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ABSTRACT

We present a structure-aware code editor, called DEUCE, that is
equipped with direct manipulation capabilities for invoking auto-
mated program transformations. Compared to traditional refactor-
ing environments, DEUCE employs a direct manipulation interface
that is tightly integrated within a text-based editing workflow. In
particular, DEUCE draws (i) clickable widgets atop the source code
that allow the user to structurally select the unstructured text for
subexpressions and other relevant features, and (ii) a lightweight,
interactive menu of potential transformations based on the cur-
rent selections. We implement and evaluate our design with mostly
standard transformations in the context of a small functional pro-
gramming language. A controlled user study with 21 participants
demonstrates that structural selection is preferred to a more tradi-
tional text-selection interface and may be faster overall once users
gain experience with the tool. These results accord with DEUCE’s
aim to provide human-friendly structural interactions on top of
familiar text-based editing.
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1 INTRODUCTION

Plain text continues to dominate as the universal format for pro-
grams in most languages. Although the simplicity and generality
of text are extremely useful, the benefits come at some costs. For
novice programmers, the unrestricted nature of text leaves room
for syntax errors that make learning how to program more diffi-
cult [Altadmri et al. 2016]. For expert programmers, many editing
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tasks—perhaps even the vast majority [Ko et al. 2005]—fall within
specific patterns that could be performed more easily and safely
by automated tools. Broadly speaking, two lines of work have,
respectively, sought to address these limitations.

Structured Editing. Structured editors—such as the Cornell Program
Synthesizer [Teitelbaum and Reps 1981], Scratch [Maloney et al.
2010; Resnick et al. 2009], and TouchDevelop [Tillmann et al. 2012]—
reduce the amount of unstructured text used to represent programs,
relying on blocks and other visual elements to demarcate structural
components of a program (e.g. a conditional with two branches, and
afunction with an argument and a body). Operations that create and
manipulate structural components avoid classes of errors that may
otherwise arise in plain text, and text-editing is limited to within
well-formed structures. Structured editing has not yet, however,
become popular among expert programmers, in part due to their
cumbersome interfaces compared to plain text editors [Monig et al.
2015], as well as their restrictions that even transitory, evolving
programs always be well-formed.

Text Selection-Based Refactoring. An alternative approach in inte-
grated development environments (IDEs), such as Eclipse, is to
augment unrestricted plain text with support for a variety of refac-
torings [Fowler 1999; Griswold 1991; Roberts et al. 1997]. In such
systems, the user text-selects something of interest in the program—
an expression, statement, type, or class—and then selects a transfor-
mation either from a menu at the top of the IDE or in a right-click
pop-up menu. This approach provides experts both the full flex-
ibility of text as well as mechanisms to perform common tasks
more efficiently and with fewer errors than with manual, low-level
text-edits. Although useful, this workflow suffers limitations:

(1) The text-selection mechanism is error-prone when the item to
select is long, spanning a non-rectangular region or requiring
scrolling [Murphy-Hill and Black 2008].

(2) All transformations must require a single “primary” selection
argument, and any additional arguments are relegated to a
separate Configuration Wizard window.

(3) The list of tools is typically very long—even in the right-click
menu where tools that are not applicable to the primary se-
lection are filtered out—making it hard to identify, invoke, and
configure a desired refactoring [Mealy et al. 2007; Murphy-Hill
et al. 2009; Vakilian et al. 2012].

(4) Even when a transformation has no configuration options or
when the defaults are acceptable—as is often the case [Murphy-
Hill et al. 2009]—the user must go through a separate Configu-
ration Wizard to make the change. The user must, furthermore,
navigate to another pane within the Configuration Wizard to
preview the changes before confirming them.

Our Approach. Our goal is to enable a workflow that enjoys the
benefits of both approaches. Specifically, programs ought to be
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represented in plain text for familiar and flexible editing by ex-
pert programmers, and the editing environment ought to provide
automated support for a variety of code transformations without
deviating from the text-editing workflow.

In this paper, we present a structure-aware editor, called DEUCE,
that achieves these goals by augmenting a text editor with (i) click-
able widgets directly atop the program text that allow the user
to structurally select the unstructured text for subexpressions and
other relevant features of the program structure, and (ii) a context-
sensitive tool menu with previews based on the current selections.

Structural Code Selection. Rather than relying on keyboard-based
text-edits for selection, our editor draws direct manipulation wid-
gets to structurally select items in the code with a single mouse-click.
In particular, holding down the Shift key transitions the editor into
structural selection mode. In this mode, the editor draws a box
(which resembles a text-selection highlight) around the code item
below the current mouse position. Clicking the box selects the en-
tire text for that code item, eliminating any possibility for error and
reducing the time needed to select long, non-rectangular sequences
of lines. Furthermore, this interface naturally allows multiple se-
lection, even when items are far apart in the code. Structural text
selection helps address concerns (1) and (2) above.

Context-Sensitive Menu with Previews. Because structural selection
naturally supports multiple selection, we address concern (3) by
showing only tools for which all necessary arguments have been
selected, reducing the number of tools shown to the user compared
to a typical right-click menu. Hovering over a result description
previews the changes, and clicking a result chooses it. For tools with
few configuration options, we believe the preview menu provides a
lightweight way to consider multiple options while staying within
the normal editing workflow, helping to address concern (4).

The resulting workflow in DEUCE is largely text-driven, but aug-
mented with automated support for code transformations (e.g. to
introduce local variables, rearrange definitions, and introduce func-
tion abstractions) that are tedious and error-prone (e.g. because of
typos, name collisions, and mismatched delimiters), allowing the
user to spend keystrokes on more creative and difficult tasks that
are harder to automate. The name DEUCE reflects this streamlined
combination of text- and mouse-based editing.

