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ABSTRACT

In recent years, gliding robotic fish have emerged as promis-
ing mobile platforms for underwater sensing and monitoring due
to their notable energy efficiency and maneuverability. For sens-
ing of aquatic environments, it is important to use efficient sam-
pling strategies that incorporate previously observed data in de-
ciding where to sample next so that the gained information is
maximized. In this paper, we present an adaptive sampling strat-
egy for mapping a scalar field in an underwater environment us-
ing a gliding robotic fish. An ergodic exploration framework is
employed to compute optimal exploration trajectories. To effec-
tively deal with the challenging complexity of finding optimum
three-dimensional trajectories that are feasible for the gliding
robotic fish, we propose a novel strategy that combines a unicycle
model-based 2D trajectory optimization with spiral-enabled wa-
ter column sampling. Gaussian process (GP) regression is used
to infer the field values at unsampled locations, and to update a
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map of expected information density (EID) in the environment.
The outputs of GP regression are then fed back to the ergodic
exploration engine for trajectory optimization. We validate the
proposed approach with simulation results and compare its per-
formance with a uniform sampling grid.

Introduction

Monitoring and understanding aquatic environments is
paramount for sustaining water resources and ensuring the
longevity of aquatic ecosystems. For that reason, autonomous
underwater robots are increasingly drawing attention in aquatic
sensing, with applications ranging from marine sciences and
tracking oil spills, to monitoring harmful algal blooms and track-
ing fish movement [1, 2]. Given the ever-changing and un-
predictable nature of the environments in which they operate,
robots employed for underwater missions need to be both highly
energy-efficient and maneuverable [3].

Gliding robotic fish are a recent development in underwater
robotic sensing [4], combining the desirable features of both un-
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FIGURE 1. The gliding robotic fish “Grace 2.0” during tests in Hig-
gins Lake, Michigan.

derwater gliders and robotic fish, which are well known for their
respective energy efficiency [5-7] and maneuverability [8-10].
These traits allow a gliding robotic fish to realize its locomotion
through buoyancy-driven gliding, along with adjustment of its
center of gravity to change its pitch. These robots are equipped
with actively controlled fins that provide high maneuverability
and additional propulsion during locomotion if needed. Fig-
ure 1 shows an example of a gliding robotic fish developed by
the Smart Microsystems Lab at Michigan State University.

The gliding robotic fish has three main modes of operation.
Two of them, gliding and spiraling, are energy-efficient, where
most energy is spent when the robot changes its buoyancy and
center of gravity. During gliding, the robot either pitches down
while being negatively buoyant in order to descend, or pitches up
while being positively buoyant to ascend. Spiraling is achieved
in a manner similar to gliding, with the tail deflected at a non-
zero angle. During a steady-state spiraling operation, the yaw
angle changes at a constant rate, while the roll angle and the pitch
angles remain constant. It has been shown that the gliding robotic
fish can achieve a steady spiraling motion when all three controls
(i.e., net buoyancy, center of gravity, and tail fin deflection angle)
are fixed at non-zero values [11,12]. The third mode of operation
is swimming, and it is achieved by continuously flapping the tail
fin to propel the fish forward with steering and velocity being
controlled by the bias and amplitude of the flapping [13].

The efficiency of gliding depends on multiple variables, such
as pitch angle and maximum depth. Gliding is expected to use
less energy when travelling long distances compared to swim-
ming on the surface, as the actuators responsible for adjusting
the buoyancy and center of gravity are used in short bursts (10 s-
20 s) per glide, while swimming would require continuous flap-
ping of the tail fin. On the other hand, swimming does of-
fer some advatanges over gliding when accurate navigation is
needed over a short distance due to the availability of GPS on

Swimming for
the transition

Spiral for
Column 1

Glide to
Column 2

/ )
Column 1 Column 2 |

FIGURE 2. Schematic of the autonomous water-column-based sam-

pling scheme using the three operational modes of the gliding robotic
fish.

the surface. Therefore, an efficient navigation strategy needs to
leverage gliding and swimming modes effectively when moving
from one point to another. The different modes of operation have
allowed researchers to use gliding robotic fish for autonomous
sampling of harmful algae concentration [4]. During the field
experiments, a 60 m-by-80 m region was sampled with a grid
of 4-by-5 columns. Figure 2 shows the sampling strategy used
in [4]; the robot spirals down a water column while collecting
data, and then glides up to the water surface, which generally
does not coincide with the next target column. The swimming
mode is corrected with GPS-aided guidance, driving the robot to
the next column location and repeating the process.

