parsing.
ACM Transactions on Programming Languages and Systems (TOPLAS) (1998).