Contributions. This paper makes the following contributions:

e We present the design of DEUCE, a code editor equipped with
structural code selection, a lightweight direct manipulation mech-
anism that helps to identify and invoke program transforma-
tions while retaining the freedom and familiarity of traditional
text-based editing. Our design can be instantiated for different
programming languages and with different sets of program
transformations. (§3.1)

e We implement DEUCE within SKETCH-N-SKETCH, a program-
ming environment for creating Scalable Vector Graphics (SVG)
images. Most of the functional program transformations in our
implementation are common to existing refactoring tools, but
two transformations—Move Definitions and Make Equal—are,
to the best of our knowledge, novel. (§3.2)

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

e To evaluate the utility of our user interface, we performed a
controlled user study with 21 participants. The results show
that, compared to a more traditional text selection-based refac-
toring interface, structural code selection is preferred and may
be faster for invoking transformations, particularly as users
gain experience with the tool. (§4)

Our implementation, videos of examples, and user study materials
are available at http://ravichugh.github.io/sketch-n-sketch/. In the
next section, we introduce DEUCE with a few short examples.

2 OVERVIEW EXAMPLES
Example 1. De-

Spite the inten- Current file: redSquare ®

tion of the fol- | °U*® Gl [ Run» |
1

lowing program, (def

(let [x »] [50 70]
(rect "salmon" x y 120 80)))

the redSquare
definition uses
different values
for the width
and height of
the rectangle (the
fourth and fifth
arguments, respec-
tively, to the rect function). The user chooses DEUCE code tools—
rather than text-edits—to correct this mistake.

The user presses the Shift key to enter structured editing mode,
and then hovers over and clicks the two constants 120 and 80
to select them; the selected code items are colored orange in the
screenshot above. Based on these selections, DEUCE shows a pop-up
Code Tools menu with several potential transformations. The Make
Equal by Copying tool would replace one of the constants with the
other, thus generating a square. However, such a program would
require two constants to be changed whenever a different size is
desired. Instead, the user wishes to invoke Make Equal with Single
Variable to introduce a new variable that will be used for both
arguments. Hovering over this menu item displays a second-level
menu (shown above) with tool-specific options, in this case, the
names of four suggested new variable names.

The user hovers over the second op-

Code Tools
Create Function from Arguments »
Introduce Variables >
Make Equal with Single Variable » New variable: h
»
New variable: w
»

Swap Expressions

2
3
4
)
6
7
8
9
10
11 Make Equal by Copying
12
13 New variable: h_w
14
15
16

New variable: num
.

tion, which shows a preview of the %[ (10 701
transformed code (shown on the right). ~ Clet » 80

R (rect "salmon" x y w w))))
The user clicks to choose the second op-

tion. Notice that the number 80 (rather than 120) was chosen to be
the value of the new variable w. Whereas the tool provided configu-
ration options for the variable name, it did not provide options for
which value to use; this choice was made by the implementor of
the Make Equal code tool, not by the DEUCE user interface.

Example 2. Consider the following program that draws two circles
connected by a line. All design parameters and shapes have been or-
ganized within a single top-level connectedCircles definition. To
make the design more reusable, the user wants connectedCircles
to be a function that is abstracted over the positions of the two cir-
cles. The user hovers over and clicks the def keyword, and selects
the Create Function from Definition tool (shown in the screenshot).
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Current file: connectedCircles o

'O Undo Clean Up m “
1

2 Code Tools
i (dgel 54 Create Function from Definition » Abstract connectedCircles over its
5 (let 50 Inline Definition » constants
g 86: 15;@ Make Single Line > Abstract connectedCircles over its
o il
d tant:
8 [(circle "gray" startX startY 3@) named constants
9 (circle "gray" endX endY 3@)
10 (line "gray" 1@ startX startY endX endY)
1 100D

12

Inresponse, Create Func-
tion rewrites the deﬁ- (dﬁgcircle "gray" starg;(startYum) )
nition to be a function Ceircle "gray" endX endY 30)

(line "gray" 10 startX startY endX endY)
(shown on the right), 1» i
and previous uses of Reorder Arguments »
connectedCircles are
rewritten to appropriate function calls (not shown).

The order of arguments to the function match the order of defini-
tions in the previous program, but that order was unintuitive—the
coordinates of the start and end points were interleaved. To fix
this, as shown above, the user selects the last two arguments and
the target position (i.e. the space enclosed by a blue rectangular
selection widget) between the first two, and selects the Reorder
Arguments tool so that the order of arguments becomes startX,
startY, endX, and endY (not shown). Calls to connectedCircles
are, again, rewritten to match the new order (not shown).

Example 3. In the program below, the user would like to organize
all design parameters and shapes within the single logo definition.
The user hovers over and selects the five definitions on lines 2
through 9, as well as the space on line 13, and selects the Move
Definitions tool to move the definitions inside logo. The transfor-
mation manipulates indentation and delimiters appropriately in the
final code (not shown).

Current file: lambda o
© Undo Clean Up [ Run» ]

Cdef [ 1 [20 30 100 120])
(def [ 1 ["black”™ "white" 51)

AN

Crect fill x y w h))|
(def
(line stroke strokeWidth x y (+ x w) (+ y h)))
(def
10 (line stroke strokeWidth x (+ y h) (+ x (/ w 2)) (+ y (/ h 2))))|

il
2
B
4
5 |(def
6
7
8
9

12 _ (def Code Tools

le linel linez i
ﬁur“w"g e linel 1ine21) | yove Definition » Move [xy w hi, [l stroke strokeWidth],
15 rectangle, line1, and line2

16 [

3 Deuce: DESIGN AND IMPLEMENTATION

In this section, we explain the design of DEUCE in more detail. First,
we define a core language of programs where various structural
features can be selected. Then, we describe a user interface that
displays active transformations based on the set of structural se-
lections. Finally, we describe a set of general-purpose program
transformations that are provided in our current implementation.

LitTLE. To make the discussion of our design concrete, we choose
to work with a small functional language called L1TTLE, defined in
Figure 1. A LITTLE program is a sequence of top-level definitions,
the last of which is called main. Notice that all (sub)expressions,
(sub)patterns, definitions (both at the top-level and locally via let),
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program ol (def xgep) |® --- o (def main e)
e c | x| (Ape) | (erex) | [eilez]
| (Jletpei|ex) | (casee|(p;e)| -
pow= ¢ | x [ 111 [pilp.]
Expressions e == efele Patterns p == e ple

Figure 1: Syntax of LiTTLE. The orange boxes and blue dots
identify features for structural selection.