The sampling grid in [4] was predefined and the gathered
information was not used to improve future samplings. For better
performance, the sampling strategy of the agent should adapt to
the information collected during its operation. This process of
reactive data gathering is referred to as adaptive sampling, where
the agent (the gliding robot fish in this case) changes its path
in response to measurements of its own state and the sampled
environment [14]. For more information on adaptive sampling,
the reader can refer to [14-17].

Adaptive sampling is particularly important for underwater
missions, due to the unpredictability of the environment and the
limited resources of the agents (e.g. power supply), factors that
highlight the need of reactive and efficient sampling. As is dis-
cussed in [17], adaptive sampling performance depends on the
metric used to evaluate the data sets. For example, prioritizing
exploration of areas of high dynamic variability or cluttered lo-
cations are two different strategies that can be used with adaptive
sampling.

In this paper, we utilize ergodic exploration to generate the
sampling trajectory. Ergodic exploration presents a promising
framework for dealing with trajectory planning because it aims
at regulating the time a robot spends in a region to be propor-

Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



tional to the expected information density [18, 19]. As a result,
ergodic trajectories strike a balance between exploration and ex-
ploitation strategies. The gliding robotic fish, however, presents
a highly nonlinear model with strong coupling of the inputs [20].
To effectively deal with the challenging complexities of finding
optimal 3D ergodic trajectories that are feasible for the robot’s
dynamics, we propose a novel strategy that requires the 2D tra-
jectory optimization, while the robot’s energy-efficient spiraling
mode is used to sample water columns along the third dimension.

The remainder of this paper is organized as follows: we de-
scribe the field of interest in Section II, followed by an overview
on the notion of ergodicity in Section IIl. In Section IV, we
present the adaptive sampling strategy of the water columns and
in Section V we examine the performance of the proposed strat-
egy in simulation. Finally, concluding remarks and future re-
search directions are provided in Section VI.

Field Representation and Gaussian Regression

The end goal of the sampling strategy is to estimate and re-
construct a three-dimensional field of interest by collecting sam-
ples at discrete locations. To that end, we represent the field to
be estimated as a Gaussian process (GP) as it provides an ele-
gant method for modeling nonlinear functions in the Bayesian
framework [21], and are widely used for modeling spatial fields
and spatio-temporal phenomena [22-24]. GP regression has also
been widely used to predict the field values at unsampled areas
using measurements at discrete locations, and have been exten-
sively used in spatial prediction and reconstruction of a field [21].

We consider a zero-mean Gaussian process g(p) € R that is
written as

g(p)wg@ (076%%(p17p2))7 (1)

where pi, p» € R? are the inputs, representing two discrete loca-
tions in the 3D space, and O'J%%/ (p1,p2) is the covariance func-

tion. The signal variance GJ%, which is assumed to be constant
across the entire 3D space, gives the overall scale of the field
relative to the mean of the GP.

The correlation between g(p;) and g(p2) is given by
A (p1,p2). In this paper, we use the squared exponential cor-
relation function of the form

1
K (p1,p2) = exp <2(P1 —p2)"E5  (p1 P2)> )

Here, ¥; = diag (07,02, 03) is a diagonal matrix that determines
the decreasing rate of the correlation between two points as the
distance between them increases along each direction. The pa-
rameters {Gy,01,07,03} are referred to as the hyperparameters

of the GP and can be estimated a priori by the maximization of
the likelihood function [25]. Here, we assume that the hyperpa-
rameters are known a priori.

