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ABSTRACT
In recent years, gliding robotic fish have emerged as promis-

ing mobile platforms for underwater sensing and monitoring due

to their notable energy efficiency and maneuverability. For sens-

ing of aquatic environments, it is important to use efficient sam-

pling strategies that incorporate previously observed data in de-

ciding where to sample next so that the gained information is

maximized. In this paper, we present an adaptive sampling strat-

egy for mapping a scalar field in an underwater environment us-

ing a gliding robotic fish. An ergodic exploration framework is

employed to compute optimal exploration trajectories. To effec-

tively deal with the challenging complexity of finding optimum

three-dimensional trajectories that are feasible for the gliding

robotic fish, we propose a novel strategy that combines a unicycle

model-based 2D trajectory optimization with spiral-enabled wa-

ter column sampling. Gaussian process (GP) regression is used

to infer the field values at unsampled locations, and to update a
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†Address all correspondence to this author.

map of expected information density (EID) in the environment.

The outputs of GP regression are then fed back to the ergodic

exploration engine for trajectory optimization. We validate the

proposed approach with simulation results and compare its per-

formance with a uniform sampling grid.

Introduction

Monitoring and understanding aquatic environments is

paramount for sustaining water resources and ensuring the

longevity of aquatic ecosystems. For that reason, autonomous

underwater robots are increasingly drawing attention in aquatic

sensing, with applications ranging from marine sciences and

tracking oil spills, to monitoring harmful algal blooms and track-

ing fish movement [1, 2]. Given the ever-changing and un-

predictable nature of the environments in which they operate,

robots employed for underwater missions need to be both highly

energy-efficient and maneuverable [3].

Gliding robotic fish are a recent development in underwater

robotic sensing [4], combining the desirable features of both un-
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FIGURE 1. The gliding robotic fish “Grace 2.0” during tests in Hig-

gins Lake, Michigan.

derwater gliders and robotic fish, which are well known for their

respective energy efficiency [5–7] and maneuverability [8–10].

These traits allow a gliding robotic fish to realize its locomotion

through buoyancy-driven gliding, along with adjustment of its

center of gravity to change its pitch. These robots are equipped

with actively controlled fins that provide high maneuverability

and additional propulsion during locomotion if needed. Fig-

ure 1 shows an example of a gliding robotic fish developed by

the Smart Microsystems Lab at Michigan State University.

The gliding robotic fish has three main modes of operation.

Two of them, gliding and spiraling, are energy-efficient, where

most energy is spent when the robot changes its buoyancy and

center of gravity. During gliding, the robot either pitches down

while being negatively buoyant in order to descend, or pitches up

while being positively buoyant to ascend. Spiraling is achieved

in a manner similar to gliding, with the tail deflected at a non-

zero angle. During a steady-state spiraling operation, the yaw

angle changes at a constant rate, while the roll angle and the pitch

angles remain constant. It has been shown that the gliding robotic

fish can achieve a steady spiraling motion when all three controls

(i.e., net buoyancy, center of gravity, and tail fin deflection angle)

are fixed at non-zero values [11,12]. The third mode of operation

is swimming, and it is achieved by continuously flapping the tail

fin to propel the fish forward with steering and velocity being

controlled by the bias and amplitude of the flapping [13].

The efficiency of gliding depends on multiple variables, such

as pitch angle and maximum depth. Gliding is expected to use

less energy when travelling long distances compared to swim-

ming on the surface, as the actuators responsible for adjusting

the buoyancy and center of gravity are used in short bursts (10 s-

20 s) per glide, while swimming would require continuous flap-

ping of the tail fin. On the other hand, swimming does of-

fer some advatanges over gliding when accurate navigation is

needed over a short distance due to the availability of GPS on

FIGURE 2. Schematic of the autonomous water-column-based sam-

pling scheme using the three operational modes of the gliding robotic

fish.

the surface. Therefore, an efficient navigation strategy needs to

leverage gliding and swimming modes effectively when moving

from one point to another. The different modes of operation have

allowed researchers to use gliding robotic fish for autonomous

sampling of harmful algae concentration [4]. During the field

experiments, a 60 m-by-80 m region was sampled with a grid

of 4-by-5 columns. Figure 2 shows the sampling strategy used

in [4]; the robot spirals down a water column while collecting

data, and then glides up to the water surface, which generally

does not coincide with the next target column. The swimming

mode is corrected with GPS-aided guidance, driving the robot to

the next column location and repeating the process.