EditorState = { code: Program, selections: Set Selection }

ActiveState = Active | NotYetActive | Inactive
Options = NoOptions | StringOption String
Result = { description: String, code: Program }
CodeTool =

{ name : String

, requirements : String

, active : EditorState -> ActiveState

, run : (EditorState, Options) -> List Result }

Figure 2: Code tool interface.

and branches of case expressions are surrounded in the abstract
syntax by orange boxes; these denote code items that will be exposed
for selection and deselection in the user interface. In addition, there
are target positions, denoted by blue dots, before and after every
definition, expression, and pattern in the program. Target positions
are “abstract whitespace” between items in the abstract syntax tree,
which will also be exposed for selection.

Code Tool Interface. Each code tool must implement the interface
in Figure 2. A tool has access to the EditorState, which contains a
Program and the Set of structural Selections within it. Based on
the EditorState, the active predicate specifies whether the tool is
Active (ready to run and produce Result options), NotYetActive
(could be Active if given more valid selections), or Inactive (in-
valid based on the selections). For example, Move Definitions is
NotYetActive if the user has selected one or more definitions but
no target position. When invoked via run, a tool has access to
the EditorState and configuration Options, namely, an optional
String. This strategy supports the ubiquitous Rename tool. A more
full-featured interface may allow a more general set of configu-
ration parameters; the challenge would be to expose them using
a lightweight user interface. In our implementation, all transfor-
mations besides Rename require NoOptions. Each Result is a new
Program and a description of the changes.

This API between the user interface and code tool implementa-
tions is shallow, in the sense that a code tool implementation can
do whatever it wants with the selection information. A framework
for defining notions of transformation correctness would be a use-
ful line of work, but is beyond the scope of this paper. Currently,
code tools must be implemented inside the DEUCE implementation.
Designing a domain-specific language for writing transformations
would be useful, but is also beyond the scope of this paper.
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Figure 3: Example target positions.

Implementation in SKETCH-N-SKETCH. We have chosen to im-
plement our design within SKETCH-N-SKETCH [Chugh et al. 2016;
Hempel and Chugh 2016], an interactive programming system for
generating SVG images. Whereas SKETCH-N-SKETCH provides ca-
pabilities for directly manipulating the output of a program, DEUCE
provides capabilities for directly manipulating the code itself.
Direct code manipulation is particularly useful for a system like
SKETCH-N-SKETCH for a couple reasons. First, while the existing
output-directed synthesis features in SKETCH-N-SKETCH attempt to
generate program updates that are readable and which maintain
stylistic choices in the existing code, the generated code often re-
quires subsequent edits, e.g. to choose more meaningful names, to
rearrange definitions, and to override choices made automatically
by heuristics; DEUCE aims to provide an intuitive and efficient inter-
face for performing such tasks. Furthermore, by allowing users to
interactively manipulate both code and output, we provide another
step towards the goal of direct manipulation programming systems
identified by Chugh et al. [2016]. These two capabilities—direct
manipulation of code and output—are complementary.
SKETCH-N-SKETCH is written in Elm (http://elm-lang.org/), a lan-
guage in which programs are compiled to JavaScript and run in the
browser. The project uses the Ace text editor (https://ace.c9.i0/) for
manipulating LITTLE programs. (The second reason for the name
DEUCE is that it extends Ace.) We extended SKETCH-N-SKETCH to
implement DEUCE; our changes constitute approximately 9,000 lines
of Elm and JavaScript code. The new version (v0.6.2) is available at
http://ravichugh.github.io/sketch-n-sketch/.

3.1 User Interface

The goals of our user interface are, first, to expose structural code
selection widgets—corresponding to the code items and target posi-
tions in a LITTLE program—and, second, to display an interactive
menu of active transformations based on the set of selections.

So that the additional features provided by DEucE do not in-
trude on the text-editing workflow, we display structural selection
widgets when hovering over the code box only when the user is
holding down the Shift key. Hitting the Escape key at any time
deselects all widgets and clears any menus, returning the editor to
text-editing mode. This allows the user to quickly toggle between
editing modes during sustained periods in either mode. When not
using the Shift modifier key, the editor is a standard, monospace
code editor with familiar, unrestricted access to general-purpose
text-editing features.

3.1.1  Structural Code Selection. The primary innovation in our
design is the ability to structurally select concrete source text cor-
responding to code items and target positions from the abstract
syntax tree of a program.

Code Items. Our current implementation draws an invisible “bound-
ing polygon” around the source text of each expression, which

tightly wraps the expression even when stretched across multiple
lines. These polygons serve as mouse hover regions for selection,
with the polygons of larger expressions drawn behind the (smaller)
polygons for the subexpressions such that all polygons for child ex-
pressions partially occlude those of their parents. Because complex
expressions in LITTLE are fully parenthesized, it is always unam-
biguous exactly where to start and end each polygon, and there are
always character positions that can be used to select an arbitrary
subexpression in the tree. Similarly, we create bounding polygons
for all patterns and definitions.

When hovering over an invisible selection polygon, DEUCE colors
the polygon to indicate that it has become the focus. Its transparency
and style is designed to resemble what might otherwise be expected
for text selection (cf. the screenshots in §2). Clicking a polygon
selects the code item, making it visible even after hovering away.
Hovering the mouse back to the polygon and clicking it again
deselects the code item.

Target Positions. The user interface also draws polygons for the
whitespace between code items for selecting target positions. Fig-
ure 3 (left) shows how our implementation draws whitespace poly-
gons slightly to the left of the beginning of a line, and until the end
of a line even if there are no characters on that line. Figure 3 (center)
shows whitespace polygons with non-zero width even when there
are no whitespace characters between adjacent code items.

Another concern is that many target positions in the abstract
syntax from Figure 1 describe the same space between code items.
For example, the expression [e 50 e ¢ 70 ] on line 3 of Figure 3
contains both an after-50 and before-70 position. Because such
target positions between adjacent items are redundant, our imple-
mentation draws only one whitespace polygon. (This polygon is
not selected in any of the screenshots.)