When samples of the field are collected at discrete locations,
it is possible to estimate the field values at the remaining un-
sampled areas through GP regression. Suppose we have r noise-
corrupted measurements {yi,..., ¥, } obtained by sampling the
field at locations {pi,...,p,}. The measurement noises are as-
sumed to be independent at different locations, and are zero-
mean, Gaussian, with o,, representing the measurement noise
variance. Then, the collection of observations ¥ = [y ... ;] r
has the Gaussian distribution

v~ (0,6/C), 3)

where C € R™" is the correlation matrix of y, whose (i, j) ele-
ment is computed as

8
Clyy = (pipi) + . @)

Here, 7 is the signal to noise ratio (SNR) defined as y = sz» / Gv%,
and 6;; denotes the Kronecker delta function. Work in [21] shows
that one can predict the value of the Gaussian process at a point

p* by

Arox\ T o~—1

§p)=q Cy Q)
with a prediction variance that is given by

Gy = 07 (1—4"C'q), 6)

where g € R” is the correlation vector between y and g(p*). The
correlation vector is obtained by

[l = 7 (pj,p"). (7)

Using the GP model along with GP regression allows us to
estimate the field at unsampled locations. It is still important,
however, to select sampling locations that improve this estima-
tion performance. In the next section, we discuss how the notion
of ergodicity is used to select such sampling locations.

Ergodic Exploration

When exploring, it is important to prioritize areas with more
information. The concept of exploration efficiency is quanti-
fied using the measure of ergodicity presented in [19]. A tra-
jectory x(t) is ergodic with respect to some distribution ¢ (x)
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when the percentage of time spent over any subset of the do-
main is equal to the measure of that subset. Here, the distri-
bution @ (x) represents the expected information density (EID)
map, over a bounded n-dimensional domain X C R”, defined as
[0,L1] x [0,Ly]--- x [0,L,]. The ergodic metric used to quantify
the difference between spatial statistics of ¢ (x) and the trajectory
x(r) is given by

Kez"

e(x(t)) =Y Axlex(x(t)) — ol*, (8)

k=0eZ"

where ¢ are the Fourier coefficients of the spatial distribution
¢(x), and ¢, are the Fourier coefficients of the basis functions
along the trajectory x(z) averaged over time. The number of co-
efficients used along each of the n dimensions to measure dis-
tance from ergodicity is determined by K, and k is a multi-index
(k1,k2, ... ky). We use Ay defined as

1

A= ——
(1 [|&]|?)*

€))

with s = ”zil to place larger weight on lower frequency informa-

tion.
The Fourier coefficients ¢; and c; are computed as follows:

o = /X 0 (x)Fi (x)dx (10)

and

1 T
= /0 F(x(1))dr, (11)

where Fj(x) are the Fourier basis functions used to approximate
the distributions over n dimensions. They are given by

Fi(x) = hikHcos (7}@) , (12)
i=1 i

where /iy is a normalizing factor and x; is the i-th component of
x. We refer the reader to [18, 19], and references therein for a
complete discussion on ergodic exploration.

Adaptive Sampling Strategy

Ergodic exploration presents a promising framework for ac-
tive exploration as it builds exploration strategies that take into
account the dynamics of the sensing agent [18]. This allows us

to generate sampling trajectories that are gaurenteed to be fea-
sible, which is in contrast to other adaptive sampling strategies
that do not consider robot dynamics and could result in infeasible
trajectories [26-28].

The 3D model, described in [20], that involves sophisti-
cated hydrodynamic modeling and strong coupling of the inputs
is prohibitive for real-time execution. Moreover, tracking such
curves is nontrivial, with limited work reported in that area. To
effectively tackle the challenging complexities posed by three-
dimensional sampling and exploration of underwater environ-
ments, we propose a novel strategy that decomposes the problem
into a hybrid problem involving 2D trajectory optimization, with
spiraling along the z-direction using the gliding robotic fish for
sampling of water columns.