The sampling grid in [4] was predefined and the gathered

information was not used to improve future samplings. For better

performance, the sampling strategy of the agent should adapt to

the information collected during its operation. This process of

reactive data gathering is referred to as adaptive sampling, where

the agent (the gliding robot fish in this case) changes its path

in response to measurements of its own state and the sampled

environment [14]. For more information on adaptive sampling,

the reader can refer to [14–17].

Adaptive sampling is particularly important for underwater

missions, due to the unpredictability of the environment and the

limited resources of the agents (e.g. power supply), factors that

highlight the need of reactive and efficient sampling. As is dis-

cussed in [17], adaptive sampling performance depends on the

metric used to evaluate the data sets. For example, prioritizing

exploration of areas of high dynamic variability or cluttered lo-

cations are two different strategies that can be used with adaptive

sampling.

In this paper, we utilize ergodic exploration to generate the

sampling trajectory. Ergodic exploration presents a promising

framework for dealing with trajectory planning because it aims

at regulating the time a robot spends in a region to be propor-
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tional to the expected information density [18, 19]. As a result,

ergodic trajectories strike a balance between exploration and ex-

ploitation strategies. The gliding robotic fish, however, presents

a highly nonlinear model with strong coupling of the inputs [20].

To effectively deal with the challenging complexities of finding

optimal 3D ergodic trajectories that are feasible for the robot’s

dynamics, we propose a novel strategy that requires the 2D tra-

jectory optimization, while the robot’s energy-efficient spiraling

mode is used to sample water columns along the third dimension.

The remainder of this paper is organized as follows: we de-

scribe the field of interest in Section II, followed by an overview

on the notion of ergodicity in Section III. In Section IV, we

present the adaptive sampling strategy of the water columns and

in Section V we examine the performance of the proposed strat-

egy in simulation. Finally, concluding remarks and future re-

search directions are provided in Section VI.

Field Representation and Gaussian Regression

The end goal of the sampling strategy is to estimate and re-

construct a three-dimensional field of interest by collecting sam-

ples at discrete locations. To that end, we represent the field to

be estimated as a Gaussian process (GP) as it provides an ele-

gant method for modeling nonlinear functions in the Bayesian

framework [21], and are widely used for modeling spatial fields

and spatio-temporal phenomena [22–24]. GP regression has also

been widely used to predict the field values at unsampled areas

using measurements at discrete locations, and have been exten-

sively used in spatial prediction and reconstruction of a field [21].

We consider a zero-mean Gaussian process g(p) ∈ R that is

written as

g(p)∼ G P
(

0,σ2
f K (p1, p2)

)

, (1)

where p1, p2 ∈ R
3 are the inputs, representing two discrete loca-

tions in the 3D space, and σ2
f K (p1, p2) is the covariance func-

tion. The signal variance σ2
f , which is assumed to be constant

across the entire 3D space, gives the overall scale of the field

relative to the mean of the GP.

The correlation between g(p1) and g(p2) is given by

K (p1, p2). In this paper, we use the squared exponential cor-

relation function of the form

K (p1, p2) = exp

(

−
1

2
(p1 − p2)

T Σ−1
l (p1 − p2)

)

. (2)

Here, Σl = diag(σ1,σ2,σ3) is a diagonal matrix that determines

the decreasing rate of the correlation between two points as the

distance between them increases along each direction. The pa-

rameters {σ f ,σ1,σ2,σ3} are referred to as the hyperparameters

of the GP and can be estimated a priori by the maximization of

the likelihood function [25]. Here, we assume that the hyperpa-

rameters are known a priori.