A more interesting case is for the code items (def epe eee)
and (let epe eeeo - -);thereisboth an after-p target and a before-
e target. To allocate the whitespace between p and e, we take the
following approach. The space up to the first newline, if any, is
dedicated to after-p; the remaining is for before-e. If there is no
newline, then we do not expose any selection widget for before-e.
For comparison, notice how the whitespace from the end of line 2
to beginning of line 3 in Figure 3 (right) is split into two polygons,
but the whitespace from the end of line 3 to the beginning of line 4
in the Figure 3 (left) is not. In other settings, it may be worthwhile
to consider alternative approaches to the design decisions above.

3.1.2  Displaying Active Code Tools. Several program transforma-
tions may be Active based on the items and targets that are se-
lected. We design and implement a lightweight user interface for
identifying, invoking, and configuring Active transformations.

Pop-up Panel. When the user has entered structured editing mode
(by pressing Shift) and selected at least one item, we automatically
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display a menu near the selected items. The user has already pressed
a key to enter this mode, so our design does not require a right-click
to display the menu. The user can drag the pop-up panel if it is
obstructing relevant code. We often manually re-positioned pop-up
menus to make the screenshots in §2 fit better in the paper.

Hover Previews. Each tool in the menu has a list of Resul ts, which
appear in a second-level menu when hovering the tool name. Each
second-level menu item displays the description of the change,
and hovering over it previews the new code in the editor. Clicking
the item confirms the choice and clears all DEUCE selections. When
there are few Results (i.e. configuration options), this preview
menu provides a quick way to consider the options, rather than
going through a separate Configuration Wizard. For tools that
require multiple and non-trivial configurations, however, the editor
could fall back on separate, tool-specific Configuration Wizards;
our current implementation of DEUCE does not support this.

3.2 Program Transformations

We have implemented a variety of pro-
gram transformations, shown on the right.
While we believe these transformations
form a useful set of basic tools for com-
mon programming tasks, we do not ar-
gue that these constitute a necessary or
sufficient set. One benefit of our design
is that different sets of transformations—
such as refactorings for class-based lan-
guages [Fowler 1999], refactorings for
functional languages [Thompson and Li
2013], transformations that selectively
change program behavior [Reichenbach
et al. 2009], and task-specific transforma-
tions that do not have common, recogniz-
able names [Steimann and von Pilgrim
2012]—can be incorporated and displayed
to the user within our interface.

We limit our discussion below to transformations that are not
implemented in existing refactoring tools. The Supplementary Ap-
pendices [Hempel et al. 2018] describe other transformations, but
these details are not necessary to understand the rest of the paper.

Code Tools

Create Function from Definition...
Create Function from Arguments...
Create Function by Merging Definitions...
Add Argument...

Remove Argument..

Reorder Arguments...

Rename Variable...

Introduce Local Variable...

Swap Variable Names and Usages..
Swap Variable Usages...

Make Equal with Single Variable..
Make Equal by Copying...

Move Definition...

Swap Definitions...

Inline Definition...

Duplicate Definition...

Reorder Expressions...

Swap Expressions...

Make Single Line...

Make Multi-line...

Align Expressions...

Make Equal with Single Variable. When multiple constants and
an optional target position are selected, the Make Equal with Single
Variable transformation introduces a new variable, bound to one of
the constants, and replaces all the constants with the new variable.
This has the effect of changing the program to make each of these
values equal. The transformation attempts to suggest meaningful
names, based on how the selected expressions appear in the pro-
gram. For Example 1 from § 2, because the numbers 120 and 80
are passed as the fourth and fifth arguments, respectively, to the
function (def rect (\(fill x y w h) ...)), the suggested
names include w and h. The user is asked to choose a name. The
value itself (in this case, 120 or 80) is not as important—the inten-
tion is that the values vary at once by a single change—so, to keep
the number of Results small, the transformation does not ask the
user to choose which value to use for the variable.
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Move Definitions. Because of nested scopes and simultaneous
bindings (i.e. tuples), there are many stylistic choices about variable
definitions when programming in functional languages. The Move
Definitions transformation takes a set of selected definitions and
a single target position, and attempts to move the definitions to
the target position. If the target position is before an expression,
anew let-binding is added to surround the target. Whitespace is
added or removed to match the indentation of the target scope. If
the target position already defines a list pattern, then the selected
definitions are inserted into the list. If the target position defines
a single variable, then a list pattern is created. In cases where the
intended transformation would capture variable uses or move def-
initions above their dependencies (errors that are easy to make
when using text-edits alone), the transformation makes secondary
edits (alpha-renaming variables and moving dependencies) to the
program to avoid these issues. Our implementation of Move Defini-
tions also provides options for whether or not to collapse multiple
definitions into a single tuple, and also provides support for rewrit-
ing arithmetic expression definitions as an alternative way to deal
with dependency inversion issues.

4 USER STUDY

We designed and implemented DEuCE with the goal to incorporate
structured editing within a text-based program editor. In this sec-
tion, we describe a user study designed to measure the degree to
which we were successful.

Besides the two novel mechanisms in our user interface design—
structural code selection and context-sensitive preview menus—that
we wish to evaluate, there are several additional factors at play. First,
many users may not have extensive experience with functional
programming languages, especially the custom LITTLE language
supported in our implementation. Second, our implementation pro-
vides some familiar transformations but some—particularly those
involving target positions—are not. Furthermore, some users may
prefer to use text-editing rather than structured edits, even when
the latter can be used. These factors make it hard to perform a
direct comparison between our implementation of DEUCE and an
existing system, such as Eclipse.

To mitigate these factors, we designed a study that compared
DEuUCE with a “baseline” version of the system, with features de-
signed to emulate the traditional text-select-based interface de-
scribed in § 1. We then designed tasks, to be completed in both
versions and without text-edits, to measure the effect of the new
DEUCE user interface features compared to the baseline ones. Below,
we describe the different configurations of our system, our study
procedures, and our results.

4.1 System Configurations

Recall that tools may be Active or NotYetActive based on one or
more selected items and target positions (Figure 2).