This approach holds several advantages over optimizing a
3D trajectory for underwater sampling. First, the computational
effort needed for computing the exploration trajectory is signifi-
cantly reduced by optimizing the trajectories on a 2D plane, al-
lowing for real time implementation of the exploration strategy.
Second, the proposed algorithm ensures that the robot surfaces
after each column sample is taken, allowing for accurate localiza-
tion using the on-board GPS. This is very important when sam-
pling the environment, as exploration stratiegies that spend a long
time underwater generally require accurate localization of the
robot in a GPS-denied environment, causing the obtained mea-
surements to be unreliable when the uncertainty in the robot’s
location is high.

For 2D trajectory planning, we propose using a unicycle
model traveling at a constant speed v with steering as its only
control, whose model is given by

Py =vcos(0)
py =vsin(6) (13)
=0

Here, (px, py) represents the unicycle’s position on the 2D plane,
while 6 is its orientation and o is the steering control. In our pre-
vious work in [4], we demonstrated the capability of the robot
in autonomously navigating from one point to another. There-
fore, the planner motion of the unicyle can be effectively tracked
though simple controlled that adjust the tail deflection angle dur-
ing a glide, or by ajusting the amplitude and bias of the tail flap-
ping when swimming on the surface. Using the unicycle model
to plan a 2D trajectory ensures that the robot samples columns se-
quentially, i.e. the next column to sample is within a predifined
distance of the previous column, which in turn ensures that the
robot is not travelling between very far points to collect samples.
Moreover, the unicycle model results in smooth planar trajecto-
ries that minimize sharp turns between two column samples.
The above model is embedded into the ergodic exploration
engine to generate optimal 2D trajectories along which the
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gliding robotic fish spirals to collect water columns samples.
Ergodic-based optimization of the unicycles trajectory requires
the use of an appropriate EID quantifying the expected informa-
tion density for each water column on the 2D plane. This makes
GP regression techniques well suited for the ergodic exploration
framework as the prediction variance at any point in the field can
be computed in closed form using (6).

After each column sample, the measurements obtained by
the robot are fed back to the Gaussian process regression model
to predict the field at all unsampled locations. In order to steer the
unicycle towards informative areas, and therefore select the next
sampling location, a 2D EID map must be generated. GP regres-
sion allows for the comutation of the prediction variance, Gg?(p*),
in closed form using (6). At first glance, using Gg(p*) seems like
a good measure of information, as it is equivalent to the notion
of entropy of a Gaussian random variable H(p*), where more
information can be obtained from the locations that are deemed
most uncertain. While this provides an intuitive approach, it suf-
fers from two major drawbacks. As noted in [26], the entropy
criterion results in “wasted” information, as uncertainty tends to
be largest at the boundry of the space. More importantly, using
entropy as a measure for placing sensors has been shown to bear
no advantages over sampling the space with a uniform grid.

It is important, therefore, to select an appropriate criterion
when generating the EID map. One approach is to consider the
mutual information between each point and the rest of the space.
In [26], the authors present several approximation algorithms for
computing mutual information between a point and the rest of
the space, which is proportional to

o;—q'C'q

MI(p*) = (14)

where g is the correlation vector between p* and the unsampled
points, while C is the correlation matrix between all unsampled
points. This allows us to generate a 2D EID map for planning the
unicycle’s trajectory.

We employ a receding-horizon ergodic exploration scheme
for planning an exploration trajectory, by tailoring the optimiza-
tion algorithm to the unicycle model [13,29]. Using the metric
of ergodicity mentioned in the previous section, we define the
ergodic objective function to be optimized J(-) as follows

Kez"

T="Y  Adlec(x(t)) — ol (15)

k=0€7Z"

This optimization problem can be solved by framing the prob-
lem as a hybrid control problem similarly to Sequential Action
Control (SAC) in [30]. First, the coefficients ¢ of the spatial
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FIGURE 3. Blockdiagram of adaptive strategy for water column sam-
pling. A receding-horizon optimization loop is used to compute the 2D
trajectory for the unicycle using the latest available EID. Water columns
are sampled along the trajectory, and the collected measurements are
used to update the EID through GP regression.

distribution ¢ (x) are calculated, and then the steering control of
the unicycle is obtained by solving an open-loop ergodic control
problem [29]. The complete strategy for adaptive sampling of
water columns using the gliding robotic fish is depicted in Fig-
ure 3.