When samples of the field are collected at discrete locations,

it is possible to estimate the field values at the remaining un-

sampled areas through GP regression. Suppose we have r noise-

corrupted measurements {ψ1, . . . ,ψr} obtained by sampling the

field at locations {p1, . . . , pr}. The measurement noises are as-

sumed to be independent at different locations, and are zero-

mean, Gaussian, with σw representing the measurement noise

variance. Then, the collection of observations ψ =
[

ψ1 . . . ψr

]T

has the Gaussian distribution

ψ ∼ N
(

0,σ fC
)

, (3)

where C ∈ R
r×r is the correlation matrix of ψ , whose (i, j) ele-

ment is computed as

[C]i j = K (pi, p j)+
δi j

γ
. (4)

Here, γ is the signal to noise ratio (SNR) defined as γ = σ2
f /σ2

w,

and δi j denotes the Kronecker delta function. Work in [21] shows

that one can predict the value of the Gaussian process at a point

p? by

ĝ(p?) = qTC−1ψ (5)

with a prediction variance that is given by

σ2
ĝ(p?) = σ2

f (1−qTC−1q), (6)

where q ∈R
r is the correlation vector between ψ and g(p?). The

correlation vector is obtained by

[q] j = K (p j, p?). (7)

Using the GP model along with GP regression allows us to

estimate the field at unsampled locations. It is still important,

however, to select sampling locations that improve this estima-

tion performance. In the next section, we discuss how the notion

of ergodicity is used to select such sampling locations.

Ergodic Exploration
When exploring, it is important to prioritize areas with more

information. The concept of exploration efficiency is quanti-

fied using the measure of ergodicity presented in [19]. A tra-

jectory x(t) is ergodic with respect to some distribution φ(x)
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when the percentage of time spent over any subset of the do-

main is equal to the measure of that subset. Here, the distri-

bution φ(x) represents the expected information density (EID)

map, over a bounded n-dimensional domain X ⊂ R
n, defined as

[0,L1]× [0,L2] · · ·× [0,Ln]. The ergodic metric used to quantify

the difference between spatial statistics of φ(x) and the trajectory

x(t) is given by

ε(x(t)) =
K∈Zn

∑
k=0∈Zn

Λk|ck(x(t))−φk|
2, (8)

where φk are the Fourier coefficients of the spatial distribution

φ(x), and ck are the Fourier coefficients of the basis functions

along the trajectory x(t) averaged over time. The number of co-

efficients used along each of the n dimensions to measure dis-

tance from ergodicity is determined by K, and k is a multi-index

(k1,k2, . . . ,kn). We use Λk defined as

Λk =
1

(1+‖k‖2)s
(9)

with s = n+1
2

to place larger weight on lower frequency informa-

tion.

The Fourier coefficients φk and ck are computed as follows:

φk =
∫

X
φ(x)Fk(x)dx (10)

and

ck =
1

T

∫ T

0
Fk(x(t))dt, (11)

where Fk(x) are the Fourier basis functions used to approximate

the distributions over n dimensions. They are given by

Fk(x) =
1

hk

n

∏
i=1

cos

(

kπ

Li

xi

)

, (12)

where hk is a normalizing factor and xi is the i-th component of

x. We refer the reader to [18, 19], and references therein for a

complete discussion on ergodic exploration.

Adaptive Sampling Strategy
Ergodic exploration presents a promising framework for ac-

tive exploration as it builds exploration strategies that take into

account the dynamics of the sensing agent [18]. This allows us

to generate sampling trajectories that are gaurenteed to be fea-

sible, which is in contrast to other adaptive sampling strategies

that do not consider robot dynamics and could result in infeasible

trajectories [26–28].

The 3D model, described in [20], that involves sophisti-

cated hydrodynamic modeling and strong coupling of the inputs

is prohibitive for real-time execution. Moreover, tracking such

curves is nontrivial, with limited work reported in that area. To

effectively tackle the challenging complexities posed by three-

dimensional sampling and exploration of underwater environ-

ments, we propose a novel strategy that decomposes the problem

into a hybrid problem involving 2D trajectory optimization, with

spiraling along the z-direction using the gliding robotic fish for

sampling of water columns.