Traditional Mode (“Iext-Select Mode”). To form the traditional
mode of the tool, which we called Text-Select Mode in the user
study materials, we implemented four interactions separate from
the workflow described in §2 and §3.1 to invoke code tools.
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(A) Code Tools Menu. The editor displays a Code Tools menu at the
top of the window with a list of all transformations available in
the system; this menu is akin to the Source and Refactor menus
in Eclipse. The user selects a tool from this menu without first
selecting anything in the program. Then, the editor displays a
Tool Configuration Panel that displays tool-specific instructions.
Tool Configuration Panels, which appear in all four interactions of
Traditional Mode, are discussed below.

(B) Text-Select Single Argument + Code Tools Menu. This interaction
is like Interaction A, except that the user first text-selects an item
or target in the code. Like Eclipse, text-selecting requires the entire
item to be selected, possibly with trailing or leading whitespace.
Our implementation provides more generous text-selection mech-
anisms (e.g. largest containing expression, smallest surrounding
expression), but the stricter version is used in the study because it is
more similar to existing approaches [Murphy-Hill and Black 2008].
Also like Eclipse, all tools are displayed and enabled in the Code
Tools menu, even if the tool is Inactive based on the selection.

(C) Text-Select Single Argument + Right-Click Menu. After first text-
selecting an item, as in Interaction B, the user right-clicks to trig-
ger a pop-up menu that displays only plausible tools (Active or
NotYetActive). A similar workflow is provided by Eclipse.
Returning to Example 1 from § 2,
the screenshot on the right shows the et tso 701
right-click menu after text-selecting the rect “satmor” x v L2 8823)
120 constant. By comparison, notice e Fun:,::i:,:':,gumemsw
how this right-click menu displays more
tools (NotYetActive tools in addition to
Active ones). After the text selection is
made, the editor draws an orange box (as
with DEuCE widgets) to identify the se-
lection.

Introduce Variable...

Make Equal with Single Variable... ‘
Make Equal by Copying...

Reorder Expressions..

Swap Expressions...

Make Single Line...

Make Multi-line...

(D) Cursor-Select Single Argument + Right-Click Menu. For atomic
code items (i.e. constants and variables), the user implicitly selects
the item by right-clicking on the token (rather than text-selecting it)
to trigger the right-click menu, as in Interaction C. Again, a similar
workflow is provided by Eclipse.

Tool Configuration Panels. Each of the
four interactions above trigger Tool et T 0 70

. . . rect "salmon” 120 80)))
Configuration Panels, which display Y
Make Equal with Single Variable

the requirements string that explains
how to invoke the tool. The user selects
any additional arguments by hovering
over and clicking structural selection
widgets. That is, structural selection
widgets are not accessible to make the
primary selection, but they are used to
make all remaining selections in a Tool
Configuration Panel. The screenshot

Requirements

« Select two or more expressions
and, optionally, a target position
(i.e. whitespace). (Satisfied)

Code Updates
New variable: h
New variable: w
New variable: h_w

New variable: num

above shows the Configuration Panel after text-selecting 120, as
above, and then selecting 80 and a target position using structural
selection. Because the tool requirements are satisfied, the panel dis-
plays the list of Results, each of which can be hovered to preview
the change before selecting it.
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DEeuce Mode (“Box-Select Mode”). This configuration, called Box-
Select Mode in the user study materials, isolates the new DEUCE
features. To review, the user holds down the Shift key, then hovers
over and clicks one or more structural code selection widgets. When
at least one widget is selected, the pop-up preview menu displays
the list of Active tools.

There is no Code Tools menu at the top of the editor in this mode,
even though the “full” version of our tool (not used by participants
in the study) does; the list of tool names and descriptions in Tool
Configuration Panels (which are not accessible in DEuce Mode) can
help understand unfamiliar transformations.

Combined Mode. Our last configuration combines Traditional and
DEeuct Modes, with all interactions described above.

4.2 Questions and Procedures
We sought to address several questions:

e Is either mode more effective for (a) completing tasks, (b) rapid
editing, or (c) achieving more with fewer transforms?
e Is either mode preferred by users? In which cases?

To answer these questions, we designed the following IRB-approved,
controlled user study with 21 undergraduate and graduate students
from the University of Chicago. We recruited users by sending
emails to public mailing lists, offering a monetary incentive of
$50 for participating in the two-hour study. Prior experience with
functional programming or SKETCH-N-SKETCH was not required.
Each user attended an individual session and was given the option
to use the laptop and mouse provided by us or their own devices.

The primary components of the study included a tutorial portion
followed by a tasks portion. We configured a pared-down version of
the system that turned off all SKETCH-N-SKETCH features unrelated
to the interactions being studied. The tutorial and tasks were set
up as a self-guided progression of steps through the tool, to be
completed at the user’s own pace. In the description of the tutorial
and tasks below, all random choices were made independently of
other choices, as well as across users.

Our system logged user events to analyze the tutorial and tasks.
We also recorded video of the users performing the tasks, for manual
inspection in situations where the log information was insufficient
or more difficult to process. Besides helping to get started and
correct minor issues unrelated to DEUCE, the user study proctor did
not answer any questions about DEUCE or the tasks. To wrap up,
users answered questions about their programming background
and experience using DEUCE in an exit survey.

Tutorial. The first part of the tutorial introduced ordinary text-
based programming in LITTLE, emphasizing that the syntax would
not be too important for subsequent tasks.

The majority of the tutorial introduced the code tools using both
Traditional and DEuct Modes. The first tool introduced—Rename
Variable, a familiar tool to many—was explained using all five in-
teraction modes. But because the four interactions in Traditional
Mode are largely similar, all subsequent tools introduced in the tu-
torial had only one set of instructions for Traditional Mode. For all
tools introduced, a random choice was used to determine whether
to explain Traditional or DEUCE Mode first. In total, 10 of the 22
code tools in our implementation were demonstrated in the tutorial.
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Table 1: Overview of the four head-to-head and two open-ended tasks. #LOC is non-blank lines of code in the starting program.