The proposed strategy requires significantly less compu-
tational effort when compared to finding an ergodic three-
dimensional trajectory that obeys the gliding robotic fish’s dy-
namics, as it only needs to compute a 2D trajectory. Furthermore,
the proposed strategy can be adopted to real-world experiments
without the need for expensive, and power-hungry, acoustic lo-
calization equipment. This is due to the fact that the robot can
periodically surface and use GPS measurements to determine its
location, while water-pressure and velocity measurements help
estimate the position of the agent while underwater.

Simulation Study

We examine the performance of the proposed approach at
sampling and reconstructing a region of 80 m-by-80 m, while
the depth for each sampled column is set to 7m. The unicycle
was initialized at (x,y) = (5,5) and 6 = 20, and traveling at a
constant speed of 1 m/s. As for the field characterization, the
signal variance was set to oy = 1, where X; = diag(50,50,7), and
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FIGURE 4. Original field at z =6 m.

1.5 -0.5

FIGURE 5. Simulated spiral trajectory of gliding robotic fish for fixed
control inputs.

the noise standard deviation was set to ,, = 0.1. Figure 4 depicts
the original field at a depth of z = 6 m, which was constructed to
have larger values as the depth increases.

Water columns were sampled every 20 m along the opti-
mized trajectory of the unicycle. Figure 5 shows the simulated
spiraling trajectory for the gliding robotic fish at each column
obtained from using the full 3D model presented in [20], which
takes about 3 minutes to complete. Noisy measurements were
recorded every 12 s along this spiraling trajectory to be used in
the GP regression model.

Figure 6 shows the evolution of the optimized trajectory of
the unicycle on the 2D plane along with the locations of the sam-
pled water columns. Initially, the EID is the same everywhere
as we have very little information to predict the field, and the
prediction error is large everywhere. As the unicycle travels in

the 2D plane to reduce the ergodic cost, and column samples are
obtained along the way, the prediction error at the sampled lo-
cations is reduced, which in turn updates the EID and drives the
unicycle away from these sampled locations.

Figure 7 shows the evolution of the field estimates at a depth
of z =6 m as more columns are sampled, while Figure 8 depicts
the estimation error at different depths after 16 columns were
sampled. These figures show the capacity of the proposed ap-
proach in reconstructing the original field. Figure 9 compares
the estimation error between our proposed approach and that ob-
tained by sampling from a uniform grid of 16 water columns.
These results show the advantage of using the proposed approach
over uniform sampling, as it forces us to sample more informa-
tive areas in the center of the space. In contrast, a uniform grid
of 16 columns would have 12 of those columns located on the
boundry of the space, resulting in wasted information.

Conclusion and Future Work

In this paper, we propose using ergodic exploration together
with adaptive sampling of water columns subject to the dynam-
ics of a gliding robotic fish. To improve the computational speed
of our algorithm and to address the challenging complexities of
sampling underwater 3D environments, we use the dynamics of a
unicycle to model the planar motion, while still using the opera-
tional modes of the gliding robotic fish to sample water columns
along the trajectory in the remaining dimension. We generate op-
timized 2D trajectories using the ergodic metric and utilize Gaus-
sian process regression to predict the field values at unsampled
locations and to update the EID map that drives ergodic explo-
ration. Future work will focus on the ability of ergodic explo-
ration in estimating the hyper-parameters of the GP, and extend-
ing the simulation work to real-world field experiments with our
gliding robotic fish.
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