This approach holds several advantages over optimizing a

3D trajectory for underwater sampling. First, the computational

effort needed for computing the exploration trajectory is signifi-

cantly reduced by optimizing the trajectories on a 2D plane, al-

lowing for real time implementation of the exploration strategy.

Second, the proposed algorithm ensures that the robot surfaces

after each column sample is taken, allowing for accurate localiza-

tion using the on-board GPS. This is very important when sam-

pling the environment, as exploration stratiegies that spend a long

time underwater generally require accurate localization of the

robot in a GPS-denied environment, causing the obtained mea-

surements to be unreliable when the uncertainty in the robot’s

location is high.

For 2D trajectory planning, we propose using a unicycle

model traveling at a constant speed v with steering as its only

control, whose model is given by

ṗx = vcos(θ)

ṗy = vsin(θ)

θ̇ = ω

(13)

Here, (px, py) represents the unicycle’s position on the 2D plane,

while θ is its orientation and ω is the steering control. In our pre-

vious work in [4], we demonstrated the capability of the robot

in autonomously navigating from one point to another. There-

fore, the planner motion of the unicyle can be effectively tracked

though simple controlled that adjust the tail deflection angle dur-

ing a glide, or by ajusting the amplitude and bias of the tail flap-

ping when swimming on the surface. Using the unicycle model

to plan a 2D trajectory ensures that the robot samples columns se-

quentially, i.e. the next column to sample is within a predifined

distance of the previous column, which in turn ensures that the

robot is not travelling between very far points to collect samples.

Moreover, the unicycle model results in smooth planar trajecto-

ries that minimize sharp turns between two column samples.

The above model is embedded into the ergodic exploration

engine to generate optimal 2D trajectories along which the
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gliding robotic fish spirals to collect water columns samples.

Ergodic-based optimization of the unicycles trajectory requires

the use of an appropriate EID quantifying the expected informa-

tion density for each water column on the 2D plane. This makes

GP regression techniques well suited for the ergodic exploration

framework as the prediction variance at any point in the field can

be computed in closed form using (6).

After each column sample, the measurements obtained by

the robot are fed back to the Gaussian process regression model

to predict the field at all unsampled locations. In order to steer the

unicycle towards informative areas, and therefore select the next

sampling location, a 2D EID map must be generated. GP regres-

sion allows for the comutation of the prediction variance, σ2
ĝ(p?),

in closed form using (6). At first glance, using σ2
ĝ(p?) seems like

a good measure of information, as it is equivalent to the notion

of entropy of a Gaussian random variable H(p?), where more

information can be obtained from the locations that are deemed

most uncertain. While this provides an intuitive approach, it suf-

fers from two major drawbacks. As noted in [26], the entropy

criterion results in “wasted” information, as uncertainty tends to

be largest at the boundry of the space. More importantly, using

entropy as a measure for placing sensors has been shown to bear

no advantages over sampling the space with a uniform grid.

It is important, therefore, to select an appropriate criterion

when generating the EID map. One approach is to consider the

mutual information between each point and the rest of the space.

In [26], the authors present several approximation algorithms for

computing mutual information between a point and the rest of

the space, which is proportional to

MI(p?) ∝
σ2

f −qTC−1q

σ2
f − q̄TC̄−1q̄

, (14)

where q̄ is the correlation vector between p? and the unsampled

points, while C̄ is the correlation matrix between all unsampled

points. This allows us to generate a 2D EID map for planning the

unicycle’s trajectory.