Name #LOC  #Transforms Example Tool Sequence (with minimum number of transforms required)

One Rectangle 9 3 Swap Expressions; Move Definition; Swap Definitions

Two Circles 11 2 Create Function from Definition; Reorder Arguments

Three Rectangles 11 2 Creating Function by Merging Definitions; Rename

Four Rings 7 4 Remove Argument; Rename; Move Definition; Add Arguments

Four Squares 9 7 Create Function by Merging Definitions; Create Function from Arguments; Rename (5x)
Lambda Icon 10 8 Make Equal with Single Variable (6x); Introduce Variable; Rename

To give a flavor of the tutorial, Example 1 in §2 is adapted from
the steps that introduced the Make Equal tools. In addition to tool-
specific tutorial steps, we also dedicated a step for more practice
with target positions, independent of a specific tool, because the
notion of target positions was likely to be unfamiliar.

Tasks. After the tutorial, users worked on six tasks, each a different
program and a list of one or more edits to perform using code tools.
For some tasks, there were multiple different sequences of code
tool invocations that could lead to the desired result. The starting
programs ranged from 7 to 11 lines of code and required between
2 and 8 tool invocations (at minimum) to finish the tasks. Table 1
outlines the tasks. The Two Circles task was presented as Example 2
in §2. Extended task descriptions can be found in the Supplementary
Appendices [Hempel et al. 2018].

Before every task, the participant was given a read-only reading
period to understand the program before seeing the list of edits
to perform. To emulate a real-world scenario where the program-
mer knows what to accomplish but may not quite remember all
the steps, the task directions were written in a more natural style
without direct reference to tool names—for example, “move the
ring definition inside target” instead of “invoke Move Definition
on the ring definition with a target position inside target”

Each of the first four tasks (“head-to-head tasks”) was performed
twice, once each in Traditional and DEUCE Modes, resulting in
eight trials. The first four trials comprised each of the four tasks, in
random order and with one of the modes randomly chosen per trial.
For the next four trials, the order of tasks was, again, randomized,
each using the mode not chosen for the task in the first round.
After these eight trials, the user performed each of the last two
tasks (“open-ended tasks”) once using the Combined Mode—both
Traditional and DEucE Modes were available for use, to mix-and-
match the two modes however they saw fit.

For each task, comments showed what the desired final code
should look like, sometimes modulo minor whitespace differences.
The editor provided an indicator about whether the task was com-
pleted, giving the user the option to Give Up at any point if needed.
There was also a maximum time limit of six and twelve minutes
for each head-to-head and open-ended task, respectively, with no
indication about the time limit until and unless the user reached
the two and four minutes remaining mark, respectively.

4.3 Results

Participants reported between 2 and 10 years of programming ex-
perience (mean: 5.1), of which between 0 and 3 years involved func-
tional programming (mean: 0.76). 10 participants (48%) reported

no prior functional programming experience. 8 participants re-
ported using tools that supported automated refactoring (Eclipse,
Intelli], and PyCharm all received multiple mentions). 4 partici-
pants reported some prior exposure to previous versions of the
SKETCH-N-SKETCH project, but none reported knowledge of the
code tools presented in the study.

For the study itself, 8 users brought their own laptop, the remain-
ing 13 used ours. 15 participants used a mouse, and 6 relied on their
laptop’s trackpad. Each session took a mean of 1hr 44min (range:
1h 11m - 2h 27m). Users spent between 23 and 66 minutes on the
tutorial (mean: 41) and 20 and 65 minutes on the tasks (mean: 44).
The remaining time was spent on introductory remarks and the
exit survey. All users attempted all tasks. Two trials were discarded
because of tool malfunction, for a final total of 166 head-to-head
trials and 42 open-ended tasks suitable for analysis.

The tasks proved moderately difficult. On average, each partici-
pant successfully completed 71% of the trials and open-ended tasks
within the time limits, with 3 users completing them all and 1 user
failing to complete any. Figure 4 shows completion rates by task.
The One Rectangle and Lambda tasks had particularly low comple-
tion rates. Based on videos of failed attempts, many users struggled
with choosing appropriate tools—e.g. many chose Introduce Vari-
ables rather than Make Equal, and some chose Inline rather than
Move Definitions in an attempt to create a tuple definition. The tuto-
rial was not sufficient for everyone to remember and understand all
the tools needed for the tasks. The task descriptions may have also
presented obstacles—e.g. for Lambda, the phrase “Define and use..,
along with (def [x y w h] ...) in the final code, may have led
some to use Introduce Variables, which would then require several
roundabout transformations to complete the task. We believe these
difficulties are largely independent of the user interface features.
We now address each of the research questions in turn.

Is either mode more effective for completing tasks?. Figure 5
breaks down completion rates for head-to-head tasks by mode. Be-
cause each was attempted twice, to assess possible learning effects
from already completing a task in the other mode, Figure 5 also
differentiates between the user’s first or second encounter with
each task. Visually, the data suggest that on the first encounter
with a task, Traditional Mode may better facilitate completion, and
is also a better teacher for the subsequent encounter with DEUCE
Mode. In contrast, a first encounter with DEUCE Mode may be less
helpful for the second encounter with Traditional Mode.

To control for learning effects, a mixed effects logistic regres-
sion model [Gelman and Hill 2007] was fit with 1me4 [Bates et al.
2015] to predict task completion probability based upon fixed effect
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Figure 4: Task completion rates pooled over both modes.
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Figure 5: Head-to-head task completion rates by mode and
by subject’s first/second encounter with task. Overlaid lines
indicated pooled completion rates.

predictors for the mode (coded as 0 or 1), the trial number (1-8),
whether the trial was the second encounter with the task (0 or 1),
whether the participant used a mouse (0 or 1), whether the partici-
pant used their own computer (0 or 1), and the interaction of mode
with the second encounter (0, or 1 when DEUCE Mode and a second
encounter). To model differences in user skill and task difficulty, a
random effect was added for each participant as well as each task,
and a random interaction was added to model differences in the
second encounter difficulty per task. Reported p-values are based
on Wald Z-statistics.

In the fit model, the coefficient for mode was on the edge of
significance (p=0.057), indicating that Traditional Mode did better
facilitate task completion on the first encounter with a task. Given
this, DEuce Mode performed better than expected on the second
encounter (interaction term p=0.036), but not enough to confidently
say that DEUCE Mode was absolutely better than Traditional Mode
for the second encounter (p=0.17). No other fixed effect coefficients
approached significance.

DEeuce Mode therefore seems to present a learning curve, but
may be just as effective as Traditional Mode once that learning
curve is overcome. This interpretation accords with the surveys: 5
participants wrote that Traditional Mode might be better for learn-
ing, and 4 participants—including 3 of the previous 5—said DEUCE
Mode was better when they knew the desired transformation. How-
ever, the data may be alternatively explained if DEucCk Mode on the
first encounter is a poor teacher, actively misleading users on the
second encounter with Traditional Mode.

Is either mode more effective for rapid editing? Among trials
successfully completed, the duration of each trial was measured
from the start of configuration of the first refactoring to the end of
the final refactoring. The distribution of these timings is presented
in Figure 6, scaled relative to the mean duration for each task.
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Figure 6: Head-to-head task durations for successfully com-
pleted trials, scaled relative to the mean time per task.

Again, to tease out if any of these differences are significant,
from the same predictors described above two linear mixed effects
models were fit to predict (1) trial duration and (2) the logarithm
of trial duration (i.e. considering effects to be multiplicative rather
than additive). Percentile bootstrap p-values for the fixed effect
coeflicients were calculated from 10,000 parametric simulate-refit
samples.! For the first encounter with a task, Traditional Mode
was insignificantly faster (by 13 seconds, p=0.44; or 9.2%, p=0.52).
However, DEUCE Mode was on average 25 seconds (p=0.13) or 36%
(p<0.01) faster for the second encounter with a task, suggesting
that DEUCE Mode may be faster once users become familiar with
the available tools. Most of the gain comes from less time spent
in configuration—after discounting all idle thinking time between
configurations, the model still reveals an 18 second difference.

Is either mode more effective for achieving more with fewer
transforms? To determine if either mode facilitated more efficient
use of interactions, the same mixed effects model was fit to predict
the number of refactorings invoked during each successful trial, as
well as the number of Undos. On the first encounter with a task,
Traditional Mode accounted for an average of 2.0 fewer refactorings
(p<0.01) and 2.1 fewer Undos (p<0.01), but on the second encounter
no significant difference in number of refactorings or Undos was
indicated. As a second encounter with DEUCE Mode is faster than
Traditional Mode, the speed gain thus appears to be explained by
faster invocations rather than fewer invocations.

Is either mode preferred by users? In which cases? The two fi-
nal open-ended tasks allowed participants to mix-and-match the
two modes as they pleased. As shown in Figure 7, on both tasks the
overwhelming number of users performed a greater share of refac-
torings using DEUCE Mode. We believe a main advantage of DEUCE
Mode is that it simplifies the configuration of refactorings that re-
quire multiple arguments, as the user may select all the arguments
together before choosing a transformation from a short menu. In
Traditional Mode, the workflow is stuttered: the user must select a
single argument, right-click to choose a transformation, then select
the remaining arguments. However, for a refactoring requiring only
a single argument, Traditional Mode is more streamlined: a user
may simply select the desired transformation immediately after
right-clicking on the first argument. Thus, for single-argument
refactorings, DEUCE Mode’s advantages may be limited. A break-
down of mode usage by popular tools (Figure 8) lends support to

!See https://www.rdocumentation.org/packages/lme4/versions/1.1- 13/topics/bootMer
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Figure 7: Distribution of user preferences for Traditional vs.
DEUCE Modes as measured by the ratio of refactorings per-
formed by the user in each mode on the open-ended tasks.
Far left represents all Traditional Mode refactorings; far-
right indicates all DEucCE Mode refactorings. The 95% con-
fidence interval for the mean preference across all users is
indicated (via percentile bootstrapping, 10,000 samples).
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Figure 8: Mode usage for tools used by at least half of partici-
pants on the open-ended tasks. Deuce mode is preferred for
most tools. Stars indicate differences significant at the 95%
level (via percentile bootstrapping, 10,000 samples).

this hypothesis. For the most commonly used tool, Rename, which
always takes only a single argument, participants used Traditional
and DEuCE Modes with roughly even frequency. Most other tools
showed strong preferences towards DEUCE Mode, with the notable
exception of Create Function by Merging Definitions. Because the
Four Squares task required invoking this tool with four expressions,
according to the hypothesis, users should prefer DEuce Mode. The
videos revealed that several users were unable to discover how
to structurally select a function call, which required hovering on
the open parenthesis (not demonstrated in the tutorial). Several of
these users were, however, able to invoke the tool by text-selecting
a function call or by starting from the full Code Tools menu.

Subjectively, the concluding survey asked whether DEUCE or Tra-
ditional Mode worked better for each head-to-head task, measured
on a 5-point scale from “Text-Select Mode worked much better”
to “Box-Select Mode worked much better”. For each participant, a
random choice determined which mode appeared at each end of the
scale. As shown in Figure 9, on average a similar modest preference
for DEUCE Mode was expressed for each task.
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Figure 9: Surveyed subjective preference for Traditional vs.
Deuce Modes for the head-to-head tasks. The 95% confi-
dence interval for the mean preference across all users is
indicated (via percentile bootstrapping, 10,000 samples).

On the free-response portion of the survey, several explanations
were given for this preference for DEUCE Mode. 3 participants appre-
ciated the ability to select multiple arguments; 2 other participants
appreciated selecting all arguments before selecting a tool; 1 other
participant appreciated the smaller menu of refactorings; and 1
other participant appreciated the ease of starting a refactoring by
clicking code objects rather than having to create a text selection.

Altogether, users demonstrated a strong objective and modest
subjective preference for DEUCE over Traditional Mode, suggesting
that DEUCE accomplishes its goal to provide a more human-friendly
interface to identify, configure, and invoke refactorings.

Limitations. There are several threats to the validity of our ex-
perimental setup. One is that our emulation of traditional features
may have been less effective than those features in existing tools.
Another is that the participants may have felt compelled to use
Deucte Mode (which could likely have been deduced to be more
novel than Traditional Mode) more during the open-ended tasks—
and pronounce a preference for it in the survey—because the par-
ticipants were drawn from the same academic community as the
authors. Another is that participants used the tool in heterogeneous
environments—different computers and browsers, configured with
different screen sizes and mouse settings. Performance on the tasks
may have also been affected by the presence of the user study
proctor and video recording device. According to self-reported as-
sessments, participants were relatively unfamiliar with functional
programming and with refactoring tools, so the results may differ
for users with more extensive experience. Finally, our results were
obtained on small programs and tasks in a prototype language.