We employ a receding-horizon ergodic exploration scheme

for planning an exploration trajectory, by tailoring the optimiza-

tion algorithm to the unicycle model [13, 29]. Using the metric

of ergodicity mentioned in the previous section, we define the

ergodic objective function to be optimized J(·) as follows

J =
K∈Zn

∑
k=0∈Zn

Λk|ck(x(t))−φk|
2. (15)

This optimization problem can be solved by framing the prob-

lem as a hybrid control problem similarly to Sequential Action

Control (SAC) in [30]. First, the coefficients φk of the spatial

FIGURE 3. Blockdiagram of adaptive strategy for water column sam-

pling. A receding-horizon optimization loop is used to compute the 2D

trajectory for the unicycle using the latest available EID. Water columns

are sampled along the trajectory, and the collected measurements are

used to update the EID through GP regression.

distribution φ(x) are calculated, and then the steering control of

the unicycle is obtained by solving an open-loop ergodic control

problem [29]. The complete strategy for adaptive sampling of

water columns using the gliding robotic fish is depicted in Fig-

ure 3.

The proposed strategy requires significantly less compu-

tational effort when compared to finding an ergodic three-

dimensional trajectory that obeys the gliding robotic fish’s dy-

namics, as it only needs to compute a 2D trajectory. Furthermore,

the proposed strategy can be adopted to real-world experiments

without the need for expensive, and power-hungry, acoustic lo-

calization equipment. This is due to the fact that the robot can

periodically surface and use GPS measurements to determine its

location, while water-pressure and velocity measurements help

estimate the position of the agent while underwater.

Simulation Study

We examine the performance of the proposed approach at

sampling and reconstructing a region of 80 m-by-80 m, while

the depth for each sampled column is set to 7m. The unicycle

was initialized at (x,y) = (5,5) and θ = 20, and traveling at a

constant speed of 1 m/s. As for the field characterization, the

signal variance was set to σ f = 1, where Σl = diag(50,50,7), and
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FIGURE 4. Original field at z = 6 m.

FIGURE 5. Simulated spiral trajectory of gliding robotic fish for fixed

control inputs.

the noise standard deviation was set to σw = 0.1. Figure 4 depicts

the original field at a depth of z = 6 m, which was constructed to

have larger values as the depth increases.

Water columns were sampled every 20 m along the opti-

mized trajectory of the unicycle. Figure 5 shows the simulated

spiraling trajectory for the gliding robotic fish at each column

obtained from using the full 3D model presented in [20], which

takes about 3 minutes to complete. Noisy measurements were

recorded every 12 s along this spiraling trajectory to be used in

the GP regression model.

Figure 6 shows the evolution of the optimized trajectory of

the unicycle on the 2D plane along with the locations of the sam-

pled water columns. Initially, the EID is the same everywhere

as we have very little information to predict the field, and the

prediction error is large everywhere. As the unicycle travels in

the 2D plane to reduce the ergodic cost, and column samples are

obtained along the way, the prediction error at the sampled lo-

cations is reduced, which in turn updates the EID and drives the

unicycle away from these sampled locations.

Figure 7 shows the evolution of the field estimates at a depth

of z = 6 m as more columns are sampled, while Figure 8 depicts

the estimation error at different depths after 16 columns were

sampled. These figures show the capacity of the proposed ap-

proach in reconstructing the original field. Figure 9 compares

the estimation error between our proposed approach and that ob-

tained by sampling from a uniform grid of 16 water columns.

These results show the advantage of using the proposed approach

over uniform sampling, as it forces us to sample more informa-

tive areas in the center of the space. In contrast, a uniform grid

of 16 columns would have 12 of those columns located on the

boundry of the space, resulting in wasted information.

Conclusion and Future Work

In this paper, we propose using ergodic exploration together

with adaptive sampling of water columns subject to the dynam-

ics of a gliding robotic fish. To improve the computational speed

of our algorithm and to address the challenging complexities of

sampling underwater 3D environments, we use the dynamics of a

unicycle to model the planar motion, while still using the opera-

tional modes of the gliding robotic fish to sample water columns

along the trajectory in the remaining dimension. We generate op-

timized 2D trajectories using the ergodic metric and utilize Gaus-

sian process regression to predict the field values at unsampled

locations and to update the EID map that drives ergodic explo-

ration. Future work will focus on the ability of ergodic explo-

ration in estimating the hyper-parameters of the GP, and extend-

ing the simulation work to real-world field experiments with our

gliding robotic fish.
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