Future Improvements. There are opportunities to improve our
implementation of DeUCE. First, to reduce the learning curve, it
would be worth adding more explanatory features (e.g. in a tutorial,
or within the tool when the user selects certain kinds of items for
the first time), particularly for unfamiliar transformations (e.g. Move
Definitions) and for unfamiliar user interface features (i.e. target
positions). Enabling the full Code Tools menu may also help because
of the descriptions of requirements in the Tool Configuration Panels
(cf- the “DEUCE Mode” discussion). Also, to allow easy corrections
of misconfigured refactorings, it would help if Undo restored the
previous selection state rather than just the previous version of the
code; we have since implemented this feature.
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5 RELATED WORK

We describe the most closely related ideas in structured editing and
refactoring. Ko and Myers [2006], Lee et al. [2013], and Omar et al.
[2017] provide more thorough introductions.

5.1 User Interfaces for Structured Editing

Compared to traditional text-selection and menus, several alterna-
tive user interface features have been proposed to integrate struc-
tured editing more seamlessly within the text-editing workflow.

Text Selection. Murphy-Hill and Black [2008] identify that text
selection-based refactoring is prone to error, particularly for state-
ments that span multiple lines and that have irregular formatting.
They propose two prototype user interface mechanisms, called Se-
lection Assist and Box View, to help. With Selection Assist, the user
positions the cursor at the start of a statement, and the entire state-
ment is highlighted green to show what must be selected (using
normal text-selection). With Box View, the editor draws a separate
panel (next to the code editor) that shows the tree structure of
the program with nested boxes. When selecting text in the editor,
the nested boxes are colored according to which code items are
completely selected. Similarly, the user can select a nested box in
the Box View to select the corresponding text in the code.

In contrast, our structural selection polygons are drawn directly
atop the code, at once helping to identify (like Box View) and select
(like Selection Assist), which aims to mitigate the context switching
overhead of Box View identified by Murphy-Hill and Black [2008].

Drag-and-Drop Refactoring. Lee etal. [2013] propose a tool called
DNDREFACTORING that eliminates the use of menus altogether.
They demonstrate how many common Eclipse refactorings can
be unambiguously invoked with a drag-and-drop gesture without
the need for any additional configuration. This is a compelling
workflow for situations in which the user can (a) readily identify
an intended refactoring based on a preconceived notion (e.g. its
name), (b) unambiguously invoke the intended refactoring by a
single-source, single-target drag-and-drop gesture, and (c) accept
the default configuration of the refactoring. It would be useful to
add drag-and-drop gestures to DEUCE for transformations that sat-
isfy these three conditions. However, our user interface supports
situations when one or more of these three conditions fails to hold.

Hybrid Editors. Compared to “fully” structured editors, several
hybrid editor approaches augment text-based programs with addi-
tional information. Barista [Ko and Myers 2006] is a hybrid Java
editor where structure views can be implemented to present alter-
nate representations of structural items instead of text. For example,
an arithmetic expression may be rendered with mathematical sym-
bols, a method may be accompanied by interactive documentation
with input-output examples, and structures may be selectively col-
lapsed, expanded, or zoomed. Omar et al. [2012] introduce a similar
notion to structure views, called palettes, where custom displays
can be incorporated based on the type of a subexpression. For
example, a color palette can provide visual previews of different
candidate color values, and a regular expression palette can show
input-output examples for different candidate regular expressions.
In Greenfoot [Brown et al. 2016], program text is separated into
structural regions called frames, which are created and manipulated

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

with text- and mouse-based operations that are orthogonal to the
text-edits within a frame. Code Bubbles [Bragdon et al. 2010] allows
text fragments to be organized into working sets, which are collec-
tions of code, documentation, and notes from multiple files that
can be organized in a flexible way. Outside of the views, palettes,
frames, and working sets in the above hybrid editors, the user has
access to normal text-editing tools.

Our approach is complementary to all of the above: in places
where code fragments—regardless of their granularity and their
relationship to alternative or additional pieces of information—are
represented in plain text, we aim for a lightweight user interface to
structurally manipulate it.

Refactoring with Synthesis. In contrast to direct manipulation
in DNDREFACTORING and DEUCE, Raychev et al. [2013] propose
a workflow where the user starts a refactoring with text-edits—
providing some of the changes after the refactoring—and then asks
the tool to synthesize a sequence of refactorings that complete the
task. This text-based interface and the mouse-based interfaces of
DNDREFACTORING and DEUCE are complementary.

5.2 Program Transformations

Automated support for refactoring [Fowler 1999; Griswold 1991;
Roberts et al. 1997] has been aimed primarily at programs written
in class-based, object-oriented languages.

Refactoring for Functional Languages. HARE [Brown 2008; Li
2006; Thompson and Li 2013] is a refactoring tool for functional
languages, such as Haskell, where features—including first-class
functions (i.e. lambdas), local bindings, tuples, algebraic datatypes,
and type polymorphism—Ilead to editing tasks that are different
from those supported in most typical refactoring tools for object-
oriented programs. Our user interface could be incorporated by
HARE to expose the supported transformations with lightweight
direct manipulation. HARE provides a larger catalog of transfor-
mations than our current implementation of DEuCE. However, the
details of our Move Definitions and Make Equal transformations are,
to the best of our knowledge, not found in existing tools.

6 CONCLUSION

Based on our experience and the results of our user study, we be-
lieve DEUCE represents a proof-of-concept for how to achieve a
lightweight, integrated combination of text- and structured editing.
In future work, our design may be adapted and implemented for full-
featured programming languages and development environments,
incorporating additional well-known transformations (e.g. Fowler
[1999]; Thompson and Li [2013]). Additional direct code manipula-
tion gestures, as well as incremental parsing (e.g. the algorithm of
Wagner and Graham [1998] used by Barista [Ko and Myers 2006]),
could further help streamline, and augment, support for structured
editing within an unrestricted text-editing workflow.
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